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1. Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3 
The Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3 (https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global#dois) provides a comprehensive 
land cover classification system with 23 main discrete classes. This classification is aligned with the UN Food 
and Agriculture Organization's (FAO) Land Cover Classification System (https://www.fao.org/documents/card/
en/c/c41f08a4-e612-45d8-b569-b751f27a3542/).  

2. Models Description and Comparison 
2.1 ResNet-Based Model 
The ResNet-based model employs residual learning to mitigate the vanishing gradient problem, enabling 
effective training of deep neural networks. Its architecture is built around Residual Blocks, which utilize skip 
connections to bypass intermediate layers and facilitate gradient flow. Each Residual Block contains two 
convolutional layers with 3×3 kernels, followed by Batch Normalization and ReLU activation. The output of the 
second convolutional layer is added to the block’s input via the skip connection, allowing the network to learn 
residual mappings. A ReLU activation is then applied to the summed output, enhancing non-linear feature 
learning. The network begins with a convolutional layer for initial feature extraction, followed by a sequence of 
Residual Blocks interspersed with MaxPooling layers to reduce spatial dimensions. A Dropout layer is 
incorporated after the feature extraction process to prevent overfitting. The model concludes with a fully 
connected layer, which uses a sigmoid activation function to produce a binary classification output.  

2.2 CBAM-Based Model 
The CBAM-based model enhances feature learning by integrating the Convolutional Block Attention Module 
(CBAM) into a convolutional architecture. CBAM refines feature maps through a combination of Channel 
Attention and Spatial Attention, enabling the model to focus adaptively on the most relevant regions and 
channels of the input. This attention mechanism significantly improves the network’s ability to capture salient 
patterns, particularly in tasks where feature importance varies spatially or across channels. The architecture 
begins with standard convolutional layers for hierarchical feature extraction, each followed by Batch 
Normalization and ReLU activation for training stability. MaxPooling layers are interspersed to downsample 
spatial dimensions while retaining essential features. Intermediate feature maps are resized and concatenated to 
create a rich representation of the input, which is then passed through the CBAM module for adaptive 
refinement. Channel Attention emphasizes the most critical feature channels by computing global spatial 
statistics using average pooling, followed by dense layers to generate attention weights. These weights are 
applied to the input feature maps to enhance relevant channels while suppressing less important ones. Spatial 
Attention further refines these features by identifying important spatial regions using pooled information from 
all channels, which is processed through a 7×7 convolutional layer to produce spatial attention weights. The 
CBAM-refined feature maps are then passed through a Dropout layer for regularization, followed by dense 
layers to learn high-level abstractions. The final output layer uses a sigmoid activation for binary classification. 
The model is trained using the Adam optimizer and binary cross-entropy loss, ensuring efficient learning and 
robust generalization. The integration of CBAM introduces minimal computational overhead while substantially 
enhancing the model’s representational power. This architecture is particularly effective in tasks requiring 
selective focus on significant features or regions, resulting in improved classification performance (Tang et al., 
2021). 

2.3. Performance Evaluation of Architectures 

Table S1: Median and standard deviation of the accuracy, precision, recall, and F1-score of the different 
architectures trained on the 60-12 combination of the VV_VH dataset. They are derived from the 
hyperparameters and training imbalance tuning computed comparing the predictions against the unseen 
composite test set. 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

CNN 96.04 ± 0.2 81.58 ± 2.4 80.17 ± 2.5 80.94 ± 1.3

CBAM 95.92 ± 0.2 80.75 ± 2.8 80.41 ± 3.1 80.47 ± 0.8
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Table A1 presents the median and standard deviation of accuracy, precision, recall, and F1-score for the CNN, 
CBAM, and ResNet architectures, evaluated on the 60-12 combination of the VV_VH dataset. These metrics 
were derived from hyperparameter-tuned models and adjusted for training imbalances, with predictions 
compared against the unseen composite test set. Among the architectures, ResNet achieved the highest 
performance across all metrics, with an accuracy of 96.43 ± 0.2%, precision of 84.17 ± 3.4%, recall of 81.94 ± 
2.3%, and an F1-score of 82.53 ± 0.9%. The CNN, however, performed competitively, with an accuracy of 
96.04 ± 0.2%, precision of 81.58 ± 2.4%, recall of 80.17 ± 2.5%, and an F1-score of 80.94 ± 1.3%, slightly 
outperforming CBAM in both accuracy and F1-score. CBAM achieved an accuracy of 95.92 ± 0.2%, precision 
of 80.75 ± 2.8%, recall of 80.41 ± 3.1%, and an F1-score of 80.47 ± 0.8%. Despite ResNet’s superior overall 
performance, the decision to use the baseline CNN for iterative sensitivity experiments was driven by several 
factors. First, the simpler architecture of the CNN makes it computationally more efficient for large-scale 
experiments, requiring less training time and memory compared to CBAM and ResNet. This efficiency is 
particularly advantageous when conducting extensive parameter sweeps or testing on diverse datasets, as it 
allows for rapid iteration and experimentation without significant resource overhead. Additionally, the CNN 
provides a strong baseline with consistent and competitive performance across all metrics, demonstrating its 
ability to generalize well without the additional complexity of attention mechanisms or residual learning. By 
utilizing the CNN, we ensure that our experimental framework remains accessible and reproducible while 
maintaining robust performance. The comparative analysis highlights the incremental benefits of advanced 
architectures such as CBAM and ResNet, particularly for tasks requiring high precision and F1-scores. 
However, for the purposes of this study, the balance between simplicity, computational efficiency, and reliable 
performance positions the baseline CNN as the preferred choice for the majority of experiments. 

Additional Figures 

ResNet 96.43 ± 0.2 84.17 ± 3.4 81.94 ± 2.3 82.53 ± 0.9
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Figure S1: Distribution of slope, aspect, and landcover in the landslide scars used for the descending orbit 
datasets in the training dataset for the 60_12 temporal stack combination in the six study areas used to perform 
the comparison between the VV and VV_VH combinations. 
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Figure S2: Distribution of majority class of landcover in the test dataset for the classification results of the 
60_12 temporal stack combination in the six study areas used to perform the comparison between the VV and 
VV_VH combinations.  

 

Figure S3: CNN model architecture used.  
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Figure S4: Haiti prediction confusion matrixes. a) descending; b) ascending. 
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