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Abstract. The wave-induced breakup of sea ice contributes
to the formation of the marginal ice zone in the polar
oceans. Understanding how waves fragment the ice cover
into individual ice floes is thus instrumental for accurate
numerical simulations of the sea ice extent and its evolu-
tion, both for operational and climate research purposes. Yet,
there is currently no consensus on the appropriate fractur-
ing criterion, which should constitute the starting point of a
physically sound wave–ice model. While fracture by waves
is commonly treated within a hydroelastic framework and
parametrised with a maximum strain-based criterion, in this
study we explore a different, energy-based, approach to frac-
turing. We introduce SWIIFT (Surface Wave Impact on sea
Ice – Fracture Toolkit), a one-dimensional model based on
linear plate theory, that can produce time-domain simula-
tions of wave-induced fracture, into which we incorporate
this energy fracture criterion. We demonstrate SWIIFT with
simple simulations that reproduce existing laboratory exper-
iments of the fracture by waves of an analogue material, al-
lowing qualitative comparisons and validations of the energy
fracture criterion. We find that under some wave conditions,
identified by a dimensionless wavenumber, corresponding to
in situ or laboratory wave-induced fracture, the model does
not predict fracture at constant curvature; thereby calling into
question the appropriateness of parametrising sea ice fracture
with a maximum strain criterion.

1 Introduction

In the Arctic, the newly available open ocean areas (Raphael
et al., 2025) have exposed sea ice to the effects of stronger
and more frequent wave events (Thomson and Rogers, 2014).
The remaining sea ice is also overall younger, thinner, more
fragile and therefore more likely to be fragmented by winds,
ocean currents and waves (Stroeve et al., 2012; Stroeve and
Notz, 2018). In unconsolidated or fragmented ice, waves are
less attenuated (Collins et al., 2015; Ardhuin et al., 2020) and
can therefore propagate further into the consolidated part of
the ice cover – the ice pack – and break it to a greater extent,
thus enabling a wave–ice positive feedback loop (Thomson,
2022; Horvat, 2022).

This wave-induced breakup results in an assembly of floes
with sizes ranging from a few metres to hundreds of metres,
defining what is generally referred to as the marginal ice zone
(MIZ; see Dumont, 2022, and many others), a region whose
dynamics is affected by wave propagation. Fragmented sea
ice behaves very differently from the consolidated ice pack.
It is more mobile, potentially reaching a free drift state, with
ice internal stress no longer resisting motions imparted by
winds or currents (Alberello et al., 2020), tides (Watkins
et al., 2023), or waves (Auclair et al., 2022; Womack et al.,
2022), even at high ice concentration. It is also more sen-
sitive to melt (Horvat et al., 2016; Thomson, 2022), as the
ratio of lateral surface (proportional to the perimeter and ex-
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posed to the ocean) to top surface (exposed to air) increases
when the horizontal extent of a floe diminishes, eventually
accelerating the disintegration of smaller floes (Toyota et al.,
2025). As a result, the MIZ response to storms can result in
quick and large sea ice losses (Smith et al., 2018; Blanchard-
Wrigglesworth et al., 2022; Cavallo et al., 2025), which could
amplify the observed sea ice decline (Asplin et al., 2012;
Thomson and Rogers, 2014). Concomitantly, high-frequency
sea ice extent variability is missing in state-of-the-art climate
models (Blanchard-Wrigglesworth et al., 2021), in which
sea ice fragmentation by waves is not accounted for. This
suggests an improved representation of the MIZ in sea ice
models is essential to deliver accurate predictions of the sea
ice evolution, over both short-term and climate time scales.
However, it remains challenging as the physical processes
controlling sea ice breakup are still largely unascertained, or
rest on hypotheses that are not fully backed up by observa-
tions.

The first step in this model development should be the
identification of a fracture or disintegration criterion, al-
lowing to determine under which wave forcing (amplitude,
wavelength, spectral distribution) and ice conditions (thick-
ness, mechanical stiffness) the ice will fragment into floes.
To our knowledge, there is actually neither complete phys-
ical evidence nor clear consensus within the sea ice com-
munity on this criterion. To our knowledge again, all the
current wave breakup modelling approaches are based on
local flexural stress or strain reaching a prescribed criti-
cal value, or threshold. Behind this viewpoint is the con-
sideration that maximum deformation will either occur at
the crests and troughs of waves (for example, Dumont
et al., 2011) or at the wave front (Tkacheva, 2001). Voer-
mans et al. (2020) extended this formalism by combining a
strain threshold with wave characteristics into a dimension-
less quantity, the value of which separates breakup from non-
breakup. The universality of this approach was later called
into question (Passerotti et al., 2022). When modelling indi-
vidual floes, any local threshold is however susceptible to be
exceeded over large spans of the floes, which makes super-
parametrisations necessary. The location of maximum strain
or stress is often considered for the fracture location (Dumont
et al., 2011; Williams et al., 2017; Montiel and Squire, 2017;
Mokus and Montiel, 2022), but other methods, such as com-
puting the strain between successive wave crests and troughs
only have been used (Horvat and Tziperman, 2015).

These local threshold-based criteria are consistent with
(and usually come hand in hand with) an hydroelastic rep-
resentation of the wave–ice system, on which a large frac-
tion of the modelling research on wave–ice interaction lies
(Squire, 2020). Wave-induced sea ice fracture has thus natu-
rally been considered through this lens (for example, Fox
and Squire, 1991; Montiel and Squire, 2017; Zhang and
Zhao, 2021; Mokus and Montiel, 2022); even though more
novel and computationally involved approaches exist (Her-
man, 2017; Ren et al., 2021; He et al., 2022). In the hydroe-

lastic framework, the ice is assimilated to an elastic plate that
is thin enough for the variations in the buoyancy forces acting
on it to be negligible, and that therefore conforms exactly to
the shape of the ice–ocean interface. When associated with a
critical strain fracturing criterion, this framework has shown
agreement with observations (Kohout et al., 2016; Voermans
et al., 2020). It has also allowed wave and floe-resolving nu-
merical simulations to generate steady-state floe size distri-
butions (Kohout and Meylan, 2008; Horvat and Tziperman,
2015; Mokus and Montiel, 2022), and has therefore perco-
lated into coupled global sea ice models (Roach et al., 2019;
Bateson et al., 2020; Yang et al., 2024).

The current contribution digs into the question of the crite-
rion for the fracturing of consolidated sea ice by waves, that
is, flexural brittle failure. In this, we are motivated by recent
laboratory results investigating the response of an ice ana-
logue material to wave forcing (Auvity et al., 2025). In par-
ticular, these authors highlighted that the curvature at which
their material broke is not constant, but depends monoton-
ically on the applied wavelength. The spread in reported
sea ice critical strains (Kohout and Meylan, 2008; Voermans
et al., 2020) could thus be an artefact hiding such a rela-
tionship. In this context, we investigate an approach based
on a model of fracture propagation in elastic solids (Grif-
fith, 1921) which is common in the field of fracture me-
chanics. It opposes the energetic cost of creating new sur-
faces to the elastic energy stored in a material. The resulting
energy-based fracture criterion includes the effect of bend-
ing deformation as it depends on the associated elastic de-
formation energy, but is non-local as it is integrated over the
length of the deformed ice floe. It leads to a unique solution.
Since the original work of Griffith (1921), this model has
been updated (Francfort and Marigo, 1998; Francfort, 2021)
and built upon specifically for application to sea ice (Mul-
mule and Dempsey, 1997; Balasoiu, 2020; Ren et al., 2021).
Measurements of sea ice fracture toughness, which can be
linked to the energetic cost of fracturing, have been compiled
(Dempsey, 1991; Schulson and Duval, 2009) and an exten-
sive body of work also exists on freshwater ice (for example,
Gharamti et al., 2021a, b).

With the intent on focusing on the wave-induced defor-
mation and resulting fracturing of brittle ice, we have im-
plemented this energy-based criterion in a framework that
differs from the hydroelastic representation in that the ice is
not assumed to conform to the water surface, but freely de-
forms within the wave field as a result of the local buoyancy
and gravity forces. We neglect other processes affecting the
seasonal ice zone (SIZ; see Roach et al., 2025), such as ther-
modynamics; in particular, we do not handle ice formation
within a wave field, and we restrict our study to the case of
brittle fracture, excluding the disintegration of a more gran-
ular material (dislocation or melting of forming ice). The re-
sulting simple, yet versatile, 1D model also accommodates
a strain-based fracture criterion. It thereby allows investi-
gating the effect of using either criterion on the occurrence
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of the fracture and, eventually, on the extent of a simulated
MIZ, and shape of the associated floe size distribution. Im-
portantly, our model can be stepped forward in time, so that
we can use it to follow the propagation of a fracture front
as a function of time; in contrast to being able to solely re-
cover the final, fractured state (Horvat and Tziperman, 2015;
Mokus and Montiel, 2022). We present an illustration of this
capability in Sect. 2.6. In the present paper, we exploit this
model in another use case, the comparison to laboratory ex-
periments on fracture, conducted on an analogue material to
sea ice. We pursue this comparison with the particular aim of
validating-invalidating the applicability of the energy-based
fracturing criterion.

The paper is divided as follows: in Sect. 2, we give a gen-
eral mathematical description of the model, including the
treatment of sea ice as an elastic plate, the formulation of the
breakup criteria, and the representation of waves. In Sect. 3,
we give specific information pertaining to the numerical re-
sults we present in Sect. 4, that is, the particular setup of the
model in this study. We discuss these results in Sect. 5.

2 Floe and fracture model

In light of the objectives motivating our approach, stated in
the introduction, we present in Sect. 2.1 the main physical
hypotheses made to achieve a simple, versatile, numerically
efficient, yet physically sound model. In Sect. 2.2, we detail
our approach to deriving floe deformation, used as an input
for the fracture parametrisations presented in Sect. 2.3, and
forced by waves discussed in Sect. 2.4. We present numer-
ical aspects in Sect. 2.5 and conclude this Section with an
example of time simulation in Sect. 2.6.

2.1 Main hypotheses

A common assumption behind wave–elastic plate interac-
tion models (for example, Fox and Squire, 1991; Tkacheva,
2001; Mokus and Montiel, 2022) is to consider the plate thin
enough for variations of the buoyancy force acting on it to
be negligible. The plate is, however, subjected to the fluid
pressure acting on its bottom side, and it is assumed that the
plate conforms to the fluid motion at all times. Fluid pres-
sure is determined by solving for the fluid flow, typically by
assuming a potential flow and harmonic solutions, with the
plate exerting a boundary condition on the fluid domain. To
develop the model presented herein, we adopt a different ap-
proach, motivated by our interest in the ice deformation and
fracture, whereas the focus of fluid-centred models has his-
torically been that of wave scattering and attenuation by the
plate. The interested reader can found a comparison between
the two approaches in Appendix B.

In this study, the ice cover is considered thick enough for
the local changes in buoyancy force not to be negligible. We
do not explicitly resolve the fluid flow underneath the plate,

and impose no condition on the ice–ocean interface. Instead,
we solve for the vertical deflection of the ice stemming from
the local balance of gravity and buoyancy forces driven by
the sea surface displacement. The fluid surface thus acts as a
forcing term, which is made aware of the presence of the ice
floes only through parametrised attenuation; a consequence
is that floes can locally be immersed. While we limit our-
selves to the case of linear elasticity and linear wave forcing,
our mechanical formulation interpolates between the limits
of an elastic floe that conforms perfectly to the wave surface,
and of a rigid floe only capable of solid motion, which can
therefore be submerged. We quantify this behaviour with the
dimensionless wavenumber kLD, that relates the wavenum-
ber of the forcing wave k (formally introduced in Sect. 2.4.1)
to the flexural length of the floe LD (formally introduced
in Sect. 3.1). The small kLD limit (long wave, compliant
floe) corresponds to the strain formulation of Dumont et al.
(2011), while the large kLD limit (short wave, rigid floe) cor-
responds to their stress formulation.

Ice formation and melt are assumed to happen at
timescales beyond that of wave-induced fracture, so that they
can be neglected. We do not consider the reflection of waves
at the ice–water interface (for example, Mokus and Montiel,
2022), nor viscous deformation of the plate, the compres-
sion of an array of floes due to wave radiation (for example,
Herman, 2018), or any surge motion, and take note that the
model would be more complete if the pressure forcing as-
sociated with the contact between the ice and the water was
explicitly taken into account.

2.2 Governing mechanical equations

Our one-dimensional model considers a fluid volume of fi-
nite or infinite depth, equipped with a Cartesian coordinate
system (x,z) where z is the vertical coordinate oriented up-
ward, as shown in Fig. 1. We assume translational invariance
in the second horizontal direction. The domain is populated
with floating ice floes of prescribed positions and lengths,
which may not overlap. Any part of the domain not covered
with ice is deemed to be open water.

As in the work of Meylan et al. (2015), we model floes as
elastic plates, and we derive the deformation of the ice cover
using the Kirchhoff–Love thin-plate theory. The ice is thus
considered homogeneous, isotropic, and transversally loaded
by body forces. We assume a constant thickness h along a
given floe, although different floes can have different thick-
nesses. The two forces acting on the ice are buoyancy and
gravity. In the case of a fluid at rest (no waves), equating the
gravity force per unit area and the buoyancy force per unit
area (thus applying Archimedes’ principle) allows express-
ing the draught of a floe, d , as

ρihg− ρwdg = 0⇔ d =
ρi

ρw
h, (1)
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where ρi is the density of the ice, ρw the density of the ocean
water and g the gravitational field.

We now move away from this rest state, and impose a per-
turbation of the fluid surface η(x). Because the propagation
speed of elastic waves in sea ice is several orders of mag-
nitude greater than that of surface gravity waves (Moreau
et al., 2020a), we consider this perturbation and the result-
ing floe deformation to be quasi-static. Thus, we only con-
sider one independent variable, the space coordinate x, and
no explicit time dependency. The vertical displacement w(x)
corresponding to this perturbed state is determined by the lo-
cal balance between gravity and buoyancy. The weight per
unit area of the ice is still ρihg. However, the height of dis-
placed fluid now corresponds to the difference between the
fluid surface η(x) and the displaced bottom of the ice floe,
w(x)− d . Locally, the buoyancy force per unit area is thus
−ρi

[
η(x)−

(
w(x)− d

)]
g; this is illustrated in Fig. 1. The

floe is then subjected to the resulting body force

q(x)= ρihg− ρw
[
η(x)−

(
w(x)− d

)]
g (2)

=−ρw[η(x)−w(x)]g, (3)

and projecting q onto the vertical axis gives

q(x)= ρwg[η(x)−w(x)]. (4)

Using the bending equation of a loaded plate, we then ob-
tain a differential equation on the deflection of the floe,

D
d4w

dx4 = ρwg
[
η(x)−w(x)

]
, (5)

where we take advantage of the simplifying hypotheses made
on our geometry. In this equation, we introduced the flexural
rigidity D = Yh3

12(1−ν2)
, characterising the ability of the plate

to resist bending, with Y and ν the Young’s modulus and
Poisson’s ratio of the plate. We complete Eq. (5) with free-
edge boundary conditions, that is, vanishing moment and
force at both ends of the ice floe of length L. We choose a
reference frame local to the floe, where x = 0 corresponds to
its left edge, so that the complete boundary problem can be
written

d4w
dx4 =

(
D
ρwg

)−1[
η(x)−w(x)

]
x ∈ [0,L] (6a)

d2w
dx2 = 0 x ∈ {0,L} (6b)
d3w
dx3 = 0 x ∈ {0,L}. (6c)

For prescribed wave conditions and material properties, solv-
ing Eq. (6) thus provides the deflection w of the floe.

We focus here on the bending undergone by an elastic plate
because of a perturbation of its fluid foundation. We recall
that we do not explicitly resolve the fluid motion itself, nor
the translational motions imparted to the plate by the fluid.
In particular, we thus neglect surge motion, that is, ice drift
in the direction of wave propagation.

2.3 Fracture

2.3.1 Energy criterion

Unlike the prevalent maximum strain formalism commonly
used by the sea ice community when modelling wave–ice in-
teractions (for example, Kohout and Meylan, 2008; Dumont
et al., 2011; Horvat and Tziperman, 2015; Mokus and Mon-
tiel, 2022), we develop a breakup criterion from the frame-
work of fracture mechanics, based on the consideration that
in solid, brittle materials, fracture happens to minimise the
internal energy associated with deformation (Griffith, 1921).
In this framework, the total energy to be minimised is the
sum of the elastic energy Eel associated with the deforma-
tion (in our case, bending) of the material, and of the frac-
ture energy Efr associated with the creation of new surfaces
around a crack. This energy decomposition is consistent with
mode I fracturing, which in the case of our model translates
to vertical fractures due to in-plane tensile stress.

The elastic energy density (per unit length in the transverse
horizontal direction, and per unit thickness) stored in a mate-
rial that is elastic, isotropic, and homogeneous, and stretched
only in the longitudinal direction, is

Wel =
D

2h
κ2(x) (7)

with

κ(x)=
d2w

dx2 (8)

the local linear floe curvature due to the deformation. Equa-
tion (7) stems from integrating the density of elastic energy
(per unit volume) along the axis normal to the neutral plane
of the plate (in our case, the z-direction), and takes into ac-
count stretching or compression in the directions of the plane
(in our case, simply the x-direction). By integrating Eq. (7)
along the floe, we obtain the surface energy density,

Eel =
D

2h

L∫
0

κ2(x)dx. (9)

The fracture energy density Efr relates to the energy re-
quired to create a new surface. In the case where the only
admissible fractures vertically break the ice through its en-
tire thickness, we simplify the formulation from Francfort
and Marigo (1998) as

Efr =NfrG (10)

with Nfr the number of fractures, and G the energy release
rate. Again, note that this energy is expressed per unit surface
normal to the x-direction.

To determine whether a floe breaks, we compare two en-
ergy states: that of the unbroken, deformed floe, and a hy-
pothetical state in which this floe has fractured into several
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Figure 1. Schematic of a deformed ice floe in a wave field. The horizontal dashed line represents the sea surface at rest in the absence of
ice, which we use as the reference level. The dashed rectangle represents a floe at rest. A perturbation of the fluid surface (solid line) in the
free-surface regions imposes a deflection of the ice floe (solid-lined shape). This corresponds to a model output, with ice thickness 50 cm,
floe length 120 m, forcing wave with amplitude 20 cm and wavelengths 76.4 m (open water) and 84.3 m (ice-covered water).

fragments. In the former state, the elastic energy, noted E0
el,

is that of the deformed floe, as defined in Eq. (9). In the lat-
ter state, the total elastic energy, noted Es

el, is the sum of the
elastic energies of the individual newly broken floes. If the
broken state is – from an energy standpoint – favourable, it
should replace the unbroken state. Formally, we look for the
finite set of the fracture locations, xfr

= {xj | xj ∈ (0,L)}.
This set has size Nfr, the number of fractures, dividing the
original floe into Nfr+ 1 fragments. It should minimise the
free energy F defined as

F(xfr)= Efr(Nfr)+E
s
el(x

fr)−E0
el (11)

with the additional constraint that for breakup to occur, we
must have F < 0. In other words, a floe breaks if the elastic
energy released by the breakup exceeds the energetic cost of
the breakup. If no such set can be found, we conclude that the
current deformation of the floe is not sufficient to fracture it.
The post-fracture elastic energy expands to

Es
el(x

fr)=
D

2h

Nfr∑
j=0

xj+1∫
xj

κj
2(x)dx (12)

with x0 = 0 and xNfr+1 = L. The curvatures κj are obtained
from solving Eq. (6) individually for every (at this stage, still
hypothetical) fragments.

Equation (11) has an explicit dependency to the number of
fractures allowed to happen for a given quasi-static state, that
is, at a given time. It suggests that the size of xfr should be
a dimension to the minimisation problem. In practice, when
considering travelling waves, floes of reasonable size, and
the succession of such quasi-static states, at most one sin-
gle fracture is admissible at a given timestep, which greatly
diminishes the numerical cost of the procedure. In what fol-
lows, we will thus use Nfr = 1, xfr

= {x1}, and we will have

Es
el(x1)= E

<
el (x1)+E

>
el (x1) (13)

with E<el (x1),E
>
el (x1) the elastic energies of the left (x < x1)

and right (x > x1) fragments obtained from that single frac-

ture, while the fracture energy reduces to Efr =G. Hence,
we look for{
xfr = argminx1∈(0,L)

(
E<el +E

>
el
)
, (14a)

F (xfr) < 0. (14a)

For given ice and wave conditions, fracture search can thus
be conducted in a completely deterministic manner. In prac-
tice, we proceed by sampling Es

el(x1) regularly on (0,L),
ensuring the sampling rate is sufficient to capture its oscil-
lations. We find the set of arguments of the peaks (the lo-
cal maxima) of this discretised Es

el, which we augment with
the bounds {0,L} of the domain, to obtain an ordered se-
quence of at least two coordinates bounding, two by two, lo-
cal minima of Es

el. We conduct local minimisation between
the bounds using Brent’s method (Virtanen et al., 2020).
Finally, the smallest of these minima is validated against
Eq. (14b). If this condition is verified, its argument is the
fracture location xfr. These steps are summarised in Fig. 2,
and a fracture search is illustrated in Fig. 3. Note that in this
case, the asymmetry of the total energy profile comes from
differences in wave phase at the edges of the floe, and wave
attenuation by the ice cover, discussed in Sect. 2.4.

2.3.2 Strain criterion

To allow future comparisons, we additionally implement a
conventional strain criterion for fracture. Under that formu-
lation, the floe is allowed to fracture if the bending strain ε
locally exceeds a prescribed critical strain εcr, that is if

∃x |
∣∣ε(x)∣∣> εcr (15)

with

ε(x)=−
h

2
d2w

dx2 (16)

the maximum (when taking the absolute value) bending
strain, here defined as evaluated at the top of the floe.

Typically, if Eq. (15) holds anywhere, it holds on continu-
ous intervals along the floe. We illustrate this in Fig. 4. A sec-
ond criterion must then be chosen to constrain the fracture.
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Figure 2. Algorithmic steps behind a fracture search.

Herein, we arbitrarily choose to consider the global strain ex-
tremum (single fracture). We thus have{
xfr = argmaxx∈(0,L) |ε(x)|, (17a)
|ε(xfr)|> εcr. (17b)

This criterion can be straightforwardly extended to the case
of multiple fracture by considering all the local extrema ex-
ceeding the critical value.

2.3.3 Values of fracture parameters

Our two fracture parametrisations rely on two different pa-
rameters: the energy release rate G (energy criterion) or the
critical strain εcr (strain criterion). These parameters have to
be measured or estimated from sea ice samples. Sea ice prop-
erties can vary greatly based on its history and environmental
conditions, such as temperature, brine fraction, or past load-
ing rate. Nevertheless, G and εcr are physical quantities that
can be measured, and are not completely free parameters. For
a detailed compilation of sea ice property measurements, we
refer the reader to Timco and Weeks (2010).

Additionally, ice strength depends on the direction of the
applied stress. We are here solely interested in failure from

bending (mode I, or opening mode; see Saddier et al., 2024),
which is compatible with Griffith’s model of fracture as well
as with wave action. In particular, in the plane strain ap-
proximation, εcr can be related to the flexural strength σf

so that εcr =
1−ν2

Y
σf, and G to the fracture toughness K1c

so that G= 1−ν2

Y
K2

1c. Schulson and Duval (2009) compile

values of K1c in the range 75 to 150 kPam
1
2 . Wei and Dai

(2021) measured values down to 26 kPam
1
2 for floating sam-

ples in the lab, a reduction that could be attributed to tem-
perature or size effects (Dempsey et al., 1999). Reported val-
ues of εcr are typically in the range of 10−5 to 10−4 (Ko-
hout and Meylan, 2008), even though larger value (on the
order of 1× 10−3) have been reported for lab-grown, saline
ice (Herman et al., 2018). Sea ice is subject to fatigue, and
repeated cyclic loading was shown to lower its apparent flex-
ural strength (Langhorne et al., 1998).

2.4 Forcing waves

The main focus of this study being ice deformation and frac-
ture, the wave component of the model is kept relatively sim-
ple. To align with the linearity hypothesis made on elastic
plates, we only consider linear plane waves. This is also in
line with previous studies (for instance, Kohout and Mey-
lan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015;
Mokus and Montiel, 2022).

2.4.1 Dispersion relations

For a prescribe angular frequency ω, we derive wavenumbers
k from the dispersion relations

ω2

g
= k tanh(kH) (18)

in the open-water parts of the domain, and

ω2

g
=

(
D

ρwg
k4
+ 1−

ω2

g
d

)
k tanh

(
k(H − d)

)
(19)

in the ice-covered parts. We use the single symbol k for
brevity, and the appropriate dispersion relation should be un-
derstood from context. In the right-hand side of Eq. (19), the
term D

ρwg
k4 corresponds to the elastic response of the ice

cover, while the term ω2

g
d corresponds to its mass-loading

response. Whether the former has a significant contribution
to the dispersion relation when the ice is heavily fragmented
is debated (Sutherland and Dumont, 2018; Dumas-Lefebvre
and Dumont, 2023). As it can easily be turned off, we include
it here for completeness.

We note that this relation dispersion can be derived by con-
sidering the bending of a plate conforming to a fluid surface
excited by harmonic waves. This can therefore be seen as a
soft coupling of the fluid to the plate. The dispersion relation
of plate excited by harmonic waves, without a fluid founda-
tion, would otherwise be ω2

=
D
ρih
k4.
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Figure 3. Illustration of a fracture search, from a situation corresponding to Fig. 1. In (a), contributions to the system’s elastic energy change
according to the coordinate of the fracture, and the total energy (that includes the fracture energy) is compared to the energy of the initial,
unfractured floe in order to determine whether fracture should occur. The vertical line locates the global minimum, xfr, of total energy which
is, according to our model, where the floe should break. In (b), representation of the deformed floe, before and after fracture at xfr. The
shaded rectangle represents the energy relaxation length, as defined in Eq. (27), centred on xfr.

Figure 4. Strain-based fracture parametrisation, for a situation cor-
responding to Fig. 1. The line represents the maximum bending
strain along the floe. The shaded vertical strips indicate where
the strain exceeds, in absolute value, a typical critical strain of
εcr = 3× 10−5. The crosses indicate local extrema, and the verti-
cal line the global extrema.

2.4.2 Sea state

For any given floe in the domain, a linear monochromatic
wave can be parametrised with two complex variables, am-
plitude â and wavenumber k̂. The modulus a = |â| denotes
the amplitude of the wave at the left edge of the floe, while
the argument φ = Ang â denotes the phase of that wave mode
at the left edge of the floe. The real part of the wave num-
ber, k = Rek, describes wave propagation while its imagi-
nary part α = Im k̂ describes the spatial rate of attenuation
in the direction of propagation. Following Sutherland et al.
(2019), we implement a parametrisation with attenuation lin-
ear in ice thickness and quadratic in wavenumber, so that

α =
1
4
hk2. (20)
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Other parametric attenuations can easily be added to the cur-
rent framework; either directly to SWIIFT’s codebase1 or by
a user at run time. Attenuation can also be turned off alto-
gether.

A linear polychromatic plane wave can be defined by su-
perposition. The wave state is then

η(x)=
∑
j

Im[âj exp(k̂jx)] (21)

where the subscript j denotes spectral modes. The modal am-
plitudes can be derived from any spectral density S(ω), using
the relationship (Horvat and Tziperman, 2015)

1
2
a2
j = S(ωj )1ωj (22)

where 1ωj is the width of the angular frequency bin corre-
sponding to the amplitude aj .

2.4.3 Wave propagation over a finite distance

To allow for the advection of a developing sea into the ice-
covered domain, we apply a semi-Gaussian kernel to the
sea state. We implement this modification to avoid the non-
realistic situation of a fully developed sea appearing under a
potentially kilometre-wide MIZ. Therefore, Eq. (21) is mod-
ified into

η(x)=
∑
j

Im
[
âj exp(k̂jx)

]
Kj (x) (23)

with

Kj (x)=

exp
(
−
(x−µj )

2

2σj 2

)
x ≥ µj ,

1 x ≤ µj .
(24)

To each wave mode, we associate a coordinate µj . The wave
is considered fully developed in the half-plane left of that
coordinate. The parameters σj control the width of the tran-
sition between a fully developed wave, and a near-rest state
(as the wave envelop of a given mode is reduced to about 1 %
of its maximum at x = µj + 3σj ).

2.5 Numerical scheme

We have so far presented our framework for modelling frac-
ture in a quasi-static state. Here, we give more details on how
we iterate from a quasi-static state to the next, and summarise
the steps leading to evaluating ice floe fractures.

1A parametrisation derived from Yu et al. (2022) was added to a
later version.

2.5.1 Wave propagation–attenuation

Let τ be a model timestep. Each wave mode in Eq. (23) prop-
agates at a phase speed

cj =
ωj

kj
. (25)

Between time tn and time tn+1, the phase φj of mode j in-
creases by −ωj τ . The limit µj of the fully developed wave
advances of a distance cj τ . Therefore, we iterate in time by
updating the values of our âj and µj by these quantities.
A new quasi-static wave profile η(x) can then be computed
across the domain.

2.5.2 Sea ice deformation and fracture

Once the sea surface has been computed, the resulting sea ice
deflection w(x) is computed for all individual floes, which
are scanned for possible fractures. For a given floe, if µj >
L ∀j (that is, the wave acting on the floe is fully grown),
the deflection can be determined analytically, as developed in
Appendix A. Otherwise, we obtain a solution to Eq. (6) with
a numerical solver (Virtanen et al., 2020). In turn, the deflec-
tion is used to compute the curvature. Depending on the cho-
sen fracture mechanism (energy-based or strain-based), the
floes are considered for breakup, as described in Sect. 2.3.1
and 2.3.2.

If using the energy criterion, we evaluate the post-fracture
total energy along the discretised floe. We use a peak de-
tection algorithm (Virtanen et al., 2020) to separate intervals
of convex free energy (as can be identified in Fig. 3a), onto
which Eq. (13) is minimised. If the global minimum among
these local minima satisfies Eq. (14b), fracture occurs; these
steps are summarised in Fig. 2. If using the strain criterion,
we evaluate the bending strain along the discretised floe.
Again, a peak detection algorithm is run on −ε2(x) to de-
tect convex intervals, and we conduct local minimisation on
these, which is equivalent to maximising |ε(x)|. If the global
minimum satisfies Eq. (17b), fracture occurs.

The input necessary for both parametrisations is thus the
floe curvature. In Sect. 2.2 and 2.4, we merely suggest a sim-
ple mechanical model to infer this curvature from wave forc-
ing. Other 1D models outputting the curvature field, or actual
curvature measurements, can be substituted without having
to alter the fracture formalism presented in Sect. 2.3. How-
ever, for the fracture parametrisation to be sensible, it is nec-
essary that the mechanical model can be stepped forward in
small time increments. Thus, we choose here not to rely on
harmonic solutions to the bending problem, such as in Mokus
and Montiel (2022), as these rely on the hypothesis that a
steady state has been reached in the whole fluid domain. We
do so at the cost of neglecting floe bending inertia and relax-
ing constraints on the fluid itself. In particular, wave scatter-
ing induced by different boundary conditions imposed on the
fluid when transitioning between open water and ice-covered
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water regions is not accounted for. A comparison between
the two types of solution can be found in Appendix B. We
find minor differences in terms of floe curvature (impacting
the strain parametrisation) and resulting elastic energy (im-
pacting the energy parametrisation). We compute the ratio
of elastic energy (Eel, defined in Eq. (9)), derived from the
scattering model, to that same energy derived from SWIIFT,
for the case of a polychromatic forcing. The elastic energy
is, generally (77.5 % of the ensemble considered), overesti-
mated by SWIIFT; but the distribution of these ratios being
skewed, the two models yield, on average, a similar value
(mean of the ensemble considered: 1.02, geometric mean:
0.69). Additionally, we do not find these ratios to depend on
model parameters such as ice thickness or floe length. We
thus conclude that even though differences exist between the
two solutions, they are less meaningful than random fluctua-
tions of the wave state.

2.5.3 Timestep selection

Care must be taken when selecting a model timestep, τ .
The theoretical upper limit for crack propagation in an elas-
tic, isotropic, and homogeneous material is set by the speed

of Rayleigh waves, cR =
√

Y
2ρi(1+ν)

. Using Y = 3.8GPa and
ν = 0.33, values of the Young’s modulus and Poisson’s ra-
tio estimated in situ for sea ice (Moreau et al., 2020b), this
speed is on the order of cR ≈ 1250ms−1. As we consider
cracks to instantaneously fracture floes through their thick-
ness, we must have τ > h

cR
. For 1 m thick ice, it corresponds

to τ > 0.8ms. Fractures propagate faster in stiffer ice, and
increasing the Young’s modulus (or reducing the thickness)
would lower this bound, which must be considered on a case-
by-case basis.

However, we also want to keep the timestep small enough
that we can detect fractures as soon as it is possible for them
to occur, as delaying the onset of a fracture may affect the
length of the resulting floes. Therefore, we aim to keep the
ratio of the progression of the wave front to the wave ampli-
tude small. In the monochromatic case, with phase speed c,
it translates to having τc

a
< r⇔ τ < r ak

ω
, with r < 1. Setting

r = 1
5 ensures sufficient convergence. An analogous relation-

ship can be derived for polychromatic cases, by substituting
the amplitude by the significant wave height HS of the spec-
trum, and the phase speed c by the maximum phase speed of
within the sampled spectrum, so that τ < r HS

maxj cj
.

2.6 Example of time simulation

The study of floe size distributions in relation to ice or wave
parameters is out of the scope of this study. However, as an
illustration of the capabilities of SWIIFT, we present in this
Section the result of a single simulation.

We initialise the domain with a single floe of length L=
600 m, thickness h= 50 cm, Young’s modulus Y = 4 GPa,
and Poisson’s ratio ν = 0.3. We choose to parametrise frac-

ture with the energy criterion, and set the fracture tough-
ness toK1c = 100 kPam

1
2 , which together with the other me-

chanical parameters corresponds to an energy release rate
G= 2.275 Jm−2.

This floe is forced with waves issued from a (one-
parameter) Pierson–Moskowitz spectrum, with significant
wave height HS = 0.5 m (corresponding to a peak period of
3.84 s), truncated to the period interval T ∈ 1 to 15 s. We dis-
cretise this spectrum onto 50 linearly spaced frequency bins,
and thus obtain 50 tuples of amplitudes and wavelengths,
which we complete with 50 initial phases sampled from a
uniform distribution in 0 to 2π rad. Spatial attenuation is
parametrised as defined in Eq. (20). We initialise the growth
kernels Kj with standard deviations σj equal to the wave-
lengths, and means µj equal to three respective standard de-
viations upstream from the floe. At time t = 0 s, the magni-
tude of the surface perturbation at the left edge of the floe, is-
sued from wave superposition as defined in Eq. (23), is about
0.2 mm.

We set the timestep τ = 1
5

HS
maxj cj

= 8.58ms. We run the
simulation for 120 s; the first fracture occurs at t = 9.097s,
the last one at t = 105.497s. We present results of this frac-
ture experiment in Fig. 5, showing a snapshot of the simu-
lated fluid and ice displacement along with the evolving num-
ber and lengths of the simulated fragments. A video of the
simulation is available as supplementary material (Mokus,
2025a).

3 Numerical experiment

To evaluate the capabilities of our model, in particular, vali-
date the energy-based fracturing approach and highlight the
difference between energy and strain criteria, we choose to
replicate breakup experiments conducted at the laboratory
scale on a material that served as an analogue for solid, cohe-
sive ice (Auvity et al., 2025). These focused on quantifying
the onset of breakup, by progressively increasing the ampli-
tude of a forcing stationary wave, at different frequencies.
The experiment setup was as follows: a water tank of length
80 cm and depth 11 cm was covered with a brittle layer of
varnish, with thickness on the order of 100 µm. The layer
was detached from the walls of the tank prior to the exper-
iment. Stationary surface waves were generated with a wave
maker. A one-dimensional profilometry system and image-
processing method were used to extract the wave properties
(frequency, amplitude, wavenumber) and determine when
fracture occurred. This work is similar to that of Saddier et al.
(2024), who also conducted wave-induced fracture experi-
ments on an analogue material at the laboratory scale, un-
der stationary but also progressive forcing. However, in their
experiment, the material is a granular raft hold together by
capillary forces more than a continuous solid, and breaks be-
cause of viscous stress rather than because of bending stress.
The former is directly relevant for representing the disinte-
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Figure 5. Snapshots of a fracture experiment. In (a), view of the domain at t = 60s. The continuous, dark line represents the fluid surface
(η(x)), and the discontinuous, lighter lines the vertical displacements (w(x)) of individual floes. The marks along the bottom spine indicate
the boundaries between fragments; the last 80 m, at the right of the domain, have not yet been affected by the waves. Note that the vertical
scale is greatly exaggerated: the aspect ratio of the graph, in physical units, is 5× 10−4. Because of the thickness of the lines, some floes
appear to overlap, they actually do not. In (b), horizontal bars show the extent of individual floes. The height of the bars indicates the order
of the floe in the array, and each group of bars, or “stair”, corresponds to a snapshot. The time of the snapshots are indicated on the y-axis,
and darker colours correspond to later times. In (c), we show size distributions as swarmplots, omitting the rightmost fragment. Each dot
corresponds to a length as indicated by the x-axis, and within a group, the y-axis only serves to separate dots. Vertical clusters thus indicate
a concentration of observations around the corresponding length. From t = 0 to 120 s, there are respectively 1, 6, 27, 52, 58, 59, and 60
fragments.

gration of an already fragmented and granular sea ice, that
has already been broken up or that is in a consolidation phase
(transition from frazil to grease ice). As our work focuses on
the fracturing of a solid and cohesive ice cover that we treat
as a continuous elastic medium, rather than on the disintegra-
tion of a granular ice of low cohesion, we favoured the work
of Auvity et al. (2025) for our comparisons.

As we aim to replicate this experiment, in what follows,
we will be using a standing wave forcing, and turn off any
attenuation. We use our model to determine, for prescribed
wavenumbers and material properties inherited from these
laboratory experiments (listed in Table 1), the critical am-
plitude acr at which the material starts to fracture. We do so
using our energy formulation. Our model being linear, the
amplitude directly controls the deflection of the plate, and
thus, its curvature and resulting elastic energy. It is therefore
an intuitive quantity to control the outputs of the model, as
well as a quantity that was measured experimentally.

The critical amplitude can then be related to a critical cur-
vature κcr by evaluating Eq. (8) at the coordinate of the frac-
ture. In turn, κcr can be used to derive a critical strain, us-
ing Eq. (16). We do not run separate experiments based on
a strain criterion, as per the results of these authors, a criti-
cal strain independent of the wave forcing does not seem to
exist for this material and therefore cannot be prescribed in
numerical experiments. Even so, the results of energy-based
simulations allow us to draw conclusions on the relevance of
this type of criterion. These are discussed in Sect. 5.

3.1 Length scales

To replicate the experimental protocol of Auvity et al. (2025),
we consider only monochromatic stationary forcings, so that
η(x)= a sin(knx) with kn = nπ

L
. The symbol L represents

both the length of the plate, and of the domain. The positive
integer n is the harmonic number. The wave tank we simulate
is short enough for attenuation to be considered insignificant.
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We define two additional lengths: the flexural length

LD =

(
D

ρwg

)1/4

, (26)

and the relaxation length

Lκ =

∫ xfr
0 (xfr− x)

[
κ(x)− κ<(x)

]2dx∫ xfr
0

[
κ(x)− κ<(x)

]2dx

+

∫ L
xfr
(x− xfr)

[
κ(x)− κ>(x)

]2dx∫ L
xfr

[
κ(x)− κ>(x)

]2dx
. (27)

The former is a natural length scale of our system, appear-
ing in the bending equation (Eq. 6a), and relates the flexu-
ral rigidity of the plate (that resists bending) to the reaction
of the fluid it rests upon (that sustains bending). The latter
gives a measure of the distance over which the curvature of
post-fracture fragments is different from the curvature of the
original floe that gave rise to these fragments. We show an
example of this in Fig. 3b.

We introduced the symbols κ<(x) and κ>(x) to denote the
curvature of the left and right post-breakup fragments, with
x ∈ [0,L]. By definition, κ< (respectively κ>) exists only for
x ∈ [0,xfr] (respectively x ∈ [xfr,L]). We choose this inte-
gral definition of Lκ because the differences in pre- and post-
breakup curvatures is well-represented (when moving away
from the fracture location) by a damped sine with oscillation
period and attenuation rate

√
2LD, that is,

κ(x)− κ>(x)∼ sin
( x
√

2LD

)
exp

(
−

x
√

2LD

)
, (28)

which ensues from the shape of the solution presented in Ap-
pendix A1. Therefore, except at the floe boundaries where
curvature is 0m−1 (as imposed by the boundary condition,
Eq. 6b), the whole length of the initial floe may participate
in releasing energy. For long enough waves, the relaxation
length tends to

√
2LD, that is limk→0Lκ =

√
2LD. This can

be shown analytically by assuming Eq. (28).
We thus have three typical horizontal length scales:

– The wavelength λ= 2π
k

, imposed by the wave forcing,
and linearly tied to the domain length L through the har-
monic number n, so that L= nλ

2 .

– The flexural lengthLD, that depends on the properties of
the material, the density of the fluid, and gravity. Only
the former are varied in this study, with stiffer, thicker
materials having a longer LD.

– The relaxation length Lκ , that quantifies the distance
over which fracture modifies the system.

As we consider short wavelengths and a very thin plate,
capillarity effects could in principle be important. However,
because the flexural length of the material exceeds its capil-
lary length, these are negligible, which Auvity et al. (2025)

verified experimentally. Therefore, we will not consider them
either, and the dispersion relation we will be using is given
in Eq. (19), dominated by the term in LD

4.

3.2 Linearity limitation

The analogue material used in the laboratory experiments of
Auvity et al. (2025) requires nonlinear waves (ak ≈ 0.14) for
fracture to occur. As neither nonlinear plate nor non-linear
waves are represented by our numerical model, we have to
relax this condition, typically quantified by the wave slope
ak, to observe fracture at all. Thus, we set the upper bound
of our dichotomic searches so that ak ≤ 0.5, which places
us out of the linear framework our model relies on. As here,
we are qualitatively showcasing the behaviour of our model
rather than quantitatively exploiting the results, we deem this
limitation to be inconsequential. For thickness and Young’s
modulus typical of sea ice, fracture in our model does happen
in a linear regime, as illustrated in Fig. 3, where ak = 0.015.

Note that we define wave slope with respect to the wave
propagating underneath the elastic plate and not with respect
to the free surface waves. For a given time period, hydroe-
lastic waves with dispersion relation Eq. (19) are typically
longer than free surface gravity waves with dispersion rela-
tion Eq. (18), making the former slightly less steep.

4 Results

The results presented in this section focus on detecting a frac-
ture threshold using our energy formalism and comparing
this threshold to that obtained in the laboratory experiment of
Auvity et al. (2025). To do so, we use in our simulations the
material parameters issued from Auvity et al. (2025). Those
are given in Table 1. We do not tune model parameters. As
we are interested in detecting the fracture threshold, and our
model does not have a fatigue term, we work with strictly
unrelated quasi-static states, and we find the critical ampli-
tude acr systematically by dichotomic search. In Sect. 4.1, we
detail the influence of varying the wavenumber exclusively.
Then, in Sect. 4.2, we replicate the same protocol, while also
varying the mechanical parameters of the plate.

4.1 Reference case

We start by illustrating the response of our model, for a range
of prescribed wavenumbers, with four quantities: the nor-
malised position of the fracture xfr

L
, the critical amplitude and

curvature, and the relaxation length. These are presented in
Fig. 6. To exemplify the deviation between our computed de-
flection field and the forcing fluid surface, we choose here the
case of the third harmonic, so that L= 3π

k
. We thus obtain

curvature profiles that are symmetric2 with respect to x = L
2 ,

2As would be the case for any odd harmonic number. In the
case of even harmonic number, the curvature profile as a twofold
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Table 1. List of model parameters and their values. Parameters fol-
lowed by an asterisk are inferred from other fixed parameters.

Parameter Value

density (fluid) 1000 kgm−3

density (plate) 680 kgm−3

energy release rate 174 mJm−2

flexural length∗ 7.50 mm
flexural rigidity 3.1× 10−5 Pam3

harmonic number 3
Poisson’s ratio 0.4
thickness 158 µm
wavenumbers 21.0 to 203 radm−1

Young’s modulus∗ 79.2 MPa

with three antinodes, which can be seen in Fig. 7. From left
to right, the first and third antinodes (close to the left and
right edges of the plate, respectively) are more influenced by
the boundary conditions than the second one (located at the
middle of the plate).

In what follows, we multiply k by the flexural length, so
that to obtain the (dimensionless) wavenumber kLD. This
allows exploring the model behaviour between two limits:
small kLD values thus correspond to longer waves and lower
flexural rigidity (the plate conforms to the fluid), while high
values correspond to shorter waves and higher flexural rigid-
ity (the plate is non-deformable). We divide Fig. 6b–d dif-
ferent behaviours of the fracture location as predicted by the
energy criterion, identified in Fig. 6a. These regions are sep-
arated by kLD = 0.1638, 0.3275, and 0.7578. They corre-
spond, for increasing kLD, to fracture happening in the mid-
dle of the floe (the second curvature antinode); fracture hap-
pening close to the first or third curvature antinode; fracture
again happening in the middle of the floe; and fracture un-
correlated from any curvature extremum. Because of the par-
ticular wave forcing imposed in our model configuration, the
free energy profile is symmetrical with respect to the middle
of the plate. Therefore, it is not numerically possible to dis-
criminate between an energy minimum happening at xfr or
L−xfr, and in Fig. 6a, we only show the branch correspond-
ing to xfr ≤

L
2 .

We note that, in regions 1 to 3, fracture predicted by the
energy criterion does not systematically happen at the global
curvature extrema. In this third harmonic case, the global
extremum is in the middle of the floe, except in the band
kLD ∈ [0.178,0.357]. The overlap with the region 2, defined
by kLD ∈ [0.1638,0.3275], is thus not one-to-one. Addition-
ally, in region 2, fracture does not happen at the antinode,
but in its vicinity. For kLD < 0.242, fracture is on the left of
the first antinode, and for kLD > 0.243, to its right (the situ-

rotational symmetry about (x,κ)=
(
L
2 ,0

)
. In other words, κ

(
x−

L
2
)

is even-symmetric for odd harmonic wavenumbers, and odd-
symmetric for even harmonic numbers.

Figure 6. Relationships between the nondimensionalised
wavenumber and normalised (with respect to plate length)
fracture location (a), critical amplitude (b), critical curvature (c),
and relaxation length (d). Model parameters are provided in Ta-
ble 1. In (a), three horizontal dashed lines represent the asymptotes
xfr
L
=

1
6 , 1

3 , and 1
2 . In (b) to (d), vertical lines show delimitations

between regions corresponding to different behaviours of fracture
location, observed on (a). The regions are numbered in (c). In the
second region of (b), the triangle of height twice its horizontal base
(in loglog space and data units) gives an indication of the slope.
In (d), an horizontal dashed line represents the asymptote

√
2LD.

ation is reversed for the third antinode). In region 4, fracture
happens far from either antinode. It seems that for increasing
kLD, xfr

L
→

1
3 , which corresponds to a node of the forcing.

In Fig. 7, we show examples of the behaviour of the free
energy and of the along-plate curvature for these different
regions. We compare the latter to the “conforming” curva-
ture, κconf(x)=

d2

dx2wconf, with wconf(x)=
a

1+(kLD)4
sin(kx)

the associated displacement stemming from the fluid surface.
The term at the denominator ensures that it satisfies Eq. (6a),
and for long waves, limk→0wconf = η. In Fig. 8, we show for
the same examples the floe deflection, compared to the forc-
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ing amplitude, and we indicate the relaxation length. To aid
comparison, we normalise the along-floe coordinate by the
floe length.

In the first two regions, both corresponding to small
wavenumbers, the difference between curvature and con-
forming curvature (Fig. 7a, b) is noticeable only in the im-
mediate vicinity of the edges of the domain. Minima of free
energy correspond roughly with extrema of curvature, and
the floe deflection (Fig. 8a, b) follows the fluid surface. In
the first region, and to a lesser degree in the second region,
the critical curvature (Fig. 6c) varies little, although a slight
positive trend exists. Our strain-based and energy-based cri-
teria in these two regions would therefore predict virtually
similar fractures. The critical amplitude (Fig. 6b) varies with
the inverse of the squared wavenumber, that is, with the
square of the wavelength. The relaxation length (Fig. 6d) is
almost constant and tends to

√
2LD from below for decreas-

ing wavenumbers. As the floe length is, in the case of station-
ary wave forcing, inversely proportional to the wavenumber,
the relaxation length normalised by the floe length increases
with the wavenumber, and is not constant across the different
panels of Fig. 8.

In the third region, curvature and conforming curvature
(Fig. 7c) are now dissimilar between the left (respectively
right) edge and the left (respectively right) antinode. The
free energy still shows three troughs, but the trough at x = L

2
is now clearly more pronounced than the other two. There
are still three distinct deflection extrema (Fig. 8c), synchro-
nised with the forcing wave, and the amplitude of deflec-
tion of the floe is slightly smaller than the forcing ampli-
tude. From kLD ≈ 0.3057, we locally (around the two posi-
tive deflection antinodes) have η−w > h−d. As h−d corre-
sponds to the freeboard of the floe at rest, this suggests parts
of the deformed floe are immersed. This takes place close
to the transition from the second region, which happens at
kLD = 0.3275. The non-zero deflection near the edges shows
that deflection is now significantly different from the sine
forcing. In terms of the occurrence of fracture, this region
corresponds to a sharp increase in critical curvature, incom-
patible with a strain-based (that is, constant critical curva-
ture) criteria. The relaxation length, however, is still practi-
cally constant with kLD, and a good indicator of the zone
over which pre- and post-fracture modelled deflection differ.
An inflexion of the critical amplitude decrease rate is also
visible. In regions 1 to 3, fracture locations near antinodes
and the shape of post-fracture deflections are consistent with
mode I fracturing.

As kLD increases, the length of the plate diminishes rela-
tively to its flexural length. The impact of the boundary con-
ditions on the deflection profile is therefore amplified. This
effect is sizeable in the fourth region (Fig. 8d): curvature and
conforming curvature (Fig. 7d) no longer match anywhere
along the plate. This is despite staying in a regime where
LD� L, as kLD = nπ

LD
L
≈ 10LD

L
. The central free energy

trough has separated into two distinct troughs corresponding

to global minima, no longer in phase with curvature extrema.
This separation corresponds to the transition from the third
region. The fourth region also shows a drop in critical cur-
vature (Fig. 6c), which has been monotonically increasing
with kLD thus far. However, the maximum curvature κ(L/2)
keeps increasing irregularly with kLD, as can be seen by
comparing Fig. 8c and d. The critical amplitude, which seems
to plateau on the right of the third region (Fig. 6b), is singular
at the transition, then diminishes again before increasing ir-
regularly. Additionally, the edges of the fragments no longer
mirror each other. There is a significant post-fracture discon-
tinuity in deflection, which is a characteristic of region 4,
and not consistent with bending (mode I) fracture, but remi-
niscent of a sliding (mode II) or tearing (mode III) fracture.
A minimum of critical curvature is reached for kLD = 1,
which also corresponds to a maximum of relaxation length.
For n≥ 2, there is a single positive kLD, quickly converging
to 1, for which the slope at the edges of the floe vanishes, that
is,
( dw

dx

)
x=0,L = 0. It corresponds to the two outside-most de-

flection antinodes vanishing, leaving only the internal ones.
It can be seen from the deflection profile in Fig. 8d, that com-
pared to Fig. 8a–c, the slope at the edges has changed sign,
and that a single antinode (at the centre of the floe) remains.

4.2 Influence of mechanical parameters

We further investigate the response of our model to vary-
ing mechanical parameters, by reproducing the analysis pre-
sented in Sect. 4.1 for an ensemble of (h,Y ) pairs with 128
members. Doing so, we aim to reproduce the internal vari-
ability that stems from laboratory conditions in the exper-
iments of Auvity et al. (2025). We generate this ensemble
through Latin hypercube sampling, and enforce that the two
variables are independent with normal marginal densities of
prescribed means 100 µm and 70 MPa, and prescribed stan-
dard deviations 20 µm and 14 MPa, respectively; we show the
joint density of our sample in Fig. 9. The resulting distri-
bution of flexural rigidities is positively skewed, with mean
7.88× 10−6 Pam3 and median 6.93× 10−6 Pam3.

We further impose the relation

2Gh2

D
= C (29)

between the energy release rate, the Young’s modulus, and
the thickness, as derived by Auvity et al. (2025), setting the
dimensionless material constant parameter C = 2.8× 10−4.
This expression serves as a proxy establishing a value for G,
which is poorly constrained experimentally. The other pa-
rameters are kept fixed at the values presented in Table 1. We
also keep the same constraint on the wave slope, requiring
acrk ≤ 0.5: depending on the precise values assumed by the
thickness and Young’s modulus, the interval of wavenumbers
that leads to fracture may vary.
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Figure 7. Examples of free energy (left vertical axes, green lines) and curvature (right vertical axes, grey lines) profiles for the four regions
identified in the text. A sine curvature is shown in dashed lines as a comparison to the curvature derived from Eq. (8). The fracture locations,
determined from the energy criterion, are shown with vertical lines: the energy profiles being symmetrical with respect to the middle of the
plates, F(xfr)= F(L− xfr). The dashed horizontal lines show the zero-curvature reference.

Figure 8. Examples of pre- and post-fracture floe deflection profiles for the four regions identified in the text, normalised by the critical
amplitude. The relaxation lengths, centred on the fracture locations, are shown with shaded rectangles. We only consider the left fracture
location, where applicable. The dashed horizontal lines show the zero-deflection reference.
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Figure 9. Joint density and marginal densities of our (h,Y ) ensem-
ble.

4.2.1 Comparison to experimental data

We show numerical results in Fig. 10 (colour-coded lines),
which we compare to experimental data from Auvity et al.
(2025) (circle and square markers). We obtain results similar
to those presented in Sect. 4.1. The critical amplitude profiles
do not depend on the mechanical properties of the simulated
material, up to a multiplicative constant, that increases with
flexural rigidity (or, equivalently, flexural length).

This fact extends to the other variables shown in Fig. 6.
Within the ranges of mechanical parameters explored, which
are in agreement with the values and internal variability esti-
mated by Auvity et al. (2025), the order of magnitude of the
critical amplitude and its decreasing tendency with increas-
ing kLD agree between the simulations and the laboratory ex-
periments. However, and as expected, this agreement is only
qualitative. Indeed, we recall that in the experimental setting,
fracture was only obtained with nonlinear waves. It is likely
the reason why the critical amplitudes measured by Auvity
et al. (2025) varies as k−1, not as k−2 as we find numerically.
The differences between experimental and numerical critical
amplitudes are therefore deepened at small wavenumbers.

We also note that the way we define the relaxation length
Lκ in our linear waves simulations differs from the defini-
tion of Auvity et al. (2025), who used the full width at half-
maximum (hereinafter, FWHM) of pre-fracture curvature in
their nonlinear experiments. On Fig. 10, we thus also rep-
resent the experimental critical amplitudes as a function of
LD

FWHM (pink squares), which horizontally shifts the experi-
mental points, in an attempt to correct the discrepancy be-
tween their nonlinear waves forcing and our linear model.

We do not adopt their definition, as it would be incompati-
ble with our region 4 results, where fracture does not happen
around curvature peaks or troughs, while experimental frac-

tures always happened in the vicinity of a deflection antin-
ode. If we were to apply it to regions 1 to 3, we would ob-
tain something very similar to the FWHM of sin(kx), that
is 2π

3k =
λ
3 . Because of their nonlinear wave forcing, Auvity

et al. (2025) measured FWHMs that varied like λ
12 . Bend-

ing was thus concentrated in a smaller fraction of their forc-
ing wavelengths, and LD

FWHM can be seen as an alternative,
rescaled dimensionless wavenumber. Using this definition,
we can improve the overlap between experimental and nu-
merical results, with experimental points falling in regions 1
to 3, where both model end experiments show the critical
curvature depends on the forcing wavelength, precluding a
constant strain threshold.

4.2.2 Impact of harmonic number and dimensionless
quantities

So far, we focused on the harmonic number n= 3. However,
for large enough kLD, the response of the model depends on
n, and therefore on the geometry of the domain. In particular,
for even n, fracture in region 4 happens systematically in the
middle of the floe. Due to the symmetry property of the forc-
ing, this means our model predicts fracture with κcr = 0m−1,
inconsistent with bending fracture but reminiscent of shear-
ing or tearing fracture. The fundamental configuration, with
n= 1, is a particular case. The maxima of deflection, cur-
vature, and free energy happen at x = L

2 independently of
kLD. We illustrate this difference in Fig. 11 by presenting
the relationships between the nondimensionalised wavenum-
ber and two dimensionless quantities, for different harmonic
wavenumbers. We choose these two quantities because they
exhibit the remarkable property of depending on the dimen-
sionless wavenumber, but not on the individual variations of
the mechanical parameters.

The first of these quantities, shown in Fig. 11a, is the relax-
ation length Lκ (as shown in Fig. 6d for the fixed parameters
experiment), normalised by the augmented flexural length√

2LD. We retrieve, independently of the harmonic number,
the limit limk→0Lκ =

√
2LD already stated in Sect. 3.1. Be-

haviours depending on the harmonic number emerge from
kLD ≈ 0.4. If all curves show a downward trend in what cor-
responds to kLD in regions 2 and 3, this trend is more pro-
nounced for smaller numbers, in particular n ∈ {1,2}. The
second striking difference, is that between even and odd har-
monic numbers. There is a discontinuity at the transition
from region 3 to region 4 for even numbers, with an upward
jump preceding a sustained downward trend. This transition
is continuous for n= 3. There is no region 4 behaviour for
n= 1, as in this configuration, fracture always happens at
xfr
L
=

1
2 .

The second dimensionless number, shown in Fig. 11b, can
be built as the product of two distinct dimensionless quanti-
ties: critical curvature multiplied by thickness (that is, twice
the critical strain), and critical curvature multiplied by re-
laxation length. Notably, both these quantities do depend on
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Figure 10. Relation between the dimensionless wavenumber and the critical amplitude, for varying thickness and Young’s modulus. Lines are
numerical results, with the colour scale indicating the flexural rigidity, that combines the two varying parameters. Grey dots are experimental
results from Auvity et al. (2025). Pink squares are the same experimental results, with a different horizontal scaling, as described in the text.

thickness and Young’s modulus, without showing the order-
ing critical amplitude does in Fig. 10. However, their product,
κcr

2hLκ , only depends on kLD. This quantity was also de-
rived by Auvity et al. (2025), who interpreted it as a constant
independent of the wave forcing. We do not replicate this re-
sult outside of regions 1 and 2, that is, the wavenumber band
where neither critical curvature nor relaxation length vary. As
in Fig. 11a, the different curves are indistinguishable within
these two regions (that is, at small kLD), and a discontinuity
exists for even harmonic numbers between regions 3 and 4,
as for these, the critical curvature drops to 0 m−1 in region 4.

Finally, it can be seen that the upper bound of the range
of kLD that sees fracture happens depends on n. It first in-
creases with n but peaks for n= 3, and then decreases. This
is despite keeping the same acrk ≤ 0.5 criterion on the wave
slope. The lower bound, however, does not change and keeps
the value kLD = 0.1167. The differences between the differ-
ent harmonics in region 4 are explained by the loss of deflec-
tion extrema near the boundaries as kLD increases, which
have dissimilar effects on the deflection profile in this re-
gion for different n. For n > 2, there exists a single kLD for
which the slope of the deflection at the edges of the plate,( dw

dx

)
x={0,L}, cancels. It converges exponentially towards 1, so

that noting it (kLD)0, we have log |1− (kLD)0| ∼ −n. The
cancellation of the slope conveys the transition from a de-
flection profile with n antinodes to one with n− 2 antinodes.
When kLD keeps increasing, the higher n, the higher the va-
riety of behaviours shown by w. However, for large enough
kLD, w(x)→ 2a

nπ
for odd n, and w(x)→ 2a

n

(
−

2x
L
+ 1

)
for

even n. These are rigid motions, independent of the forcing,

corresponding respectively to heave (translation) or pitch (ro-
tation).

5 Discussion and conclusion

We have developed a versatile, lightweight one-dimensional
model that simulates the time-dependent fracture of sea ice
by waves. This model has the particularity of solving directly
for the deflection of a floe caused by the competition between
buoyancy and gravity; instead of solving for waves scattered
by the presence of the floe at the ice–fluid interface, and as-
suming that the deflection follows that interface. We can thus
use the model to continuously explore the response of a floe
to bending between two limits: an elastic plate conforming
exactly to a fluid foundation, and an undeformable plate. We
have implemented in this model two fracture criteria. One,
compatible with continuum fracture mechanics, is based on
looking for a global post-fracture energy minimum and com-
paring it to the pre-fracture energy state to determine whether
fracture should occur, and is a novelty of this model. The
other is compatible with the more common hydroelastic ap-
proach applied to sea ice, based on locally comparing strain
to a prescribed, constant threshold.

The present study is centred on presenting the theoretical
and numerical aspects of the model itself and validate/invali-
date the energy-based fracture criterion. We apply the model
to an analogue material used in the laboratory to study wave-
induced ice fracture, in the specific setting of monochromatic
stationary waves. Because no constant critical strain thresh-
old was observed during these experiments, but a relation-
ship between energy release rate and other parameters of
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Figure 11. Relationship between the nondimensionalised
wavenumber and two dimensionless quantities: the energy dissipa-
tion length scaled by the flexural length (a), and squared critical
curvature scaled by thickness and energy dissipation length (b). We
show ensemble averages, for four harmonic numbers. For a given
harmonic number, ensemble members are virtually identical, with
coefficients of variation well below 1× 10−3 where the means are
non-zero.

our model exists, we focus on investigating the energy cri-
teria. Even in this particularly simplified configuration, the
response of the model in terms of critical amplitude or cur-
vature is not straightforward.

Our results indicate that the critical curvature derived from
an energy-based fracture depends on the forcing wave, con-
tradicting the existence of a universal critical strain. This was
also observed in the laboratory (Auvity et al., 2025). In the
(dimensionless) wavenumber band where our results over-
lap with the experimental data from Auvity et al. (2025), we
obtain comparable critical amplitudes. However, we are not
able to replicate their scaling for low kLD. Additionally, we
obtain that for large enough kLD (region 4), the two criteria,
energy-based and critical strain-based, diverge on the pre-
dicted fracture location, in that energy-predicted fracture is
uncorrelated from curvature, or strain, extrema. The fractur-
ing behaviour in region 4 is inconsistent with bending frac-
ture, and suggests out-of-plane shear or in-plane shear frac-
turing. The latter would describe fracture propagating per-
pendicularly to the direction of wave propagation (that is, as
someone tearing up a sheet of paper), in contradiction with

the invariance hypothesis made on the modelled plate and
therefore cannot be represented in the current 1D model.

A possible explanation for the different relationship be-
tween critical amplitude and wavenumber observed experi-
mentally (acr ∼ k

−1) and numerically (acr ∼ k
−2, for kLD .

0.6) may be that experimentally, for fracture to happen, the
material considered (varnish) required nonlinear wave forc-
ing, which our model does not represent. In the case of ice,
the linearity assumption is, however, valid. For values cor-
responding to a similar experiment conducted on fresh water
ice by the same team (Auvity Baptiste and Zanchi Vasco, per-
sonal communication, 2025), that is thicker and stiffer than
their varnish, our results in terms of critical amplitude as a
function of dimensionless wavenumber are, up to multiplica-
tive constants, identical to those presented here, and the wave
slopes required to obtain fracture are typically of the order
of 0.02; well within the linear regime. Therefore, increasing
the numerical complexity of the model to accommodate non-
linear plate behaviour seems unnecessary at this stage. An-
other explanation is that, while our model considers homo-
geneous plates with constant Young’s modulus, the material
engineered by Auvity et al. (2025) is obtained by layering.
Because of introduced vertical inhomogeneities, this process
is likely to introduce a dependency of the Young’s modulus to
the obtained thickness. Further analysis of this new dataset,
and in particular whether the dependency of the curvature at
failure on the wavenumber exists, is ongoing.

The key features of our model are that bending is driven
exclusively by the along-plate variation of buoyancy, which
cannot be resolved by hydroelastic models, and that frac-
ture can be controlled by an energy criterion integrated over
the entire floe. For high kLD values, that is either large
wavenumber or a stiff elastic plate, this leads to physically
questionable behaviours, such as submergence, and post-
breakup deflection discontinuity across the fracture (region
4) or even fracture at zero-curvature (for even harmonics).
We note that the possibility of submergence is the direct con-
sequence of the weak, one-way coupling between fluid and
plate, as we only represent the response of the plate to the
fluid, while ignoring the feedback response of the fluid. This
one-way coupling is a trade-off allowing us to maintain the
theoretical and numerical complexity low. As a rationality
check, we verify that the bending energy, transmitted to the
plate by the fluid, is orders of magnitude less than the grav-
itational potential energy of the fluid: there is thus no unac-
counted energy leaks into the plate. As none of this energy is
returned to the fluid, it is likely we overestimate the likeliness
of fracture.

Here, we have described the simulated behaviour as a
function of kLD by distinguishing the results in 4 different re-
gions, based on where the fracture happens. The kLD thresh-
olds being regions should however be regarded carefully, as
they depends slightly on the harmonic number of the forcing,
and might be a feature of stationary forcing. At field scale,
with waves propagating within the ice cover, the fracture
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front follows the wave front, in such a way that fragments
are typically smaller than the dominant wavelength (Dumas-
Lefebvre and Dumont, 2023). Therefore, the increased com-
plexity in the model behaviour at high harmonic numbers
may not be representative of natural conditions.

More experimental data is needed to confirm or infirm the
behaviour of the model in the large kLD band, and whether
a forcing-dependent trend for critical curvature exists in the
case of ice. Previous wave tank fracture experiments (Dolat-
shah et al., 2018) showed bending failure typically happen-
ing at kLD ≈ 1, though the uncertainties on thickness and
Young’s modulus are quite large. Other values of Young’s
modulus reported for such experiments, in the low MPa range
(Herman, 2018; Passerotti et al., 2022), seem inconsistent
with a cohesive, solid sheet of ice, as represented in our
model. Nevertheless, these authors did observe fracture in the
range kLD ∈ [0.29,0.54] and for kLD = 0.29, respectively.
Voermans et al. (2020) compiled a list of studies of wave-
induced breakup observations. Mechanical parameters were,
for the most part, not measured, but they suggest estimations
based on known empirical relations. Following their meth-
ods, we can generate ensembles of kLD wavenumbers, that
we find lying in the range kLD ∈ [1.7× 10−2,3.1] for both
breaking and non-breaking cases. In the case of realistic wave
forcing, with material parameters representative of first-year
sea ice, the peak of wave energy occurs in kLD bands corre-
sponding to what we identified as region 3 and 4. However,
higher-frequency waves are also the ones most effectively at-
tenuated by the ice cover, so that they contribute less to frac-
ture.

We acknowledge our results are a first step towards the
validation of the fracture formalism we propose. Planned fu-
ture work will involve using our model to study whether the
choice of fracturing criterion impacts the floe size distribu-
tion resulting from propagating wave-induced breakup, and
applying it in configurations corresponding to recent and ex-
citing observations of transient wave-induced breakup of in-
strumented ice in a natural setting (Kuchly et al., 2025).

Appendix A: Equation for the moment-deformation

We consider the boundary problem
d4w
dx4 = σ

4[η(x)−w(x)] x ∈ [0,L] (A1a)
d2w
dx2 = 0 x ∈ {0,L} (A1b)
d3w
dx3 = 0 x ∈ {0,L} (A1c).

where η denotes the surface undergoing wave forcing, w the
floe deflection, and σ = 1

LD
is the reciprocate of the flexural

length.
The surface η is typically the superposition of propagating,

attenuated wave modes, so that

η(x)=
∑
j

ηj (x) (A2)

and

ηj (x)= aj exp(−αjx)sin(kjx+φj ), (A3)

with a wave amplitude, α wave attenuation per unit distance,
k wave number, and φ wave phase at the left floe edge. The
index j is used with respect to a discretised wave spectrum.

Finally, we define the elastic energy per unit cross-
sectional area

E =
D

2h

L∫
0

(
d2w

dx2

)2

dx. (A4)

In the rest of this document, we will note

κ(x)=
d2w

dx2 (A5)

the curvature of the floe.
The ODE in Eq. (A1a) is linear, and so are the bound-

ary conditions fourth order ODE, but it is linear, and so are
the boundary conditions in Eqs. (A1b), (A1c). Here, we con-
sider the simplified case whereD and h are constant, making
Eq. (A1a) a constant-coefficients, linear ODE.

A1 Solution to the BVP on the floe deflection

The ODE in Eq. (A1a) is linear and non-homogeneous. Its
general solution w is the superposition of an homogeneous
solution wh and a particular solution wp.

A1.1 Homogeneous solution

The characteristic polynomial of the homogeneous ODE

d4w

dx4 + σ
4w(x)= 0 (A6)

associated with Eq. (A1a) is

P(s)= s4
+ σ 4. (A7)

It has solutions

(1+ i)σ̃, (1− i)σ̃, (−1+ i)σ̃, (−1− i)σ̃ (A8)

with σ̃ =
√

2
2 σ . Independent solutions to Eq. (A1a) are thus

f̌ =


exp(σ̃ x)(cos(σ̃ x)+ i sin(σ̃ x))
exp(σ̃ x)(cos(σ̃ x)− i sin(σ̃ x))

exp(−σ̃ x)(cos(σ̃ x)+ i sin(σ̃ x))
exp(−σ̃ x)(cos(σ̃ x)− i sin(σ̃ x))

 . (A9)

Applying the full-rank linear transformation

1
2


1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 (A10)
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to f̌ yields the real-valued independent solutions

f =


exp(σ̃ x)cos(σ̃ x)
exp(σ̃ x)sin(σ̃ x)

exp(−σ̃ x)cos(σ̃ x)
exp(−σ̃ x)sin(σ̃ x)

 . (A11)

Finally, any linear combination f T c, with the real-valued
vector

c =
[
c1,c2,c3,c4

]
(A12)

is a solution to Eq. (A6).

A1.2 Particular solutions

The non-homogeneous term in Eq. (A1a) can be written

σ 4η(x)= σ 4
∑
j

ηj (x) (A13)

= σ 4
∑
j

Im
[
âj e

ik̂j x
]

(A14)

with the complex amplitudes â = aeiφ and the complex
wavenumbers k̂ = k+iα. Using the exponential response for-
mula, and the characteristic polynomial Eq. (A7), we obtain
particular solutions of the form

wp,j = σ
4Im

[
âj e

ik̂j x

k̂j
4
+ σ 4

]
(A15)

= Im
[

âj e
ik̂j x(

k̂j/σ
)4
+ 1

]
(A16)

so that the particular solution to Eq. (A1a) can be written

wp =
∑
j

wp,j . (A17)

In what follows, we will write

ãj =
âj(

k̂j/σ
)4
+ 1

(A18)

the complex amplitude of these solutions. As σ,kj ,αj > 0,
this amplitude exists only if

kj 6= σ̃ ∧αj 6= σ̃. (A19)

A1.3 Coefficients of the homogeneous solution

The coefficients of c have to be determined to enforce the
boundary conditions. Enforcing these four conditions leads
to the system

DBCMBCc = r (A20)

with

DBC =


2σ̃ 2 0 0 0

0 2σ̃ 2 0 0
0 0 2σ̃ 3 0
0 0 0 2

√
2σ̃ 3

 , (A21)

MBC = 0 1 0 −1
−eβ sin(β) eβ cos(β) e−β sin(β) −e−β cos(β)
−1 1 1 1

−eβ sin(β + π
4 ) eβ cos(β + π

4 ) e−β cos(β + π
4 ) e−β sin(β + π

4 )

 , (A22)

where β = σ̃L, and

r = Im
∑
j


k̂2
j ãj

k̂j
2
ãj e

ik̂jL

ik̂3
j ãj

ik̂3
j ãj e

ik̂jL

 . (A23)

The third and first lines of the system give{
c1 =

1
2σ̃ 2

(
r1−

r3
σ̃

)
+ c3+ 2c4 (A24b)

c2 =
r1

2σ̃ 2 + c4 (A24b)

and the system in Eq. (A20) can be simplified to the more
tractable

MII

[
c3
c4

]
=

[
−r3
r4

]
(A25)

with

MII = 2[
sin(β)sinh(β) eβ sin(β)− cos(β)sinh(β)

−

√
2

2

[
sin(β)cosh(β)+ cos(β)sinh(β)

]
−

√
2

2 e
β
− sin(β + π

4 )sinh(β)

]
.

(A26)

The determinant of MII is

1=
√

2
[
2sin2(β)− cosh(2β)+ 1

]
(A27)

so that 1< 0 for β > 0, and limβ→01= 0. Therefore, the
system in Eq. (A20) admits a unique solution as long as L is
non-zero, and LD finite. Solving Eq. (A25 and substituting
into Eq. (A24)) leads to the solution to Eq. (A20), that can be
written

c =Mr (A28)

where the coefficients of the matrix M are

M11 =
1
Q
e−2β

[√
2sin

(
2β +

π

4

)
− e−2β

]
(A29a)

M12 =−
1
Q
e−β

[√
2cos

(
β +

π

4

)
+ e−2β(3sinβ − cosβ

)]
(A29b)
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M13 =
1
σ̃Q

e−2β
[

sin(2β)− 1+ e−2β
]

(A29c)

M14 =
1
σ̃Q

e−β
[

cosβ − e−2β(2sinβ + cosβ)
]

(A29d)

M21 =
1
Q
e−2β

[
−
√

2cos
(

2β +
π

4

)
+ 2− e−2β

]
(A29e)

M22 =

√
2
Q
e−β

[
− sin

(
β +

π

4

)
+ e−2β cos

(
β +

π

4

)]
(A29f)

M23 =
1
σ̃Q

e−2β
[
1− cos(2β)

]
(A29g)

M24 =
1
σ̃Q

e−β sinβ
[
1− e−2β

]
(A29h)

M31 =
1
Q

[
− 1+

√
2e−2β cos

(
2β +

π

4

)]
(A29i)

M32 =
1
Q
e−β

[
3sinβ + cosβ

−
√

2e−2β sin
(
β +

π

4

)]
(A29j)

M33 =
1
σ̃Q

[
− 1+ e−2β(sin(2β)+ 1)

]
(A29k)

M34 =
1
σ̃Q

e−β
[

cosβ − 2sinβ − e−2β cosβ
]

(A29l)

M41 =
1
Q

[
1+ e−2β

(√
2sin

(
2β +

π

4

)
− 2

)]
(A29m)

M42 =M22 (A29n)
M43 =M23 (A29o)
M44 =M24 (A29p)

with

Q=−2σ̃ 2
[
(1− e−2β)2+ 2e−2β(cos(2β)− 1

)]
. (A30)

The coefficients of M are implicit functions of σ̃ , and we
note that the coefficients M1j are even-symmetric to the co-
efficients M3j , and the coefficients M2j are odd-symmetric
to the coefficients M4j . This reproduces the respective even-
ness and oddness of f1 and f3, and f2 and f4. The leading
exponential terms for all the coefficients M1j and M2j en-
sure that the deflection does not diverge for large floes.

The homogeneous solution to Eq. (A1) is then

wh(x)=
∑
j

cjfj (x) (A31)

with the coefficients of f given from Eq. (A28).

A1.4 Summary

The solution to the BVP Eq. (A1) is given by the sum

w(x)= wh(x)+wp(x) (A32a)

=

4∑
j=1

cjfj (x)+

Nf∑
j=1

Im
[
ãj e

ik̂j x
]
. (A32b)

The definitions of the functions fj are given in Sect. A1.1,
the definitions of the coefficients ãj as well as the complex
wavenumbers k̂j are given in Sect. A1.2, and the definitions
of the coefficients cj in Sect. A1.3. The integerNf is the num-
ber of frequency bins used to discretise a wave spectrum. The
deflection is entirely determined by the elastic length LD, the
floe length L, and Nf tuples of amplitude a, wavenumber k,
attenuation number α, and phase φ. Assuming independence
of these quantities, the solution is parametrised by 2+ 4Nf
real numbers. All of these, at the exceptions of the phases
taking values in (−π,π ], are positive. They can be further
constrained to physically realistic ranges.

A2 Elastic energy

A2.1 Introduction

The elastic energy of a bent floe is defined as

E =
D

2h

L∫
0

(
d2w

dx2

)2

dx. (A33)

We introduce the floe curvature κ(x) := d2w
dx2 . From

Eq. (A32), we have

κh = 2σ̃ 2(−c1f2+ c2f1+ c3f4− c4f3) (A34)

κp =−
∑
j

Im[k̂2
j ãj e

ik̂x
]. (A35)

Let us define bj :=
∣∣k̂2
j ãj

∣∣, βj := Ang k̂2
j ãj . We can then

rewrite

κp =−
∑
j

bj e
−αj x sin(kjx+βj ). (A36)

Finally, we introduce the quantities

Eh =

L∫
0

κh
2dx, Ep =

L∫
0

κp
2dx, Eq =

L∫
0

κhκpdx, (A37)

which are the contribution to the elastic energy of respec-
tively the homogeneous part of the displacement, the inho-
mogeneous part of the displacement, and their quadratic in-
teraction.

A2.2 Homogeneous contribution

We start by expanding Eh as

Eh = c1
2I2+ c2

2I1+ c3
2I4+ c4

2I3

+ 2(−c1c2I12− c1c3I24+ c1c4I23+ c2c3I14

− c2c4I13− c3c4I34), (A38)
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with

Ij =

L∫
0

fj
2dx,Ijn =

L∫
0

fjfndx. (A39)

These integrals evaluate to

I1 =
e2β(
√

2sin(2β + π
4 )+ 2)− 3

8σ̃
(A40a)

I2 =
e2β(−

√
2sin(2β + π

4 )+ 2)− 1
8σ̃

(A40b)

I3 =
−e−2β(

√
2cos(2β + π

4 )+ 2)+ 3
8σ̃

(A40c)

I4 =
e−2β(

√
2cos(2β + π

4 )− 2)+ 1
8σ̃

(A40d)

I12 =
−
√

2e2β cos(2β + π
4 )+ 1

8σ̃
(A40e)

I13 =
L

2
+

sin(2β)
4σ̃

(A40f)

I14 =
sin2β

2σ̃
(A40g)

I23 =
sin2β

2σ̃
(A40h)

I24 =
L

2
−

sin(2β)
4σ̃

(A40i)

I34 =
−
√

2e−2β sin(2β + π
4 )+ 1

8σ̃
. (A40j)

The products of cj ,cn pairs simplify little, and can be evalu-
ated numerically.

A2.3 Particular contribution

We can expand Ep as

Ep =

Nf∑
j=1

[
bj

2I
p
j + 2

Nf∑
n=j+1

bjbnIj,n

]
(A41)

with

I
p
j =

1
2

L∫
0

e−2αj x
[
1− cos

(
2kjx+ 2βj

)]
dx (A42a)

Ij,n =
1
2

L∫
0

e−αj,nx
[

cos
(
k−j,nx+β

−

j,n

)
− cos

(
k+j,nx+β

+

j,n

)]
dx (A42b)

where

αj,n := αj +αn,k
±

j,n := kj ± kn,β
±

j,n := βj ±βn. (A43)

Let us defineKj := |k̂j |, θj := Ang k̂j . Assuming αj 6= 0, we
can then evaluate

I
p
j =

1
4

[
1− e−2αjL

αj

+
sin(2βj − θj )− e−2αjL sin(2kjL+ 2βj − θj )

Kj

]
. (A44)

Similarly, we define K±j,n := |k
±

j,n+ iαj,n| and θ±j,n :=

Ang(k±j,n+ iαj,n), which leads to

Ij,n =
1
2

[ sin(β+j,n− θ
+

j,n)− e
−αj,nL sin(k+j,nL+β

+

j,n− θ
+

j,n)

K+j,n

−
sin(β−j,n− θ

−

j,n)− e
−αj,nL sin(k−j,nL+β

−

j,n− θ
−

j,n)

K−j,n

]
. (A45)

A2.4 Quadratic interaction contribution

We can expand Eq as

Eq =

L∫
0

−2σ̃ 2(−c1f2+ c2f1+ c3f4− c4f3)

∑
j

Im[k̂2
j ãj e

ik̂x
] (A46)

=−2σ̃ 2
Nf∑
j=1

bj [−c1I
q

2,j + c2I
q

1,j + c3I
q

4,j − c4I
q

3,j ] (A47)

with

I
p
n,j =

L∫
0

fn(x)exp
(
−αjx

)
sin
(
kjx+βj

)
dx. (A48)

We define

Q++j = (σ̃ +αj )
2
+ (σ̃ + kj )

2 (A49a)

Q+−j = (σ̃ +αj )
2
+ (σ̃ − kj )

2 (A49b)

Q−+j = (σ̃ −αj )
2
+ (σ̃ + kj )

2 (A49c)

Q−−j = (σ̃ −αj )
2
+ (σ̃ − kj )

2, (A49d)
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noting Q−− is non-zero under the same condition Eq. (A19)
that ã exists.

I
p

2,j = e
−β

{
Kj

[
sin
(
θj −βj

)( 1
Q−+

−
1

Q−−

)
+ e−αjL

[
sin
(
(σ̃ + kj )L− θj +βj

)
Q−+

+
sin
(
(σ̃ − kj )L+ θj −βj

)
Q−−

]]
+
√

2σ̃
[
−

sin
(
βj +

π
4

)
Q−+

−
cos

(
βj +

π
4

)
Q−−

+ e−αjL
[

sin
(
(σ̃ + kj )L+βj +

π
4

)
Q−+

−
sin
(
(σ̃ − kj )L−βj +

π
4

)
Q−−

]]}
(A50a)

I
p

1,j = e
−β

{
Kj

[
cos

(
θj −βj

)( 1
Q−+

+
1

Q−−

)
+ e−αjL

[
−

cos
(
(σ̃ + kj )L− θj +βj

)
Q−+

+
cos

(
(σ̃ − kj )L+ θj −βj

)
Q−−

]]
+
√

2σ̃
[

cos
(
βj +

π
4

)
Q−+

−
sin
(
βj +

π
4

)
Q−−

+ e−αjL
[
−

cos
(
(σ̃ + kj )L+βj +

π
4

)
Q−+

+
cos

(
(σ̃ − kj )L−βj +

π
4

)
Q−−

]]}
(A50b)

I
p

4,j = e
−β

{
Kj

[
− sin

(
θj −βj

)( 1
Q++

−
1

Q+−

)
+ e−αjL

[
−

sin
(
(σ̃ + kj )L− θj +βj

)
Q++

+
sin
(
(σ̃ − kj )L+ θj −βj

)
Q+−

]]
+
√

2σ̃
[
−

cos
(
βj +

π
4

)
Q++

−
sin
(
βj +

π
4

)
Q+−

+ e−αjL
[

cos
(
(σ̃ + kj )L+βj +

π
4

)
Q++

−
cos

(
(σ̃ − kj )L−βj +

π
4

)
Q+−

]]}
(A50c)

I
p

3,j = e
−β

{
Kj

[
− cos

(
θj −βj

)( 1
Q++

−
1

Q+−

)
+ e−αjL

[
cos

(
(σ̃ + kj )L− θj +βj

)
Q++

+
cos

(
(σ̃ − kj )L+ θj −βj

)
Q+−

]]
+
√

2σ̃
[
−

sin
(
βj +

π
4

)
Q++

−
cos

(
βj +

π
4

)
Q+−

+ e−αjL
[

sin
(
(σ̃ + kj )L+βj +

π
4

)
Q++

−
sin
(
(σ̃ − kj )L−βj +

π
4

)
Q+−

]]}
. (A50d)

Appendix B: Comparison to another mechanical model

In this Section, we compare the solution to floe bending is-
sued from the model described in this publication, SWIIFT,
to results issued from a model that solves for wave scatter-
ing from ice floes, hereafter referred to as WISIB (Mokus
and Montiel, 2022). The main difference is that in the latter
case, floe deflection is derived from the interface between
fluid and floe, assuming that the floe conforms exactly to
the fluid; the solution is sought assuming harmonic forcing
of the plate, and incorporates forward and backward travel-
ling waves, while SWIIFT only represents forward travelling
waves. A consequence is the possibility for WISIB to create
constructive interference locally increasing the deformation
of the plate or its curvature. Interactions between floe lengths
and wavenumbers can locally lead to resonances.

In Sect. B1, we look at curvature envelopes. In Sect. B2,
we look at potential elastic energy derived from these curva-
tures.

B1 Curvature envelopes

In Fig. B2, we compare curvature envelopes derived from
SWIIFT or WISIB. We do so for various ice thicknesses,
wave periods, and floe lengths. By curvature envelope, we
mean the maximum curvature attainable at any location
along the length of a floe; the actual curvature oscillates and
reaches it at its positive antinodes. In the case of WISIB,
curvature is the sum of forward and backward travelling
modes, forward and backward damped modes, and evanes-
cent modes. As a consequence, the envelope itself oscillates.
When the wavelength is long enough compared to the floe,
these oscillations disappear.

When the wavelength gets significantly longer than the
floe (for example, T = 10 and 12 s and h= 25cm, most floe
lengths), the curvature envelopes are different near the edges:
SWIIFT has damped terms which oscillates with spatial fre-
quency 1

√
2LD

, while WISIB has damped terms which are
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complex solutions to the dispersion relation Eq. (19). The
former depends only on ice thickness, while the latter de-
pends primarily on the wave period.

B2 Energy from spectral forcing

More than the curvature itself, what matters to our energy-
based fracture parametrisation is the potential elastic energy
of a deformed floe. To compare these energies between the
two models, we calculate them from the curvatures derived
from both mechanical models. We do so for a spectral forc-
ing, corresponding to a Pierson–Moskowitz spectrum discre-
tised onto 47 frequency bins, between 0.05 to 0.52 Hz, with
a width of 1 Hz. We use Latin hypercube sampling to gen-
erate an ensemble (size 289) of ice thicknesses, significant
wave heights (parametrising the spectrum), and floe lengths,
from uniform distributions on respectively 25 to 100 cm, 2 to
4 m, and 50 to 400 m. The spectra, integrated on the discre-
tised frequency axis, show a median relative error to the tar-

gets H 2
S

16 of 3.3×10−3. To each frequency bin, we associate a
phase randomly sampled from 0 to 2π , to build an incoherent
wave field, from which floe curvature, and eventually, elastic
energy, is derived. We show the results in Fig. B3.

The resulting energies show a dependency to each of the
three chosen variables, highlighted by the regression lines on
the top row. The energy derived from SWIIFT is generally
higher than the energy derived from WISIB, and exhibit more
spread. However, the trends are similar for the energies de-
rived from both models, so that the ratio of the two does not
show any dependency to either of the variables (the regres-
sion lines on bottom left panel of Fig. B3 are mostly hori-
zontal). In the bottom right panel of Fig. B3, we show the
distribution of these ratios. It is right-skewed, and has mean
1.02 (geometric mean 0.69).

In Fig. B1, we show the correlation between our three in-
put variables and the resulting energies. Because the trends
exhibited on the top panel of Fig. B3 are non-linear, we use
the Spearman correlation coefficient, which quantifies the
monotonicity of a relationship. As can be seen from Fig. B3,
and particularly the regression lines, the energy computed
from either model are very mildly negatively correlated with
thickness, mildly positively correlated with significant wave
height, and clearly positively correlated with floe length. The
correlations are stronger when using WISIB, which produces
less scattered results. The energy ratio, however, is at most
very lightly correlated with any of the variables.

Figure B1. Correlation matrix between input parameters and energy
derived from SWIIFT and WISIB. We use the Spearman correlation
coefficient.
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Figure B2. Comparison of curvature envelopes derived from SWIIFT or WISIB for different periods of wave forcing (row) and different ice
thicknesses (columns). Within each panel, from top to bottom (and darker to lighter hue) are floe lengths of 50, 100, 200, and 400 m, and the
solid line is the SWIIFT solution, while the dashed line is the WISIB solution. The x-axes are normalised with respect to floe lengths, and
individual curvatures are normalised with respect to the maximal curvature computed with SWIIFT. We display only the positive branch of
the envelopes, which are symmetrical with respect to each corresponding y-axis. The origin of these y-axes is shown with a thin horizontal
black line.
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Figure B3. Comparison of potential elastic energy derived from SWIIFT or from WISIB. Top row: energy as a function of three parameters,
with coloured dots for SWIIFT and black dots for WISIB. Lowess regression lines are superimposed. Bottom row: on the right, ratios of
energy, as described in the text; the colours correspond to the variables of the top row, which were normalised to fit on the same axis. On the
right, distribution of the energy ratio.

Code and data availability. The current version of SWIIFT
is available from the project website https://github.com/
sasip-climate/swiift (last access: 28 November 2025) under
the APACHE-2.0 licence. The exact version of the model
used to produce the results used in this paper is archived
on https://doi.org/10.5281/zenodo.15528673 (Mokus, 2025d).
The input data and scripts to run the model and produce
the plots for all the simulations presented in this paper are
archived on https://doi.org/10.5281/zenodo.15528650 (Mokus,
2025c). A package dedicated to reproducing the figures, hold-
ing the necessary data but no model logic, is archived on
https://doi.org/10.5281/zenodo.15230102 (Mokus, 2025b).

Video supplement. An animation of the simulation of fracture by
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