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Abstract. Rapid response to multiple landslide events de-
mands accurate, all-weather, day-and-night detection ca-
pabilities. Optical remote sensing has advanced landslide
detection but remains limited under adverse weather and
lighting conditions. Synthetic Aperture Radar, resilient to
these constraints, remains underexplored for automated land-
slide detection due to challenges such as complex pre-
processing and geometric distortions. This study integrates
Deep Neural Networks with Sentinel-1 backscatter data for
co-seismic landslide detection, utilizing a data-centric ap-
proach. We train and test the models using 11 earthquake-
induced widespread landslide events, covering ≈ 73 000
landslides across diverse geologic and climatic settings. In-
ference on unseen events in Haiti (2021) and Sumatra (2022)
demonstrates robust transferability, achieving F1-scores up
to 82 %. Using explainable artificial intelligence, we high-
light the discriminative capability of change detection bands
over backscatter alone. Our findings emphasize the poten-
tial of SAR-based DNN models for worldwide, generalized,
and rapid landslide detection, addressing critical gaps in cur-
rent methods that solely use optical data. This research lays a
foundation for broader applications in automated SAR-based
earth surface change detection, particularly in complex, hilly
and mountainous terrains.

1 Introduction

Slope instabilities, commonly referred to as landslides, rep-
resent a widespread natural occurrence in mountainous and
hilly regions, presenting substantial threats to both human
lives and infrastructure (Froude and Petley, 2018). Earth-
quakes, heavy rainfall, and human activities serve as the pri-
mary triggers for landslides (Ferrario, 2019; Serey et al.,
2019; Song et al., 2019; Wang et al., 2019). Notably, a sin-
gle event can involve either one or multiple landslide fail-
ures (Guzzetti et al., 2012), commonly referred to as multiple
landslide events (MLEs). Over the last 15 years, several co-
seismic MLEs have occurred, impacting wide regions within
remarkably brief timeframes (Tanyaş et al., 2017). In the af-
termath of such occurrences, it is important to investigate lo-
cations of landslides to assess damages to natural and anthro-
pogenic landscapes. Williams et al. (2018) and Amatya et al.
(2023) highlighted the importance of rapid mapping in dis-
aster response using as disasters the 2015 Gorkha and 2021
Haiti MLE co-seismic landslides. Moreover, a comprehen-
sive understanding of these slope instability processes begins
with a spatial assessment of the slope failures both for rainfall
(Nocentini et al., 2023; Segoni et al., 2014) and earthquake-
induced landslides (Meena and Piralilou, 2019). Information
concerning the location and timing of failed slopes is usu-
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ally recorded in landslide inventories (Eeckhaut et al., 2013).
Traditionally, the accurate positioning for landslides involved
mainly the Global Satellite Navigation System (GNSS), to-
pographic total station, and aerial photogrammetry surveys,
known for their accuracy. However, these surveys are expen-
sive, pose risks in challenging terrains (Manconi et al., 2014),
and are exceptionally time-consuming. How ever, time is key
during damage assessments of MLE affecting large areas
(Williams et al., 2018). As a result, satellite products have
emerged as a cost-effective alternative for generating land-
slide inventories (Ghorbanzadeh et al., 2019). The field of
remote sensing, particularly Earth observation (EO) imagery
analysis, has been extensively investigated for automatically
extracting landslide location. However, a significant portion
of landslides lacks comprehensive and timely information
(Guzzetti et al., 2012). This deficiency stems from the lack
of systematic coverage in existing EO data (Williams et al.,
2018). The challenge is exacerbated by the reliance on op-
tical imagery. The methods that use this data type are gen-
erally precise, however, limited when solar reflection is ab-
sent, or in presence of cloud obscuration. Numerous research
has recently combined optical data with deep learning (DL)
models for landslide detection (Novellino et al., 2024). These
approaches range from utilizing crowdsourced data (Catani,
2021) and Unmanned Aerial Vehicles (UAVs) (Beni et al.,
2023; Dai et al., 2023b) to analyzing LIDAR (Fang et al.,
2022), and optical satellite imagery (Bhuyan et al., 2023;
Prakash et al., 2021). Some studies have also investigated
the incorporation of morphological factors alongside satellite
data for DL-based landslide detection (Meena et al., 2021).
Lastly, there is a growing trend towards training DL mod-
els capable of delivering reliable predictions in unseen ar-
eas for swift assessment of new MLEs. Some of these stud-
ies concentrate on individual data sources, such as Coper-
nicus Sentinel-2 (Prakash et al., 2021; Ghorbanzadeh et al.,
2022) and PlanetScope (Meena et al., 2023), while others ex-
amine the integration of multi-source data (Xu et al., 2024;
Fang et al., 2024) to enhance accuracy and improve transfer-
ability. However, persistent clouds hinder the timely acqui-
sition of data, impeding effective disaster management op-
erations (Mondini et al., 2021a). This issue is prevalent in
numerous tropical countries and is universally present in the
context of landslide activations induced by storms (Wilson
and Jetz, 2016) or where, following earthquakes that trig-
gered MLEs, the first cloud-free optical image is not rapidly
available (Williams et al., 2018). SAR sensors represent a
valuable alternative due to their capacity to acquire informa-
tion on the ground in all-weather and illumination conditions
(Hertel et al., 2023). Recently, there has been a growing inter-
est in using the amplitude information to identify and rapid
landslide failures (Burrows et al., 2020, 2019; Catani et al.,
2005; Chorowicz et al., 1998; Mondini et al., 2019; Santan-
gelo et al., 2022; Singhroy, 1995). Landslides are identified
as anomalies in SAR products based on tone, texture, pattern,
mottling, or their changes (Santangelo et al., 2022; Singhroy,

1995; Lindsay et al., 2023). Konishi and Suga (2018), Suga
and Konishi (2012), and Uemoto et al. (2019) utilized X-
band COSMO-SkyMed and airborne Pi-SAR2 imagery, re-
spectively, for landslide mapping in Japan.

Handwerger et al. (2022) designed a GEE-based approach
to produce density heatmaps with Sentinel-1 C-band data
over several MLEs. However, while most of these methods
have demonstrated the ability to successfully detect land-
slides in individual study areas, the issue of transferability
in different settings persists (Mondini et al., 2021b). While
artificial intelligence shows promise in training generalized
models for automatically assessing target locations using
satellite imagery (Guan et al., 2023), the focus on optical-
based automated landslide detection outweighs studies uti-
lizing SAR data (Mondini et al., 2021b). Challenges like data
pre-processing (Plank et al., 2016) and geometry distortions,
particularly in high-slope landslide-prone regions, contribute
to this disparity. Instances combining SAR and deep learn-
ing for landslide detection are still uncommon. Examples
include CNN-based approaches with Sentinel-1 data (Nava
et al., 2022a, b; Chen et al., 2024) and with quad-polarimetric
ALOS-2 data (Liang et al., 2025). Other studies have applied
classical machine learning, such as Random Forests with
SAR and terrain data (Ohki et al., 2020; Burrows et al., 2021)
or object-based image analysis (Lin et al., 2021), but these
lack the scalability of end-to-end deep learning methods.
Most existing studies have been tested on only a few events,
often two or three, limiting their ability to demonstrate scal-
ability and generalization. To our knowledge, a globally
distributed, multi-event evaluation of Sentinel-1 SAR-based
landslide detection using deep learning has not yet been con-
ducted.

Here, we close this gap by training and testing on
11 earthquake-triggered events worldwide (≈ 73 000 land-
slides). Our approach includes SAR-specific data preparation
for consistent performance across diverse terrains, integrates
eXplainable AI (XAI) to interpret pixel-level contributions,
and provides an open-source SAR-LRA tool for rapid, cloud-
based landslide detection via GEE and Colaboratory. To our
knowledge, this is the first study to demonstrate promising
transferability of SAR-based landslide detection using deep
neural networks, advancing reproducibility and supporting
automated, globally scalable co-seismic landslide response.

2 Study Areas and Materials

2.1 Study Areas

This study investigates 11 earthquake-triggered multiple
landslide events across diverse geographic and geologic set-
tings. These events provide a representative dataset for as-
sessing landslide detection performance across different en-
vironmental and tectonic contexts.
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2.2 Sentinel-1 Data

Each Sentinel-1 satellite follows a near-polar, sun-
synchronous orbit with a 12 d repeat cycle, completing
175 orbits per cycle. With a single satellite, global landmass
mapping in Interferometric Wide swath mode occurs ap-
proximately every 12 d, while the two-satellite constellation
enables a more frequent 6 d exact repeat cycle at the equator.
Sentinel-1B has been inactive since 2022 and is now being
replaced by Sentinel-1C, which was successfully launched
and will ensure continuity of C-band SAR acquisitions.
Revisit rates vary with latitude, with higher revisit fre-
quencies observed at higher latitudes compared to the
equator. We used GRD scenes with 10 m spatial resolution
and Interferometric Wide acquisition mode. Depending on
availability, each scene consists of either one or two out of
four possible polarization bands. The potential combinations
include single-band Vertical Vertical (VV) polarization
or Vertical Horizontal (VH) polarization, and dual-band
VV+VH. Additionally, each scene incorporates an “angle”
band indicating the approximate incidence angle from the
ellipsoid in degrees at each point.

All Sentinel-1 scenes used in this study had been pre-
processed by the provider, including thermal noise re-
moval, radiometric calibration, and terrain correction (us-
ing SRTM 30, or ASTER DEM at latitudes above 60°).
The terrain-corrected values are provided in logarithmic
scale (10log10(x) dB). For details of the processing work-
flow, see https://developers.google.com/earth-engine/guides/
sentinel1 (last access: 15 April 2025). Our research focuses
on scenarios where either only VV polarization or both VV
and VH polarizations are accessible for both ascending and
descending orbits (see Table 1).

3 Methods

Pre- and post-event SAR imagery undergo several pre-
processing steps on the GEE cloud, including acquisition,
stack median calculation, differencing, and stacking. Specif-
ically, for each study area, satellite images are acquired and
stacked in space and time, median values of the stacks are
extracted, and shadowing and layover masks are generated.
Subsequently, we generate change detection bands, and the
final images are composited. The subsequent data processing
involves patch sampling, as outlined in Sect. 3.1, to prepare
the data for model training (see Fig. 1). The data is then used
to train and test our CNN, as described in Sect. 3.5. Finally,
the object detection strategy is outlined in Sect. 3.6.

3.1 Dataset Design

Four distinct combinations of Sentinel-1 SAR polarizations
and orbits have been devised to evaluate neural network clas-
sification performance. These combinations are described in
Table 2. We also calculate the differences for both pre- and

post-VV and VH amplitude imagery, represented as diffVV
and diffVH, respectively. These values are derived by sub-
tracting the median amplitude of the pre-event stack from the
median amplitude of the post-event stack. Each polarization
combination is separately employed with different orbits, en-
abling the independent assessment of the neural network’s
classification performance.

Furthermore, these four major combinations are imple-
mented across various pre- and post-event temporal buffers.
The selection of these buffers is based on the current average
revisiting time of Sentinel-1. The 12 d buffer represents the
most rapid assessment time, encompassing one acquisition
per acquisition geometry, which will fall within 12 d of the
event (European Space Agency/Copernicus, 2025). We vary
the selection of such event buffers to assess their impact on
model performance (see Table 3).

It is crucial to acknowledge that when working with two
multitemporal stacks located in different geographic areas,
even if they are generated using the same temporal buffers,
they might not have the same number of images. This dis-
crepancy can be attributed to differences in the orbit plans of
Sentinel-1.

3.2 Data Sampling

Landslide polygons in the available inventories were dig-
itized from optical imagery. Because of geometric distor-
tions inherent to SAR, particularly layover and shadowing
in mountainous terrain (Soldato et al., 2021; Burrows et al.,
2020; NASA Earthdata, 2025), we design a tailored sampling
strategy. Following Vollrath et al. (2020) and Lindsay et al.
(2022), we generated shadow and layover masks for each ac-
quisition geometry and subtracted them from the landslide
inventories (“Inventory Cleaning” in Fig. 1). Three invento-
ries were thus prepared for each study case: (i) original, (ii)
filtered with ascending masks, and (iii) filtered with descend-
ing masks. The original inventory was used for sampling the
background class, while filtered inventories were used for
landslide samples, retaining only patches with more than 5 %
landslide pixels (∼ 2000 m2). Predictions in patches below
this threshold are treated as false positives, acknowledging
that some of them may correspond to real but sub-threshold
or unmapped landslides.

Patch sampling was performed on a non-overlapping 64×
64 grid (∼ 0.4 km2). Generally, larger patches provide richer
contextual information. However, excessively large patches
yield final bounding boxes that are undesirably large. In our
study, we settled on a patch size of 64× 64 pixels, aiming
for a final bounding box of approximately 0.4 km2. This size
balances contextual information with bounding-box com-
pactness. Due to the inherent class imbalance, background-
to-landslide patch ratios ranged from 8 (Hokkaido) to 120
(Gorkha). In cases where the natural ratio exceeded 10, the
test set ratio was capped at 10; otherwise, the original distri-
bution was preserved.
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Table 1. Summary of Earthquake-Triggered Landslide Inventories and Sentinel-1 Polarizations.

Study Case Mw Date # Landslides Polarization Inventory Source/Method

Gorkha, Nepal 7.8 25 Apr 2015 24 915 VV Roback et al. (2017); WV2/3, Pléiades (20–50 cm)
Kaikōura, New Zeland 7.8 14 Nov 2016 14 233 VV Tanyaş et al. (2022a); Sentinel-2 (10 m)
Capellades, Costa Rica 5.3 1 Dec 2016 51 VV Ruiz et al. (2020); field, LiDAR, UAV, DEM (20 m)
Milin, China 6.9 18 Nov 2017 939 VV, VH Hu et al. (2019); Spot-7 (1.3 m), S2 (9.4 m)
Papua N. Guinea 7.5 26 Feb 2018 11 607 VV, VH Tanyaş et al. (2022b); PlanetScope
Lombok, Indonesia 6.3/6.9 Aug 2018 12 688 VV, VH Ferrario (2019)
Hokkaido, Japan 6.6 6 Sep 2018 7837 VV, VH Wang et al. (2019); PlanetScope
Mesetas, Colombia 6.0 24 Dec 2019 837 VV, VH García-Delgado et al. (2021)
Haiti 7.2 14 Aug 2021 4887 VV, VH Martinez et al. (2021)
Luding, China 6.6 5 Sep 2022 5336 VV, VH Dai et al. (2023a); PlanetScope, Gaofen, UAV
Sumatra, Indonesia 6.1 25 Feb 2022 171 VV, VH Meena et al. (2023); PlanetScope

Figure 1. Overall workflow of the sampling strategy, applied iteratively for each dataset combination and temporal buffer (see Tables 2
and 3).

3.3 Data Partitioning

The dataset was split into training, validation, and testing par-
titions, with 67 % of the data from each study area used for
training/validation and the remaining 33 % reserved for test-
ing. During training, 40 % of the training set was allocated
to validation. The VV_VH dataset includes data from Papua

New Guinea, Lombok, Hokkaido, Mesetas, Milin, and Lud-
ing. The VV dataset also incorporates Capellades, Kaikoura,
and Gorka, where VH data are not available (see Table 1).
To assess performance beyond the training domains, data
from Sumatra and Haiti were kept completely unseen dur-
ing model development and are used to evaluate how well
the model generalizes to new events.
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Table 2. Main Dataset Combinations. diffVV and diffVH are obtained by subtracting the median of the pre-event stack from the median of
the post-event stack.

Name Orbit Var 1 Var 2 Var 3 Var 4

VV Ascending VV post-event diffVV / /
Descending VV post-event diffVV / /

VV_VH Ascending VV post-event VH post-event diffVV diffVH
Descending VV post-event VH post-event diffVV diffVH

Table 3. Temporal Buffers Applied to the Dataset Combinations in Table 2.

Pre-event (days) 365 240 120 60 60 60 12 24 48 60

Post-event (days) 12 12 12 12 24 48 12 24 48 60

3.4 Model Architecture

Convolutional neural networks (CNNs) are widely used for
image classification, including SAR applications (Nava et al.,
2022b; Tang et al., 2021; Zhang et al., 2017; Zhou et al.,
2022). Here, we use a lightweight CNN with three convo-
lutional blocks. Each block consists of a convolution layer,
batch normalization, and max pooling. The outputs of the
three blocks are resized and concatenated to retain multi-
level features. A dropout layer is then applied, followed by
flattening and a fully connected layer. Finally, a single sig-
moid unit outputs the binary classification. This design is a
simplified adaptation of Nava et al. (2022b), optimized for
efficiency while retaining strong performance in SAR image
classification.

We trained CNN models for each dataset combination:
2 polarization options, 2 orbits (Table 2), and 10 tempo-
ral windows (Table 3), yielding 40 models in total. Addi-
tional benchmarks compared CNN, CBAM, and ResNet on
the VV_VH dataset. ResNet achieved the highest accuracy
(96.43 %) and F1-score (82.53 %), while CBAM produced
competitive results. The lightweight CNN, however, was se-
lected for large-scale experiments because it balances accu-
racy (96.04 %) and F1-score (80.94 %) with lower computa-
tional cost, making it a practical baseline for extensive testing
(see Appendix and Supplement).

3.5 Model Training

We use TensorFlow 2.8 (Abadi et al., 2016) for training the
model, utilizing the Adam optimizer (Kingma and Ba, 2017)
with a variable batch size and a focal loss function. The
model underwent training for a maximum of 500 epochs,
during which hyperparameter tuning was employed to op-
timize its performance. Additionally, early stopping was im-
plemented to halt training when the validation loss ceased
to decrease for 30 consecutive epochs. We use the focal loss
(Lin et al., 2017), designed address the challenges of class

imbalance and the effective handling of challenging exam-
ples within the context of binary classification tasks. Finally,
iterative training sessions were conducted employing vari-
ous hyperparameter combinations, specifically focusing on
the number of filters (32, 64), class imbalance rate of the
training set (ranging from 4 to 6), dropout rates (0.5, 0.7),
and learning rates (10−4, 10−5). Model performance evalu-
ation involved standard metrics, including Precision, Recall,
and F1-score.

3.6 Landslide Detection

The calibrated models are coupled with a sliding window al-
gorithm (Lee et al., 2005) and non-maximum suppression
(Neubeck and Gool, 2006) to identify landslide locations
within a given area. The sliding window algorithm system-
atically extracts regions of interest (ROIs) across the study
area, using defined vertical and horizontal strides and dimen-
sions. In this study, the vertical and horizontal strides are
set to 32 pixels, ensuring a 50 % overlap between adjacent
ROIs. This overlap enhances robustness by capturing diverse
spatial features while maintaining computational efficiency.
Furthermore, the dimensions of the training patches are fixed
at 64×64 pixels to align with the characteristics of the train-
ing data. These ROIs, representing sub-images of the satellite
imagery, are classified as either landslide or non-landslide
using models trained on labeled image data. To refine the
predictions, non-maximum suppression is applied, eliminat-
ing redundant or overlapping detections to ensure that each
classified landslide patch corresponds to a unique and sig-
nificant area on the map. Although this approach is compu-
tationally more intensive compared to classic YOLO (You
Only Look Once) architectures (Han et al., 2023; Liu et al.,
2023), it is preferred due to the inherent characteristics of
SAR data. Unlike optical imagery, SAR data often exhibits
discrepancies with landslide inventories because of factors
such as shadowing, layover, and foreshortening, which can
distort the appearance of landslides. These effects result in
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misalignments between detected landslides and inventories
created using optical imagery or field surveys (Nava et al.,
2022b). Additionally, landslide polygons in inventories often
represent amalgamated features or multiple landslides, mak-
ing it impractical to define bounding boxes based on exact
polygon boundaries.

4 Results

We conduct a comparison of model predictions using VV
and VV_VH data across six study areas: Papua New Guinea,
Lombok, Hokkaido, Mesetas, Milin, and Luding, to ensure
consistency when evaluating model performance. Addition-
ally, the model trained on the VV datasets uses the nine cases
outlined in Sect. 3 to improve the model’s generalizability,
and the corresponding performance scores are reported. Fi-
nally, we assess the models’ detection capabilities in com-
pletely new and unseen regions, simulating the detection of
landslides for a recently occurred, unseen major landslide
event (MLE).

4.1 Landslide Classification Results

As established in Sect. 3.1, the test sets are prepared to in-
clude a representative subset comprising 33 % of patches
from each distinct study case. To ensure an unbiased compar-
ison, identical patches are employed for model training and
testing phases in all the combinations. The reported scores in
Tables A2 and A3 in Appendix A represent the median val-
ues derived from an exploration across 24 distinct combina-
tions of hyperparameters and training set class imbalances, as
outlined in Sect. 3. An overview of the most meaningful met-
ric, F1-score, across the various data configurations is given
in Fig. 2. The precision trend remains relatively consistent
across all combinations, while the recall varies significantly,
as does the F1 score. In numerous cases, both metrics ex-
perience a significant increase when incorporating additional
post-event acquisitions.

4.2 Landslide Rapid Assessment on Unseen MLEs

In this section, we present the detection results of the mod-
els that showcased the best rapid assessment performance for
both descending and ascending orbits separately. The charac-
teristics of the hyperparameters and performance of the mod-
els used in the rapid assessment are provided in Table 4. We
deployed them for the 2022 Sumatra event, which was not
part of the initial training and test datasets. The results, il-
lustrated in Fig. 3, demonstrate the effectiveness of both the
VV_VH combination models. Figure 3 compares predictions
from the VV_VH combination model across descending and
ascending orbits during rapid assessment. The model main-
tains robust performance even when applied to the novel, un-
seen areas and events that we use.

We further evaluate the model’s performance using an ad-
ditional unseen case study: the 2021 Haiti earthquake event,
with results shown in Fig. 4. In this case, the affected area is
considerably larger than in the previous example. The model
correctly identifies zones of high landslide density in both as-
cending and descending orbits. Two Sentinel-1 tracks cover
the region in the ascending configuration, and we now pro-
cess each track separately to avoid mixing far- and near-range
acquisitions, which can introduce geometric inconsistencies.

Finally, we explore the interpretability of the model pre-
dictions for the Haiti event (see Fig. 5). Here we present
the SHAP values, which reveal how individual pixels in each
channel contribute to the final model decision. By averaging
pixel contributions across all four image bands, areas that in-
crease or decrease the likelihood of a region being classified
as a landslide can be identified. The model exhibited over-
predictions in certain regions, particularly where model at-
tention was directed towards riverbeds filled with sediments.

Table 5 summarizes the quantitative performance for the
Sumatra and Haiti events across both orbits. Model transfer-
ability to the Sumatra event is good, while performance in
Haiti decreases, particularly in terms of recall.

5 Discussion

Few rapid assessment tools and models are currently avail-
able for effective deployment in response to MLEs. Among
these, only a limited number of published resources exist,
with most comprising datasets intended for training general-
ized landslide detection models. Examples include datasets
designed by Meena et al. (2023), Xu et al. (2024), and Fang
et al. (2024). These resources, as well as the tools evaluated
by Amatya et al. (2023), cover both optical and SAR-based
rapid assessment approaches (Handwerger et al., 2022). The
SAR-based rapid assessment tool implemented by Handw-
erger et al. (2022) stands out for its direct applicability to
new events, aligning with our research objectives. Hence,
we draw a direct comparison with their methodology. While
their method focuses on all surface changes and does not
consider SAR geometric distortions, ours specifically targets
landslide-related alterations. This distinction is crucial be-
cause post-earthquake amplitude alterations can stem from
various factors besides landslides (Xu et al., 2022). Addi-
tionally, the combination of data from both ascending and
descending orbits in Amatya’s method inevitably includes
geometric distortions arising from the two viewing angles.
This integration can compromise the accurate detection of
small surface changes in mountainous areas. Moreover, our
models’ performance does not improve with an increase in
the number of pre-event temporal stacks, contrasting with
findings reported by Handwerger et al. (2022). Increasing the
difference in size between pre- and post-event stacks beyond
a certain point decreases model performance. This tradeoff
arises because larger stacks, though effective in mitigating
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Figure 2. Performance of models trained on different pre- and post-event temporal stacks, considering both ascending and descending orbits
and utilizing VV and VV_VH data combinations.

Table 4. Hyperparameters and performance of models for rapid assessment using VV and VV_VH combinations for ascending and descend-
ing orbits. All models use a 60 d pre-event and 12 d post-event stack with a learning rate of 0.001. Lower VV scores reflect the inclusion of
additional study cases (Gorka, Kaikoura, Capellades).

Name Orbit Train Imbalance Filters Dropout Rate Accuracy (%) Precision (%) Recall (%) F1-score (%)

VV_VH Ascending 6 32 0.7 96.49 85.73 79.75 82.63
Descending 5 64 0.5 96.12 86.27 74.91 80.19

VV Ascending 5 64 0.5 90.88 52.55 63.02 57.31
Descending 5 32 0.7 93.18 69.12 57.61 62.84

noise, can introduce inconsistencies due to varying durations
of the sampled processes. For example, the 12-12 case results
in lower scores due to insufficient noise mitigation, while
the 60-12 case achieves higher scores. However, the 365-
12 case shows limited improvement, as the noise reduction
saturates and physical process sampling becomes too large
compared to the 12 d post-event buffer. This pattern also ex-
plains why 24-24 outperforms 60-24 and why 48-48 achieves
higher scores than 60-48. In part, this behavior may also
depend on the test events: in landscapes affected by strong
seasonal changes (e.g., snowmelt), using a longer pre-event
time series might help suppress these transient signals and
improve performance. Other rapid assessment datasets and
tools, such as those by Meena et al. (2023), Xu et al. (2024),
Fang et al. (2024), and methods evaluated by Amatya et al.
(2023), including HazMapper (Scheip and Wegmann, 2021)
and ALADIM (Deprez et al., 2022), rely on optical data and

employ diverse techniques such as object-based image anal-
ysis (OBIA) (Blaschke, 2010) and deep learning segmenta-
tion models. While optical-based tools excel at accurately
outlining landslide boundaries, they are hindered by cloud
cover and daylight dependency (Nava et al., 2022b), render-
ing them less effective during disaster response when rapid
access to landslide inventories is critical. Conversely, SAR-
based tools provide predictions regardless of weather condi-
tions or time of day, albeit with reduced accuracy.

5.1 Insights by Spatial XAI

Figure 6 shows relative pixel contributions. Within these ex-
amples, we present four patches where the model assigns a
high probability (0.87) of belonging to the landslide class in
two instances. While post-event VV imagery maintains this
emphasis, post-event VH imagery often shows pixels con-
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Figure 3. Rapid assessment for the 2022 Sumatra event utilizing VV_VH combination and 60-12 stack pre- and post-event. This unseen
event validates the comprehensive generalizability in the rapid assessment of the VV_VH-based detection models. The left column shows the
predictions obtained using the descending orbit, while the right shows the predictions based on the ascending orbit. The first row shows the
predictions over an RGB background, the second row uses a post-event VV background, and the third row displays the diffVH background.

tributing to increased landslide probability without display-
ing the landslides themselves. This pattern persists across all
VH band cases, suggesting the model uses VH for contextual
insights. Despite VV and VH having minor weight in the
final model decision, they cleaerly play crucial roles when
combined with more impactful features like diffVV and dif-

fVH. The performance gain in VV_VH models mainly re-
flects the complementary nature of the two polarizations:
VV enhances sensitivity to surface roughness and moisture,
while VH captures vegetation-related volume scattering, al-
lowing the model to distinguish landslides from background
more effectively.
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Figure 4. This figure shows the rapid assessment for the 2021 Haiti event, obtained using the VV–VH polarization combination and a 60 d pre-
event and 12 d post-event image stack for both ascending and descending orbits. The search for post-event images starts on 17 August 2021,
accounting for the tropical storm that followed the earthquake and triggered additional landslides. (Source: ESRI.)

Table 5. Performance metrics for the Sumatra and Haiti events.

Event Orbit Negatives Positives Accuracy Precision Recall F1-score

Sumatra Descending 912 89 0.9481 0.7229 0.6742 0.6977
Sumatra Ascending 874 94 0.9556 0.7629 0.7872 0.7749
Haiti Descending 4620 462 0.9425 0.8148 0.4762 0.6011
Haiti Ascending 4680 468 0.9415 0.7449 0.5427 0.6279
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Figure 5. Prediction results for the 2021 Haiti event were generated using the VV_VH combination and a 60-60 stack pre- and post-event,
descending orbit. (a) True Positives; (b) False Positives. The figure shows orthophoto, post-event VV amplitude, and Pixel Contribution
(SHapley Additive exPlanations – SHAP value) to derive the final detection. Notably, SHAP values represent the mean of the pixel contri-
bution across all four bands in the image. It’s important to highlight that the pixel contribution is calculated for all regions of interest (ROIs)
during prediction. However, not all ROIs are identified as landslides. The visualization depicts red clusters representing areas that increase
the probability of a certain ROI being classified as landslides, while blue clusters signify the opposite effect. (Source: Image © 2024 Airbus.)

Figure 6c illustrates a scenario where the size of the land-
slide is not enough to produce a distinct signature in the SAR
image, resulting in an indistinguishable speckle-like “salt and
pepper” effect with minimal changes in dimensions, shape,
and backscatter. In such cases, the model struggles to cor-
rectly classify the patch and assigns a very low probability
(0.14) of containing a landslide, despite the presence of mul-
tiple landslides within the area. Moreover, while we meticu-
lously filter the inventory to exclude landslides occurring in
areas affected by shadow and layover, we can still encounter
situations where landslides are not captured by SAR, result-
ing in bias in the model and misclassifications (e.g., Fig. 6d).
This challenge stems from our method of calculating distor-

tion masks, which relies on the geometric interplay between
the satellite’s side view and the terrain, represented by the
SRTM 30 m resolution DEM.

Apparent mismatches between SAR-based pixel contribu-
tion and landslide inventories often reflect the intrinsic dif-
ferences in how SAR captures surface changes rather than
errors in the inventories themselves (see Fig. 6b).

Overall, the pixel contributions associated with the diffVV
and diffVH bands are promising, as the model demonstrates
an ability to identify the areas where most of the landslides
occur and focuses attention on the landslide-related pixels. It
may be worthwhile to explore applying unsupervised cluster-
ing techniques to precisely locate these landslides within the
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Figure 6. XAI pixel contribution maps. We showcase pixel contributions for each of the bands in the patches, alongside a true color image,
SAR bands, landslide inventory, and SHAP pixel contributions for four patches within the mixed test set. Panels (a) and (b) depict true
positives, where (a) exemplifies a distinguishable landslide correctly detected with a high probability of belonging to the landslide class,
while (b) showcases landslides accurately classified despite foreshortening effects. In contrast, (c) and (d) represent false negatives. In (c),
landslides are undetected due to their small individual dimensions, illustrating a limitation of the model. Panels (d) illustrates another case
of undetected landslides, attributed to missing information in the SAR images.
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predicted landslide patches. However, it is important to note
that the location of landslide-related information in SAR im-
agery does not always align with the location of landslides
in optical imagery due to geometric distortions, which is a
current inherent limitation of SAR satellite data.

5.2 Supporting Arguments and Gap Analysis

Our method shows strong generalization, performing well
across the tested different landscapes and geographic set-
tings. Performance slightly degrades in unseen events (see
Table 5). Data pre-processing is handled in GEE, removing
the need for specialized GIS software, while cloud platforms
such as Google Colaboratory support deep learning work-
flows (Yang et al., 2023). The approach achieves reliable re-
sults, with few missed detections or false alarms, even on
unseen landslide events. We aim to ensure robustness within
the available data by training and evaluating the model across
areas exhibiting diverse landslide occurrences and environ-
mental variations, while recognizing that some environments
remain underrepresented due to the lack of suitable invento-
ries. A key element is the input sampling strategy, which fil-
ters out landslides located in SAR layover and shadow zones
(Burrows et al., 2020). This prevents the model from learn-
ing distortions unrelated to landslide signals, particularly in
mountainous terrain where such effects are common. Lastly,
while the workflow relies on GEE, all preprocessing steps
use standard Sentinel-1 operations that can be easily repro-
duced outside the platform.

The method may perform less effectively in arid or semi-
arid regions, where the data used in this study was scarce.
In addition, differential maps can highlight changes unre-
lated to landslides, such as variations in water levels or sus-
pended material (Hertel et al., 2023). While most inventories
used are peer-reviewed and publicly available, their quality
is variable (Guzzetti et al., 2012), and potential biases can-
not be ruled out. Additionally, the absence or minimal pres-
ence of snow in the training and calibration areas may af-
fect our detection capabilities (see Fig. S1 in the Supple-
ment) in regions where snow cover is present before, dur-
ing, and/or right after the MLE. Another limitation lies in the
model’s inability to effectively detect small landslides, pri-
marily due to Sentinel-1 data resolution constraints. Utilizing
higher-resolution imagery would significantly enhance pre-
diction accuracy. While the 5 % threshold set during training
helps minimize overpredictions and excludes patches lacking
landslide-related information in SAR images, it may over-
look small landslides, particularly if their signals are weak or
if only one small landslide is present in the area.

Furthermore, our methodology cannot differentiate be-
tween different types of landslides. Continuous testing is es-
sential for mitigating uncertainties associated with unknown
and unexplored terrains, poor image quality, and the presence
of snow.

Figure 7. Kernel Density Estimation of the slope and aspect values
in the landslide scars, in the True Positive and False Negative pre-
dictions of the test dataset by the model trained on the descending
orbit for the 60-12 temporal stack combination in the six study areas
used to perform the SAR settings comparison.

The models seems to have higher error rates in herbaceous
and open forest areas. These likely reflect a combination of
increased backscatter variability, partial canopy effects, and
inventory limitations, which together make landslides harder
to detect reliably in these environments (see Fig. S2). How-
ever, we observed a discrepancy in the distribution of slope
and aspect values when comparing the pixels within land-
slide scars of patches correctly predicted as landslides (True
Positives) with those where landslides were missed (False
Negatives). In True Positives, the distributions of slope and
aspect align with the overall distribution observed in land-
slide scars across the entire training set (see Fig. S1), indicat-
ing that the model performs well when detecting landslides
that align with these typical distributions. However, consid-
ering False Negatives, the distributions diverge, particularly
in areas with high slope degrees (see Fig. 7).

Slopes steeper than 30° can produce significant SAR
backscatter distortions, reducing the visibility of landslide
features. In terms of aspect, we find that misclassifications
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peak around 160° (SE) in the descending orbit, whereas the
distribution of True Positives follows the overall landslide
aspect distribution, peaking near 225° (SW). This suggests
that slopes facing SE, which are closer to perpendicular to
the Sentinel-1 descending look direction (≈ 250°), are harder
to classify correctly. In this configuration, the radar beam
strikes the slope at a grazing angle, reducing backscatter con-
trast and making landslides less distinguishable.

5.3 Future Research Directions

Our analysis focused on earthquake-induced landslides; fu-
ture work will also consider rainfall-triggered events. Al-
though we used only Sentinel-1 C-band backscatter intensity,
the methodology can be extended to SAR data with different
wavelengths and resolutions (e.g., X- and L-band). Upcom-
ing missions such as NISAR, with S- and L-band sensors and
higher acquisition frequencies, are expected to improve mon-
itoring, particularly in vegetated areas. Incorporating multi-
ple wavelengths and polarizations may provide complemen-
tary information and enhance model performance. Another
direction is to test the impact of terrain attributes (e.g., slope,
aspect, land cover) on detection and generalization.

An alternative strategy is to work directly with Single
Look Complex (SLC) data, enabling custom filtering and co-
registration to generate tailored SAR composites. This would
allow experiments with features such as differenced coher-
ence, which, despite lower spatial resolution, can be more
sensitive to surface changes than backscatter (Burrows et al.,
2020).

Future work should also explore how population bias
across events influences model behavior, for example by test-
ing event-level balancing strategies such as oversampling
smaller events.

Finally, while we employed a CNN, future studies should
explore advanced architectures, including Visual Transform-
ers (Liu et al., 2024) and Interactive Differential Attention
Networks (Ji et al., 2024), to further improve landslide de-
tection.

6 Conclusions

In this study, we demonstrate the efficacy of Sentinel-1 SAR
backscatter and DNNs for generalized rapid co-seismic land-
slide detection in vegetated areas, introducing a data-centric
approach to achieve this goal. We develop this method by us-
ing 11 earthquake-induced MLEs, comprising a total of 73
thousand landslides. We test the approach on unseen MLEs,
located in Sumatra and Haiti, to validate the generalizabil-
ity and applicability of the approach. We use XAI to exam-
ine the pixel contributions of the model across various SAR
bands, uncovering indicators of landslide-related informa-
tion, also in foreshortening. As per our current knowledge,
this study represents the first evidence supporting the feasi-

bility of applying DNNs to enable generalized landslide rapid
assessment via SAR backscatter data, across diverse geo-
graphic locations. Therefore, we establish a robust founda-
tion for future research endeavors, wherein SAR and DNNs
can be harnessed to locate terrain changes in mountainous
regions. The approach leverages the cloud-based capabilities
of GEE and Google Colaboratory, eliminating the need for
specialized software and democratizing geospatial analysis
globally. Lastly, we introduce the SAR-LRA Tool, serving as
an asset for swift all-weather landslide assessment, available
here: https://doi.org/10.5281/zenodo.14898556 (Nava et al.,
2025). As reliable inventories become increasingly available,
we are committed to continuously updating and refining our
models and datasets to improve their accuracy and generaliz-
ability.

Appendix A: Further Models Descriptions and
Performance

A1 ResNet-Based Model

The ResNet model employs residual learning with skip con-
nections to mitigate the vanishing gradient problem, enabling
efficient training of deep networks. It uses Residual Blocks
with two convolutional layers (3× 3 kernels) and ReLU ac-
tivation, where the input is summed with the output via
skip connections. The architecture includes an initial con-
volutional layer, multiple Residual Blocks interspersed with
MaxPooling layers, and a Dropout layer to reduce overfitting.
A fully connected layer with sigmoid activation provides bi-
nary classification outputs. Optimization is performed using
the Adam optimizer with a binary cross-entropy loss func-
tion, offering robust generalization for complex tasks.

A2 CBAM-Based Model

The CBAM model incorporates the Convolutional Block At-
tention Module (CBAM) to enhance feature selection via
Channel and Spatial Attention (Tang et al., 2021). Channel
Attention refines critical feature channels using global pool-
ing and dense layers, while Spatial Attention emphasizes sig-
nificant regions using pooled features processed through a
7×7 convolution. The architecture consists of convolutional
layers, CBAM modules, MaxPooling layers, and dense lay-
ers with Dropout for regularization. The final output uses
sigmoid activation. CBAM improves feature representation
with minimal computational overhead, making it effective
for tasks requiring selective focus.
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A3 Performance Comparison

Table A1. Performance Metrics of CNN, CBAM, and ResNet Architectures on 60-12 VV_VH Dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

CNN 96.04± 0.2 81.58± 2.4 80.17± 2.5 80.94± 1.3
CBAM 95.92± 0.2 80.75± 2.8 80.41± 3.1 80.47± 0.8
ResNet 96.43± 0.2 84.17± 3.4 81.94± 2.3 82.53 ± 0.9

Table A2. Median and Standard Deviation of Accuracy, Precision, Recall, and F1-Score for VV_VH Datasets.

Orbit Stacks Accuracy (%) Precision (%) Recall (%) F1-score (%)

Ascending

365-12 95.48± 0.4 78.98± 4.0 77.16± 4.6 78.30± 2.3
240-12 95.37± 0.4 81.13± 2.9 74.80± 4.8 77.30± 2.4
120-12 95.62± 0.4 79.90± 3.0 78.23± 3.7 78.70± 2.3
60-12 96.04± 0.2 81.58± 2.4 80.17± 2.5 80.94± 1.3
12-12 95.31± 0.5 82.49± 5.1 72.60± 4.0 75.90± 1.9
24-24 95.97± 0.4 83.61± 4.1 78.37± 3.0 80.10± 1.4
60-24 96.23± 1.7 82.83± 6.8 80.05± 1.6 81.72± 1.4
48-48 96.41± 2.0 82.55± 10.0 83.20± 11.6 83.03± 10.7
60-48 96.29± 1.3 81.78± 6.7 83.74± 5.1 82.42± 5.5
60-60 96.43± 1.5 81.27± 6.6 83.77± 1.2 83.24± 9.3

Descending

365-12 95.52± 0.4 79.79± 4.0 75.73± 3.4 77.54± 1.4
240-12 95.41± 0.8 81.64± 6.0 73.46± 5.4 76.73± 3.4
120-12 95.71± 0.4 82.01± 4.0 75.51± 2.0 78.73± 1.4
60-12 95.52± 0.6 83.76± 5.3 72.53± 6.8 78.05± 3.5
12-12 95.36± 0.3 83.90± 2.9 71.11± 3.9 76.30± 1.9
24-24 95.97± 0.4 83.61± 4.1 78.37± 3.0 80.10± 1.4
60-24 95.78± 0.4 79.53± 4.0 79.22± 2.8 79.71± 1.4
48-48 96.41± 1.9 82.55± 10.2 83.20± 11.6 83.03± 10.8
60-48 96.34± 0.4 81.66± 2.6 84.04± 2.5 82.80± 1.7
60-60 96.47± 2.2 82.56± 11.2 83.87± 15.6 83.36± 13.6
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Table A3. Median and Standard Deviation of Accuracy, Precision, Recall, and F1-Score for VV Datasets.

Orbit Stacks Accuracy (%) Precision (%) Recall (%) F1-score (%)

Ascending

365-12 93.57± 1.4 71.26± 8.1 65.80± 4.6 67.85± 4.0
240-12 93.55± 1.2 72.18± 8.6 63.50± 4.2 66.51± 3.2
120-12 93.29± 1.3 69.88± 8.0 66.47± 5.0 67.33± 4.5
60-12 91.59± 2.4 57.95± 17.2 65.74± 14.1 60.51± 13.7
12-12 93.39± 0.8 74.68± 7.9 56.46± 3.8 64.03± 3.1
24-24 94.41± 1.5 76.37± 9.1 71.68± 4.3 73.03± 4.2
60-24 94.07± 1.2 71.35± 6.9 74.41± 5.2 71.89± 4.0
48-48 95.31± 0.8 77.22± 5.4 78.18± 3.5 77.26± 2.7
60-48 94.76± 1.7 74.81± 12.6 77.56± 15.8 76.03± 15.1
60-60 95.41± 0.3 77.70± 3.1 77.87± 3.4 77.64± 1.5

Descending

365-12 93.49± 0.8 73.38± 5.9 58.90± 9.7 65.50± 7.1
240-12 93.44± 0.7 70.48± 5.9 64.34± 4.9 67.25± 3.1
120-12 93.85± 0.8 73.49± 6.3 64.51± 4.6 68.04± 2.8
60-12 93.81± 1.2 75.99± 9.2 61.69± 5.9 67.00± 4.0
12-12 92.56± 0.6 68.10± 6.0 53.91± 5.1 61.66± 2.4
24-24 93.80± 0.9 72.71± 6.9 66.29± 4.3 69.28± 3.1
60-24 93.67± 1.2 72.52± 7.8 67.71± 6.1 68.89± 5.1
48-48 95.37± 0.3 79.38± 3.6 75.53± 3.4 76.93± 1.2
60-48 94.83± 0.3 74.77± 3.5 76.48± 4.1 75.23± 1.5
60-60 95.30± 0.6 78.58± 5.49 75.98± 4.1 76.88± 1.7

Code and data availability. The code and model weights of
SAR-LRA are available at https://github.com/lorenzonava96/
SAR-and-DL-for-Landslide-Rapid-Assessment (last access: 29
November 2025) and https://doi.org/10.5281/zenodo.14898556
(Nava et al., 2025). As new MLE polygon inventories emerge, we
will update the tool accordingly and upload the new versions in the
same repository, accompanied by detailed descriptions of the mod-
ifications made. The datasets used to train SAR-LRA are available
at https://doi.org/10.5281/zenodo.14898556 (Nava et al., 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-19-167-2026-supplement.
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