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1. Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3
The Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3 (https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_Landcover 100m_Proba-V-C3_Global#dois) provides a comprehensive
land cover classification system with 23 main discrete classes. This classification is aligned with the UN Food

and Agriculture Organization's (FAO) Land Cover Classification System (https://www.fao.org/documents/card/
en/c/c41f08a4-e612-45d8-b569-b751127a3542/).

2. Models Description and Comparison

2.1 ResNet-Based Model

The ResNet-based model employs residual learning to mitigate the vanishing gradient problem, enabling
effective training of deep neural networks. Its architecture is built around Residual Blocks, which utilize skip
connections to bypass intermediate layers and facilitate gradient flow. Each Residual Block contains two
convolutional layers with 3x3 kernels, followed by Batch Normalization and ReLU activation. The output of the
second convolutional layer is added to the block’s input via the skip connection, allowing the network to learn
residual mappings. A ReLU activation is then applied to the summed output, enhancing non-linear feature
learning. The network begins with a convolutional layer for initial feature extraction, followed by a sequence of
Residual Blocks interspersed with MaxPooling layers to reduce spatial dimensions. A Dropout layer is
incorporated after the feature extraction process to prevent overfitting. The model concludes with a fully
connected layer, which uses a sigmoid activation function to produce a binary classification output.

2.2 CBAM-Based Model

The CBAM-based model enhances feature learning by integrating the Convolutional Block Attention Module
(CBAM) into a convolutional architecture. CBAM refines feature maps through a combination of Channel
Attention and Spatial Attention, enabling the model to focus adaptively on the most relevant regions and
channels of the input. This attention mechanism significantly improves the network’s ability to capture salient
patterns, particularly in tasks where feature importance varies spatially or across channels. The architecture
begins with standard convolutional layers for hierarchical feature extraction, each followed by Batch
Normalization and ReLU activation for training stability. MaxPooling layers are interspersed to downsample
spatial dimensions while retaining essential features. Intermediate feature maps are resized and concatenated to
create a rich representation of the input, which is then passed through the CBAM module for adaptive
refinement. Channel Attention emphasizes the most critical feature channels by computing global spatial
statistics using average pooling, followed by dense layers to generate attention weights. These weights are
applied to the input feature maps to enhance relevant channels while suppressing less important ones. Spatial
Attention further refines these features by identifying important spatial regions using pooled information from
all channels, which is processed through a 7%7 convolutional layer to produce spatial attention weights. The
CBAM-refined feature maps are then passed through a Dropout layer for regularization, followed by dense
layers to learn high-level abstractions. The final output layer uses a sigmoid activation for binary classification.
The model is trained using the Adam optimizer and binary cross-entropy loss, ensuring efficient learning and
robust generalization. The integration of CBAM introduces minimal computational overhead while substantially
enhancing the model’s representational power. This architecture is particularly effective in tasks requiring
selective focus on significant features or regions, resulting in improved classification performance (Tang et al.,
2021).

2.3. Performance Evaluation of Architectures

Table S1: Median and standard deviation of the accuracy, precision, recall, and Fl-score of the different
architectures trained on the 60-12 combination of the VV _VH dataset. They are derived from the
hyperparameters and training imbalance tuning computed comparing the predictions against the unseen
composite test set.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
CNN 96.04 £0.2 81.58+2.4 80.17+£2.5 80.94 £ 1.3
CBAM 95.92+0.2 80.75+2.8 80.41+£3.1 80.47+0.8
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ResNet 96.43 £0.2 84.17+3.4 81.94+23 82.53+0.9

Table A1 presents the median and standard deviation of accuracy, precision, recall, and F1-score for the CNN,
CBAM, and ResNet architectures, evaluated on the 60-12 combination of the VV_VH dataset. These metrics
were derived from hyperparameter-tuned models and adjusted for training imbalances, with predictions
compared against the unseen composite test set. Among the architectures, ResNet achieved the highest
performance across all metrics, with an accuracy of 96.43 + 0.2%, precision of 84.17 + 3.4%, recall of 81.94 +
2.3%, and an Fl-score of 82.53 + 0.9%. The CNN, however, performed competitively, with an accuracy of
96.04 + 0.2%, precision of 81.58 + 2.4%, recall of 80.17 + 2.5%, and an Fl-score of 80.94 + 1.3%, slightly
outperforming CBAM in both accuracy and F1-score. CBAM achieved an accuracy of 95.92 + 0.2%, precision
of 80.75 + 2.8%, recall of 80.41 + 3.1%, and an Fl-score of 80.47 + 0.8%. Despite ResNet’s superior overall
performance, the decision to use the baseline CNN for iterative sensitivity experiments was driven by several
factors. First, the simpler architecture of the CNN makes it computationally more efficient for large-scale
experiments, requiring less training time and memory compared to CBAM and ResNet. This efficiency is
particularly advantageous when conducting extensive parameter sweeps or testing on diverse datasets, as it
allows for rapid iteration and experimentation without significant resource overhead. Additionally, the CNN
provides a strong baseline with consistent and competitive performance across all metrics, demonstrating its
ability to generalize well without the additional complexity of attention mechanisms or residual learning. By
utilizing the CNN, we ensure that our experimental framework remains accessible and reproducible while
maintaining robust performance. The comparative analysis highlights the incremental benefits of advanced
architectures such as CBAM and ResNet, particularly for tasks requiring high precision and F1-scores.
However, for the purposes of this study, the balance between simplicity, computational efficiency, and reliable
performance positions the baseline CNN as the preferred choice for the majority of experiments.

Additional Figures
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Figure S1: Distribution of slope, aspect, and landcover in the landslide scars used for the descending orbit
datasets in the training dataset for the 60 _12 temporal stack combination in the six study areas used to perform
the comparison between the VV and VV_VH combinations.
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Figure S2: Distribution of majority class of landcover in the test dataset for the classification results of the
60_12 temporal stack combination in the six study areas used to perform the comparison between the VV and

VV_VH combinations.
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Figure S3: CNN model architecture used.
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Figure S4: Haiti prediction confusion matrixes. a) descending; b) ascending.
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