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Abstract. Despite ongoing efforts to reduce pollution, per-
sistent ozone pollution in China remains a public health con-
cern. To better understand the causes of ozone pollution in
China and to assess and evaluate the effectiveness of past,
current, and planned targeted pollution control strategies,
estimates of the amounts of pollutants emitted from vari-
ous sources are needed. To this end, we have developed
harmonized and integrated anthropogenic emission inven-
tories for China, incorporating information from the exist-
ing national inventory for mainland China (MEIC) and three
global inventories (CEDS, CAMS, HTAP) to cover areas
outside of China. The newly developed China INtegrated
Emission Inventory (CINEI) includes emissions in China
from sectors currently omitted from the MEIC (ships, avi-
ation, waste, and agriculture) that we incorporate from the
global inventories. To ensure harmonized emissions data, we
performed mapping between different inventories, a process
used to achieve consistency between sectors, spatial resolu-
tion, and speciation of non-methane volatile organic com-
pounds (NMVOCs). These harmonized and integrated inven-
tories for China were used to drive WRF-Chem simulations
for January (winter) and July 2017 (summer). Through a de-
tailed evaluation of model results against available observa-

tions, we show that while the direct use of global inventories
alone can lead to severe over- or underestimation of pollu-
tant mixing ratios, CINEI inventories perform satisfactorily
in simulating ozone (12 % in summer and 43 % in winter
normalized mean bias) and its precursors, including nitrogen
dioxide (NO2, −0.5 % in summer and 40 % in winter) and
carbon monoxide (CO, −50 % in both seasons). Based on
the comparison and modeling of this study, valuable insights
into the spatio-temporal variability of ozone and the subse-
quent design of future ozone mitigation strategies in China
were provided.

1 Introduction

China’s air quality has improved rapidly since 2013 in re-
sponse to the implementation of mitigation strategies (Zhang
et al., 2019). Concentrations of particulate matter (PM2.5)
and primary pollutants (e.g., nitrogen oxides, sulfur dioxide,
and carbon monoxide) have decreased Wang et al., 2019; Liu
and Wang, 2020; Wang et al., 2023. However, ground-level
ozone pollution remains severe. In 2017, the population-
weighted exposure-averaged mixing ratio of ozone in China
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reached 68.2 parts per billion by volume (ppbv) (Yin et al.,
2020), exceeding the World Health Organization (WHO)
air quality standard of 50 ppbv (Lyu et al., 2023; WHO,
2021). Ground-level ozone is a secondary pollutant formed
in complex photochemical reaction chains from its precur-
sors, including nitrogen oxides (NOx =NO+NO2), carbon
monoxide (CO), and non-methane volatile organic com-
pounds (NMVOCs). Therefore, the amounts of emitted pre-
cursors based on different anthropogenic emission invento-
ries may lead to different estimates of ozone mixing ratios.
To investigate near-surface ozone pollution, its multi-year
changes, and the effects of sectoral emissions of precursors
on ozone distribution over China, it is essential to accurately
represent the amount and spatiotemporal variations of an-
thropogenic emissions of ozone precursors in emission in-
ventories (Li et al., 2017; Chang et al., 2022; Smith et al.,
2022; Monks et al., 2015). Therefore, emission inventories
are essential to provide the information needed to formu-
late effective strategies to further improve air quality (Hoesly
et al., 2018).

Over the past decade, anthropogenic emissions in China
have undergone rapid changes due to air pollution reduction
strategies (Fig. S1a in the Supplement). In particular, since
2013 during the implementation of 12th Five-Year Plan pe-
riod (12th Five-Year Plan, 2011), there were significant re-
ductions in anthropogenic emissions of −27 % for NOx and
−17 % for CO (Zheng et al., 2018). These reductions were
due to measures such as setting ultra-low emission standards
for vehicles and factories, improving air quality control tech-
nologies, and phasing out high-emitting factories (Li et al.,
2017; Lu et al., 2020). After 2010, CO and NO2 mixing ratios
gradually fell below the WHO standards of 0.4 parts per mil-
lion by volume (ppmv) for CO and 20 ppbv for NO2 (Sect. S1
and Fig. S1b). Despite these significant improvements in air
quality (Zhang et al., 2019), there is growing concern about
unintended increases in ozone levels (Li et al., 2019; Lu et al.,
2020), which may result from the co-effects of reduced NOx

emissions and increased NMVOC emissions (Li et al., 2019).
As a result, specific strategies targeting NMVOC emissions
were introduced in 2015, especially in the petrochemical and
organic chemical industries. Despite these measures, maxi-
mum daily 8-h average ozone levels remained high in 2022
(Fig. S1b) and frequently exceeded the WHO thresholds
during the warm season (April to October, Fig. S1b). Al-
though total NMVOC emissions have decreased in China,
some studies attribute the observed increase in ozone over the
past decade to the increasing contribution of anthropogenic
NMVOC emissions, especially aromatics, alkenes, and oxy-
genated VOCs (OVOCs), mainly from the petrochemical in-
dustry and solvent use, to the total NMVOCs (Li et al., 2014;
Zhang et al., 2020, 2021; McDonald et al., 2018). In order
to investigate the drivers of recent changes in ozone pollu-
tion in China, it is crucial to develop accurate emission in-
ventories that reflect policy-driven changes in anthropogenic
emissions.

However, existing anthropogenic emission inventories en-
counter discrepancies in sectoral emission (Solazzo et al.,
2021). The discrepancy raises concerns about their accu-
racy and reliability (Crippa et al., 2021; McDonald et al.,
2018). Anthropogenic emission inventories are typically con-
structed in a bottom-up manner, with sectoral emissions
quantified using activity data and emission factors (Solazzo
et al., 2021). Activity data are mainly derived from official
statistics (see Sect. S2 for details). Emission factors provide
the amount of emissions released per activity (Sect. S2). To
obtain gridded emissions with specified NMVOC speciation
and high spatiotemporal resolution, we need more detailed
NMVOC speciation profiles, temporal profiles, and associ-
ated source proxies to distribute emissions in space. Dis-
crepancies in anthropogenic emissions between global, re-
gional, and national emission inventories in describing emis-
sions within a region can be attributed to differences in all of
the aforementioned data. Regional and national inventories
often use updated and more localized activity data, emission
factors, and spatial proxies (Sect. S3). Thus, they are likely
to better quantify emissions within the region or nation of
interest and better describe their multi-year changes and spa-
tial distributions compared to global inventories. However,
national inventories that are limited to the region of interest
do not capture air pollutants transported from regions outside
the national territory. In addition, some emission sectors may
be missing. The use of different NMVOC speciation profiles
can also lead to differences in ozone simulations, and its in-
fluence must be considered (Rowlinson et al., 2024).

The integration of local or regional emissions into larger
scale emissions, called MOSAIC emissions (Li et al., 2024),
can improve the accuracy of emission inventories in repro-
ducing the amounts and variations of emissions. This ap-
proach has been applied in many studies, including the in-
tegration of metropolitan-regional emissions into national
emissions (Wu et al., 2024), national emissions into con-
tinental emissions (Li et al., 2024), and continental emis-
sions into global emissions (Crippa et al., 2023; Guizzardi
et al., 2025). The use of these integrated emission invento-
ries in chemical transport models (CTMs) leads to improved
model performance in reproducing pollutant concentrations.
A comprehensive comparison between the results of the sim-
ulations and the observations can demonstrate the improve-
ments achieved in pollutant simulations.

In this study, we aim to construct a comprehensive an-
thropogenic emissions inventory for China (CINEI) by in-
tegrating the emissions data from mainland China’s inven-
tory (Multi-resolution Emission Inventory model for China,
MEIC) with various global emission inventories within our
integrated (harmonized) emissions system (Fig. 1a). Our goal
is to develop an emission inventory that integrates emis-
sions from all sectors, well-defined localized NMVOC spe-
ciation, and provides a spatial distribution of emissions con-
sistent with the framework of global emission inventories.
The processing method is presented in Sect. 2.2. We discuss
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the results of CINEI emissions in terms of emission sectors
(Sect. 3.1), NMVOC speciation (Sect. 3.2), and spatial distri-
butions (Sect. 3.3), and compare them with existing emission
inventories. In order to assess the reliability of the new CINEI
inventory, we performed numerical WRF-Chem regional ex-
periments based on CINEI, MEIC (harmonized inventories)
and three global inventories, as described in Sect. 3.4. The
model performance is evaluated and discussed in Sect. 2.3.
Based on the discussion of this study, we make recommen-
dations for future emissions and modeling studies (Sect. 4).

2 Methodology

2.1 Selection of anthropogenic emission inventories

For the purpose of developing the CINEI, we selected emis-
sion inventories based on the following criteria:

– Data availability. We prioritized emission inventories
that are easily accessible and widely used by the scien-
tific community.

– Multi-annual coverage. The anthropogenic emission in-
ventories need to span multiple years and accurately
reproduce emission changes within the recent 10–12
years.

– High temporal resolution. We selected emission inven-
tories with monthly or higher temporal resolution to ac-
count for seasonal variations.

– Gridded emissions. Gridded emissions are essential for
simulation using CTM.

– NMVOC speciation. NMVOCs are tropospheric ozone
precursors and as such their they are crucial for ozone
simulations in CTM and understanding their potential
impact on ozone formation, hence their emissions need
to be adequately speciated.

– Avoiding data duplication and unnecessary integra-
tions. As some regional inventories are included in
global inventories, only global inventories were selected
for this study.

Based on the above considerations, we selected four an-
thropogenic emission inventories (Table 1) that include one
regional (national) and three global emission inventories.
These are:

1. The Multi-resolution Emission Inventory for China
(MEIC version 1.4). MEIC is a national inventory for
mainland China developed by Tsinghua University and
updated to the year 2020 (Zheng et al., 2018, 2021a).
Due to the 22 emission sectors provided in the newer
version 1.4 (released in 2023), we use MEICv1.4 to im-
prove sectoral comparisons in our study. The previous

version, MEICv1.3, has been widely used in a number
of research studies to date (Liu and Wang, 2020; Wang
et al., 2024). We also provide comparisons of emission
amounts (NOx , CO, and NMVOCs) between MEICv1.3
and MEICv1.4 in Fig. S2. MEICv1.4 data used in this
study are provided in Zenodo (Zhang, 2025b). Abso-
lute differences of annual averages (MEICv1.3 values
minus latest MEICv1.4 values over MEICv1.3 values)
were calculated and then expressed as percentages with
respect to the annual average emissions in the more re-
cent emission inventory. The differences in total pollu-
tant emissions in China between the two versions were
found to be less than 5 %, and differences between other
versions of inventories follow the same calculation.

2. The Community Emissions Data System (CEDS, version
2021). This is a global emission inventory for the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6)
(Hoesly et al., 2018; Feng et al., 2020; Smith et al.,
2022). CEDSv2021 provides detailed descriptions of
emission sectors and IPCC sector codes, which facil-
itates inter-comparison of sectoral emissions (Hoesly
et al., 2024). Comparisons between CEDSv2021 and
the previous version, CEDSv2019, suggest that there
are only slight differences (< 3 %) in the emissions
of ozone precursors in China (Fig. S4), therefore
CEDSv2019 is not included in further analysis.

3. The Copernicus Atmosphere Monitoring Service emis-
sions (CAMS, version 5.3). This dataset is based on the
Emission Database for Global Atmospheric Research
(EDGAR version 5) until 2018, and projected to 2022
by using the linear slopes of CEDS sectoral emissions
from 2015 to 2019 (Granier et al., 2019; Doumbia et al.,
2021; Soulie et al., 2024). We also compared pollutant
emissions in China in CAMSv5.3 and the latest ver-
sion of EDGAR, EDGAR v6.1 (Fig. S3). CAMSv5.3
data used in this study are provided in Zenodo (Zhang,
2025b). Results indicate the similarity between the two
emission inventories, with differences ranging from 4 %
to 7 % for total annual emission for China, from 2008 to
2020. The uncertainties of CAMs extrapolation method
will also be discussed in Sect. 3.1. Thus, EDGAR v6.1
was not selected for this study.

4. Hemispheric Transport of Air Pollution (HTAP, version
3). HTAP is a newly published global emissions inven-
tory that incorporates the Regional Emission Inventory
of Asia (REAS, version 3.2.1) for pollutant emissions
in East, Southeast, and South Asia (including China)
(Kurokawa and Ohara, 2020; Crippa et al., 2023).
HTAPv3 includes more comprehensive sectoral emis-
sions than REASv3.2.1, including domestic and interna-
tional aviation and shipping, waste emissions, and agri-
cultural waste burning from EDGAR (Monica, 2023).
HTAPv3 reports higher emissions than REASv3.2.1,
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by 2.5 Tg (8.8 %) for NOx and by 2.5 Tg (8.7 %) for
NMVOC, while the difference in CO emissions be-
tween the two inventories is less than 0.5 % (Fig. S5
and Sect. S4). In addition, the newly released HTAPv3.1
inventory (Guizzardi et al., 2025) and MIXv2 inven-
tory (Li et al., 2024) incorporates the MEICv1.4 in-
ventory. Our final dataset–CINEI aims at methodolog-
ical improvements and provide a more comprehen-
sive coverage of emission sectors than MIXv2 and
HTAPv3.1, especially with the inclusion of the agri-
culture and aviation sectors. In addition, CINEI’s de-
tailed NMVOC speciation that is fully compatible with
the MOZART chemistry mechanism enhances its suit-
ability for global atmospheric modeling and its ver-
satility relative to other regional inventories, includ-
ing MEIC, REAS, and MIXv2. Figure S6, showing a
comparison of the interannual variation in NOx , CO,
and NMVOC emissions over China among CINEI,
MIXv2, and HTAPv3.1 inventories for the overlap-
ping period (2010–2017), demonstrates only minor dis-
crepancies among the inventories. Annual emissions
in HTAPv3.1 are 2.1 % higher than CINEI (ranging
from −0.8 % to +5.8 % across different species), while
MIXv2 emissions are consistently 3.2 % lower (rang-
ing from −1.6 % to −6.1 %) (see further discussion in
Sect. S5).

2.2 Harmonizing and integrating emission inventories

In order to improve comparability and build on the strengths
of national (MEIC) and global emission inventories, our goal
was to develop an integrated emissions was to develop an
integrated emission inventory for China (CINEI) based on
harmonized emission inventories, but with emissions from
all activity sectors in China following the IPCC definitions
of emission sectors and updated NMVOC speciation with
observation-based, localized profiles. To do this, we harmo-
nized the emission inventories by unifying the definition of
emission sectors, spatial resolutions, and NMVOC speciation
between the MEIC and global emissions. The framework for
creating the harmonized CINEI is shown in Fig. 1a, and the
Python code for this processing can be accessed on the Zen-
odo website (https://doi.org/10.5281/zenodo.15000795) and
archived by Zhang (2025a). Further details are provided be-
low:

2.2.1 Step 1 – Sectoral mapping: Harmonizing
emission sectors between the national and global
emission inventories.

The classification of emission sectors often differs between
different emission inventories. To compare sectoral emis-
sions and harmonize emission sectors, we first need to use
emission sector mapping tables to establish the correspon-
dence between the emission sector definitions in the selected

Figure 1. Representation of the framework of an integrated (har-
monized) emission inventory system (top two panels) and its evalu-
ation scheme (bottom panel). Figure 1a illustrates the procedure for
the construction of the harmonized and integrated (CINEI) emis-
sion inventories, which is explained in Sect. 2.2. Figure 1b shows
the WRF-Chem experiments performed to validate the emission in-
ventories, with detailed explanations in Sect. 2.3.

emission inventories and the standard sub-sector codes of the
IPCC (Intergovernmental Panel on Climate Change; IPCC,
2006), as shown in Fig. S8. The correspondence of emission
sectors is based on their definitions for each inventory, which
are collected through extensive literature and data documen-
tation on the official website (Granier et al., 2019; Li et al.,
2024; Crippa et al., 2023). Eight sectors are defined in the
harmonized and integrated emission inventories, including:

1. Transportation. Emissions from both road and non-road
transport. Emissions are quantified based on fuel con-
sumption, and vehicles contributing to such emissions
include heavy and light trucks, rail vehicles, passenger
cars and motorcycles, etc. Emissions from international
shipping and aviation are excluded from this emission
sector.

2. Residential. Emissions from small-scale residential and
commercial activities, including heating, cooling, light-
ing and cooking, as well as auxiliary engines used in
houses, commercial buildings, service institutes, etc.

3. Power. Emissions from electricity generation, com-
monly driven by large-scale intensive fuel combustion.
The incineration of waste in waste-to-energy plants is
also included.

Geosci. Model Dev., 19, 217–237, 2026 https://doi.org/10.5194/gmd-19-217-2026
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Table 1. List of emission inventories considered for integrated inventory

Acronym Version Period Spatial Website
Resolution

MEIC 1.4 2008 to 2020 0.25° http://meicmodel.org.cn/?page_id=1772&lang=en (last access: 1 December 2025)
CAMS 5.3 2008 to 2020 0.1° https://eccad.sedoo.fr/#/metadata/479 (last access: 1 December 2025)
CEDS 2021 2008 to 2019 0.5° https://data.pnnl.gov/dataset/CEDS-4-21-21 (last access: 1 December 2025)
HTAP 3 2008 to 2018 0.1° https://edgar.jrc.ec.europa.eu/dataset_htap_v3 (last access: 1 December 2025)

4. Industry. Emissions from by-product industrial pro-
cesses, including emissions from solvent volatiliza-
tion, cement, iron and steel production, fugitive emis-
sions, refinery emissions and other fuel-related emis-
sions. This sector also covers emissions from volatile
chemical products (VCPs) such as petrochemical prod-
ucts, coatings, and printing inks. These sources emit
high-reactivity species such as m/p-xylene, propene,
and toluene, which are important contributors to ozone
formation.

5. Agriculture. Emissions from agricultural soil, manure
management, cultivation, and agriculture waste burn-
ing. Agriculture waste burning includes straw burning,
and excludes savannah burning (Crippa et al., 2023).
Besides, transportation emissions due to the usage of
agricultural vehicles (such as fishing boats) are also in-
cluded here.

6. Waste. Emissions related to solid waste disposal and
wastewater treatment.

7. Aviation. Emissions from aviation activities, including
the take-off, cruising and landing of aircraft.

8. Ships. Emissions from shipping activities on both
oceans and inland waterways.

Table 2 lists the data sources for CINEI’s sectoral emis-
sions and the missing sectors in existing inventories. By fol-
lowing the IPCC sector definitions, we were able to iden-
tify sectors that were omitted from certain emission inven-
tories (see Fig. S8). We selected the emission sectors from
different inventories based on three principles, in the follow-
ing priority order: (1) whether the sectors included complete
sources (sub-sector) and species, as indicated by “Comple-
tion of sub-sectors and species” in Table 2; (2) whether the
sector used high-quality and updated underlying data for cal-
culating emissions, as indicated by “Better underlying data”
in Table 2; and (3) whether the emission estimations for the
sectors considered the mitigation measures implemented in
China (as discussed in Sect. S2), which is indicated by “In-
corporation of pollution mitigation measures” in Table 2.

For CINEI, we retained the emissions from the four ex-
isting sectors (transportation, residential, industry, and en-
ergy) that were utilized in MEIC, as these sectors adhere to

the three principles. As detailed in Sect. S2, MEICv1.4 em-
ployed local emission factors and activity data and included a
parameter for abatement estimation (Sect. S2 and Table S1).
The emission peak year is consistent with the year of mitiga-
tion implementation (see Sect. S9).

We integrated emissions from various global inventories
for the four missing sectors to ensure comprehensive sectoral
coverage and consistency between national and global emis-
sion inventories. Specifically, we used emissions from HTAP
for aviation and domestic shipping. We opted for HTAP’s
data for domestic shipping because its inventory provides an
independent sub-sector for inland shipping, whereas inland
shipping emissions from CAMS are not very complete due to
the limited use and coverage of the Automatic Identification
System (AIS) on inland waterways. We incorporated ocean
shipping emissions from CAMS, which refines data using
the Ship Traffic Emission Assessment Model (STEAM3),
providing a more detailed representation of shipping routes
and emissions (Johansson et al., 2017). For the agriculture
and waste sectors, we utilized data from CEDS because its
agricultural emissions are more comprehensive than those of
MEIC (which only considers NH3, and its waste emissions
are more complete than those from sources from other in-
ventories (Fig. S7).

We also analyzed the changes in ozone precursor emis-
sions in China. The trend in emissions from a sector x is
calculated for the studied period of 2008 to 2020 using the
Eq. (1).

Tx =
Ex,2008∑k=1
n Ek,2008

×

∣∣∣∣Ex,2020−Ex,2008

Ex,2008

−

∑k=1
n Ek,2020−

∑k=1
n Ek,2008∑k=1

n Ek,2008

∣∣∣∣∣ , (1)

where:

– Tx is the relative changes of emissions from the emis-
sion sector x in the end years for global inventories that
stops at 2018 for HTAP and 2019 for CEDS, we extrap-
olate the data to year of 2020 through linear regression,

– Ex,2008∑n
k=1Ek,2008

is the relative changes of emissions from the
emission sector x in the end years for global inventories
that stops at 2018 for HTAP and 2019 for CEDS, we
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Table 2. Data sources of CINEI sectoral emissions and mapping with global emission inventories

Sectors
If provided by existing inventories

CINEI Data Source Selection Principlesc

MEIC CEDSa CAMS HTAPa

Power X X Xb X MEICv1.4 (1) (2) (3)
Industry X X Xb X MEICv1.4 (1) (2) (3)
Residential X X X X MEICv1.4 (1) (2) (3)
Aviation missing missing missing X HTAPv3 (2)
Transportation X X X X MEICv1.4 (1) (2) (3)
International Ships missing X X X CAMSv5.3 (2)
Domestic Ships missing missing X X HTAPv3 (2)
Agriculture Xb X X X HTAPv3 (2)
Waste missing X X Xb CEDSv2021 (2)

a As emissions from HTAP and CEDS are not extended to 2020, we use a linear regression of the emissions from 2008 to 2018 (2019) for HTAP
(CEDS) and extrapolate to 2020 for CINEI. b Indicates that the emissions inventory provides parts of the sectoral emissions but misses some
subsectors suggested by the IPCC report. Details on IPCC subsectors and a comparison to each inventory are listed in Fig. S8. c The selection
principles are prioritized in the following order: (1) Completion of sub-sectors and species, (2) Better underlying data, and (3) Incorporation of
pollution mitigation measures.

extrapolate the data to year of 2020 through linear re-
gression,

– Ex,2020−Ex,2008
Ex,2008

gives the relative change in emission
from sector x from 2008 to 2020,

–
∑n

k=1Ek,2020−
∑n

k=1Ek,2008∑n
k=1Ek,2008

gives the relative change in total
emissions from 2008 to 2020.

We defined key sectors as those with an obvious influence on
changes in total national emissions of a pollutant. We identi-
fied key sectors based on the following two criteria: (1) they
show a clear increasing or decreasing trend in line with total
emissions; (2) the total contributions of the key sectors can
explain more than 95 % of the total emissions changes. We
have adopted this calculation from Intergovernmental Panel
on Climate Change (IPCC) (2006).

2.2.2 Step 2 – Uniform spatial resolution: Re-gridding
emission data to the same spatial resolution.

The global inventories under consideration have different
horizontal resolutions, ranging from 0.1 to 0.5° in both lon-
gitude and latitude. To ensure a consistent integration, we
need to align their resolutions. Therefore, to match the res-
olution of the MEIC, we spatially interpolated all global
inventory data to the grid coordinate with a resolution of
0.25°× 0.25° (latitude× longitude). We used ‘Conservative’
algorithms for the adjustment, which ensures that the quan-
tity of emissions in the new grids does not change compared
to that in the old grids. The emissions in 180 mass in the new
grid cell k (denoted as Ek) are quantified by Eq. (2),

Ek =

∫ ∫
Ak

e(r)dA, (2)

where e(r) is the emission density in the old grid cell that
intersects with this new grid, and Ak indicates the areas of
intersections between two grids (Dukowicz, 1984). These in-
tegrals must be calculated for all cells of the new mesh.

2.2.3 Step 3 – NMVOC speciation mapping: Aligning
NMVOC emissions in all emission inventories to
the same speciation

NMVOC emissions are assigned different speciations in dif-
ferent inventories. NMVOC speciation in regional and na-
tional inventories (e.g., MEIC and REAS) often follows
chemical mechanisms widely used in models, such as the
Carbon Bond Mechanism (CBM) (Gery et al., 1989), the Re-
gional Acid Deposition Model gas-phase chemical mecha-
nism (RADM) (Iacono et al., 2008), and the State Air Pol-
lution Research Center (SAPRC) (Carter, 2015). However,
global inventories often speciate NMVOC species accord-
ing to the Model for Ozone and Related chemical Tracers
mechanism (MOZART) (Li et al., 2014; Huang et al., 2017).
We also assumed MOZART speciation for the integrated in-
ventory (Table S4). This facilitates comparison of speciated
NMVOC emissions with global inventories and application
in global models, because the MOZART speciation is also
used in global inventories and global CTMs (Lamarque et al.,
2010; Huang et al., 2017; Emmons et al., 2020). To perform
the integration of emissions of specific NMVOC species and
to meet the requirements of simulations by CTMs, it is es-
sential to make the NMVOC speciation in different emission
inventories consistent. For harmonized inventories, we ap-
plied a mapping table (Table S4) to align the MEIC NMVOC
lumped species categories with those in the global inven-
tories, and the MOZART speciation is applied to NMVOC
emissions in all inventories after mapping. For the CINEI,
we updated the NMVOC speciation by applying recently re-
ported localized source profiles and lumped NMVOC emis-
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sions following the NMVOC categories in the MOZART
mechanism (Emmons et al., 2020). CINEI inventory with
MOZART NMVOC speciation can be used in a wide range
of air quality studies, as well as in regional and global CTMs.
Examples include the Weather Research and Forecasting
(WRF) model coupled with Chemistry (WRF-Chem), the
Community Earth System Model (CESM) and the Multiscale
Infrastructure for Chemistry and Aerosols (MUSICA) (Dai
et al., 2023; Mariscal et al., 2025; Danabasoglu et al., 2020;
Dai et al., 2024). Such compatibility enhances the versatil-
ity of CINEI relative to other regional inventories, including
MEIC, REAS, and MIXv2. Total NMVOC emissions from
different sectors were assigned to more than 80 specific VOC
species based on NMVOC speciation profiles reported by
Mo et al. (2016) and Sha et al. (2021) (details in Tables S5
and S6). These profiles describe well the recent speciation of
NMVOC emissions in China based on representative mea-
surements (Li et al., 2014). In order to evaluate and com-
pare the impact of different NMVOC species on ozone for-
mation, ozone formation potentials (OFPs) are calculated in
this study. For the NMVOC species j , its OFP value is cal-
culated by Equation (3):

OFP(j)= EVOC(j)×MIR(j), (3)

where EVOC(j ) is the emissions of j , and MIR(j ) is the
maximum incremental reactivity of j , defined as the poten-
tial maximum ozone production per consumption of j under
high-NOx conditions (Carter, 1994). The MIR values used in
this study were derived from Carter (2015) and are listed in
Table S6. The MIR indicates the amount of ozone growth as
the incremental emission of NMVOC species increases, and
is unitless. Therefore, the unit of OFPs should be mass based
and here we use Tg-O3.

2.2.4 Step 4 – Emissions’ harmonization and
integration: Spatial harmonization and
integration of emissions by species and sector

In the previous three steps, the selected inventories (MEIC,
CEDS, CAMS, HTAP) are transformed into new ones with
consistent sector types, spatial resolutions, and NMVOC spe-
ciation (MOZART). This step harmonizes and integrates the
national and global inventories and improves the compati-
bility of the integrated inventory with the chemical mech-
anism of the CTM. We focus on anthropogenic pollutant
emissions in East Asia (70.125 to 149.875° E and 10.125 to
59.875° N), which is gridded in 320×200 grids. National and
global inventories in this area are combined to produce Har-
monized Emission Inventories (HMEI) and CINEI, the de-
tails of which are presented below:

– Harmonized emission inventories (HMEI). In these in-
ventories, anthropogenic emissions within Mainland
China are derived from the standard Chinese na-
tional inventories, MEIC and those outside of China

are from the global emission inventories. Based on
the type of global inventory used in the processing,
three harmonized global emission inventories were cre-
ated: HM_CAMS (harmonized MEIC with the CAMS
global inventory), HM_CEDS (CEDS), and HM_HTAP
(HTAP) when using MEIC.

– Integrated emission inventory (CINEI). Based on the
harmonized emission inventories, CINEI also includes
all emission sectors and updated NMVOC emissions
speciated according to the MOZART chemical scheme
(Zhang et al., 2025). As mentioned above, emissions
from four sectors, including ships, waste, aviation and
agriculture, are missing in the MEIC. In the CINEI,
emissions from these missing sectors in China are de-
rived from the global emission inventories as explained
in Step 1 and shown in Table 2. The difference be-
tween CIENI and HMEI lies in the new sectors added
to CIENI, which increase total emissions. Furthermore,
the additional emission sectors affect the composition
of specific local emissions, which will be discussed in
later sections.

To consolidate the data fusion from national to global
emission inventories at spatial scales, we calculated the
Monte Carlo uncertainty for sectoral emissions for the global
inventory (CEDS) and the regional CINEI (Lee et al., 2024).
We randomly select 10 000 samples from 64 000 values
(200× 320), calculate the standard deviation of the samples,
and repeat this step 1000 times until the standard deviation
does not change. We use the standard deviation to represent
Monte Carlo uncertainties, and if the standard deviations of
the global and CINEI inventories are of the same magnitude,
we assume that the data fusion is reliable (Heuvelink and
Brus, 2009).

2.3 Evaluating emission inventories Using WRF-Chem
Model

To evaluate the performance of the harmonized and CINEI
inventories, we used the Weather Research and Forecast-
ing model with Chemistry (WRF-Chem, version 4.3.2; Ska-
marock et al., 2019; WRF Model Development Team, 2025)
to run simulations for our region of interest with differ-
ent inputs of anthropogenic emissions and compared the
model results with measurements of ozone (O3), carbon
monoxide (CO), and nitrogen dioxide (NO2). We performed
simulations using each of the three global emission in-
ventories (CAMS, CEDS, HTAP), three harmonized inven-
tories (HM_CAMS, HM_CEDS, HM_HTAP), and CINEI
(Fig. 1b), and for two different simulation periods, January
(representing winter) and July (representing summer) 2017.
In addition, the MIXv2 inventory incorporates the MEICv1.4
inventory for Asia, which has high lumped speciation and
missing aviation emissions. Its modeling performance with
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Figure 2. Model domains employed for WRF-Chem simulations
in eastern China. The horizontal resolution of the outer Domain 01
(depicted in gray) is 36 km, featuring 75×86 grids, including a total
of observed 1372 sites (in dark blue). The inner Domain 02 (illus-
trated in yellow) has a higher horizontal resolution of 12 km, with
160× 166 grids, covering observed 969 sites (in dark blue).

the same setup for July 2017 is discussed in the Supplement
(Fig. S29 and Table S22).

We used the same model setups for all experiments (Ta-
ble S7). Specifically, we set up two-way nested simula-
tion domains with spatial resolutions of 36km× 36 km and
12km× 12km (Fig. 2). Specifically, the inner domain in-
cludes the major populated areas of eastern China. The do-
main has a dense network of air quality monitoring sites
(Fig. 2) and meteorological monitoring sites (Fig. S9). The
chemical initial and boundary conditions for the outer do-
main were derived from the 6-hourly output of the CAM-
chem model (Lamarque et al., 2010), while for the inner
domain they were extracted from the results of the simula-
tion in the outer domain. MOZART (Emmons et al., 2020)
was used to simulate gas-phase chemistry and reactions, and
MOSAIC (MOdel for Simulating Aerosol Interactions and
Chemistry; Hodzic and Knote, 2014) was set as the aerosol
scheme. Biomass combustion emissions were taken from the
FINN (Fire INventory from NCAR, version 1.5) inventory
(Wiedinmyer et al., 2011), and biogenic emissions are esti-
mated using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN, version 2.1) (Guenther et al., 2012).
We set the spin-up time to 6 d before the study periods to
avoid the influence of imbalanced chemical initial conditions
on the simulation results.

To evaluate the model performance across all experiments,
we compared the modeled hourly averaged mixing ratios of
O3, CO, and NO2 at the finer scale with corresponding ob-
servations at 969 national air quality monitoring sites. The

modeled meteorological variables, including temperatures at
2 m, wind speeds and directions at 10 m, were also vali-
dated with the 3 h observational data set at 136 sites ob-
tained from the National Centers for Environmental Infor-
mation (https://www.ncei.noaa.gov/, last access: 1 December
2025). Seven statistical metrics were used to determine the
performance of the model. The metrics include normalized
mean bias (NMB), mean normalized bias (MNB), mean frac-
tional bias (MFB), mean normalized absolute error (MNAE),
mean absolute error (MAE), root mean square error (RMSE),
and Pearson correlation coefficient (R) (Brasseur and Jacob,
2017). Table S8 provides information on their functions.

3 Results and discussion

3.1 Sectoral emissions and comparison

CINEI shows the comprehensive sectoral anthropogenic
emissions and reveals significant changes in ozone pre-
cursor emissions (NOx , CO and NMVOCs) in China
(Fig. 3a–c). These include the decrease in NOx emis-
sions (−0.9± 2.9 Tg yr−1) since 2012 and CO emissions
(−7.0± 23.4 Tg yr−1) since 2008 and the increase of
NMVOC emissions (0.4± 1.0 Tg yr−1) from 2008 to 2019.
CINEI also showed a slight decrease in 2020 due to the
COVID-19 shutdown (Zheng et al., 2021a). In general, the
major sectors in the global inventories show a greater diver-
gence from the national inventories. There is a of approxi-
mately 5 % for NOx of power generation with respect to the
total emissions of CINEI, and a deviation of more than 10 %
for HTAP and CAMS CO from residential activities. The de-
viations in the totals are minimal and the sectors are more
comprehensive by including the main sectors from the na-
tional inventory and key sectors (ships, waste, etc., as dis-
cussed in Sect. S8 and Tables S12–S14). Global invento-
ries (HTAP and CEDS) agree well with the national (MEIC)
in terms of total emission levels and multi-year changes in
China (Fig. 3g–i). However, emissions in CAMS show no-
table differences from those in other inventories: CAMS es-
timates lower NOx and CO emissions in China before 2014;
CAMS displays the variation without rapid reduction during
the study period (Fig. 3d–f).

CINEI also provides the amount of emissions from
eight anthropogenic sectors (Fig. 3a–c). The main sec-
tors of the CINEI in China include industry (NOx , CO,
NMVOCs), transportation (NOx , CO, NMVOCs), and trans-
port (NOx , CO, NMVOCs), power (NOx) and residential
(CO, NMVOCs). Compared to MEIC (harmonized inven-
tories) for China, CINEI total emission on annual average
includes the contributions of the ships sector to NOx emis-
sions (2.7 Tg), the waste sector to CO emissions (5.2 Tg),
and the agricultural sector to NMVOC emissions (1.4 Tg)
(Fig. 3d–f). Ignoring these emissions can lead to bias in the
estimation of anthropogenic emissions and in the simulation
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Figure 3. The top panels (a–c) show the interannual variability of NOx (NO2), CO, and NMVOC emissions across eight aggregated sectors
in the CINEI, and all data are listed in Tables S9–S11. The middle panels (d–f) depict the averaged annual differences from 2008 to 2018 in
sectoral emissions between each of the four inventories and CINEI (existing inventories minus CINEI). Sectoral emissions are indicated by
bars and total emissions by dots. The findings are based on the mean differences from 2008 to 2018, and the results for each year are shown
in Fig. S13. The bottom panels (d–f) present the interannual variability of total NOx (NO2), CO and NMVOC emissions in China from the
CINEI (in orange) and four selected emission inventories (MEIC in green, CAMS in black, CEDS in red, and HTAP in blue). Total emissions
from 8 sectors used from multiple inventories are provided in Tables S9–S11.

of ozone (von Schneidemesser et al., 2023). Differences in
sectoral emissions (CINEI minus other inventories) are ev-
ident in major and omitted sectors (Fig. 3d–f). In general,
emissions from the power sector are often higher in the three
global inventories, while those from the transport sector are
mostly lower. The apparently lower NOx from transport and
CO from residential emissions in CAMS (and EDGAR) are
mainly due to underestimated contributions. Although CEDS

provides total emission estimates closer to those of CINEI for
China, there are still notable differences in the contributions
of certain sectors. The uncertainties of the CAMs extrapola-
tion method for the main sectors are between 30 % and 60 %
(see Sect. S6 and Table S3). One exception of power uncer-
tainty is over 100 %, likely due to the systematic uncertainty
in the sector definitions and mapping. In particular, the en-
ergy and residential sectors contribute more to NOx emis-
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sions, but lower emissions from shipping and industry offset
these increases. Higher NMVOC emissions from the power
sector are offset by those from the industry sector. This is
similar to the comparison of sectoral emissions in HTAP and
CINEI.

We also analyzed the contributions of sectoral emissions
to changes in total emissions and identified the key sectors
for emission changes of each pollutant. Table S15 summa-
rizes the linear trends (slopes) of 8 sectoral emissions for
NOx , CO, and NMVOCs from 2008 to 2020, and the piece-
wise slopes for sectoral emissions that show changes with
increases followed by decreases (Table S16). The power sec-
tor is the main driver of the decrease in NOx emissions for
China, contributing 49 % to the downward trend with a lin-
ear reduction of −0.33 yr−1. In the CINEI, emissions from
the power and industrial sectors (for NOx) and the residential
sector (for CO) started to decline after peaking in 2013 (see
Table S15). This timing aligns with the emission reduction
measures implemented, starting with the 12th Five-Year Plan
in 2011 (12th Five-Year Plan, 2011, see Sect. S2). The im-
proved reflection of mitigation actions in the MEIC inventory
comes from accounting for factors such as technology adop-
tion and abatement efficiency (see Sect. S2 and Table S1),
such as energy transition to cleaner resources (Yan et al.,
2023). Over the study period, the sectors responsible for the
largest reductions in CO emissions were industry (60 % of
the reduction), residential (29 %), and transportation (16 %).
The main contributors to the observed linear declines in CO
were industry (39 % contribution, −3.6 Tg yr−1), residential
(22 %, −1.8 Tg yr−1), and power (13 %, 0.14 Tg yr−1). CO
emissions from more specific sources, including the petro-
chemical industry, cooking, and gasoline-powered vehicles,
also show significant reductions in MEIC v1.4 (Fig. S11). In
addition, industry is driving the increase in NMVOC emis-
sions, despite the decrease in NMVOC emissions from the
residential and transportation sectors. These NMVOC emis-
sions are associated with industrial painting, iron and steel
industry, and architectural coatings in MEIC v1.4 (Fig. S12).
Thus, more efforts are warranted in the future to control
NMVOC emissions from industrial processes in China.

Ozone precursor emissions from four key sectors not in-
cluded in the MEIC inventory (shipping, waste, agriculture,
and aviation) are included in the CINEI inventory and are
identified as key contributors (see Table S15 and Sect. S8).
The shipping sector is a major contributor to NOx emissions
in China, with a linear emission increase of +0.07 Tg yr−1,
making it the third-largest driver of the total NOx trend at
21 %. Aviation follows as the fourth-largest contributor to
NOx with 3 % (+0.01 Tg yr−1), while waste accounts for
the fourth-largest share of the CO trend at 13 % and also
shows a rising trajectory (+0.15 Tg yr−1). For comparison,
NOx emissions from shipping in the HTAP inventory also
display an upward trend of +0.1 Tg yr−1(Tables S12–S14),
which appears to counteract reductions from the energy sec-
tor. In summary, our findings indicate that shipping, waste,

aviation, and agriculture are key sectors that influence over-
all trends, often showing increases where other major sectors
have declined.

3.2 Speciation of NMVOCs emission

The increase in NMVOC emissions is a potential contribu-
tor to severe ozone pollution in China (Li et al., 2019; Zhang
et al., 2021). Individual NMVOC species often differ in the
amounts emitted and in their ozone formation potential, and
thus contribute differently to ozone formation. We ranked the
top 20 NMVOC species in China according to their mean
annual emissions in CINEI and quantified their OFPs val-
ues (Fig. 4a). These NMVOCs species cumulatively con-
tribute to more than 85 % of the total OFPs by NMVOCs
emissions, indicating their notable influence on ozone pol-
lution. In general, NMVOCs species with more abundant
emissions tend to contribute more to OFPs, such as m/p-
xylene and toluene, which together have an OFP value of
23.1 Tg-O3 on an annual average from 2008 to 2020 (23.4 %
of the total OFPs). Propene, o-xylene and ethene, with higher
OH reactivity (characterized by their MIR values), also have
significant contributions to total OFPs (propene 13.9 Tg-O3
and 14.1 % in percentage contribution to total OFP, o-xylene
7.1 Tg-O3 and 7.2 %, and ethene 6.9 Tg-O3 and 6.1 %). How-
ever, high emissions of ethylbenzene and styrene (10 % of
total NMVOC emissions) contribute only 7.2 Tg-O3 (6 %)
to the total OFPs due to their low reactivity. Regarding the
OFPs of different NMVOC groups, aromatics and alkenes
contribute to 75 % of the total OFPs as shown in Fig. S14.
This result is in good agreement with previously reported
results (Li et al., 2019; Wu et al., 2022). The OFPs val-
ues in VOCs categories are also compared with the result
of previous studies (Table S17). The emission and OFPs of
all NMVOCs species on annual averages also for mainland
China are shown in Tables S20 and S21.

Targeting the emission sectors most related to NMVOC
species with high OFP values may be efficient for ozone mit-
igation. The sectoral contributions to the top 20 NMVOC
species are shown in Fig. 4b. M/p-xylene, toluene, propene
and o-xylene emissions are mainly derived from the indus-
trial sources (∼ 70 %). This involves their usage as solvents
in industrial processes (e.g., industrial painting and archi-
tectural coatings). The residential sector also has an impor-
tant contribution to these NMVOC species, accounting for
20 %–30 %. Ethene emissions show different characteristics:
besides the considerable contributions of the industrial and
residential sectors, agriculture also accounts for a large pro-
portion (32 %) as does transportation (25 %), indicating the
contributions of fishing and harvesting and diesel vehichles.
For the other NMVOC species among the top 20, industry
and transportation are mostly the major sources, and there-
fore NMVOC emission control should focus on the contribu-
tions of these two sectors. The agricultural sector is the main
source for formaldehyde (52 %) and acetaldehyde emissions
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Figure 4. (a) Mean annual emissions (blue bars in Tg yr−1) and OFPs (yellow line in Tg-O3 yr−1) of the top 20 NMVOCs species in CINEI
(ranked by emission amount). Error bars at the top of the columns represent the standard deviations of the emissions from 2008 to 2020. (b)
Sectoral contributions to the emissions of the top 20 NMVOC species. Emissions and OFPs of all NMVOC species in 8 sectors are provided
in Tables S20 and S21 respectively.

(60 %), related to the emissions along with crop burning (in-
cluding the burning of rice and wheat straw, maize, etc.).
Ignoring agricultural NMVOC emissions in anthropogenic
emission inventories can lead to underestimated contribu-
tions of these species to ozone pollution. Ozone pollution
may occur in areas with intensive local agricultural activity.

Total NMVOC emissions and OFPs in China, showed an
overall increasing trend from 2008 to 2020, with linear slopes
of 0.2 Tg yr−1 (emission) and 1.1 Tg-O3 yr−1 (OFPs), as
shown in Fig. S14. Fourteen of the top 20 species exhib-
ited increasing trends and contributed significantly to OFPs,
including m/p-xylene (18 % OFP contribution and 0.04 Tg-
O3 yr−1), propene (18 % and 0.2 Tg-O3 yr−1), and toluene
(10 % and 0.03 Tg-O3 yr−1) (Figs. S15 and S16). The pri-
mary driver for this increase was the industrial sector, par-

ticularly processes like industrial painting, iron and steel
production, and architectural coating (Fig. S15). To miti-
gate ozone formation, targeted strategies should focus on
industrial emission controls for high-OFP species, particu-
larly aromatics like xylenes and toluene, while continuing
to strengthen transportation and residential emission reduc-
tions. Furthermore, since formaldehyde and several alkenes
showed decreasing trends, policies should maintain these re-
ductions while preventing industrial sector growth from over-
whelming overall mitigation efforts through stricter indus-
trial VOC controls and cleaner production technologies. All
of the major NMVOC species identified by CINEI show
increasing trends within the sectors added from global in-
ventories, namely agriculture, shipping, aviation, and waste.
For example, total NMVOC emissions from the agricul-
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ture sector are slightly rising by +0.003 Tg yr−1. Key spe-
ciated NMVOC emissions from these four sectors, such as
ethene (which contributes 8 % to total OFP) and formalde-
hyde (5 %), also show notable increases. To effectively re-
duce ozone levels, mitigation strategies should target not
only highly reactive species like m/p-xylene, toluene, and
propene from industrial sources, but also address emissions
from sectors like agriculture and aviation that are often over-
looked in national inventories.

To evaluate the NMVOC speciation used in CINEI, we se-
lected 9 hydrocarbon species and used their emission ratios
to acetylene (C2H2, unit: mol mol−1) for comparison with
those in global and national inventories, as well as with ob-
servations over China (Fig. S17). We used C2H2 instead of
CO because C2H2 and hydrocarbons are monitored with the
same measurement system (GC MS/FID). The in situ mea-
surements of VOC species (in ppbv) were obtained from the
literature (Lv et al., 2021; Huang et al., 2022; Li et al., 2022;
Song et al., 2021). These data, obtained from megacities
(Beijing, Shanghai, etc.) and provincial capitals, are listed in
Tables S18 and S19. We extracted emissions at the same lo-
cations and dates and calculated the ratios of hydrocarbons to
C2H2. The selected VOCs have similar atmospheric lifetimes
and sources in urban areas, primarily from transportation
and industrial emissions. Species treated as a single entity in
emission inventories (e.g., ketones) and those not comparable
to observations (e.g., oxygenated VOCs) were excluded from
the analysis. Our comparison showed that NMVOC specia-
tion from emission inventories is quite uncertain due to the
applied source profiles, different sectoral distributions and
emission masses. The ratios in the CINEI are closer to the
observations, except for ethene and xylene. In contrast, the
global and MEIC inventories have lower ratios for alkanes
compared to observations, possibly due to misrepresentation
of the dominant sectoral emission (solvent or industry) for
these species.

When compared to the national inventory (MEIC, with
the same ratio as the harmonized inventories), the ethane-
to-acetylene and propene-to-acetylene ratios in CINEI are
closer to the observed ratios (Fig. S17). These findings
may be linked to two factors. First, the ethane-to-acetylene
ratio in CINEI is higher than the MEIC ratio resulting from
the incorporation of missing sectors (agriculture, aviation,
ships, and waste), which contribute 13 % to the total annual
average emission and are richer in ethane. Second, the
propene-to-acetylene ratio in CINEI is lower than the
MEIC ratio despite a 3 % additional contribution from these
missing sectors. This may be due to the speciated profile
used in CINEI (Mo et al., 2018), which attributes a smaller
share of emissions to diesel vehicles (mainly emitting
alkenes) and a larger share to gasoline vehicles (mainly
emitting alkanes) (Table S20). These findings suggest that
using local NMVOC speciated profiles can better capture
changes caused by current energy transitions and evolving
consumption patterns (Yan et al., 2021). However, the ratios

of primary alkenes (ethene) and toluene emission in the
MEIC and CINEI exceed the observed values. Alkenes
have faster loss rates via OH, which may lead to alkenes
from primary source are degraded immediately. Therefore,
the observed ratios of alkenes to C2H2 may be lower than
its emission ratios (MIR > 9). Therefore, the speciation
of NMVOC emissions. Improving this description would
also influence the homogenization of the national inventory
with global ones and the application of CTM simulations.

3.3 Harmonizing emissions on spatial scales

Figure 5 shows the spatial distribution of NOx emissions
from the CINEI dataset across eight sectors in East Asia in
2017. For emissions outside of China, we use CEDS emis-
sions for the major sectors because CEDS incorporates na-
tional emissions from surrounding countries and is widely
used in global CTM models (Hoesly et al., 2018). We chose
NOx as a representative species to analyze the spatial dis-
tribution of pollutant emissions in CINEI. Emission maps
for other species (SO2, NH3, CO, C2H6, toluene, and C2H4)
from CINEI are shown in Fig. S19.

Anthropogenic emissions, such as those from the resi-
dential, transportation, and waste sectors, tend to be high
in densely populated areas of northern and eastern China,
Japan, Korea, and India, indicating their close association
with human activities (see Fig. S18 for population distri-
bution). NOx emissions from the energy and industry sec-
tors, which are considered point sources, are characterized by
hotspots at sites for electricity generation, solvent volatiliza-
tion, and cement, iron, and steel production. The convergence
of these sectoral data from the national emission inventory
and CEDS for surrounding countries in CINEI is tested by
Monte Carlo simulations with comparisons to CEDS data.
The Monte Carlo uncertainties of the two datasets are of the
same order of magnitude, indicating that the possibility den-
sity of the CINEI is normal on the spatial distribution and not
separated into two datasets.

The distribution of shipping reveals shipping routes in the
ocean and inland rivers. Aviation emissions distribution is re-
lated to airline connections between different airports, with
high values likely occurring near major airports in China.
The emissions of other pollutants suggest similar character-
istics of spatial distributions (Fig. S19). In addition, harmo-
nized emission inventories used the default emissions for to-
tal emission amount from the national inventory, but emis-
sions outside China were taken from the three global inven-
tories. To illustrate the difference in emissions in mainland
China and the similarity in emissions outside of China be-
tween national and global inventories, the distributions of the
paired comparisons (HM_CEDS vs. CEDS, HM_CAMS vs.
CAMS, HM_HTAP vs. HTAP) are also shown in Figs. S20–
S23.

Geosci. Model Dev., 19, 217–237, 2026 https://doi.org/10.5194/gmd-19-217-2026



Y. Zhang et al.: Towards an integrated inventory of anthropogenic emissions for China 229

Figure 5. Spatial distribution of NOx (NO2) emissions (unit: t grid−1 yr−1) from eight sectors in East Asia in 2017, and for power, residential,
industry, transport sectors, we add comparisons of Monte Carlo uncertainties between integrated (CINEI in orange) and global inventory
(CEDS, in blue).
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3.4 Comparisons of simulation results based on
multiple anthropogenic emission inventories

To identify the most harmonized inventories suitable for re-
gional simulations over China, the performance of WRF-
Chem modeling results based on the national inventory
(MEIC) merged into three global inventories (HM_CEDS,
HM_CAMS, and HM_HTAP) has been were evaluated. The
three harmonized inventories show minimal variation in the
averages over the entire domain where the grid contains
observed sites (Sect. S12). The normalized mean biases
(NMBs) among the three modeling results are 10 % and 40 %
for ozone in summer and winter, respectively, −0.5 % in
summer and 40 % in winter for NO2 and −50 % for CO for
both seasons (Fig. S24 and Sect. S12). However, HM_CEDS
shows better agreement with observations from coastal cities,
which have a deeper response to the transport of emissions
to mainland China. In contrast, HM_CAMS and HM_HTAP
have significant biases. Accordingly, HM_CEDS was se-
lected to represent all harmonized inventories for subsequent
modeling comparisons, hereafter abbreviated as HMEI.

Further, we investigate the comparison of experiments’
performance between MEIC-based HMEI and global in-
ventories. Modeling ozone mixing ratio using HMEI in
January 2017 achieve the smallest normalized mean bias
(NMB=−26 %), compared with HTAP (−52 %), CEDS
(−33 %), and CAMS (−40 %) (Fig. 7). In July 2017,
models using HMEI produced NO2 and CO bias values
(NMB= 0.5 % for NO2, −34 % for CO) that are closer to
zero than results from global inventories (Fig. 6). Com-
prehensive analysis using several statistical metrics (NMB,
MNB, MNAE, MAE, MFE) consistently demonstrates that
HMEI delivers superior overall performance compared to in-
dividual global emission inventories (Fig. S27–S28). These
comparisons of evaluation metrics suggest that CINEI is
based on emissions from the main sectors in the MEIC in-
ventory.

To further evaluate the performance of CINEI, HMEI and
global inventories (CAMS, CEDS, HTAP), anthropogenic
emissions (NOx , CO and NMVOCs) are shown in the up-
per panels of Figs. 6 and 7, and modeling results (O3, NO2
and CO mixing ratios) are compared with observations in
the lower panels of Figs. 6 and 7. In both months the O3
mixing ratios are overestimated by CINEI (12 % in summer
and 42 % in winter) and HMEI (20 % and 40 % NMB). The
NO2 mixing ratios of CINEI are closer to the observations
by about 5 % in summer and 40 % in winter. The differences
between the two emission inventories can be attributed to
the inclusion of shipping, waste, and aviation emissions, as
well as updated NMVOC speciation in the CINEI dataset.
Accounting for these sectors results in a modest increase in
total emissions (less than 10 %) in CINEI. This change leads
to improved model performance, as shown by a reduction in
the normalized mean bias (NMB) for O3 in summer (from
21 % with HMEI to 12 % with CINEI) and for NO2 in winter

(from 24 % with HMEI to 22 % with CINEI). Additional sta-
tistical analysis shows that CINEI has superior performance
compared to HMEI and global inventories (Sect. S13 and
Fig. S27–S28). The MFB for CINEI is ±0.3 in both seasons
and the MNAE is less than 0.5, within the ranges suggested
in the literature (Zhai et al., 2024). However, the CO mixing
ratios are apparently underestimated in all cases (up to 50 %
NMB). The underestimation of CO likely has links with (1)
differences between urban and regional CO backgrounds, as
(Zhao et al., 2012) reported using satellite data; (2) the inac-
curate OH mixing ratios in CTM leading to more CO sink
(Gaubert et al., 2020). An additional experiment based on
MIXv2 in the summer showed an underestimation of NO2
by 7 ppbv (NMB=−54 %), CO by 0.5 ppmv (−85 %), and
O3 by 14 ppbv (−34 %) (Fig. S29 and Table S22). The larger
discrepancy of MIXv2 with observations likely resulted from
missing aviation emissions and reactivity due to lumping to-
gether NMVOC species (Sect. S13). However, the speciated
NMVOC emission values for both CINEI and HMEI are con-
sistent and align with global inventories, resulting in more
reliable model performance.

Among the three global inventories, the CEDS result is
in better agreement and slightly closer to the observations,
with O3 NMB 6 % and NO2 NMB −24 % in summer (47 %
and 5 % in winter). In the two seasons, the NOx emissions
of CEDS are about −18 % lower than that of CINEI, but
the NMVOC emissions are about −50 % lower than that
of CINEI. In addition, CAMS underestimates anthropogenic
emissions of all precursors in both summer and winter. In
particular, in July 2017, NMVOC emissions are 90 % lower
in CAMS than in CINEI. As a consequence, O3 mixing ra-
tios in summer (winter) are underpredicted by −31 % NMB
(−26 %) (for more details, see Sect. S13 and accompanying
figures). An unexpected result is that the NO2 mixing ratios
are overpredicted by ∼ 35 % in CAMS, despite the lower
NOx emissions in CAMS. In contrast, HTAP has the high-
est emissions for the two studied months in all inventories,
and the HTAP NO2 mixing ratio is the highest in both sea-
sons with 113 % NMB (summer) and 121 % (winter). De-
tailed statistical indices for these comparisons are provided in
Sect. S13 and accompanying figures. However, the HTAP O3
mixing ratio is over-predicted in summer and largely under-
predicted in winter. The comparisons and validations suggest
that ozone changes are non-linearly related to anthropogenic
emissions of ozone precursors. Emissions and concentrations
of precursors of O3 may also alter total OH loss rates (LOH)
and further affect radical termination processes and ozone
production rates.

4 Conclusions

The development of anthropogenic emission inventories used
in simulations by CTMs faces various challenges, such as ac-
curate descriptions of emissions from complete sectors and
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Figure 6. The top panels (a–c) present total anthropogenic emission differences of ozone precursors (NOx , CO, and NMVOC) for July 2017
between the CINEI, HMEI, CAMS, CEDS, and HTAP inventories using the CINEI integrated emission inventory as a reference. Bottom
panels (d–f) show WRF-Chem simulated mixing ratios of O3, NO2, and CO for the same month and within the modeling domain (latitudes
from 25.5 to 43.6°; longitudes from 103.5 to 127.6°) using the different emission inventories. Individual columns show simulated mean
mixing ratios in the model domain for each emission inventory used. The dashed blue lines show average observed mixing ratios calculated
using the stations within the specified domain. The numbers on the columns are the normalized mean bias (NMB) against observations
for each modeling experiment, and the calculation is expressed in the first line of Table S8. The numbers in red (blue) colors indicate
overestimation (underestimation).

Figure 7. Same content with Fig. 6, but in January 2017.
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with complete spatial coverage, as well as rapid emission
changes due to regional mitigation. In this study, we devel-
oped two new types of anthropogenic emission inventories
for China to better meet the requirements in the study of
long-term ozone changes:

– The harmonized inventories, HMEIs, combine emis-
sions in mainland China from MEIC and emis-
sions in regions outside China from three different
global emission inventories (CAMS, CEDS, HTAP).

– The integrated inventory, CINEI, is based on the har-
monized inventory (harmonized MEIC with CEDS), but
additionally includes from the global inventories the
emissions in China contributed by the missing emission
sectors in the MEIC, including ships, waste, aviation,
and agriculture.

To perform the integration, the emission sector types, spa-
tial resolutions, and NMVOC speciation were made con-
sistent between the MEIC and the global emission inven-
tories. The emission processing system developed for this
study (Fig. 1a) is able to meet these requirements. To evalu-
ate the performance of harmonized and integrated inventories
in the simulation of ground-level ozone, we generated emis-
sion inventories for East Asia in two representative months
(January and July 2017), applied them in the simulations of
WRF-Chem, and compared the model results with the corre-
sponding observations. The results show that the application
of harmonized and integrated inventories leads to a satisfac-
tory performance in the simulation of ozone and two of its
precursors, NO2 and CO. In contrast, the direct application
of global emission inventories (HTAP and CAMS) can lead
to a significant bias in the simulation results. The construc-
tion of our integrated emission inventories provides valuable
insights for designing ozone mitigation strategies and refin-
ing anthropogenic inventories for China:

1. CINEI and HMEI show acceptable model performance
when evaluated against observations and compared with
simulations driven by global inventories. In summer,
the CINEI model results overestimate the mixing ratios
of ozone by 5 % and those of NO2 by 0.5 %. In win-
ter, ozone is overestimated by 5.8 ppb, or 40 %. CO is
underestimated by about 30 %–50 % in both seasons,
which is common to all simulation cases. However, the
model performance needs to be further improved and
further studies are needed to reduce the bias by imple-
menting better meteorological fields, chemical mech-
anisms, parameterizations of dynamical processes and
deposition based on comprehensive comparisons with
observations from different sources.

2. The CEDS is a good option for providing emission data
outside mainland China because of its better modeling
performance (O3 and NO2 NMB < 10 %) compared to

CAMS and HTAP. Due to its moderately long lifetime,
ozone can be transported from regions outside China
(Zheng et al., 2021b; Qu et al., 2024). We found that
the modeled ozone mixing ratios for three harmonized
inventories differ from observations by 2 to 6 ppbv on
spatial average. Thus, the selection of inventories for
the surrounding regions of China is also imperative for
ozone simulations in China. The applicability of the
MOSAIC emission inventory product needs to be val-
idated based on comparisons between observations and
CTM results driven by MOSAIC emissions.

3. Ozone precursor emissions from sectors initially omit-
ted from the national inventory may be significant, such
as NOx emissions from ships (∼ 1 Tg yr−1) and CO
emissions from waste (∼ 5 Tg yr−1). The omission of
these emissions may lead to inconsistencies in the re-
sults of ozone simulations and overlook their potential
role in ozone control.

4. Additional measures are needed to curb the increase in
NMVOC emissions, despite effective reductions in NOx

(−0.9 Tg yr−1) and CO emissions (−7 Tg yr−1) over the
past 10 years. In particular, the reduction of key species
and sources of NMVOC emissions, such as m/p-xylene
and toluene from solvents and ethene from diesel vehi-
cles, will be effective in reducing ozone in China due
to the larger OFP of these species. Further research is
needed to support the formulation of effective strategies
for future ozone control in China.

In a follow-up study, we will evaluate CINEI’s represen-
tation of NOx-VOC photochemistry in CTM models and
compare the results with observational data. We also plan
to incorporate additional observational and modeling ap-
proaches to develop an updated version of the CINEI emis-
sions dataset. This will help reduce uncertainties in the emis-
sion estimates and minimize modeling biases in CTM appli-
cations.

1. The ability of CINEI, with updated speciated NMVOC
emissions and more sectoral emissions, to better repre-
sent total OH loss rates and contributions to ozone for-
mation rates. As ozone mixing ratios do not respond lin-
early to changes in ozone precursor emissions, the ge-
ographical extent of VOC and NOx restricted areas ap-
pears to change with the emission inventories adopted.
We discuss the ozone photochemistry regime under dif-
ferent emission scenarios and propose more insightful
and strategic emission scenarios.

2. The new version of CINEI will incorporate additional
emerging sources, such as new volatile chemical prod-
ucts (VCPs), including the production of personal care
products in industry and the use of pesticides in agricul-
ture (Seltzer et al., 2021; Cai et al., 2023). We will use
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more observational data, such as from TROPOMI and
in-situ measurements, to constrain the total emissions
for ozone precursors and NMVOC speciation.

Code availability. The python tool to create the integrated
emission data (CINEI) is archived in Zenodo website
(https://doi.org/10.5281/zenodo.15000795) (Zhang, 2025a).
WRF-Chem model code can be found in the GitHub
(https://github.com/wrf-model/WRF/releases, last accessed:
March 2025) (Skamarock et al., 2019).

Data availability. Integrated emission (CINEI) data are archived in
PANGAEA website (https://doi.org/10.1594/PANGAEA.974347,
Zhang et al., 2025). HTAP emission data can be accessed from the
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