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Abstract. Strain localization is among the most challenging
mechanical phenomena for computational Earth sciences.
Accurately capturing it is difficult because strain localization
initiates spontaneously, is self-accelerating, and its character-
istic length and time scales are typically significantly smaller
than the spatial and temporal resolutions of the model. This
results in an undesirable dependence of the model behavior
on numerical parameters and comes at a large computational
cost. Strain localization is most commonly associated with
brittle failure, but processes such as thermal runaway can
also result in rapid ductile localization. Here, we present a
numerical model to investigate thermal runaway, and propose
strategies to overcome the challenges associated with resolv-
ing rapid localization: (i) adaptive time stepping; (ii) adaptive
rescaling; (iii) viscosity regularization; and (iv) gradient reg-
ularization. We demonstrate the effect of these strategies in
one- and two-dimensional models. We rely on the acceler-
ated pseudo-transient method to solve the governing equa-
tions and use graphics processing units to accelerate two-
dimensional computations. Our adaptive time stepping strat-
egy allows us to accurately capture spontaneous and rapid
stress release during thermal runaway while reducing time
steps by more than ten orders of magnitude. Adaptive rescal-
ing further reduces rounding errors and the number of re-
quired iterations by two orders of magnitude. Viscosity reg-
ularization and gradient regularization enable us to mitigate
resolution dependencies but may differently impact the phys-
ical response of the model. Viscosity regularization results in

lower slip velocities, whereas gradient regularization results
in lower temperatures and broader shear zones.

1 Introduction

Strain localization is a mechanism that focuses distributed
deformation into a narrow zone (shear band or shear zone)
which allows relatively stiff blocks to move past each other
without significant internal deformation. It is a critical com-
ponent of solid deformation that can be observed on any
scale and in almost any material (Poirier, 1980; De Borst
et al., 1993; Desrues et al., 2007; Antolovich and Armstrong,
2014; Weidner and Biermann, 2021). Strain localization gov-
erns tectonic processes such as subduction (e.g., Auzemery
et al., 2020) and orogenesis (e.g., Roy et al., 2016), as well as
hazards like landslides (e.g., Darve and Laouafa, 2000) and
earthquakes (e.g., Barras and Brantut, 2025).

In Geodynamics, modeling strain localization accurately
and reproducibly remains inherently challenging due to the
large differences in involved scales. A model has to cover
the km-scale geological setting which evolves on time scales
of kyr as well as the mm-scale localized shear zone which
may operate on time scales of seconds. Furthermore, the self-
feeding character of strain localization usually results in a
lack of a finite length and time scale (De Borst et al., 1993;
Iordache and Willam, 1998; Gerolymatou et al., 2024). As a
consequence, the model behavior becomes dependent on nu-
merical parameters such as spatial and temporal resolution
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and fails to accurately capture strain localization. A plate-
scale model (∼ 106 m) is likely to overestimate the width of
a shear zone due to its coarse spatial resolution. A grain-scale
model (∼ 10−3 m) might underestimate shear zone width if
its domain is too small to cover the relevant geological con-
text. Another challenge in resolving spontaneous localization
is the broad spectrum of values that must be covered with
sufficient numerical accuracy.

In the Earth’s lithosphere, strain localization predomi-
nantly occurs via brittle failure where the stress in a rock unit
exceeds its strength, and it breaks into separate blocks that
slide on a fault. With increasing depth and lithostatic pres-
sure, the brittle strength of rocks increases linearly (Drucker
and Prager, 1952; Byerlee, 1978), while increasing tempera-
tures promote ductile deformation. If brittle failure were the
only mechanism to localize deformation, this would suggest
that highly localized deformation should be limited to less
than about 100 km depth. However, the occurrence of deep
earthquakes, reaching depths of about 660 km (Turner, 1922;
Wadati, 1928; Leith and Sharpe, 1936), demonstrates that
strong strain localization and rapid slip can also occur under
conditions that favor ductile deformation.

In ductile localization, there is no complete loss of cohe-
sion (i.e., breaking). Instead, an area of the material weakens
to the point where it can accommodate most or all of the large
scale deformation (Poirier, 1980; Burg, 1999; Katz et al.,
2006). One mechanism proposed to facilitate ductile local-
ization is thermal runaway (Gruntfest, 1963; Ogawa, 1987).
This process, illustrated in Fig. 1a, describes a feedback cy-
cle that includes deformation, shear heating (or viscous dis-
sipation), temperature-dependent rheology, and localization.
Once deformation begins to localize within a weak inclusion
embedded in a stronger matrix (Fig. 2), shear heating causes
the temperature in the inclusion to rise more rapidly, thereby
locally reducing the viscosity and further enhancing localiza-
tion. This feedback loop can result in catastrophic strength
reduction, a surge in temperature, rapid stress release, and
highly localized slip (e.g., Kameyama et al., 1999; Kelemen
and Hirth, 2007; Thielmann et al., 2015). Thermal diffusion
can stop this feedback loop if sufficient heat is transferred
from the shear zone to the surrounding host rock, which pre-
vents further increase in the viscosity contrast between the
units (Braeck et al., 2009; Thielmann, 2018; Spang et al.,
2024).

In Spang et al. (2024), we captured the dynamics of ther-
mal runaway using a one-dimensional, visco-elastic ther-
momechanical simple shear model, which predicts the tem-
poral evolution of stress and temperature within an evolv-
ing shear zone (Fig. 1b). The model evolves through five
distinct stages: (i) elastic loading, during which deviatoric
stress increases linearly while temperature remains con-
stant; (ii) steady-state viscous creep, dominated by low-
temperature plasticity (LTP), where stress remains nearly
constant and temperature increases steadily; (iii) thermal run-
away, in which deformation localizes into a narrowing slip

zone dominated by dislocation creep, leading to a signifi-
cant stress drop and an exponential increase in temperature;
(iv) post-runaway loading, characterized by linear stress in-
crease as heat diffuses from the shear zone into the surround-
ing host rock; and (v) post-runaway creep, where temperature
is large enough for dislocation creep to gradually relax stress
as the system transitions into a stable sliding regime.

The transient and nonlinear runaway phase presents sev-
eral challenges that thermomechanical models must over-
come to achieve an accurate numerical solution: (i) sponta-
neous initiation; (ii) poor nonlinear solver convergence; and
(iii) mesh-dependent results. Modeling brittle failure/local-
ization suffers from similar issues (e.g., Spiegelman et al.,
2016; Duretz et al., 2020).

In this study, we present and discuss the one- and
two-dimensional (1D and 2D) models we used to capture
spontaneous ductile shear localization. We incorporate a
visco-elastic, composite rheology and utilize the accelerated
pseudo-transient (APT) method (Frankel, 1950; Räss et al.,
2022; Alkhimenkov and Podladchikov, 2024) to solve the
governing system of equations. We then focus on the numeri-
cal challenges associated with rapid localization and describe
our strategies to overcome them: (i) adaptive time stepping;
(ii) adaptive rescaling; (iii) viscosity regularization; (iv) gra-
dient regularization; and (v) enforcing viscosity convergence.
Readers interested in the application of these models are re-
ferred to Spang et al. (2024, 2025a) for the 1D and 2D cases,
respectively.

2 Methods

2.1 Governing equations

To capture rapid ductile shear localization, we consider a sys-
tem of coupled thermomechanical equations governing the
conservation of momentum, mass, and energy:

∂τ ij

∂xj
−
∂P

∂xi
= 0 , (1)

1
ρ

∂ρ

∂t
=−

∂vi

∂xi
, (2)

ρCp
∂T

∂t
=

∂

∂xi

(
k
∂T

∂xi

)
+ τ ij ε̇

vi
ij , (3)

where τ ij is the Cauchy stress deviator, xi denotes the Carte-
sian coordinates, P is pressure (positive in compression), ρ
is density, t is time, vi is the velocity vector, Cp is specific
heat capacity, T is temperature, k is thermal conductivity, and
ε̇vi
ij is the viscous component of the deviatoric strain rate. For

simplicity, we neglect the inertial terms and body forces (i.e.
gravity) from Eq. (1) as well as adiabatic and radiogenic heat-
ing from Eq. (3). The last term of Eq. (3) describes energy
from viscous dissipation and it is entirely partitioned into
shear heating. These simplifications are discussed in Sect. 6.
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Figure 1. Illustration of thermal runaway. (a) Feedback cycle of processes that combine to make thermal runaway. (b) Temporal evolution
of deviatoric stress (purple) and maximum temperature (orange). Arrows indicate different stages of the model evolution. LTP and Dis are
short for low-temperature plasticity and dislocation creep respectively, and indicate the dominant deformation mechanism of the stages.

The conservation equations are augmented by a constitu-
tive relation for bulk compressibility:

1
Kb

∂P

∂t
=−

∂vi

∂xi
, (4)

where Kb is the bulk modulus. For simplicity, we neglect
thermal expansion from Eq. (4). Combining Eqs. (2) and (4),
and integrating the changes in pressure and density yields the
equation of state for density:

ρ = ρref exp
(
P −Pref

Kb

)
, (5)

where ρref and Pref are the reference density and pressure at
atmospheric conditions respectively (Gerya, 2019, p. 26).

The deviatoric strain rate is defined as:

ε̇ij =
1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
−

1
3
∂vk

∂xk
δij , (6)

where ε̇ij is the deviatoric strain rate and δij is the Kronecker
delta. All subsequent references to stress or strain rate refer
to the deviatoric parts of the two tensors.

2.2 Rheology

We use Maxwell visco-elasticity (Maxwell, 1867), where the
strain rate is the sum of its elastic and viscous components:

ε̇ij = ε̇
el
ij + ε̇

vi
ij =

1
2G

∂τ ij

∂t
+

1
2η
τ ij , (7)

where ε̇el
ij is the elastic strain rate component, G is the shear

modulus, and η is the effective shear viscosity. Whereas the
elastic deformation is governed by the shear modulus, vis-
cous deformation is a combination of diffusion creep, dislo-
cation creep, and low-temperature plasticity. Following the
approach of Maxwell, we consider all viscous mechanisms
in series, which implies that deformation is dominated by

the weakest one and that strain rate components are added
(Jóźwiak et al., 2015):

ε̇vi
II = ε̇

dif
II + ε̇

dis
II + ε̇

LTP
II , (8)

where the superscripts dif, dis and LTP denote diffusion
creep, dislocation creep, and low-temperature plasticity, re-
spectively. The subscript II denotes the square root of the
second invariant of an arbitrary second-order tensor Cij :

CII =

√
1
2

CijCij . (9)

As a consequence of the Maxwell approach in Eq. (8), the
effective viscosity η can be expressed as:

η =

(
1
ηdif
+

1
ηdis
+

1
ηLTP

)−1

, (10)

where

ηdif =
1
2
(Adif)

−1dm exp
(
Edif

RT

)
, (11)

ηdis =
1
2
(Adis)

−
1
n

(
ε̇dis

II

) 1
n
−1

exp
(
Edis

nRT

)
, (12)

ηLTP =
τLTP

2ε̇LTP
II

. (13)

A is a prefactor, E is the activation enthalpy, d is grain size,
m is the grain size exponent of diffusion creep, R is the uni-
versal gas constant, and n is the powerlaw exponent of dislo-
cation creep. The LTP-stress τLTP is given by:

τLTP =
RT

ELTP
σres sinh−1

[
ε̇LTP

II
ALTP

exp
(
ELTP

RT

)]
+ σb , (14)

σres = σL+
σK
√
d
, (15)

where σb, σL and σK are material constants (Hansen
et al., 2019). Diffusion creep dominates deformation at low
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Figure 2. Model setups with simple shear boundary conditions.
(a) 1D model. Note that the model only has a single cell in the
horizontal direction. The red line indicates the distribution of the
weakening factor ω. (b) 2D model. The red ellipse indicates the
weak inclusion where the weakening factor ω is applied. Lateral
boundaries are periodic. Both setups are not drawn to scale. Verti-
cal extent is 10 km for both models and horizontal extent is 60 km
for the 2D model. Adapted from Spang et al. (2024, 2025a).

stress/high temperature and dislocation creep at medium
stress/temperature. LTP is dominant at large stress/low tem-
perature, and it behaves similarly to perfect plasticity due to
brittle deformation. It remains inactive below a critical stress,
but accommodates all deformation that would otherwise in-
crease stress beyond this threshold.

2.3 Model setup

We use models with simple shear boundary conditions and
central weak inclusions to initialize localization of deforma-
tion. Heat flux is zero across all domain boundaries. In 1D,
the weak zone is introduced by multiplying the flow law pref-
actors Adif and Adis (see Sect. 2.2) by a weakening factor ω
which follows a Gaussian distribution with a minimum of 1
and a maximum of 2 (Fig. 2a). The full-width-half-maximum
of the distribution is 200 m, and the extent of the entire model
is 10 km.

The vertical and horizontal extents of the 2D model are 10
and 60 km, respectively. The weak inclusion is an ellipse with
semi-major axes of 375 and 125 m, respectively. Within this
anomaly, Adif and Adis are multiplied by 2, and σb is divided
by 2. The different implementations of the weak inclusion are
discussed in Sect. 5.2. The lateral boundary conditions in the
2D model are periodic (Fig. 2b). Unless stated otherwise, the
material parameters used in all models are listed in Table 1.

2.4 The 1D case

In the 1D configuration, the spatial dimensions are reduced to
the vertical y-direction, and Eqs. (1)–(6) are simplified. With
simple shear boundary conditions, no gravity, and no thermal
expansion, the divergence of velocity is inherently zero. The
conservation of mass (Eq. 2) simplifies to:

∂ρ

∂t
= 0 , (16)

and Eq. (4) simplifies to:

∂P

∂t
= 0. (17)

This renders the model incompressible, with density and
pressure constant in time. Furthermore, the velocity vector is
reduced to its horizontal component, which simplifies Eq. (6)
to:

ε̇xy =
1
2
∂vx

∂y
, (18)

with the other components of the strain rate and stress tensor
equal to zero. This simplifies the conservation of momentum
(Eq. 1) to:

∂τxy

∂y
= 0 . (19)

3 Implementation

The governing equations are discretized on a staggered grid
(e.g., Gerya and Yuen, 2003) using the small strain ap-
proximation. They are solved with a conservative finite-
difference scheme in an iterative manner using the APT
method (Frankel, 1950; Räss et al., 2022; Alkhimenkov and
Podladchikov, 2024). The code is implemented in the Julia
programming language and employs the GeoParams.jl
package (Kaus et al., 2023) for parameter nondimension-
alization. The 2D implementation further leverages the
ParallelStencil.jl package (Omlin and Räss, 2024;
Omlin et al., 2025) to automatically generate parallel kernels
on both central processing unit (CPU) and graphics process-
ing unit (GPU) devices.

3.1 Spatial discretization

For both the 1D and 2D models, we employ a variable grid,
with the smallest vertical cell size in the center of the do-
main. In the 1D models, the central quarter of the grid con-
sists of uniformly sized cells, while spacing increases lin-
early towards the model boundaries. The outermost cells are
approximately 125 times larger than those at the center, al-
lowing for maximum resolution in the region where thermal
runaway is expected to occur. This is common practice when
investigating thermal runaway (e.g., Thielmann et al., 2015).
Material properties and most field variables are defined at
cell centers, whereas velocity and heat flux are located at cell
edges (Fig. A2a).

In 2D, the grid refinement is limited to a factor of 2 to
avoid convergence issues arising from large cell aspect ra-
tios. In the horizontal direction, all cells are the same size.
We use 1536 and 256 cells in the horizontal and vertical di-
rection respectively, yielding resolutions of about 39 m (hor-
izontal) and 26–52 m (vertical). We use a staggered grid ap-
proach where material properties, temperature, pressure, vis-
cous dissipation, and normal stress components are defined
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Table 1. Material parameters for the reference model. Bracketed superscripts denote the sources of the parameters which are given at the
bottom of the table.

Parameter Unit Value Explanation

T0 [°C] 600 Background temperature
P0 [GPa] 10 Background pressure
ε̇bg [s−1] 5× 10−13 Background strain rate
ρ0 [kgm−3] 3300 Reference density
d [µm] 100 Grain size
ηreg [Pa s] 1015 Regularization viscosity

G [GPa] 80 Shear modulus
Kb [GPa] 133.3d Bulk modulus

m 3a Grain size exponent
Adif [µmm MPa−1 s−1] 1.5× 109 a Prefactor
Edif [kJmol−1] 375a Activation enthalpy

n 3.5a Stress exponent
Adis [MPa−n s−1] 1.1× 105 a Prefactor
Edis [kJmol−1] 530a Activation energy

ALTP [s−1] 5× 1020 b Prefactor
ELTP [kJmol−1] 550b Activation energy
σL [GPa] 3.1b Lattice friction
σK [GPaµm0.5] 3.2b Material constant
σb [GPa] 1.8b Back stress

Cp [Jkg−1 K−1] 1000 Heat capacity
k [J s−1 m−1 K−1] 3 Thermal conductivity
HL [kJkg−1] 300c Latent heat

a Hirth and Kohlstedt (2003), b Hansen et al. (2019), c Schmeling et al. (2019).
d Computed from G and ν = 0.25.

at cell centers. Velocity and heat flux are defined on cell
edges, while shear stress components are located at cell cor-
ners (Fig. A2b).

3.2 Accelerated pseudo-transient method

In the APT approach, the conservation equations are solved
at each physical time step by introducing a pseudo-time
derivative for each equation and iteratively updating the pri-
mary variables vi , P , and T until the residuals drop be-
low a given numerical tolerance. Applying this procedure to
Eqs. (1)–(3) yields:

∂vi

∂ψ
=
∂τ ij

∂xj
−
∂P

∂xi
, (20)

∂P

∂ψ
=

1
Kb

∂P

∂t
+
∂vi

∂xi
, (21)

∂T

∂ψ
=

1
ρCp

[
∂

∂xi

(
k
∂T

∂xi

)
+ τ ij ε̇

vi
ij

]
−
∂T

∂t
, (22)

where ∂/∂ψ denotes the pseudo-time derivative. During each
pseudo-time iteration, each primary variable is incremented
proportionally to the sum of the current residual and the pre-

vious increment (Duretz et al., 2019):

1γ =

[
∂γ

∂ψ
+

(
1−

1
ζγ

)
1

prev
γ

]
1ψγ , (23)

where γ represents one of the primary variables vi , P , or T ,
1γ is the current increment of the respective variable, 1prev

γ

is the increment from the previous iteration, ζγ is the damp-
ing parameter (> 1).1ψγ is the size of the pseudo-time step
given by:

1ψvi =
1xi

fvη
, (24)

1ψP =
fP η

max(nci)
, (25)

1ψT =min
(

min(1xi)2

2ndimκ
,
1t

2

)
, (26)

where 1xi is the grid spacing, fv and fP are factors, nci is
the number of cells in each dimension, ndim is the number of
dimensions, κ = k/(ρCp) and 1t is the physical time step.

The left hand side terms in Eqs. (20)–(22) are equivalent
to the residuals of the conservation equations. Once all of
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them are smaller than a given numerical tolerance of 10−6 af-
ter normalization, the solution is converged and is equivalent
to a fully implicit, backward Euler solution with converged
nonlinearities.

3.3 Viscosity update

Given the nonlinear nature of dislocation creep and low-
temperature plasticity, the strain rate partitioning (Eq. 8)
cannot be solved analytically but requires a numerical ap-
proach. It can be updated and solved alongside the conserva-
tion equations (Eqs. 20–22). To stabilize the rheology solver,
we use a relaxation approach for the viscosity updates of each
mechanism during the pseudo-transient (PT) iterations:

ηit
i = exp

[
(1− ηrel) log(ηit−1

i )+ ηrel log(ηt
i)
]
, (27)

where the superscript it denotes the iteration count, ηrel < 1
is the relaxation factor (Duretz et al., 2019), and ηt

i is the
target viscosity (i.e. the new viscosity without relaxation).
We discuss our strategy for solving the strain rate partitioning
in Appendix A and Fig. A1.

3.4 Regularization

To stabilize the model during thermal runaway and miti-
gate mesh dependency, we test three regularization strate-
gies: (i) viscosity regularization, (ii) gradient regularization,
and (iii) inclusion of latent heat of melting. All approaches
aim to limit maximum strain rates and prevent viscosities
from dropping below a critical threshold. We note that alter-
native regularization strategies for brittle failure have been
proposed in the literature (e.g., Duretz et al., 2023; Goudarzi
et al., 2023; Gerolymatou et al., 2024). We discuss the strate-
gies’ relation to physical mechanisms in Sect. 4.3.5.

3.4.1 Viscosity regularization

Viscosity regularization imposes a direct lower bound on
viscosity, effectively stopping the self-softening behavior of
thermal runaway once this threshold is reached. To imple-
ment this, we modify Eq. (10) as follows:

η =

(
1
ηdif
+

1
ηdis
+

1
ηLTP

)−1

+ ηreg , (28)

where ηreg is the regularization viscosity. This approach
has been previously applied to regularize brittle plasticity
(Duretz et al., 2020; Jacquey and Cacace, 2020; Kiss et al.,
2023; Alkhimenkov et al., 2024) and rate-and-state friction
models (Pranger et al., 2022; Goudarzi et al., 2023). Our rhe-
ological model is illustrated in Fig. A1.

3.4.2 Gradient regularization

In gradient regularization, the viscous dissipation is dis-
tributed over a broader area, which limits localized temper-
ature increase, viscosity reduction, and strain localization.

This is achieved by introducing a diffusion term to the shear
heating component of the conservation of energy (Eq. 3):

ρCp
∂T

∂t
=

∂

∂xi

(
k
∂T

∂xi

)
+ τ ij

(
ε̇vi
ij + λ

2
reg

∂2ε̇vi
ij

∂x2
i

)
, (29)

where λreg is a regularizing diffusion length scale. With in-
creasing λreg, the dissipation is smoothed over a larger area
and thermal runaway will be damped. This approach has also
been employed in the regularization of rate-and-state fric-
tion models (Sleep, 1997; Pranger et al., 2022) and tested in
the context of brittle faulting (De Borst and Mühlhaus, 1992;
Duretz et al., 2023).

3.4.3 Inclusion of latent heat of melting

Melting is an endothermic process and as such, it can act
as an energy sink at large temperatures. This could poten-
tially offset the viscous dissipation term and limit tempera-
ture growth, consequently stopping the self-softening behav-
ior of thermal runaway like viscosity regularization. To intro-
duce this process into the governing equations, we add a term
to Eq. (3) to account for the energy consumed by melting:

ρCp
∂T

∂t
=

∂

∂xi

(
k
∂T

∂xi

)
+ τ ij ε̇

vi
ij − ρHL

∂F

∂t
, (30)

where HL is latent heat and F is the melt fraction (Schmel-
ing et al., 2019). Melt fraction is a function of pressure and
temperature and is computed after a parameterization for an-
hydrous melting of peridotite (Katz et al., 2003). Similarly to
the viscosity, the melt fraction has to be updated incremen-
tally during the PT iterations:

F it
= (1−Frel)F

it−1
+FrelF

t , (31)

where F it and F it−1 are the melt fraction in the current and
previous iteration, respectively, F t is the target melt fraction
according to the melting model, and Frel = 10−4 is a relax-
ation factor.

A complete description of melting would also involve
changes to the conservation of mass as well as a feedback
on rheology. As we are interested in the potential of melting
as a regularization, we neglect these components, since the
weakening effect of partial melt on rheology would increase
runaway intensity.

4 Numerical challenges and solution strategies

We use 1D models to illustrate the numerical challenges
associated with rapid strain localization and the strategies
we employ to address them. Similar problems arise in 2D
models, which are discussed in Sect. 5. The primary chal-
lenges include: (i) selecting appropriate time steps to accu-
rately capture the runaway phase; (ii) avoiding round-off er-
rors caused by abrupt shifts in the model’s characteristic time
scales; (iii) maintaining solver stability during runaway; and
(iv) minimizing resolution dependence.
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4.1 Adaptive time stepping

The basic model behavior is described in Fig. 1b and the in-
troduction. Outside the runaway phase, time steps ranging
from tens to thousands of years are sufficient. However, re-
solving the thermal runaway phase requires time steps on the
order of milliseconds. While large time steps may adequately
capture the long-term stress evolution, they fail to resolve the
transient dynamics leading up to runaway (Fig. 3). In particu-
lar, they significantly underestimate temperature increase and
slip velocity (Fig. 3b and d).

As the spontaneous onset of runaway cannot be predicted
a priori, an adaptive time-stepping scheme is critical. Iden-
tifying suitable time steps is a well-known challenge in sci-
entific computing, and a number of studies propose different
methods (e.g., Bursi and Shing, 1996; Rylander and Bonde-
son, 2002; Ropp et al., 2004; Söderlind and Wang, 2006). As
thermal runaway is driven by the conversion of elastic energy
to thermal energy (e.g. Ogawa, 1987; Spang et al., 2024),
the most indicative parameters for the onset and intensity
of runaway are stress and temperature. Therefore, we con-
strain time steps by limiting the maximum allowable change
in these two quantities (1τ , 1T ). Similar strategies are em-
ployed in earthquake modeling studies (Herrendörfer et al.,
2018; Dal Zilio et al., 2022; Pranger et al., 2022). We evalu-
ate three methods for implementing adaptive time stepping.
In all cases, we define threshold values of 1τmax = 50MPa
and 1Tmax = 5K.

4.1.1 Linear-predictive

For the linear-predictive scheme, we assume that the rates of
change of stress τ and temperature T do not increase signifi-
cantly in the subsequent time step. Based on this assumption,
the new time step can be determined by scaling the previous
time step according to the changes in τ and T :

1tnt
=1tnt−1min

(
1Tmax

1T nt−1 ,
1τmax

1τ nt−1 ,1.25
)
, (32)

where1tnt is the upcoming time step,1tnt−1 is the previous
time step, 1T nt−1 is the maximum temperature change dur-
ing the previous step, and1τ nt−1 is the stress change (which
is spatially uniform in the 1D domain). To avoid excessive
time step increases, we added the factor of 1.25 in Eq. (32).
It limits the time step growth to 25 % of the previous value
when 1t is predicted to increase.

If the actual rates of change in τ and T increase, the re-
sulting 1τ and/or 1T may exceed their respective thresh-
olds1τmax and1Tmax. This causes the subsequent time step
to be shorter. However, due to the highly nonlinear nature of
thermal runaway, this predictive scheme may be inadequate,
failing to decrease the time step fast enough once localization
and stress release begin (Fig. 3a).

4.1.2 Iteration-adaptive

In the iteration-adaptive scheme, we also use Eq. (32) to pre-
dict the new time step. However, instead of applying it only
once at the beginning of a physical time step, we dynami-
cally adjust the time step during every iteration of the APT
solver. This approach enables rapid reduction of the time step
by several orders of magnitude within a single physical time
step, while still adhering to the constraints set by 1τmax and
1Tmax. However, as the elastic component of the strain rate
is time step-dependent (Eq. 7), adapting the time step during
PT iterations can lead to unstable behavior where the residu-
als oscillate and fail to converge. As this method is unstable,
we did not plot it in Fig. 3a.

4.1.3 Restarting-adaptive

In the restarting-adaptive scheme, we rely on Eq. (32) to eval-
uate the appropriate time step during PT iterations. However,
unlike the iteration-adaptive approach, the time step is not re-
duced within the PT iterations. Instead, if Eq. (32) indicates
that the current time step is too large, the entire physical time
step is restarted with a reduced (by a factor of 2) step size. To
facilitate this, all relevant fields – stress, temperature, pres-
sure, density, viscosity, and velocity – are saved at the start
of each new time step. If a restart is triggered, these values
are restored, and the time step is recalculated.

Multiple restarts per time step are possible and often nec-
essary during the onset of thermal runaway. This strategy is
effective in ensuring solver stability while rapidly adapting
the time step. Its primary drawback is that some redundant
computations occur during restarts. However, the redundancy
is generally small compared to the overall computations (and
iterations) required to solve each time step.

The inset in Fig. 3d illustrates the performance of this
method. The time step initially remains on the order of hun-
dreds of years during the steady-state creep phase, drops by
approximately two orders of magnitude as stress begins to
relax, and then decreases by another ten orders of magnitude
during the onset of thermal runaway. In the elastic reload-
ing phase, 1t quickly recovers to hundreds of years as both
stress and temperature evolve more slowly.

4.2 Adaptive rescaling

Numerical solvers commonly use internal scaling to center
quantities around 1 which minimizes round-off errors due
to numerical precision. To do so, a set of scales is created,
and all dimensional quantities are divided by an appropriate
combination of these scales. As an example, a geodynamic
model focused on plate-scale deformation might use a time
scale of tsc = 1012 s and a stress scale of τsc = 108 Pa which
combine to a viscosity scale of ηsc = 1020 Pas. This means a
time step of 100 years is scaled to 1tND =

1t
tsc
≈ 0.003156,
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Figure 3. Model results for different time stepping schemes. (a) Temporal stress evolution as a function of fixed time steps of different size
in comparison to linear-predictive (Sect. 4.1.1) and restarting-adaptive (Sect. 4.1.3) time stepping. (b) Maximum temperature. (c) Minimum
viscosity. (d) Maximum velocity. Inset shows temporal evolution of stress and time step, using the restarting-adaptive method. ηreg = 109 Pas.

where 1tND is the nondimensional time step used inside the
solver.

This becomes problematic once adaptive time stepping re-
duces the dimensional time step to one second, as this is
equivalent to 10−12 after scaling. Considering the numeri-
cal precision of 10−15, such a low value is prone to round-
off errors. To mitigate this, we decrease tsc by one order of
magnitude every time the nondimensional time step drops
below 10−9. Changing the time scale does not only impact
the nondimensional time step but all quantities which carry
units of seconds such as strain rates, velocities, and viscosi-
ties. All of these have to be rescaled together. This is conve-
nient for viscosities as they also decrease significantly during
runaway. It is also beneficial for velocities and strain rates as
they increase during runaway and decreasing tsc increases the
velocity and strain rate scales.

In Fig. 4, we demonstrate how rescaling facilitates conver-
gence and reduces the number of iterations by two orders of
magnitude for a model that takes time steps as low as 25 µs.
Without rescaling, the model requires about 2× 109 itera-
tions in total to solve, the majority of them during thermal

runaway. Rescaling properties with time scales in their units
as soon as the nondimensional time step 1tND drops below
10−14 reduces the number of iterations by one order of mag-
nitude. Rescaling at 1tND < 10−12 reduces the total number
of iterations by another order of magnitude, and only half of
them are used during the runaway. Further reduction of the
critical 1tND has only negligible effects (Fig. 4) despite the
proximity of the values to numerical precision.

4.3 Regularization

During thermal runaway, the viscosity within the shear zone
decreases dramatically (more than 10 orders of magnitude)
due to the temperature increase. Large contrasts in mate-
rial properties are challenging for numerical solvers (e.g.,
Gerya, 2019), especially for iterative approaches which rely
on local conditioning. Elasticity can reduce the stiffness con-
trast between high and low viscosity areas, but this is not
sufficient to guarantee convergence. Even if the solver con-
verges, shear zones often thin to the width of one grid cell. In
this case, the mechanical behavior of the model is governed
by the numerical resolution instead of the physics of the
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Figure 4. Effect of adaptive rescaling. Sum of iterations for full
model (blue) and during runaway (orange) as a function of the min-
imum allowed 1tND before rescaling is used to increase it. The
dashed black line shows the number of iterations without any rescal-
ing. Note that the models with 1tND,min = 10−15 and no rescaling
have many non-converged time steps. All models have identical re-
sults in terms of stress, temperature, and velocity. ηreg = 106 Pas.

problem (De Borst et al., 1993; Iordache and Willam, 1998;
Jacquey et al., 2021). To alleviate this issue and improve re-
producibility, we test three regularization methods: viscosity
regularization (see Sect. 3.4.1), gradient regularization (see
Sect. 3.4.2), and latent heat of melting (see Sect. 3.4.3). To
quantify the impact of viscosity and gradient regularization,
we run 60 1D simulations in which we vary between five dif-
ferent numerical resolutions (63–1023 cells), with six differ-
ent viscosity regularization values ηreg (106–1018 Pas), and
six different gradient regularization values λreg (1–32 m). As
latent heat proved to be unable to regularize the reference
model, we did not include it in this parameter study. We use
maximum velocity vmax, maximum temperature Tmax, and
shear zone width dsz as diagnostic parameters for the anal-
ysis.

4.3.1 Viscosity regularization

Applying viscosity regularization renders the diagnostic pa-
rameters resolution independent (Fig. 5a–c). Instead, these
quantities exhibit a strong, exponential dependence on the
regularization viscosity ηreg. For ηreg ≥ 1012 Pas, these quan-
tities remain nearly identical across all tested grid resolu-
tions, ranging from 63–1023 cells (corresponding to mini-
mum cell sizes between 2 and 0.125 m). At ηreg = 1012 Pas,
the shear zone localizes to a single grid cell in the coarsest
model (63 cells; blue curve in Fig. 5). For lower values of
ηreg, results from this low-resolution model begin to diverge
from those of finer grids. As ηreg is further reduced, finer-
resolved models also localize to a single cell and their results
start to diverge from models that can still resolve the shear
zone.

Once a model localizes deformation to a single grid cell,
both dsz and Tmax plateau and cease to vary with decreasing
ηreg (Fig. 5b and c). In contrast, vmax continues to increase as
ηreg decreases, but it also slowly diverges from models that
are still resolved.

The total number of PT iterations niter, normalized by
grid resolution, decreases with increasing ηreg, reflecting the
fact that a more strongly regularized runaway is numeri-
cally easier to solve (Fig. 5d). Higher-resolution models ex-
hibit slightly more efficient convergence compared to lower-
resolution counterparts.

The temporal evolution of stress remains largely unaf-
fected by variations in ηreg. For ηreg ≤ 1015 Pas, the models
consistently exhibit rapid and complete stress relaxation. In
contrast, ηreg = 1018 Pas leads to slower and incomplete re-
laxation (inset in Fig. 5a). This trend is observed across all
resolutions. Similar effects of viscosity regularization have
been reported by Spang et al. (2024).

4.3.2 Gradient regularization

As in the viscosity regularization case, applying gradient
regularization renders the diagnostic parameters resolution
independent (Fig. 5e–g). Instead, these quantities exhibit a
strong, exponential dependence on the regularization diffu-
sion length scale λreg. While minor discrepancies persist be-
tween different resolutions, they are negligible compared to
the variations induced by changes in λreg. One exception is
the coarsest model (63 grid cells) with λreg = 1m, which
slightly overestimates both vmax and Tmax. In this case, the
shear zone has localized to a single grid cell (Fig. 5g).

Across the tested range of λreg (1–32 m), vmax spans
from 10−7 and 107 ms−1, Tmax ranges between 800 and
4000 °C, and dsz varies from approximately 3–100 m. Some-
what counterintuitively, larger values of λreg – which pre-
vent extreme localization resulting in a more attenuated run-
away – require more PT iterations resulting in larger solution
time (Fig. 5h). Moreover, the number of iterations per grid
cell increases with numerical resolution. Models with 511
grid cells and λreg > 8m, as well as 1023-cell models with
λreg > 2m did not complete in one day and are not shown in
Fig. 5. We discuss the reasons for this in Sect. 4.3.4.

For λreg ≤ 8m, stresses relax rapidly and nearly com-
pletely. In contrast, for λreg > 8m, residual stresses of sev-
eral hundred MPa remain at the end of the thermal runaway
phase (inset in Fig. 5e).

4.3.3 Inclusion of latent heat of melting

To test the potential of melting as a regularization, we re-
peat the reference model (Fig. 1b) with the changes described
in Sect. 3.4.3 and without the previously mentioned regular-
ization methods. Once the shear zone reaches the solidus of
about 1900 °C (at P0 = 10GPa), temperature increase slows
down as thermal energy partitions into melting (Fig. 6a).
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Figure 5. Effect of viscosity regularization (left column) and gradient regularization (right column). Colors correspond to resolution (number
of cells and corresponding size of smallest cell) and all axes are logarithmic. (a, e) Maximum velocity. (b, f) Maximum temperature.
(c, g) Shear zone width (full-width-half-maximum of strain rate peak, see inset). Dashed lines indicate size of one cell for each resolution.
(d, h) Total number of iterations divided by number of cells. Insets in (a) and (e) show stress evolution for 255 cells and largest ηreg/λreg.
All models with lower values are indistinguishable from the displayed ones.

After about one millisecond, the shear zone is completely
molten and temperature continues to increase with the same
rate as below the solidus since no additional energy can be
partitioned into melting. Overall, the inclusion of latent heat
has no significant impact on the model evolution. Results are
similar in our 2D models (Fig. 6b).

4.3.4 Comparison

Viscosity and gradient regularization achieve the same over-
arching goal: they effectively attenuate thermal runaway, en-
sure numerical stability, and provide control over the degree
of strain localization. By doing so, they eliminate the depen-
dence of diagnostic parameters on spatial resolution, making
quantities such as vmax, Tmax, and dsz primarily functions of
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Figure 6. Effect of considering the latent heat of melting. Dashed orange line shows evolution of maximum temperature, and turquoise line
shows evolution of maximum melt fraction. Note that we plot time step instead of time due to the small size of the time steps (∼ 1µs) during
melting. (a) 1D. (b) 2D.

ηreg or λreg instead. This control breaks down when the shear
zone narrows to a single grid cell. At that point, regulariza-
tion can no longer constrain the degree of localization, and
resolution-dependent artifacts reappear.

A direct, quantitative comparison between the two meth-
ods is not straightforward, as there is no known correspon-
dence between specific values of ηreg and λreg. Neverthe-
less, a qualitative comparison of the columns two columns
in Fig. 5 reveals distinct differences. Gradient regulariza-
tion allows significantly larger vmax – spanning orders of
magnitude beyond values observed with viscosity regular-
ization. However, Tmax is approximately two orders of mag-
nitude lower when gradient regularization is employed. Al-
though both approaches produce similar shear zone widths
when considering largest regularization values, the viscosity-
regularized models generate up to an order of magnitude nar-
rower shear zones for the smallest considered regularization
values. These differences stem from the fundamentally dif-
ferent ways the two methods constrain localization.

Viscosity regularization allows for the full release of
stored elastic energy within the shear zone during stress
relaxation, leading to extreme peak temperatures of up to
105 °C. However, by introducing a lower bound on viscosity,
it limits the extent to which this heating can impact the rheol-
ogy and weaken the material. As deformation is tightly cou-
pled to rheology, this constraint also limits maximum slip ve-
locities. In contrast, gradient regularization distributes the re-
leased energy across a broader region, leading to lower peak
temperatures and wider shear zones. Because this method
does not impose an explicit lower viscosity bound, extreme
deformation rates can still occur.

The computational cost of the two methods also differs
significantly, as illustrated by the normalized number of PT
iterations in Fig. 5d and h. At low resolutions and with less
pronounced regularization (low ηreg and λreg), both methods
perform similarly. However, as ηreg or λreg increase, viscos-
ity regularization becomes more efficient, requiring fewer PT

iterations. Conversely, gradient regularization becomes in-
creasingly expensive. Larger values of λreg allow for faster
diffusion of dissipative work, effectively reducing the maxi-
mum allowed physical time steps.

Resolution scaling further differentiates the two methods.
For viscosity regularization, the number of iterations per cell
remains nearly constant with increasing resolution. In con-
trast, this ratio grows with resolution when gradient regular-
ization is employed, making the latter increasingly impracti-
cal for high-resolution simulations. The number of necessary
iterations for diffusive processes is known to grow quadrati-
cally with the number of cells (e.g., Räss et al., 2022).

Including the latent heat of melting only has a negligible
effect on the model evolution as it provides no significant
limitation of weakening and localization. A melt fraction of
100 % requires about 109 Jm−3 while the shear heating term
is about 1012 Jm−3 s−1 when the model reaches the solidus.
For melting to be effective in attenuating thermal runaway,
the melt would need to be immediately transported out of
the shear zone which would remove energy from the shear
zone and continuously bring new host rock in contact with
the shear zone which can absorb energy by melting as well.
This process is indeed observed in pseudotachylytes in the
form of injection veins (Rowe et al., 2012; Andersen et al.,
2014).

4.3.5 Relation to physical mechanisms

Regularization techniques are synthetic additions to physics-
based equations. Their intended benefits include numeri-
cal stability, reproducibility, mitigation of mesh dependency,
smoothening of discontinuities, and simplification of com-
plexity. If they are effective, they provide better control over
the model behavior but come with the inherent cost of di-
verging from the physical solution once they start to affect
the model.

https://doi.org/10.5194/gmd-19-369-2026 Geosci. Model Dev., 19, 369–388, 2026



380 A. Spang et al.: Overcoming the numerical challenges owing to rapid ductile localization with DEDLoc

Nevertheless, regularization techniques can also be inter-
preted as a simplification of a physical process that is not part
of the model equations. The viscosity regularization could
be imagined as a simplification of melting. By acting as a
minimum viscosity cut-off, it decouples the deformation in
the model from the temperature and the flow laws describing
solid-state creep. Melting could have a similar effect, replac-
ing the governing olivine flow laws with a different rheology,
potentially temperature- and strain rate-dependent. We note
that the values we employ for ηreg are significantly larger
than the viscosity of peridotite melt (Liebske et al., 2005;
Xie et al., 2021).

Gradient regularization distributes the localized shear
heating over a larger area. As temperature is mainly governed
by shear heating during runaway, this regularization is effec-
tively a smoothing process for temperature. Therefore, it can
be compared to an advection scheme which has a similar ef-
fect.

Ideally, regularization is replaced by additional physical
processes (e.g., melting and melt transport). This requires
an accurate description of the physical process by the gov-
erning equations, exhaustive experimental constrains on the
associated material parameters, and a numerical solver that
can handle the additional non-linearity that is potentially
introduced. Furthermore, there is no guarantee that addi-
tional physical processes are sufficient to regularize a pro-
cess enough for numerical stability and reliability (Geroly-
matou et al., 2024). Additional physical processes that could
affect the evolution of our models are grain size evolution
and phase transformations. We discuss them in Sect. 6.2 and
6.3.

4.4 Viscosity convergence

During the elastic loading phase, the model typically con-
verges within a few (< 100) PT iterations. While such fast
convergence is computationally efficient, it can introduce nu-
merical errors when using the viscosity relaxation method
(Eq. 27). In this approach, the viscosity is incrementally up-
dated in each iteration using a relaxation factor, commonly
ηrel = 0.01, meaning that only 1 % of the computed vis-
cosity update is applied per iteration. Although this under-
relaxation stabilizes the solver, it can hinder convergence of
the viscosity field for a low PT iteration count.

Figure 7b shows that after 100 iterations, the viscosity up-
date has only progressed about halfway towards its target
value. Converging viscosity relaxation (i.e., reaching the up-
dated steady-state value) typically requires around 500 iter-
ations for ηrel = 0.01. Failing to accurately resolve viscosity
relaxation may become problematic near the onset of LTP
creep, where ηLTP drops rapidly as stress approaches the
yield threshold τLTP.

LTP accommodates all deformation that would otherwise
increase stress beyond this threshold. If ηLTP and the asso-
ciated strain rate partitioning are not updated fast enough,

stresses can significantly exceed τLTP, requiring corrective
adjustments in subsequent time steps (Fig. 7a). This not only
leads to an incorrect stress evolution, but can also trigger spu-
rious slip events that would not occur under properly updated
stress conditions.

To mitigate this issue, we monitor the convergence be-
tween viscosity ηit and target viscosity ηt (Eq. 27). When the
relative difference |η

it
−ηt
|

ηt is smaller than the viscosity toler-
ance tolη, viscosity is considered converged. Once the con-
servation equations (Sect. 3.2), the viscosity, and the strain
rate partitioning (Appendix A) are converged, we accept the
solution. This ensures that both rheological and mechanical
responses are correctly captured during the elastic-to-LTP
transition (Fig. 7a).

The stress overshoot for insufficient viscosity convergence
is more prominent when the steady-state stresses of diffu-
sion and dislocation creep are large. For the model in Fig. 7a,
we increased Edif and Edis to 435 and 670 kJmol−1, respec-
tively, which is equivalent to considering the pressure de-
pendence of the rheology (Hirth and Kohlstedt, 2003) and
10 GPa of background pressure (Table 1).

5 The 2D implementation

All of the previously mentioned features are also imple-
mented in the 2D version of the model. We consider a con-
figuration with a homogeneous host rock containing a weak
inclusion to perturb the stress field and initiate localization
(Fig. 2b). In Fig. 8, we show the temporal evolution of such
a 2D simulation, using the same parameters as the 1D refer-
ence model and a regularization viscosity of ηreg = 1012 Pas.

The 2D model undergoes the same stages as in 1D. An
initial, homogeneous elastic loading stage is followed by the
onset of LTP at the tips of the inclusion. Subsequently, a
shear zone forms and starts to develop horizontally across the
domain (Fig. 8a and b), before deformation becomes more
localized near the anomaly tips (Fig. 8c). Thermal runaway
initiates here and then propagates horizontally across the do-
main (Fig. 8d–f), creating a rupture front marked by a sharp
stress gradient (Fig. 8, left column) and a peak in horizontal
velocity (Fig. 8, central column). The simulation is stopped
once the stress is fully released. Here, we focus on the nu-
merical behavior of the 2D model; for a detailed discussion
of the physical implications, refer to Spang et al. (2025a).

5.1 Role of solution strategies in 2D

Adaptive time stepping remains critical in 2D. During elas-
tic loading, time steps are typically on the order of decades;
they shrink to months at the onset of thermal runaway, to
hours during rupture propagation, and to seconds at peak ve-
locities. Setting a lower time step bound can dampen ther-
mal runaway, or, if set too high, cause solver failure. For
most of the simulations, the predictive time stepping strat-
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Figure 7. Effects of viscosity relaxation. (a) Zoom on transition from elastic loading to LTP in temporal evolution of stress (τ ) for different
viscosity tolerances (tolη). The stress peak disappears if tolη is reduced to∼ 10−5. (b) Convergence of ηit towards ηt during the PT iterations
according to Eq. (27) for different ηrel. Dashed lines correspond to the tolerances in (a). As all low-tolerance lines overlap, we did not display
10−6–10−4. The y-axis is logarithmic.

Figure 8. Thermal runaway in 2D. (a–f) Temporal evolution of stress (left) and horizontal velocity (center) fields. (g) Temporal evolution of
average stress and maximum temperature. Black crosses along stress curve indicate the six snapshots shown in (a)–(f). The model uses the
parameters given in Table 1, with the exception of ηreg = 1012 Pas.

egy (Sect. 4.1.1) suffices. However, when rupture fronts
meet across the periodic boundaries, restarting time steps
(Sect. 4.1.3) is required to maintain stability.

Regularization plays a similar role in 2D as in 1D. It en-
forces a lower bound on viscosity and upper bounds on strain
rate and velocity. Due to the more limited spatial resolution in
2D, the shear zone thickness is often constrained by grid size
unless a high regularization viscosity (∼ 1016 Pas) is used.
If a higher spatial resolution can be achieved through im-
proved refinement or significant increase in grid cells, regu-
larization viscosity will again become the controlling factor.
This equally applies to adaptive rescaling (Sect. 4.2), which
becomes essential when smaller time steps and higher veloc-
ities exacerbate round-off errors. Given its superior perfor-

mance at fine resolutions, the viscosity regularization is the
preferred method in 2D.

Finally, monitoring the convergence of the relaxed viscos-
ity (Sect. 4.4) has minimal impact in 2D. Even before reach-
ing the LTP threshold, the number of iterations per time step
increases to ∼ 5000 to solve the conservation equations, en-
suring that the relaxation-based updates are well-converged.

5.2 Comparison to 1D

To compare the 1D and 2D models, we ran a 1D model us-
ing the same limited refinement as in 2D and compared the
results (Fig. 9). Both models exhibit very similar trends in
stress, maximum temperature, maximum velocity, and mini-
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mum viscosity. As long as the thermal runaway fronts remain
more than 10 km away from the domain boundaries (Fig. 8a–
f), the 2D and 1D models show nearly identical vmax and
Tmax (Fig. 9b and c). Once the rupture fronts meet due to pe-
riodic boundaries, vmax increases by a factor of∼ 3 and Tmax
by ∼ 250°C. This surplus is likely caused by the increased
stress in front of the rupture tips (yellow lobes in Fig. 8).
When the tips connect, they can release more stress which is
converted into heat, resulting in faster slip.

The most notable difference is the duration of the LTP-
dominated phase, which lasts over 10 kyr in the 1D model
but only∼ 200 years in 2D. This discrepancy stems from dif-
ferences in how the anomaly is defined. In 1D, only the flow
laws of diffusion and dislocation creep are weakened. In 2D,
the LTP back stress σb is also reduced. This difference was
necessary as reducing σb in 1D prevents stresses in the entire
model from reaching values above 1 GPa, while omitting this
weakening in 2D hampers localization significantly.

6 Simplifications and design choices

6.1 Governing equations

As stated above, we neglect inertial terms from Eq. (1) for
simplicity. To determine to which extent this assumption
is justified, we roughly estimate the inertial term ρ

∂vi
∂t

. In
2D, we assume the extreme case that a grid node acceler-
ates to the maximum velocity (5 mms−1) in a single time
step (∼ 15s). The resulting value for ρ ∂vi

∂t
is on the order of

1 kgs−2 m−2, whereas the term ∂τ ij
∂xj

on the right hand side of
the governing two-dimensional momentum equation is about
seven orders of magnitude larger. In this case, neglecting the
inertial term remains justified. However, in 1D models with
the lowest tested values of ηreg or λreg, the inertial term could
reach much larger values due to the larger velocities. In this
case, inertia could reduce acceleration.

Gravity is neglected from Eq. (1) because the orientation
of the shear zone is arbitrary in reality. Thermal expansion is
neglected from Eq. (4) and adiabatic heating from Eq. (3) as
they did not play a significant role in a previous 2D study on
thermal runaway (Spang et al., 2025a).

6.2 Grain size evolution

Adding grain size evolution could have a significant impact
on the rheology and energy balance of our models, depend-
ing on how much energy from viscous dissipation is parti-
tioned into it. The partition factor spans several orders of
magnitude in the literature with a maximum of 10 % (e.g.,
Mulyukova and Bercovici, 2017; Ruh et al., 2024). Further-
more, it might be strain-dependent, as experimental studies
suggest that only about 10 % of olivine grains recrystallize at
a strain of 1 (Cross and Skemer, 2019). Most of our models
do not even reach a strain of 0.1.

6.3 Phase transformation

Endothermic phase transformations are another potential
sink for thermal energy during runaway. Intermediate-depth
earthquakes are commonly associated with the antigorite-
olivine transformation (Hacker et al., 2003), and Brantut
et al. (2017) estimate the enthalpy change of this reaction to
be on the order of 2.5× 108 Jm−3. This is about one quarter
of the energy density required for full melting. Consequently,
this process would not have a significant effect on the energy
balance during thermal runaway. Deep-focus earthquakes
are associated with the olivine-ringwoodite transformation
(Kirby et al., 1996), but this reaction is exothermic (Gleason
and Green, 2009) and cannot act as an energy sink during
runaway.

6.4 Model setup

We only show cases with a single perturbation. As the 2D
setup uses periodic boundary conditions, it approximates a
setup with multiple perturbations on the same vertical coor-
dinate. The results show that temperature and slip velocity
peak when two rupture fronts unite (Fig. 9b and c). A more
realistic case could involve perturbations of different size,
strength, and location. Comparing the length of the LTP-
dominated warm-up period with the runaway phase suggests
that once runaway initiates in one location, the rupture would
quickly release stress from surrounding perturbations, result-
ing in a single dominant rupture.

6.5 1D results

Figure 5b illustrates that 1D models can reach temperatures
that exceed any observed or constrained values for the Earth
when using viscosity regularization. Similarly, models using
gradient regularization reach slip velocities that are signifi-
cantly faster than any observed solid deformation, including
earthquake slip and seismic waves (Fig. 5e). These unrealis-
tic values are inherent to 1D models as they imply an infinite
shear zone (e.g., Kameyama et al., 1999; Braeck et al., 2009).
While such models struggle to accurately describe peak run-
away conditions, they are still useful in investigating how
localization develops in the first place (e.g., Ogawa, 1987;
Thielmann et al., 2015; Spang et al., 2024).

7 Conclusions

Resolving strain localization owing to thermal runaway rep-
resents a numerical challenge due to its spontaneous onset,
rapid self-acceleration, extreme localization, and strong gra-
dients in temperature and viscosity. We address these by im-
plementing adaptive time stepping based on changes in stress
and temperature and allowing time steps to be restarted if
necessary. We achieve a time step reduction by more than
ten orders of magnitude without destabilizing the solver. To
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Figure 9. Comparison between 1D (blue) and 2D (orange) simulations. Note the different x-axes. Dashed lines indicate the portion of
the 2D model influenced by periodic boundary conditions. (a) Mean deviatoric stress. (b) Maximum temperature. (c) Maximum velocity.
(d) Minimum viscosity. Both models use the parameters given in Table 1, with the exception of ηreg = 1012 Pas. 1D model uses the same
vertical grid spacing as the 2D model (Sect. 3.1).

maintain numerical precision during such extreme changes,
we rescale time-dependent properties using an adaptive in-
ternal time scale.

To handle the self-localizing nature of thermal runaway,
prevent solver failure from excessive viscosity reduction, and
keep results reproducible, we introduce regularization. Vis-
cosity and gradient regularization both limit maximum ve-
locity and temperature and impose a minimum shear zone
width, without altering the overall stress evolution. Viscos-
ity regularization more strongly constrains velocity, whereas
gradient regularization better controls temperature increase
and shear zone width. Accounting for the latent heat of melt-
ing or phase transformations is not sufficient to regularize
thermal runaway.

We also show that the commonly used viscosity relaxation
method in pseudo-transient schemes can result in incorrect
stress evolutions near the LTP threshold. Only accepting so-
lutions with a sufficiently converged viscosity ensures accu-
rate stress evolution.

Extending the model to two spatial dimensions preserves
the key physical behavior observed in 1D. Although 2D sim-
ulations are more limited in spatial resolution due to grid as-
pect ratio constraints, adaptive time stepping, regularization,
and rescaling remain essential. Since 2D models naturally
require more iterations per time step, monitoring viscosity
convergence is less critical.

Appendix A: Strain rate partitioning

The solver consists of 6 repeating steps:

1. Compute full strain rate from velocity field

2. Partition strain rate among elasticity, diffusion creep,
dislocation creep, low-temperature plasticity, and the
regularization

3. Compute the viscosity of each individual mechanism
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Figure A1. Illustration of our rheological model including the vis-
cous regularization. Green shaded region shows elastic component,
blue shows viscous component, and orange shows regularization
component. Individual deformation mechanisms are labeled with
their respective stresses and strain rates.

4. Compute effective viscosity

5. Compute stress

6. Update velocity, pressure, and temperature

Step 2 is especially challenging, so we present our strategy
here. Figure A1 illustrates our rheological model including
viscosity regularization. The main challenges are the parti-
tion of stress between the regularization branch (orange in
Fig. A1) and the viscous branch (blue in Fig. A1), as well
as the partition of the viscous strain rate between the dif-
ferent mechanisms. Stress is equal in sequential components
and partitioned in parallel components, strain rate vice-versa
(Maxwell, 1867; Jóźwiak et al., 2015). For clarity, we have
neglected the subscript II in the following equations.

First, we partition the strain rate between the elastic and
viscous/regularization components. The elastic strain rate
can be expressed as follows:

ε̇el =
τ − τ old

2G1t
, (A1)

where τ refers to the current stress and old refers to the stress
at the end of the previous physical time step. This allows us
to compute the viscous strain rate:

ε̇vi = ε̇− ε̇el . (A2)

ε̇vi is identical in the viscous branch and the regularization
branch, and since ηreg is known, we can express the stress
carried by the regularization as follows:

τreg = 2ε̇viηreg . (A3)

As stress is partitioned between the viscous and regular-
ization branch, we can compute the viscous stress by:

τvi = τ − τreg . (A4)

Viscous stress is identical in all viscous components, but
viscous strain rate is partitioned between them. As diffusion

creep viscosity is independent of the partitioning, the diffu-
sion creep component can be computed by:

ε̇dif =
τvi

2ηdif
. (A5)

ε̇dif can be subtracted from the viscous strain rate to find
the nonlinear part which partitions into dislocation creep and
low-temperature plasticity.

ε̇nl = ε̇vi− ε̇dif = ε̇dis+ ε̇LTP . (A6)

If neither dislocation creep nor LTP are currently active (i.e.
taking a significant strain rate partition), ε̇nl can become neg-
ative. In this case, we overwrite it with a very small positive
value as a negative value or zero would cause issues in the
viscosity calculation.

As ηdis and ηLTP both depend on the strain rate partition-
ing, we can not solve for either strain rate component anal-
ogously to Eq. (A5). But, since ε̇dis and ε̇LTP are inversely
proportional to ηdis and ηLTP respectively, we can guess their
ratio from the viscosities of the previous iteration.

ε̇dis

ε̇LTP
≈
η

prev
LTP

η
prev
dis
= rη (A7)

This yields:

ε̇dis,g = ε̇nl
rη

1+ rη
, (A8)

ε̇LTP,g = ε̇nl
1

1+ rη
, (A9)

where ε̇dis,g and ε̇LTP,g are guesses for the strain rate of dis-
location creep and low-temperature plasticity respectively.
ηdis and ηLTP are computed with these guesses according
to Eqs. (12) and (13), and after stress has been updated, the
true partitioning for both mechanisms can be computed anal-
ogously to Eq. (A5):

ε̇dis =
τvi

2ηdis
, (A10)

ε̇LTP =
τvi

2ηLTP
. (A11)

During the pseudo-time iterations, ε̇dis,g and ε̇LTP,g con-
verge towards ε̇dis and ε̇LTP respectively. We track this con-
vergence and use it as an additional requirement for a so-
lution to be accepted. If gradient regularization is used, the
orange component in Fig. A1 is missing, and τvi = τ .
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Figure A2. Illustration of staggered numerical grid, indicating where different parameters are computed. (a) 1D. (b) 2D. Hollow circles are
ghost nodes outside the physical domain which are necessary to employ boundary conditions. Modified from Spang et al. (2025a).
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