
Geosci. Model Dev., 19, 27–39, 2026
https://doi.org/10.5194/gmd-19-27-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Increasing resolution and accuracy in sub-seasonal
forecasting through 3D U-Net: the western US
Jihun Ryu1,2, Hisu Kim3, Shih-Yu (Simon) Wang4, and Jin-Ho Yoon1

1School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
2Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA
3School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,
Gwangju, South Korea
4Department of Agronomy, Kasetsart University, Bangkok, Thailand

Correspondence: Jin-Ho Yoon (yjinho@gist.ac.kr)

Received: 22 January 2025 – Discussion started: 26 March 2025
Revised: 17 August 2025 – Accepted: 16 November 2025 – Published: 5 January 2026

Abstract. Sub-seasonal weather forecasting is a major chal-
lenge, particularly when high spatial resolution is needed
to capture complex patterns and extreme events. Traditional
Numerical Weather Prediction (NWP) models struggle with
accurate forecasting at finer scales, especially for precipita-
tion. In this study, we investigate the use of 3D U-Net ar-
chitecture for post-processing sub-seasonal forecasts to en-
hance both predictability and spatial resolution, focusing on
the western U.S. Using the ECMWF ensemble forecasting
system (input) and high-resolution PRISM data (target), we
tested different combinations of ensemble members and me-
teorological variables. Our results demonstrate that the 3D
U-Net model significantly improves temperature predictabil-
ity and consistently outperforms NWP models across multi-
ple metrics. However, challenges remain in accurately fore-
casting extreme precipitation events, as the model tends to
underestimate precipitation in coastal and mountainous re-
gions. While ensemble members contribute to forecast accu-
racy, their impact is modest compared to the improvements
achieved through downscaling. The model using the ensem-
ble mean and only the target variables was most efficient.
This model improved the pattern correlation coefficient for
temperature and precipitation by 0.12 and 0.19, respectively,
over a 32 d lead time. This study lays the groundwork for fur-
ther development of neural network-based post-processing
methods, showing their potential to enhance weather fore-
casts at sub-seasonal timescales.

1 Introduction

Sub-seasonal forecasting based on numerical weather predic-
tion (NWP) models has made significant advances over the
past few decades, with the ability to predict extreme events
such as heat waves up to four weeks in advance (Ardilouze
et al., 2017; Vitart and Robertson, 2018). However, limi-
tations still exist, which have led to increasing interest in
deep learning models as alternative approaches for weather
forecasts. Some models directly generate the forecasts from
the input data. Weyn et al. (2021) aimed to provide ensem-
bles similar to those in NWP systems. Two deep learning
models, GraphCast and Pangu, have outperformed NWP in
weather and medium-range forecasts, from 1 to 10 d (Bi
et al., 2023; Lam et al., 2023). More recently, deep learn-
ing models such as Fuxi-S2S have been reported to surpass
NWP in sub-seasonal forecasting (Chen et al., 2024). Among
them, GraphCast does not provide precipitation forecasting,
while these models only generate deterministic forecasts and
struggle with predicting extreme weather events (Olivetti and
Messori, 2024).

On the other hand, post-processing NWP outputs have also
been explored as a means of improving forecast accuracy
(Woolnough et al., 2024). In recent years, neural network-
based post-processing methods have gained traction. The U-
Net architecture has been widely utilized for weather fore-
cast post-processing due to its ability to capture fine details
through contracting and expanding layers (Horat and Lerch,
2024; Faijaroenmongkol et al., 2023; Deng et al., 2023; Xin
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et al., 2024). U-Net has also shown potential in probabilistic
forecasting for sub-seasonal predictions (Horat and Lerch,
2024). Furthermore, U-Net was employed to correct biases
in seasonal precipitation forecasts in Thailand (Faijaroen-
mongkol et al., 2023).

Moreover, generating high-resolution NWP outputs de-
mands significant computational resources, so deep learning
has been applied to downscale sub-seasonal forecasts and si-
multaneously improve predictability efficiently. For exam-
ple, studies in wildfire weather forecasting in the western
United States have successfully downscaled predictions to
the county level (Son et al., 2022). Another example is the
improved predictability and downscaling of temperature and
precipitation in China, achieved by using a weighted com-
bination of multiple models based on a U-Net (Xin et al.,
2024).

A key consideration in these studies is the selection of in-
put data. Some studies use only target variables, meaning the
same variable is used as both input and target, such as us-
ing ECMWF precipitation as input and PRISM precipitation
as the target (Xin et al., 2024), while others use a broader
set of additional variables (Horat and Lerch, 2024; Weyn
et al., 2021). The extent to which inputs significantly affect
sub-seasonal forecasting remains undetermined and case-
sensitive. Even though studies on weather forecasts have
found that additional variables play a limited role in tem-
perature forecasting, they have demonstrated improvements
in wind gust predictions (Rasp and Lerch, 2018; Schulz
and Lerch, 2022). Additionally, attempts to utilize each en-
semble member of the NWP for U-Net training resulted in
only marginal improvements in weather forecasting accuracy
(Höhlein et al., 2024). Prior evaluations of predictor sets and
ensemble usage have largely been limited to short lead times
(≤ 5 d) and single valid times (Rasp and Lerch, 2018; Schulz
and Lerch, 2022; Höhlein et al., 2024), probing predictabil-
ity at an instant (Table 1) (Rasp and Lerch, 2018; Schulz and
Lerch, 2022; Höhlein et al., 2024). In contrast, we target sub-
seasonal forecasting by supplying sequences of forecast lead
times to encode, thereby extending previous findings to lead
times longer.

This study enhances predictability in the western United
States through the 3D U-Net-based post-processing that
encodes temporal information via forecast lead times and
downscaling forecasts to higher spatial resolutions. In doing
so, we identify the role played by ensemble members and ad-
ditional variables in enhancing predictability and investigate
whether downscaling with neural networks leads to mean-
ingful improvements at smaller scales such as the county
level. Section 2 describes the data, our 3D U-Net architecture
which uses three-dimensional convolution to capture spatial
and temporal features, pre-processing, and evaluation met-
rics, while Sect. 3 discusses the results and analysis. Lastly,
conclusions are presented in Sect. 4.

2 Data and Methodology

2.1 Data

This study employs two primary datasets: the European
Centre for Medium-Range Weather Forecasts (ECMWF)
real-time perturbed forecasts and the Parameter-elevation
Regressions on Independent Slopes Model (PRISM) dataset.
First, as the ECMWF forecast model from the sub-seasonal
to seasonal (S2S) prediction project continues to evolve,
providing an increasing number of ensemble members, fore-
cast periods, and forecast cycles, we select the 1.5°× 1.5°
resolution (approximately 120km× 120km over the study
region), 50 ensemble perturbation forecasts, twice-weekly
forecast cycles, and 32 d lead times to match the earliest
version of the ECMWF model (Roberts et al., 2018). The
2 m temperature and total column water are provided as
daily averaged, while the other variables are available with
6-hourly frequency. We utilize forecasts from CY40R1
to CY48R1, covering the period from January 2015 to
December 2023. For detailed information on each version
of the model, please refer to the ECMWF model archive:
https://confluence.ecmwf.int/display/S2S/ECMWF+Model
(last access: 17 December 2025). These forecasts span
weather to sub-seasonal time scales, offering a compre-
hensive range of meteorological variables essential for our
neural network post-processing model. Next, we utilize the
daily PRISM dataset, developed by Oregon State University,
which provides high-resolution climate data for the United
States (Daly et al., 2008) for the sake of model validation
and high-resolution reference data. PRISM offers grid
estimates of variables including temperature, precipitation,
and elevation at a fine spatial resolution of 0.042°× 0.042°
(approximately 4 km). Only data from January 2015 to
January 2024 are used, corresponding to the period of
ECMWF forecasts utilized in this study. An overview of the
dataset is provided in Table S1 in the Supplement.

We chose the western United States because it is a di-
verse region, ranging from coastal areas to high mountain
ranges, and the importance of water management emerges in
the face of hydrological changes driven by the climate cri-
sis (Siirila-Woodburn et al., 2021). To evaluate the model’s
performance at finer spatial scales, we select five diverse re-
gions in the western United States, each representing differ-
ent climatological socio-economic characteristics. These re-
gions include three highly populated urban areas and two
important agricultural zones. In detail, we choose (1) San
Francisco, California, a major high-populated metropolitan
area with a unique coastal climate; (2) Orange County, Cal-
ifornia, known for its citrus farming and Mediterranean cli-
mate; (3) the area around the Great Salt Lake in Utah, which
combines high population density with a distinctive lake-
effect climate; (4) Seattle, Washington, representing the Pa-
cific Northwest’s urban environment and maritime climate;
and (5) a vast wheat farming region in eastern Washing-
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Table 1. Comparison of the proposed method with previous post-processing studies.

Study Type Input Output

Ensemble Variable Lead time Model by lead time

Our study post-processing individual
member

used additional
variables

0–32 d, daily One model for fore-
cast period

Rasp and Lerch (2018) post-processing mean, std used additional
variables

48 h Lead time specific
model

Schulz and Lerch (2022) post-processing mean, std, indi-
vidual member

used additional
variables

0–21 h, hourly Lead time specific
model

Höhlein et al. (2024) post-processing individual used additional wind gust: 6, 12, 18 h Lead time
member variables temperature: 24, 72, 120 h specific model

Horat and Lerch (2024) post-processing mean used additional temperature: 3–4, 5–6 W mean Lead time
variables precipitation: 3–4, 5–6 W accumulate specific model

ton, exemplifying the inland agricultural areas of the West
(Fig. S1 in the Supplement).

2.2 3D U-Net Architecture

The post-processing approach utilizes the U-Net architec-
ture, originally proposed by Ronneberger et al. (2015) for
biomedical image segmentation. The U-Net is particularly
well-suited for our task of enhancing sub-seasonal forecasts
due to its ability to capture multi-scale features and pre-
serve spatial information through skip connections (Horat
and Lerch, 2024). We add the height dimension to implement
the 3D U-Net structure, accounting for the temporal continu-
ity inherent in meteorological variables such as temperature
and geopotential height, as shown in Fig. 1. In this frame-
work, lead time is treated as the vertical dimension. This al-
lows the model to utilize information from shorter lead times,
which typically exhibit higher predictive skill, to improve
sub-seasonal forecasts. Additionally, this structure enables
the generation of daily forecasts, in contrast to traditional ap-
proaches that rely on weekly averages, thereby providing a
finer temporal resolution for downstream applications.

The 3D U-Net structure consists of a contracting path (en-
coder) and an expanding path (decoder), connected by a bot-
tleneck layer. Our implementation features three contracting-
expanding cycles, optimized for the spatial scales relevant to
sub-seasonal forecasting. The contracting path progressively
reduces spatial dimensions (moving from fine to coarse)
while increasing feature channels, allowing the model to
capture broader contextual information. Conversely, the ex-
panding path restores spatial resolution (from coarse to fine),
enabling precise localization of weather patterns. In short,
this structure concatenates feature maps from the contracting
path to the expanding path so that the model retains fine-
grained spatial information that might otherwise be lost dur-
ing downsampling.

We train the model using ECMWF forecast fields as input
and high-resolution PRISM reanalysis dataset as the target

output. To investigate the impact of ensemble forecasting on
post-processing performance, we conduct experiments with
different combinations of ensemble members: Using only
the first ensemble member (E01), utilizing all 50 ensemble
members (E50), and employing the mean of all 50 ensemble
members (E50M). Further, we explore the impact of input
variable selection on model performance by testing config-
urations with varying numbers of meteorological additional
variables (V1, V2, V4, V8). This exploration aims to deter-
mine whether incorporating additional variables beyond the
target variable could enhance the model’s predictive capabil-
ities.

In our specific implementation, we integrate the ensemble
members and variables into a channel, utilizing a 3D U-Net
structure with forecast lead time, latitude, and longitude as
the dimensions. The forecast period ranges from 1 to 32 d
ahead, with a longitude range of 235.5–253.25° and a lati-
tude range of 31.25–49°, consisting of 72 grid points in each.
Based on the forecast start date, the training period spans
from January 2015 to December 2020, the validation period
from March 2021 to February 2022, and the test period from
January 2023 to December 2023. For example, the E50 V8
configuration has 400 input channels, while the E50M V2
configuration has 2 input channels. In the model, the input
dimensions are referred to as height, width, and depth, corre-
sponding to lead time, latitude, and longitude, with sizes of
32, 72, and 72, respectively.

The 3D U-Net model was trained for 100 epochs using the
adam-optimizer with an initial learning rate of 10−4 and a
batch size of 11, selected based on GPU memory limitations
(Kingma and Ba, 2017). The network architecture consists of
three encoding and decoding blocks, each composed of 3D
convolutional layers with 3× 3× 3 kernels. Average pool-
ing was used for downsampling in the encoder, and trans-
posed convolution was used for upsampling in the decoder.
The GeLU activation function was applied after each convo-
lutional layer. To prevent overfitting, we applied early stop-
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Figure 1. Schematic of the 3D U-Net architecture adapted for weather forecast post-processing. The model consists of a contracting path
(left, green), an expanding path (right, blue), and a bottleneck layer (center, teal), with skip connections (dashed gray arrows) preserving
spatial information. Operations between layers are described in the dashed box on the right corner.

ping based on validation loss with a patience of 10 epochs.
The loss function combines mean squared error (MSE) and
spatial pattern correlation, with equal weighting assigned to
both components. We chose this combination because each
metric emphasizes a different aspect of prediction perfor-
mance. MSE evaluates the model’s ability to reproduce the
absolute magnitude of values, while spatial pattern correla-
tion captures the fidelity of the overall spatial distribution,
which is particularly important in sub-seasonal forecasting.
All configurations were selected through trial-and-error ex-
periments to ensure training stability and generalization ca-
pability. These details have been incorporated into the main
manuscript for transparency.

2.3 Pre-processing

To assess the sensitivity of the additional variables used in
the learning process, we select 16 variables: 2 m tempera-
ture, precipitation, total column water (tcw), mean sea level
pressure (mslp), 10 m u wind (u10), 10 m v wind (v10), el-
evation, and geopotential height (z), along with u wind (u)
and v wind (v) at the 850, 500, and 200 hPa levels. This in-
cludes variables representing large-scale circulation at four
vertical levels: near surface, lower, mid, and upper tropo-
sphere. The tcw was included to capture atmospheric rivers
affecting precipitation in the western U.S. Elevation was in-
cluded for its known benefit in temperature bias correction
(Rasp and Lerch, 2018).

The dataset is split into two pre-processing groups, one
being precipitation and tcw, and the other being topography
and the remaining atmospheric variables. For precipitation
and tcw, any negative values are set to zero, as they are non-
physical for these types of data. We then apply conservative
interpolation, a method that preserves physical quantities like
mass or energy during spatial grid adjustments, to ensure the
accurate preservation of values during spatial adjustments.

Table 2. Variable list for temperature and precipitation. Additional
variable’s order reflects the correlation coefficient, high to low.

Target Additional Variable

Temperature t2m, u500, z200, v200, z500, mslp, topo, tcw
Precipitation pr, mslp, z500, z200, u850, tcw, v500, v10

For the remaining variables, linear interpolation was applied.
All datasets were interpolated to the 0.25°× 0.25° latitude-
longitude grid for model input, with PRISM data downscaled
from 0.042°× 0.042° and ECMWF forecasts upscaled from
1.5°×1.5°. Based on the fact that predictability can be evalu-
ated using the mean state (Ryu et al., 2024), we calculate the
mean state of each additional variable across both weather
and sub-seasonal timescales. The spatial pattern correlation
coefficient between the mean state of each additional variable
and that of the target variable is then computed. The abso-
lute values of these correlations are averaged across the two
timescales, and the variables are ranked accordingly. Rank-
ings are shown above each bar in Fig. S2 in the Supplement.
The top eight variables for each target are selected for use in
the 3D U-Net model, as summarized in Table 2.

The interpolated dataset is further processed for input into
deep learning models. For precipitation and tcw, following
Aich et al. (2024), we applied a transformation to compress
the wide range of precipitation values and facilitate stable, ef-
ficient model training. To handle zero values, we added 1 to
the data and applied a log10 transformation. The transformed
data is then standardized by calculating the mean and stan-
dard deviation, making it suitable for use in the 3D U-Net ar-
chitecture. For the other variables, we follow standardization
by computing the mean and standard deviation, similar to
the pre-processing approach used in GraphCast (Lam et al.,
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2023). This normalization step ensures that all variables are
prepared for efficient training in the 3D U-Net model.

2.4 Evaluation Metrics

Intending to assess the performance of our 3D U-Net-
based post-processing model comprehensively, we employ
the following three key evaluation metrics: pattern corre-
lation (Eq. S1 in the Supplement), root mean square error
(RMSE) (Eq. S2 in the Supplement), and Epre (Eq. 1) (Ryu
et al., 2024). Pattern correlation evaluates the model’s abil-
ity to reproduce the spatial distribution of temperature and
precipitation fields, while RMSE quantifies the average mag-
nitude of forecast errors at each grid point. Both metrics
are commonly selected to evaluate sub-seasonal predictions.
Lastly, we incorporate theEpre metric, which builds upon the
concept of Taylor diagrams and has been utilized in several
studies for evaluating forecast performance (Ryu et al., 2024;
Wang et al., 2021; Yang et al., 2013). This metric offers a
comprehensive assessment by integrating both the variance
ratio and the correlation between predictions and observa-
tions. We measure Epre per lead time by averaging values of
all initial dates.

Epre =
1
N

N∑
i=1

log


(
σobs,i
σpre,i
+

σpre,i
σobs,i

)2
(1+ r0)4

4(1+ ri)4

 (1)

Here, σobs,i and σpre,i denote the standard deviations of ob-
served and predicted values respectively. r0 represents an
ideal correlation (set to 1), and ri is the actual correlation at
time step i.N stands for the number of initial dates. The Epre
metric is designed to yield a value of 0 for perfect predic-
tions, with increasing values indicating greater discrepancies
between forecasts and reanalysis dataset. By incorporating
both spread and accuracy considerations, this metric proves
particularly valuable for evaluating the nuanced performance
of ensemble predictions in sub-seasonal forecasting contexts.

3 Results and Discussion

3.1 Role of Ensemble and Variables

The performance of the 3D U-Net model, compared to tra-
ditional NWP forecasts, was evaluated across twelve cases
combining three ensemble configurations and four input vari-
able sets (Fig. S3 in the Supplement). The 3D U-Net con-
sistently outperformed the raw NWP forecasts across three
evaluation metrics, except forEpre in precipitation. Statistical
tests comparing each model’s evaluation metrics with those
of the NWP baseline showed that, apart from the Epre met-
ric for precipitation, the improvements were significant. For
precipitation Epre, the results were mixed: five models (E01
V4, E50 V2, E50 V8, E50M V1, and E50M V2) showed no
significant improvement, while seven models exhibited sig-
nificant degradation.

Before conducting a detailed analysis of the results, we ex-
amined the potential for seasonal bias and the performance
by land cover type. Our findings show improvements in all
seasonal evaluation metrics for both temperature and precip-
itation, except for precipitation Epre in spring and summer
(Figs. S4 and S5 in the Supplement). This suggests that the
enhanced performance is not simply due to the model con-
verging toward the seasonal mean across all seasons. Rather,
the improvements reflect the model’s ability to capture rele-
vant patterns within each season. Additionally, we analyzed
model performance by land cover type using the National
Land Cover Database (NLCD). The western United States is
dominated by three land cover classes, Shrub/Scrub, Ever-
green Forest, and Grassland/Herbaceous, which collectively
cover over 80 percent of the study area (Fig. S6 in the Sup-
plement). Our analysis focused on these classes and found
consistent performance patterns across all three (Figs. S7 and
S8 in the Supplement).

We then grouped experiments with the same input vari-
ables and ensemble configurations to assess the role of aux-
iliary variables and ensemble structure, for example, aver-
aging E50 V1, E50 V2, E50 V4, and E50 V8 for the E50
group. Figure 2 illustrates benchmark scores with respect
to the ensemble configurations. In temperature predictions,
E50M (see Sect. 2.2) shows the best performance and E01
is the most deficient in all metrics. Precipitation predictions
also exhibit analogous operational characteristics: nonethe-
less, E50 and E50M exhibit significantly aligned trajecto-
ries and the overall disparity among all configurations has
diminished in both pattern correlation and RMSE metrics.
In contrast, Epre for precipitation does not show significant
differences between NWP, likely due to limitations in pre-
cipitation variance. Results in Fig. 2 interestingly imply that
E01 proved insufficient for effective learning by only the
first ensemble member, resulting in performance lagging be-
hind the other ensemble configurations. However, the perfor-
mance difference between using E50 and E50M was negligi-
ble. To support these findings, we conducted a complemen-
tary experiment trained and tested with ERA5 data and tested
on 2022 forecasts. The results indicate that ensembles of 10
and 20 members achieved performance comparable to E50
(Fig. S9 in the Supplement). This suggests that while post-
processing significantly improves forecast skill, the benefits
of increasing ensemble members beyond the mean are lim-
ited for both temperature and precipitation predictions in the
current setting. This is consistent with previous research that
ensemble spread plays a limited role in improving weather
forecast accuracy, and these findings suggest that this limita-
tion extends to sub-seasonal forecasts as well (Höhlein et al.,
2024). In other words, using the ensemble mean could be suf-
ficient for achieving optimal performance with the 3D U-Net
model.

Our current approach produces deterministic forecasts and
therefore cannot fully represent the uncertainty that NWP
ensembles are designed to capture. To address this limita-
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Figure 2. Ensemble sensitivity benchmark scores for the western U.S., comparing NWP and 3D U-Net models (E01, E50, E50M) for
temperature (top row) and precipitation (bottom row) forecasts over 32 d. Columns show (a, d) pattern correlation, (b, e) RMSE, and
(c, f) Epre, respectively.

tion, future work could consider several directions. One op-
tion is to train the 3D U-Net to generate probabilistic fore-
casts, for example via quantile regression with a pinball
loss or by predicting parametric distributions (e.g. Gaussian)
optimized with the Continuous Ranked Probability Score
(CRPS) (Hersbach, 2000; Gneiting and Raftery, 2007). An-
other is to evaluate the reliability and the relationship be-
tween spread and skill using Brier scores, rank histograms,
and calibration methods such as isotonic regression. Finally,
more advanced avenues could include modifying the net-
work to produce its own ensemble or adopting Bayesian deep
learning frameworks.

The impact of input variables on model performance is fur-
ther explored in Fig. 3, which represents the averages of E01,
E50, and E50M. The 3D U-Net models consistently outper-
form NWP across all lead times for both temperature and
precipitation forecasts. This superiority reinforces the robust-
ness of the neural network approach. Specifically, V8 shows
significant improvements over V2 and V4 in all tempera-
ture metrics, but performs similarly to V1. This may be at-
tributed to the inclusion of altitude, which has been shown
to be one of the most important variables in temperature
post-processing (Rasp and Lerch, 2018). However, for pre-
cipitation forecasts, V1, V2, V4, and V8 reveal insignifi-
cant variations in terms of their predictability scores. The
Epre values for precipitation exhibited comparable patterns
to those observed in Fig. 2f, attributable to analogous un-
derlying mechanisms. An intriguing observation is that the
performance differences among the 3D U-Net models with
varying numbers of input variables are minimal for both tar-
get variables. This contrasts with prior research, which has

suggested that additional variables contribute to forecast im-
provement (Schulz and Lerch, 2022). However, our finding is
consistent with studies that indicate additional variables may
contribute only marginally or in a limited role, particularly
when used mean state (Rasp and Lerch, 2018; Höhlein et al.,
2024). This indicates that increasing the number of additional
variables in the 3D U-Net model does not significantly en-
hance its ability to extract relevant information or improve
forecast skills in this context. Such a result challenges the
conventional wisdom that more input data invariably leads
to better predictions, and suggests that the 3D U-Net archi-
tecture in the current setting may be efficiently capturing the
most relevant features for the prediction even with a limited
set of input variables. Thus we use E50M V1 and V8 for the
following analysis.

3.2 Predictability and Downscaling

Next, we compare the spatial pattern of the forecast between
NWPs and E50M 3D U-Net with both V1, which uses only
the target variables, and V8, which includes all variables. The
3D U-Net model demonstrates significant improvements in
both predictability and downscaling capabilities for temper-
ature forecasts. While precipitation forecasts also show im-
provement, the gains are less pronounced than for tempera-
ture. For precipitation (Figs. 4 and S10 in the Supplement),
the 3D U-Net models achieve higher spatial resolution com-
pared to NWP, revealing fine-scale patterns. However, a con-
sistent underestimation of precipitation is observed across all
lead times, with larger biases than those of the NWP model,
particularly in coastal and mountainous regions, regardless of
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Figure 3. Additional variable sensitivity benchmark scores for the western U.S., comparing NWP and 3D U-Net models with varying input
variables (V1, V2, V4, V8) for temperature and precipitation forecasts over 32 d. Layout is the same as in Fig. 2.

the number of input variables. Similar reductions in precipi-
tation during downscaling and U-Net-based post-processing
have also been reported in other regions (Xin et al., 2024).
Temperature forecasts (Figs. 5 and S11 in the Supplement)
showcase more substantial improvements. The 3D U-Net
models significantly enhance spatial resolution and reduce
overall forecast errors compared to NWP. The 3D U-Net ap-
proach, especially E50M V8, captures fine-scale temperature
patterns effectively, showing reduced biases across various
terrain types. Moreover, improvements were observed across
the three dominant land cover types, which together account
for over 80 % of the study area (Figs. S7 and S8).

The performance of the 3D U-Net model in extreme cases
provides further insights into its capabilities and limitations.
Figure 6 presents an extreme precipitation event in Califor-
nia from 7 to 13 March 2023. The 3D U-Net models (E50M
V1 and V8) demonstrate improved spatial detail compared to
NWP. On 10 March, the 3D U-Net model captures the rain-
fall that NWP doesn’t (Fig. 6b-4, c-4, and d-4) and specifies
the location, both coastal area and inland, more accurately on
11 March 2023. Even so, the models still struggle with accu-
rately capturing the intensity of heavy precipitation events.
Increasing the training data can be one alternative to improve
precipitation extremes (Hu et al., 2023). Alternatively, this
limitation may stem from the post-processing technique it-
self and warrants further investigation.

Even in extreme temperature cases, Figs. S12 and S13 in
the Supplement confirm results that 3D U-Nets are superior
to NWP. The overall performance of E50M V1 in the high-
temperature case and E50M V8 in the low-temperature case,
as well as the overall differences and recovery from cold
waves, appear to outperform NWP. However, limitations are

evident, highlighting the persistent challenges in predicting
extreme events despite the improved spatial resolution.

The contrasting performance between precipitation and
temperature forecasts underscores the varying complexities
in predicting these two variables. Although some challenges
are left in precipitation forecasting, the 3D U-Net model’s
ability to capture fine-scale patterns and improve spatial res-
olution for both variables represents a significant advance-
ment. These results suggest that with further refinement,
particularly in handling extreme events and complex terrain
interactions, neural network-based post-processing methods
like 3D U-Net have the potential to substantially improve
both temperature and precipitation forecasts at sub-seasonal
timescales.

3.3 Predictability in County-scale

To assess the model’s performance at finer spatial scales,
crucial for local decision-making and resource management,
we evaluate forecasts for five selected county-level regions
in the western U.S. Figure 7 presents comprehensive per-
formance metrics for temperature and precipitation forecasts
across these 5 regions (Fig. S1), comparing NWP with the
most efficient model (E50M V1) over a 32 d lead time. Re-
sults for all models are shown in Fig. S14 in the Supple-
ment. The Epre metric was excluded for county-level results
because its calculation requires spatial pattern correlation,
which cannot be obtained from area-averaged values. For
temperature forecasts at the county scale, 3D U-Net models
generally demonstrate improved or comparable performance
relative to NWP while the degree of enhancement varies sig-
nificantly across regions. Along with the result of Sect. 3.1,
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Figure 4. Comparison of precipitation forecasts (104 forecasts in 2023 are averaged) differences across lead times for the western U.S. Rows
represent (a) differences between NWP and PRISM, (b) differences between E50M V1 and PRISM, and (c) differences between E50M V8
and PRISM. Columns show forecasts for Days 1, 11, 21, and 31. Differences are depicted using the scale in the lower color bar (−6 to
+6 mmd−1).

E50M surpasses the other ensemble configuration’s scores,
and no conspicuous performance difference between varying
the number of variables yields. Some areas, such as Seattle,
show more pronounced enhancements in predictability, pos-
sibly due to the region’s more uniform maritime climate. In
contrast, areas with more complex terrain or microclimates
show more modest improvements, highlighting the persistent
challenges in downscaling to highly localized conditions. In-
corporating land cover, which is already a key input in NWP
models (López-Espinoza et al., 2020), could offer additional
improvements in such regions.

For precipitation forecasts, 3D U-Net models enhance cor-
relation on the weather scale but not on the sub-seasonal
scale especially in two regions in Washington (Fig. 7c-4
and c-5). Moreover, correlation exhibits higher variability in
performance across different 3D U-Net configurations com-
pared to temperature forecasts. Figure 7d reveals a complex
pattern. In most regions, 3D U-Net models and NWP show
comparable RMSE values, with neither consistently outper-
forming the other across all lead times.

Note that the performance differences among 3D U-Net
configurations for both targets are generally small at this
county scale, while not identical to the patterns observed
at larger spatial scales. This may be partly due to the very
small size of the counties, which can increase uncertainty
in the evaluation. As suggested by the land cover analysis,
including a sufficiently large number of grids makes perfor-
mance improvements more apparent, implying that the lim-
ited spatial coverage may have constrained the observed ben-
efits. Additionally, this implies that the benefits of increased
model complexity may diminish at very fine spatial resolu-
tions, where local factors become increasingly dominant.

Figure 8 elaborates the RMSE of each five regions regard-
ing heat, cold, and precipitation extremes. Extreme events
are defined as the 39 cases corresponding to the top 10 %
and bottom 10 % of daily temperature, and the top 10 % of
daily precipitation, within the period from January 2023 to
January 2024. The temperature and precipitation distribu-
tions for this period are shown in Fig. S15 in the Supple-
ment. Even though predicting heat extremes in Salt Lake City
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Figure 5. Temperature forecasts differences similar to Fig. 4. The layout is the same, with temperature differences shown in Kelvin (K).

and Seattle in weather-scale is improved (Fig. 8a-3 and a-4),
3D U-Net models don’t outperform NWP in these extreme
cases. Still, performance varies considerably on location, pe-
riod, and extreme type. These can be attributed to several
factors: Deep learning models are predisposed to yield re-
sults in which extreme values are smoothed out, called blur-
ring effect (Lam et al., 2023), and tend to converge to the
mean state (Bonavita, 2024). Furthermore, Olivetti and Mes-
sori (2024) highlights the similar result of Fig. 8 that global
scale deep learning models often struggle with capturing the
full range of variability in extreme events, especially in long-
term prediction.

4 Conclusions

The findings of this study highlight the dual benefits of
using the 3D U-Net architecture for sub-seasonal forecast-
ing, namely enhanced accuracy and improved spatial resolu-
tion. By applying 3D U-Net-based post-processing to NWP
models, the study demonstrated significant improvements in
predicting both temperature and precipitation, especially in
complex terrains and localized regions. The model’s abil-

ity to downscale forecasts to higher spatial resolutions pro-
vided finer details, which are crucial for decision-making in
regional disaster management. Furthermore, our results sug-
gest that incorporating additional model-derived predictors
or individual ensemble members yields limited improvement
in sub-seasonal forecast postprocessing. Notably, the ensem-
ble mean alone performs comparably to using the full set of
ensemble components, pointing to a more computationally
efficient alternative. These findings extend prior conclusions
drawn from short-range forecasting studies (Rasp and Lerch,
2018; Schulz and Lerch, 2022; Höhlein et al., 2024) into the
sub-seasonal prediction regime. Overall, the most efficient
model was the ensemble average using only the target vari-
ables (E50M V1), and improvements were confirmed across
all evaluation metrics except for the Epre index for precipita-
tion. In particular, at a 32 d lead time, temperature and pre-
cipitation showed increases of 0.12 and 0.18, respectively, in
the pattern correlation coefficient compared to NWP, along
with reductions of approximately 31 % and 22 % in RMSE.

Nonetheless, some possible drawbacks remain evident.
First and foremost, there was a spatial pattern improvement
in precipitation, but the underestimation of precipitation in
coastal and mountainous areas persisted. The added diver-

https://doi.org/10.5194/gmd-19-27-2026 Geosci. Model Dev., 19, 27–39, 2026



36 J. Ryu et al.: Improving S2S forecasts using 3D U-Net

Figure 6. Daily precipitation forecasts for the western U.S. from 7 to 13 March 2023, with initial condition on 6 March. In other words,
7 March (13) is the forecast with lead day 1 (7). Rows represent (a) PRISM observations, (b) NWP forecasts, (c) 3D U-Net E50M V1
predictions, (d) 3D U-Net E50M V8 predictions, (e) differences between NWP and PRISM, (f) differences between E50M V1 and PRISM,
and (g) differences between E50M V8 and PRISM. Precipitation amounts (rows a–d) are shown using the scale in the upper color bar, while
differences (rows e–g) are depicted using the scale in the lower color bar.

sity in data could not resolve these limitations. Second, pre-
dicting extreme precipitation events with high accuracy is a
challenging task. While the 3D U-Net could capture general
patterns and improve spatial details, it still struggled to fully
enhance extreme forecasts’ accuracy.

The 3D U-Net model showed mixed performance for both
temperature and precipitation forecasts at the county level.
While 3D U-Net outperformed NWP models in predicting

temperature such as in Seattle, its performance in precipi-
tation forecasting was less consistent. The model was able
to enhance spatial resolution and predictability for tempera-
ture at finer scales but struggled to deliver comparable im-
provements for precipitation. While the 3D U-Net model is
effective for downscaling temperature forecasts at the county
level, further refinement is needed to improve its ability to
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Figure 7. Performance metrics for temperature (Temp) and precipitation (Precip) forecasts across five county-level regions in the western
U.S., comparing NWP with the most efficient model (E50M V1) over a 32 d lead time. Metrics include tCorr and RMSE. (a) Temperature
correlation, (b) Temperature RMSE, (c) Precipitation correlation, (d) Precipitation RMSE. Columns represent different regions: (1) San
Francisco, CA (2) Orange farm, CA, (3) Salt Lake City, UT, (4) Seattle, WA, and (5) Wheat farming area, WA.

Figure 8. RMSE comparison across five U.S. counties for extreme temperature and precipitation forecasts. Results show NWP and various
3D U-Net configurations (E01, E50, E50M) with different input variables (V1–V8). Temperature metrics include 90th percentile (tx90) and
10th percentile (tx10). Precipitation uses 90th percentile (px90). (a) Temperature tx90 RMSE, (b) Temperature tx10 RMSE, (c) Precipitation
px90 RMSE. Columns represent the same regions as in Fig. 7.
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capture precipitation patterns, particularly in regions with
complex weather dynamics.

In conclusion, 3D U-Net’s integration into sub-seasonal
forecasting models offers substantial improvements such as
capturing fine-scale weather patterns over traditional NWPs
while maintaining computational efficiency. This model’s
ability makes it a promising tool for a wide range of atmo-
spheric science applications, from short-term weather to sub-
seasonal predictions. To move beyond “artificial neural net-
work improves NWP,” we emphasize operational feasibility
and application value: an ensemble-mean, target-only con-
figuration reduces input channels from 400 to 1–2, lower-
ing memory and latency by more than two orders of magni-
tude and enabling daily, high-resolution S2S post-processing
on commodity GPUs for routine water, fire, and agricultural
decision-support. The approach is robust across seasons and
land-cover types, yet skill still degrades for heavy precipita-
tion in complex terrain, addressing these extremes and op-
timizing the complexity skill balance are priorities. To meet
these challenges, we propose advancing into the probabilistic
domain.
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