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Abstract. Global warming poses substantial risks to natural
and human systems worldwide. Understanding the complex
interactions between climate change and the economy is es-
sential for designing effective policies and mitigation strate-
gies. Yet, existing modeling tools are often limited by coarse
spatial aggregation, simplified climate representation, or lack
of interaction between climate and the economy. To address
these gaps, we develop a novel framework that couples an
Earth System Model (ESM) – the Norwegian Earth System
Model version 2 (NorESM2) – with a spatially disaggregated
Integrated Assessment Model (IAM), the Disaggregated In-
tegrated Assessment Model (DIAM). The resulting modeling
tool, NorESM2–DIAM, incorporates state-of-the-art climate
and weather dynamics, allows economic impacts to depend
on the full distribution of weather outcomes, and captures re-
alistic spatial heterogeneity. To our knowledge, it is the first
framework to fully couple an ESM with a high-resolution
cost-benefit IAM. The primary contribution of this paper is
to develop and implement the methodology that enables this
coupling. We demonstrate the utility of NorESM2–DIAM
through a baseline simulation. The results show that the eco-
nomic impacts of global warming vary dramatically across
space and that internal climate variability generates substan-
tial volatility in regional GDP, highlighting the importance
of high-resolution economic impact assessments. Although
the baseline simulation focuses on regional temperature, the
framework can be easily extended to incorporate additional
variables such as precipitation and extreme events. It can
also be applied to study a wide range of climate policies.
NorESM2–DIAM represents an important step towards im-

proving the understanding of economic impacts of climate
change and can ultimately become an important source of
information for decision-makers.

1 Introduction

Integrated Assessment Models (IAMs) and Earth System
Models (ESMs) are two key tools for investigating the com-
plex challenges posed by climate change. IAMs focus on the
human aspect of climate change; ESMs focus on the natural
climate system. With their differing foci and application ar-
eas, they are usually developed independently of each other.
However, both modeling tools depend on information from
the other, and cooperation between the ESM and IAM com-
munities is essential to understanding the full picture of cli-
mate change (e.g. van Vuuren et al., 2012; Calvin and Bond-
Lamberty, 2018; Collins et al., 2015; Keen et al., 2021).

IAMs have played a fundamental role in climate eco-
nomics since the introduction of the DICE model (Nord-
haus, 1991, 1992). These models simulate the economic im-
pacts of climate change, allowing evaluation of the policy
consequences and the feasibility of various climate targets,
and have produced influential results – most notably, esti-
mates of the social cost of carbon – that continue to inform
climate policy (e.g. Weyant, 2017; Harremoës and Turner,
2001; Schneider, 1997; Nordhaus, 2010). They usually con-
sist of three separate elements: a climate system, a carbon cy-
cle, and an economic model (van Vuuren et al., 2011; Nord-
haus, 1992). To maintain computational tractability, however,
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most IAMs rely on highly simplified representations of the
climate system and the carbon cycle (Goodess et al., 2003;
van Vuuren et al., 2012). Although practical, these simplifi-
cations often suppress both spatial and temporal variability
and limit the models’ ability to capture the complex dynam-
ics of Earth system processes. This, in turn, limits their abil-
ity to accurately estimate the economic impacts of climate
change.

One key limitation of many IAMs is their sensitivity to
how climate dynamics are simplified. For example, they of-
ten cannot reproduce either the delay between carbon emis-
sions and warming or climate–carbon feedbacks, with im-
portant consequences for estimates of the social cost of car-
bon (Dietz et al., 2021; van Vuuren et al., 2011). Further-
more, most IAMs model very few climate variables – pri-
marily global mean surface temperature – despite growing
recognition that economic outcomes are shaped not only by
long-term temperature trends but also by short-term, high-
impact weather events such as heatwaves, storms, floods and
droughts (Callahan and Mankin, 2022; Frame et al., 2020).
These events reflect local deviations from climatological av-
erages and often cause severe economic damages. Finally,
IAMs typically operate on coarse spatial scales, which re-
stricts their capacity to resolve regional variations in both
physical climate responses and economic vulnerabilities (e.g.
Dell et al., 2014; Hsiang et al., 2017). Even when regional
detail is included, it is often through stylized approaches that
link local climate directly to global averages, missing impor-
tant regional dynamics.

In contrast, ESMs simulate the physical climate system
based on fundamental geophysical principles. They include
interactive components of the atmosphere, land, ocean, and
cryosphere, as well as representation of aerosols, atmo-
spheric chemistry, and the carbon cycle (Taylor et al., 2012;
van Vuuren et al., 2011). With their many components, ESMs
produce high-resolution outputs across a wide range of cli-
mate variables, including realizations of weather and ex-
tremes. However, ESMs lack human components and rely on
externally prescribed pathways for emissions and land use
(e.g. Moss et al., 2010; O’Neill et al., 2017; Riahi et al.,
2017), thus excluding any climate–economy interactions.

Motivated by these shortcomings, we present a novel
framework that couples the Norwegian Earth System Model
version 2 (NorESM2) with a spatially disaggregated, dy-
namic model of the global economy. We refer to this frame-
work as NorESM2–DIAM, where DIAM stands for Dis-
aggregated Integrated Assessment Model and builds on
the high-resolution climate–economy model developed in
Krusell and Smith (2022). The coupling replaces stylized
climate dynamics, carbon cycle approximations, and sim-
plified regional representations with physically-based, high-
resolution outputs from NorESM2. It also allows economic
outcomes to depend on a wide variety of climate and weather
variables, including extreme events. This framework thus de-
livers a new model that can be used to investigate the eco-

nomic impacts of climate change both globally and region-
ally, incorporating both climate-economy feedbacks and in-
ternal variability. Finally, NorESM2–DIAM is a cost-benefit
IAM: economic agents (consumers and firms) in the model
solve explicitly-specified dynamic decision problems with
well-defined objectives. It can therefore provide quantitative
assessments of the welfare effects of a wide range of scenar-
ios for climate policy – from laissez-faire to optimal carbon
taxation – both across time and space.

The primary goal of this paper, however, is to demonstrate,
using a prototype version of NorESM2–DIAM, how to tackle
two key methodological challenges in coupling an ESM with
a dynamic, high-resolution economic model grounded in dy-
namic optimization. First, the two models operate on vastly
different time scales. Second, the economic model incorpo-
rates forward-looking behavior: the decisions of agents de-
pend on their expectations about the future behavior of the
climate, which is itself influenced by those very decisions.
Achieving consistency between agents’ expectations and the
climate trajectory thus requires solving for an interdependent
equilibrium.

Successfully addressing these challenges lays the ground-
work for using NorESM2–DIAM as a platform to explore the
spatial and temporal dimensions of climate–economy inter-
actions, and to assess climate policy with a degree of geo-
physical and economic realism that is rare in existing IAMs.
This platform contributes to a small but growing literature
using dynamic, forward-looking, structural economic models
to study the spatial effects of climate change (see, for exam-
ple, Brock et al., 2014; Desmet and Rossi-Hansberg, 2015;
Fried, 2022; Krusell and Smith, 2022; Rudik et al., 2021;
Bilal and Rossi-Hansberg, 2023; Cruz and Rossi-Hansberg,
2024; Kubler, 2023; Kotlikoff et al., 2024).

Our approach to coupling an ESM and an IAM, embod-
ied in NorESM2–DIAM, contrasts with the approach taken
in iESM (Collins et al., 2015; Thornton et al., 2017; Calvin
and Bond-Lamberty, 2018) and E3SM–GCAM (Di Vittorio
et al., 2025), two other frameworks that couple an ESM and
an IAM. The main difference is that both iESM and E3SM–
GCAM couple an ESM with the Global Change Assessment
Model (GCAM), a process-based rather than a cost-benefit
IAM. Although both DIAM and GCAM are dynamic, recur-
sive models, in DIAM agents make decisions taking into ac-
count the entire future time horizon, whereas GCAM solves
for outcomes one step at a time, considering only the current
state.

The two approaches also differ in spatial resolution and
sectoral detail. GCAM represents multiple sectors – includ-
ing energy, industry, transport, agriculture, and land use – but
divides the world into only 14 (iESM) or 32 (E3SM-GCAM)
socioeconomic regions. In contrast, NorESM2–DIAM con-
tains only a single sector, focusing directly on gross domestic
product (GDP), but at a very high degree of spatial resolu-
tion (1°× 1° cells), enabling high-resolution analysis of the
impacts of climate and weather on GDP and emissions.
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Finally, the three models differ in how they represent
climate–economy interactions. iESM and E3SM-GCAM ex-
change biogeochemical variables from the ESM to GCAM,
whereas in our framework, temperature directly affects the
economy through the productivity of labor. GCAM also ex-
plicitly represents agriculture and land use, allowing iESM
and E3SM–GCAM to generate land-mediated feedbacks that
are absent in NorESM–DIAM. Thus, although all three
frameworks couple an IAM with an ESM, our approach em-
ploys a fundamentally different IAM, providing a comple-
mentary perspective to the two existing frameworks.

The rest of the paper is organized as follows: Sec-
tion 2 describes the two components of our new framework,
NorESM2–DIAM. Section 3 explains in detail the interac-
tive coupling between the two components of NorESM2–
DIAM. Section 4 discusses the calibration of the model pa-
rameters. Section 5 presents quantitative results. Section 6
discusses limitations and directions for further research using
this new platform and, finally, Sect. 7 offers some concluding
remarks.

2 Model Description

This section describes the structure and functioning of
NorESM2–DIAM, a coupled model that integrates climate
and economic dynamics. Section 2.1 begins with an overview
of the overall framework. Section 2.2 then outlines the eco-
nomic component, DIAM, and its coupling with NorESM2.
Section 2.3 introduces a standalone version of DIAM used to
compute equilibrium behavior in the fully coupled system.
Finally, Sect. 2.4 provides a description of the Norwegian
Earth System Model version 2 (NorESM2).

2.1 Overview

The two components of NorESM2–DIAM are coupled via
a continuous, bidirectional flow of information as illustrated
in Fig. 1. In each time period, economic agents in DIAM –
households and firms – make decisions about energy use and
other economic variables, taking into account how local cli-
mate and weather conditions affect productivity. The result-
ing carbon emissions are passed to NorESM2, which simu-
lates the climate response. These outcomes then feed back
into DIAM, influencing future economic decisions and cre-
ating a dynamic feedback loop between the climate and the
economy.

Agents in DIAM solve forward-looking dynamic opti-
mization problems, with decisions shaped by expectations
about the future evolution of climate and weather. To make
these problems computationally tractable, we employ a stan-
dalone version of DIAM with simplified climate dynamics,
following standard practice in integrated assessment model-
ing. In the standalone model, agents’ decision-making relies
on statistical temperature forecasts that approximate the be-

havior of NorESM2. Agents’ energy use decisions and con-
sequent emissions then serve as input to NorESM2 itself
when it updates climate and weather variables.

An economic equilibrium in NorESM2–DIAM is defined
by a fixed-point condition: agents’ expectations about fu-
ture climate and weather must align with the outcomes that
emerge from their own economic behavior – particularly
their choices regarding energy use and hence emissions. The
standalone version of DIAM is instrumental in computing
this equilibrium.

2.2 The economic model (DIAM)

This section describes DIAM, a spatially disaggregated
model of the global economy that interacts with climate and
weather.

2.2.1 Space and Time

DIAM divides the globe into M regions, each correspond-
ing to a 1°× 1° land cell with observed economic activity in
1990. Cells spanning multiple countries are subdivided along
national borders, yielding approximately 19 000 distinct re-
gions. Time proceeds in discrete annual periods and begins
in period 0.

2.2.2 Production technology

Each region i contains two production sectors: one for final
goods and one for energy. Energy is used as an input in both
sectors. In each year t , the final goods sector produces output
yit using three factors of production (physical capital, labor,
and energy):

yit = F
(
k
y
it ,L

y
it ,x

y
it

)
,

where kyit , L
y
it , and xyit are the amounts of physical capital,

labor, and energy, respectively, used in the final-goods sector
and F is the production function mapping inputs to output.

The energy sector uses the same types of inputs to produce
energy xit :

xit = ζ
−1F

(
kxit ,L

x
it ,x

x
it

)
,

where kxit , L
x
it , and xxit are the amounts of physical capital,

labor, and energy, respectively, used in the energy sector and
ζ denotes the relative productivity of the final-goods sector
compared to the energy sector. To simplify the structure, we
use the same production function in each sector, up to the
relative productivity shifter ζ , but this assumption is not es-
sential to the analysis undertaken here.

When inputs are efficiently allocated across sectors, net
final-goods output (i.e., gross domestic product, or GDP) is
given by:

yit = F(kit ,Lit ,xit )− ζxit ,
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Figure 1. Schematic overview of the NorESM2–DIAM coupling and internal interactions. NorESM2 provides regional one-year-mean
temperatures for the current model year to DIAM (dotted arrows indicate exchange between models). Regional temperature directly affects
regional GDP, which in turn determines regional wealth (solid arrows indicate exchanges happening within one model for the current one-
year time step of the coupled model). Based on regional temperature and wealth, each region then makes decisions about savings and energy
use using pre-computed decision rules derived from the standalone version of DIAM. Within DIAM, savings affects GDP in the next model
year (dotted arrows indicate exchanges happening within one model in the next time step of the coupled model). Energy use determines next
year’s emissions, which are provided to NorESM2. Finally, to complete the cycle, the different modules of NorESM2 interact to generate
new regional temperatures. Note that the modules interact through a coupler, and the timing varies between modules, but they all exchange
information at least once every 24 h (Seland et al., 2020; Danabasoglu et al., 2020).

where kit = k
y
it + k

x
it , Lit = L

y
it +L

x
it , and xit = x

y
it +x

x
it de-

note the total amounts of capital, labor, and energy used in
the region. This allocation can be decentralized as a compet-
itive equilibrium in which firms in both sectors choose their
factors of production to maximize profits, taking factor prices
as given, and prices adjust to clear factor markets.

Regional population Nit evolves exogenously over time.
Labor productivity consists of two components: (i) an exoge-
nous factor Ait capturing socioeconomic and technological
influences outside the scope of the model, and (ii) a climate-
sensitive factor that depends on local climate. In the current
prototype of NorESM2–DIAM, the latter depends solely on
average annual temperature Tit . Effective labor input is there-
fore defined as:

Lit =NitAitD(Tit ),

where D(·) is a “damage function” capturing the effect of
temperature on labor productivity. As described in detail in
Sect. 4, D has an inverse U -shape with a maximum at T ∗ so
that productivity declines monotonically as regional temper-
ature deviates from T ∗.

Each period, agents allocate the output of final goods be-
tween consumption cit and investment ιit , subject to a budget
constraint:

yit = cit + ιit .

Capital depreciates at a constant rate δ, with investment re-
plenishing the capital stock:

ki,t+1 = (1− δ)kit + ιit .

2.2.3 Carbon emissions

Energy use is measured in gigatons of oil equivalent (Gtoe),
where one Gtoe corresponds to 3.97× 1016 BTUs (British
Thermal Units). One unit of energy use releases ψφt giga-
tons of carbon emissions (GtC) into the atmosphere in pe-
riod t . The fraction φt is normalized to 1 in period 0, so that
φt measures the “dirtiness” of energy use relative to period
0. From period tg onward, all energy is assumed to be fully
green, implying φt = 0 for all t ≥ tg . The full trajectory of φt
is described in Sect. 4.

Total global emissions in period t , denoted Et , are the sum
of regional emissions:

Et =

M∑
i=1

eit , where eit = ψ φt xit .

2.2.4 Markets

This version of DIAM excludes international capital markets,
so capital is immobile across regions. As noted by Krusell
and Smith (2022), this simplification has only minor effects
on the dynamics examined here. Consequently, regions in-
teract solely through the climate system, whose evolution is
determined by their collective energy-use choices and associ-
ated carbon emissions. Regions can adapt to climate change
by adjusting their capital accumulation and energy-use deci-
sions accordingly.
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2.2.5 Preferences

Agents in each region seek to maximize welfare, defined here
as the expected discounted utility of consumption:

E0

∞∑
t=0

β tNit U

(
cit

Nit

)
,

where β ∈ [0,1) is the discount factor, U(cit ) is the utility of
per capita consumption, and E0 denotes expectations formed
at time 0. They do so by choosing paths for consumption, in-
vestment, and energy use subject to the production and cap-
ital accumulation constraints outlined in Sect. 2.2.2. This is
a dynamic optimization problem in which agents’ decisions
hinge on expectations about future labor productivity, which
is itself influenced by climate conditions. Agents can there-
fore adapt to changes in regional climate by shifting their pat-
terns of consumption, investment, and energy use over time.

2.2.6 Climate feedback

Conventional IAMs link the economy and climate through a
simplified climate system and carbon cycle: global emissions
feed into this reduced-form climate representation, which
then produces projections of climate variables – typically
global and regional mean temperatures. These climate vari-
ables, in turn, affect economic productivity. While compu-
tationally convenient, this leaves out many of the complex,
region-specific processes that drive climate change and its
impacts.

Our approach replaces this simplification with a di-
rect coupling between regional emissions and NorESM2, a
state-of-the-art Earth System Model described in Sect. 2.4.
NorESM2 resolves the physical climate system in much
greater detail, simulating geophysical responses – including
temperatures – at high spatial and temporal resolution. This
enables the economic model to respond to a climate sig-
nal that captures fine-scale processes, regional heterogeneity,
and nonlinear interactions often omitted in IAMs.

Realizing this coupling requires overcoming two key chal-
lenges. First, DIAM operates on annual decision intervals,
whereas NorESM2 advances in much finer time steps –
hourly or sub-hourly. Within each DIAM year, NorESM2
must run many high-frequency computations before return-
ing updated climate and weather inputs. Section 3 describes
how this temporal mismatch is reconciled.

Second, NorESM2’s high-dimensional, nonlinear dynam-
ics make it computationally impossible to embed directly
into DIAM’s regional optimization problem. To address this
difficulty, the next section develops a standalone version of
DIAM with a simplified climate representation calibrated
to remain broadly consistent with NorESM2. This allows
agents to form approximate yet reliable climate forecasts,
keeping their decisions close to the true optimum while mak-
ing the coupled system computationally feasible.

2.3 The standalone version of DIAM

This section describes a simplified version of DIAM in which
agents forecast regional temperatures using a reduced-form
climate model. This standalone model facilitates solving
the regional optimization problems and enables computing
an economic equilibrium – defined as a fixed point where
agents’ forecasts align with realized outcomes. Computing
this fixed point offers a tractable approach for approximating
equilibrium in the full coupled model.

Section 2.3.1 introduces the statistical approach used to
forecast regional temperatures, Sect. 2.3.2 outlines the opti-
mization problem faced by agents, and Sect. 2.3.3 explains
how equilibrium is computed in the standalone setting.

2.3.1 Statistical temperature forecasting

In the standalone DIAM, agents forecast regional temper-
atures – key determinants of productivity – using a low-
dimensional statistical approach. This forecast approximates
NorESM2’s geophysical dynamics and can be calibrated
using both historical and future scenario simulations of
NorESM2.

The model has two components. The first relates the ex-
pected regional temperature in region i at time t to cumula-
tive global carbon emissions since the pre-industrial era:

T it = T i + γi1St + γi2S
2
t , (1)

where T i is the pre-industrial temperature in region i and St
denotes cumulative global emissions up to the beginning of
period t . The justification for using a quadratic rather than
linear functional form, along with details on how the pa-
rameters γi1 and γi2 are estimated from data, is provided in
Sect. 4.7.

The second component captures deviations from the ex-
pected temperature due to internal climate variability. While
these fluctuations follow nonlinear, non-stochastic laws of
motion in NorESM2, they are modeled stochastically here
as an AR(1) process:

zi,t+1 = ρizit + εi,t+1, (2)

where {εit } is a sequence of independent, normally dis-
tributed shocks with mean zero and standard deviation σi .
The realized temperature is then:

Tit = T it + zit .

The parameters ρi and σi are also estimated using data from
NorESM2 simulations (see Sect. 4). We assume that these
parameters remain constant as the climate warms, and leave
the exploration of potential deviations from this assumption
to future work.

2.3.2 Dynamic optimization

To make forward-looking decisions, agents form expecta-
tions about future temperatures using the statistical model
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introduced in Sect. 2.3.1. Because a single region’s emis-
sions have a negligible effect on global totals, agents treat
the sequence of cumulative global emissions S≡ {St }∞t=0 as
exogenous when making decisions. Furthermore, since an-
nual fluctuations in global emissions are small relative to
their overall level, agents assume that this sequence is de-
terministic. These assumptions enable them to forecast the
expected component of regional temperature.

Given physical capital and effective labor, agents choose
energy use to maximize net output of final goods. This static
optimization yields a decision rule for energy use:

hxit (kit ,zit )= argmax
xit
[F(kit ,Lit ,xit )− ζxit ], (3)

where

Lit =NitAitD(T it + zit ).

The decision rule for optimal energy use is time-varying be-
cause effective labor Lit depends on population Nit , exoge-
nous productivity Ait , and expected temperature T it – all of
which follow deterministic paths that agents take as given
when solving their optimization problems.

The investment decision is dynamic and is characterized
recursively by the Bellman equation:

vit (ωit ,zit )=

max
ki,t+1

[
NitU(ωit − ki,t+1)+Et (vi,t+1(ωi,t+1,zi,t+1))

]
,

where vit (ωit ,zit ) is the value function, representing the op-
timal expected utility from period t onward, given current
wealth ωit and the current temperature deviation zit , which
serves as a sufficient statistic for computing forecasts of fu-
ture temperature deviations. Regional wealth ωit in any pe-
riod t is defined as:

ωit = F(kit ,Lit ,xit )− ζxit + (1− δ)kit , (4)

with energy use xit chosen optimally according to the static
decision rule.

The expectations operator Et in the Bellman equation de-
notes integration of vi,t+1(ωi,t+1,zi,t+1) over the conditional
distribution of zi,t+1 given zit . According to the statistical
temperature forecast in Sect. 2.3.1, this distribution is nor-
mal with mean ρzit and standard deviation σi . Note that the
value function in period t + 1 depends both directly and in-
directly on zi,t+1, since future wealth ωi,t+1 also varies with
zi,t+1.

Solving the Bellman equation yields a decision rule for
investment:

ki,t+1 = h
k
it (ωit ,zit ), (5)

This decision rule is time-varying, as it depends on the entire
forward-looking path – from period t onward – of popula-
tion, exogenous productivity, and expected temperature, all

of which evolve deterministically. Each region faces a dis-
tinct optimization problem due to differences in these trajec-
tories and in the region-specific parameters that govern tem-
perature forecasts: T i , γi1, γi2, ρi , and σi . We solve each re-
gion’s dynamic programming problem numerically using the
endogenous grid method (see Appendix A for details). Solv-
ing the approximately 19 000 dynamic programs in parallel
is straightforward and takes about five minutes in Julia using
80 cores on Yale University’s High Performance Cluster.

2.3.3 Equilibrium

This section examines equilibrium in the standalone model
under the assumption that the statistical temperature forecast-
ing approach in Sect. 2.3.1 accurately describes the actual
evolution of regional temperatures. Under this assumption,
the standalone model is fully self-contained and requires no
interaction with NorESM2 in any period. We further assume
that, when simulating the standalone model, there is no inter-
nal variability: all realized temperature deviations zit are set
to zero, so that realized regional temperatures exactly match
their expected values in every period. Under these conditions,
a perfect-foresight equilibrium is defined as a fixed point in
the sequence S of cumulative global emissions: agents take S
as given when solving their optimization problems, and their
optimal decisions reproduce the same sequence S.

To compute this equilibrium, we begin with an initial
guess for the global emissions sequence {E(0)t }

T
t=0, truncating

the infinite horizon at T > tg so thatEt = 0 when tg ≤ t ≤ T .
Using this sequence we calculate the corresponding cumu-
lative emissions sequence S(0) via S(0)t+1 = S

(0)
t +E

(0)
t with

S
(0)
0 predetermined. Given S(0), each region’s decision rules

are computed by solving its dynamic programming problem
backward from t = T to t = 0 as described in Appendix A.
We then simulate the global economy forward in time from
the initial regional capital stocks, imposing zit = 0 for all
i and t . Energy use and capital accumulation follow xit =

hxit (kit ,0) and ki,t+1 = h
k
it (ωit ,0), where wealth ωit is given

by Eq. (4) with Lit =NitAitD(T it ).
The forward simulation produces a new global emissions

sequence {E(1)t }
T
t=0 and corresponding cumulative emissions

S(1). If S(1) is within the chosen convergence tolerance of
S(0), we take S(1) as the equilibrium sequence S∗. Otherwise,
we update the guess by replacing S(0) with S(1) and repeat
the backward–forward iteration until convergence. In prac-
tice, this algorithm converges after a small number of itera-
tions (typically five or fewer). The resulting S∗ serves as a
candidate for the equilibrium path of cumulative emissions
in the fully coupled NorESM2–DIAM model.
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2.4 The Norwegian Earth System Model version 2
(NorESM2)

Earth System Models (ESMs) are state-of-the-art computa-
tional models designed to simulate and understand the dy-
namics of the climate system. They divide the atmosphere,
ocean, and land surface into a three-dimensional grid, within
which they numerically solve equations that describe key
physical, chemical, and biological processes. These calcu-
lations are typically performed at hourly or even sub-hourly
time steps, generating high-resolution output across time and
space for a wide range of climate variables, including tem-
perature, precipitation, wind, and carbon stocks. Processes
that cannot be resolved directly – either because they occur
at scales smaller than the grid or are too complex to model in
full detail – are represented using simplified representations
known as parameterizations.

NorESM2 is an ESM with coupled atmosphere, ocean,
land, river transport, and sea ice (for full description see Se-
land et al., 2020), which contributed to the 6th phase of the
Coupled Model Intercomparison Project (CMIP6; Eyring et
al., 2016). It is largely based on the Community Earth System
Model version 2 (CESM2; Danabasoglu et al., 2020) with
two main differences:

1. The atmospheric component, the Community Atmo-
sphere Model (CAM6) is replaced by CAM6-Nor,
which includes several modifications from CAM6: A
different aerosol module OsloAero6 (Kirkevåg et al.,
2018), specific modifications and tunings of the atmo-
sphere component (Toniazzo et al., 2020), as well as
an updated parameterisation of turbulent air-sea fluxes
(The NorESM developers group, 2020).

2. A different ocean model with isopycnic coordinates:
The Bergen Layered Ocean Model (BLOM; The
NorESM developers group, 2020), which is coupled to
the Hamburg Ocean Carbon Cycle Model (Tjiputra et
al., 2020).

We use the NorESM2-LME configuration, which has an
active carbon cycle enabled. This version has 1° ocean and
sea ice resolution, 2° atmosphere and land resolution, 32 ver-
tical layers in the atmosphere, a 30 min time step for atmo-
sphere, land, and sea ice, and a 1 h time step for the ocean
(Seland et al., 2020). When the carbon cycle is active, the
model calculates greenhouse gas concentrations from spa-
tial emissions, otherwise, the greenhouse gas concentrations
must be prescribed.

The climate of NorESM2 has been assessed through var-
ious experiments (see Eyring et al., 2016, for details of
the benchmark simulations). Its historical simulations fol-
low the observations relatively well, although NorESM2 has
a weaker warming between 1930 and 1970 than the obser-
vations (Seland et al., 2020). Simulations with a 1 % in-
crease in CO2 each year until doubling, and with an abrupt

quadrupling of CO2 were performed to calculate the tran-
sient climate response (TCR; the temperature change at dou-
bling of CO2 without climate stabilization) and an approxi-
mation of the equilibrium climate sensitivity (ECS; temper-
ature change at doubling of CO2 after the climate has sta-
bilised), respectably (Eyring et al., 2016). In NorESM2, TCR
is 1.48 K and ECS is 2.54 K (Seland et al., 2020), which is
within the likely ranges estimated by the IPCC (Forster et
al., 2021) – although at the lower end.

2.4.1 The carbon cycle

The carbon cycle describes the exchange and storage of car-
bon between the atmosphere, ocean, land surface, and litho-
sphere through physical, chemical, and biological processes.
The carbon cycle includes several feedbacks with other com-
ponents of the climate system: Changes in climate due to in-
creased carbon in the atmosphere (e.g., increasing tempera-
ture or changing precipitation) may change the rate of car-
bon transfer (e.g., photosynthesis) or carbon storage capacity
(e.g., forest or permafrost), thus either amplifying or reduc-
ing the initial increase.

In the carbon cycle of NorESM2, anthropogenic carbon
emissions from fossil fuel combustion and changes in land
use are prescribed. The carbon cycle is represented mainly
through the land model (CLM5; Lawrence et al., 2019) and
the biogeochemical component (iHAMOCC) coupled with
the ocean component (BLOM) (Tjiputra et al., 2020). The
land model simulates the uptake, storage, and release of car-
bon from vegetation and soil through photosynthesis, respi-
ration, and decomposition, as well as nitrogen cycling and
disturbances such as forest fires (Lawrence et al., 2019). The
biogeochemical component calculates the partial pressure of
CO2 based on temperature, salinity, dissolved inorganic car-
bon, and alkalinity, and uses it to calculate the air-sea CO2
fluxes (Tjiputra et al., 2020). An ecosystem module simulates
phytoplankton and zooplankton with limiting nutrients (ni-
trate, phosphate, and dissolved iron), dissolved organic car-
bon, and particulate matter (The NorESM developers group,
2020). Furthermore, there are vertical fluxes of organic and
inorganic carbon, and the former is remineralized at a given
rate (Schwinger et al., 2016). Finally, a sediment module col-
lects the non-remineralized particle matter (The NorESM de-
velopers group, 2020).

2.4.2 Preparing NorESM2 for coupling

Before NorESM2 was ready for use, it was initialized and
run to a steady state – a process known as the spin-up. This
was carried out by the NorESM2 developers’ group (The
NorESM developers group, 2020; Seland et al., 2020) in par-
allel with the final calibrations of the model: They initialized
NorESM2 – without an active carbon cycle – with a combi-
nation of previous model simulations and observational es-
timates for the pre-industrial climate (i.e., year 1850). Hu-
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man emissions of greenhouse gases and aerosols were set
to zero or close to zero. The model was then run for more
than 1000 years to allow the climate to reach a steady state.
During the spin-up, some additional model parameters were
tuned to reach this steady state. Finally, the carbon cycle was
turned on and the model ran another for 100 years.

For the prototype NorESM2–DIAM coupling, only CO2
emissions are included. The model is initialized from 1850
pre-industrial conditions, with all non-CO2 anthropogenic
forcings fixed at 1850 levels. CO2 emissions follow the
CMIP6 historical dataset (Eyring et al., 2016) until 1990, af-
ter which they are endogenously determined by the energy-
use decisions of agents. An extension to NorESM2–DIAM
which links economic activity to the emission of other cli-
mate forcing agents than CO2 will be the focus of future re-
search.

No changes to the model code were necessary for the pur-
pose of the coupling.

3 Coupling

This section describes how the two components of
NorESM2–DIAM are coupled. The procedure has three
stages: (1) compute the equilibrium of the standalone DIAM,
which serves as a candidate equilibrium for the coupled
model; (2) run a dynamic simulation of the fully coupled sys-
tem, exchanging information between the two components at
each annual time step; and (3) assess the accuracy of the can-
didate equilibrium.

In the first stage, we solve for the equilibrium path of cu-
mulative emissions, S∗, in the standalone DIAM without in-
ternal variability, as described in Sect. 2.3.3. Doing so yields
time-varying regional decision rules for optimal investment
and energy use, given S∗. These rules rely on the tempera-
ture forecasting approach described in Sect. 2.3.1; however,
in the fully coupled NorESM2–DIAM, climate and weather
outcomes are generated by the complete NorESM2 dynam-
ics.

In the second stage, we simulate the coupled global
economy–climate system on a year-by-year basis using the
decision rules computed in the first stage. A key challenge
is a temporal mismatch: NorESM2 operates on hourly or
sub-hourly time steps, while DIAM operates annually. Con-
sequently, economic decisions are fixed once per year and
cannot respond to intra-annual weather fluctuations.

To address this temporal mismatch, we assume that re-
gional energy use in year t equals its conditional expectation,
formed in year t −1 based on the year-t capital stock kit (set
the previous year) and the previous year’s temperature devi-
ation zi,t−1 from its expected value in year t − 1 as specified
in Eq. (1). Using the decision rule for energy use, this condi-
tional expectation, to first order, is:

xit = h
x
it

(
kit ,Et−1(zit )

)
, Et−1(zit )= ρi zi,t−1.

NorESM2 uses the resulting regional emissions φitxit –
distributed evenly across the year – to advance the climate by
one year, producing high-frequency weather data, including
temperature, for each sub-period. The realized annual aver-
age temperature in region i is denoted Tit . Actual energy use
is then

xzit = h
x
it (kit ,zit ),

where zit is the deviation of Tit from its expected value, T it ,
in year t .

Reconciling the temporal mismatch in this way introduces
a small gap between actual and expected emissions, given
by xzit − xit . This gap averages to zero over time, and each
year’s gap is added to the next year’s expected emissions for
consistency.

Regional wealth evolves each year according to

ωit = F
(
kit , NitAitD(Tit ), x

z
it

)
−pxzit + (1− δ)kit . (6)

Once the state variables ωit and zit have been updated, the
model advances to the next annual cycle. The capital stock
for year t + 1 is then determined by the investment rule in
Eq. (5), completing the sequence of yearly decisions.

Appendix A contains additional details on how we execute
the coupled simulation.

In addition to the temporal mismatch, there is also a
spatial mismatch: DIAM operates at a 1° resolution, while
NorESM2 uses 2° resolution for its atmosphere and land
components. We reconcile these grids using linear interpo-
lation.

In the third and final stage, we evaluate the accuracy of the
candidate equilibrium by assessing whether the behavior of
the fully coupled simulation aligns with the temperature fore-
casts that agents rely on to make optimal decisions. The main
task is to compare the cumulative emissions path from the
coupled run, Sc, with the fixed-point path S∗ from the stan-
dalone DIAM. Internal variability – absent in the calculation
of S∗ – introduces persistent weather-driven fluctuations in
the coupled run, producing year-to-year variation in global
emissions and hence in Sc. These deviations, however, are
small and agents would gain little from incorporating them
into the temperature forecasts guiding their decisions. Apart
from these minor discrepancies, Sc and S∗ track each other
closely, as we discuss in detail in Sect. 5. Consequently, we
find that there is no need to refine the candidate equilib-
rium through additional iterations between successive full-
model simulations. This conclusion has important practical
significance for our methodology: running NorESM2–DIAM
is computationally demanding – each annual cycle requires
about an hour on a supercomputer – whereas computing the
candidate equilibrium in the standalone model typically takes
less than an hour in total.
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4 Calibration

This section details the calibration of parameters in DIAM,
including the temperature forecasting approach used in the
standalone version. It also outlines the choice of initial re-
gional capital stocks and the construction of projected trajec-
tories for regional population and the exogenous component
of regional productivity. The base year in the calibration is
1990, the earliest date for which we have regional data on
output and population.

4.1 Production technology

The production function F(k,L,x) is Cobb-Douglas and ex-
hibits constant returns to scale:

F(k,L,x)= (kαL1−α)θx1−θ , (7)

where α, capital’s share of income (or GDP), is set to 0.36.
The productivity of the final-good sectors relative to the

energy sector, ζ , equals the equilibrium price, p, of a unit
of energy. Let sit denote the share of energy production in
region i in year t , measured as a fraction of regional GDP:

sit =
pxit

yit
.

In equilibrium, each region chooses energy to solve the op-
timization problem in Eq. (3). The first-order condition for
this problem sets the marginal product of energy equal to p:

Fx(kit ,Lit ,xit )= p. (8)

This condition implies that the energy share is constant:

sit =
θ

1− θ
≡ s.

Following Krusell and Smith (2022), we set θ = 0.058, so
that s equals the observed global energy share of GDP in
1990.

The price p is pinned down by matching global data from
1990:

p =
sYi0

Xi0
,

where Yi0 is global GDP in 1990 (USD 36.1 trillion in 1990
according to the G-Econ database discussed in further detail
in Sect. 4.3) andXi0 is global energy use in 1990 (10.3 Gtoes
as reported in Krusell and Smith, 2022). This gives a cali-
brated value of p = 0.203.

The annual growth rate, g, of the exogenous component of
labor productivity, Ait , is set to 1.5 % across all years and re-
gions. Allowing for variation across regions and years would
be straightforward, but we leave this for future work. Sec-
tion 4.3 explains how the initial regional levels Ai0 are deter-
mined.

The parameter ψ measuring gigatons of carbon emissions
per Gtoe in 1990 is set to 0.586 to match global emissions of
6.03 GtC in 1990. Finally, the annual rate of depreciation of
the capital stock, δ, is set to 0.06.

4.2 Preferences

The period utility function U(c)= log(c). Along a balanced
growth path (after the transition to clean energy is complete),
the equilibrium interest rate r∗ ≡ β−1(1+g)−1. We set β =
0.985, so that r∗ = 0.03, or 3 % per year.

4.3 Initial regional capital stocks and productivity

We use version 4.0 of the G-Econ database (Nordhaus et
al., 2006) to obtain regional GDP, yi0, and population, Ni0,
in 1990. Regions with very small populations are excluded,
leaving 19 240 regions in total. Figure 2 displays the loga-
rithm of regional GDP in 1990, revealing substantial hetero-
geneity across space.

Let labor productivity in region i in 1990 be ai0 =

Ai0D(Ti0). To determine values for ai0 and physical capital
ki0 in 1990, we impose two conditions. First, regional GDP
in the model must match GDP yi0 in the G-Econ database in
1990:

F(ki0,Li0,xi0)−pxi0 = yi0,

whereLi0 =Ni0ai0 is effective labor in 1990 and the optimal
energy choice xi0 satisfies the first-order condition in Eq. (8).

Second, consistent with the evidence in Caselli and Feyrer
(2007), we require that the marginal net return to capital be
equalized across regions in 1990:

Fk(ki0,Li0,xi0)− δ = r
∗,

where Fk is the marginal product of capital. We set the com-
mon net return to r∗, under the assumption that in 1990 the
global economy was approximately on a balanced growth
path (when the effects of global warming were still small).
The initial value of Ai0 is then equal to ai0/D(Ti0), using
the damage function D specified in Sect. 4.5.

4.4 Population

To construct time paths for regional population from 1990 to
2140 (the time horizon of DIAM), we proceed in five steps.

– Step 1. Historical data (1990–2005). We begin with the
G-Econ database, which provides regional population
data for 1990, 1995, 2000, and 2005. Linear interpola-
tion is used to fill in annual values between these bench-
mark years.

– Step 2. Regional shares within countries. For 1990–
2005, we compute each region’s share of its country’s
total population. Because these shares evolve over time,
we project them forward to 2100 by assuming that the
logarithm of the shares follows a linear trend estimated
from the 1990–2005 data. We keep the shares con-
stant after 2100. The key idea is that multiplying these
projected shares by country-level population yields re-
gional population after 2005.
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Figure 2. Logarithm of regional GDP in 1990.

– Step 3. Country-level population growth rates. To con-
struct country-level populations, we first calculate an-
nual growth rates from 2006 to 2100 using data from the
2024 Revision of the United Nations World Population
Prospects (United Nations, 2024): historical estimates
up to 2024 and projections thereafter. Beyond 2100, we
assume that annual growth rates decline linearly to zero
by 2140.

– Step 4. Country-level population paths. Using these
growth rates, starting from the G-Econ country-level
populations in 2005, we generate annual country-level
population paths from 2006 to 2140.

– Step 5. Regional populations. Finally, we obtain re-
gional populations by multiplying the country-level
populations by the projected regional shares.

Figure 3 shows the projected percentage change in re-
gional populations between 1990 and 2100. The results high-
light a pronounced demographic shift: sharp population de-
clines in Europe, Russia, and East Asia are counterbalanced
by substantial growth in Africa and the Middle East.

4.5 Damages and regional temperature

The damage function D(Tit ) captures how labor productiv-
ity, measured as a fraction of optimal productivity Ait at any
point in time, varies with regional temperature Tit . It has an
inverseU -shape and is normalized so that its maximum value
equals 1 at its peak T ∗:

D(Tit )=


(
(1− d)e−κ

+(Tit−T
∗)2
+ d

) 1
1−α if Tit ≥ T ∗(

(1− d)e−κ
−(Tit−T

∗)2
+ d

) 1
1−α if Tit < T ∗,

(9)

where the parameter d is a lower bound on D1−α . The pa-
rameters κ− and κ+ govern how quickly D declines from its
peak to the left and right sides of T ∗, respectively. Follow-
ing Bjordal et al. (2022), we set T ∗ = 12.61, κ− = 0.00328,

κ+ = 0.00363, and d = 0.02, so the optimum temperature is
approximately 12.6 °C and the U -shape is bounded below by
0.02 and asymmetric, declining more rapidly to the right of
the peak than to the left; see Fig. 4.

Figure 5 displays regional productivity using annual tem-
peratures in 1990. There is substantial heterogeneity in pro-
ductivity across space, reflecting the wide variation in re-
gional temperatures. In addition, comparing to Fig. 2, regions
with high GDP in 1990 tend to have productivity near the
peak of D, while regions with low GDP tend to have lower
productivity. The shape of D plays a key role in determin-
ing aggregate economic damages from global warming; we
discuss these further in Sect. 5.

4.6 The transition to green energy

The economic model assumes that energy use gradually be-
comes green, represented by the sequence {φt }. The initial
value, φ0, is normalized to 1, so that the dirtiness of energy
use is measured relative to 1990. We assume that φt = 0 for
t ≥ tg , after which point energy use is fully green. To model
the transition, we use a logistic function of time:

H(t)=

(
1+ exp

(
log

(
0.01
0.99

)
t − n0.5

n0.01− n0.5

))−1

,

with parameters n0.01 = 10 and n0.5 = 75. This function is
close to 1 when t = 0 and declines slowly at first before ac-
celerating, with H(10)= 0.99, H(75)= 0.5, and H(140)=
0.01. For t < tg , we then define

φt =
H(t)

H(0)
.

Figure 6 shows 1−φt , which we refer to as the greening
function. The transition is slow in the early decades: by 2025,
only about 5 % of energy use is green. This aligns reasonably
well with observed data: the share of green energy (renew-
ables and nuclear) was 11.3 % in 1990 and 17.6 % in 2024
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Figure 3. Percent change in population from 1900 to 2100. The color bar is not linear; instead each increment in the color bar represents the
same number of regions.

Figure 4. The damage function in DIAM as given in Eq. (9). The
optimum temperature is approximately 12.6 °C.

according to Ritchie and Rosado (2020) so an incremental
5 % greening relative to 1990 by 2025 is consistent. After
2025, the pace accelerates, with half of energy use projected
to be green by around 2065.

To conserve on computation time, we run the fully-
coupled model only until 2100, at which point we assume
that energy use becomes fully green (i.e., we set tg = 111).
We make this assumption so that, when computing deci-
sion rules using the standalone model, regional temperatures
reach a steady state in 2100. The consequent small kink in
the greening function has negligible effects on the quantita-
tive results because annual emissions are already quite low
by 2100 and, consequently, their impact on cumulative emis-
sions is close to zero by that point.

4.7 Temperature forecasts in the standalone model

In the standalone version of DIAM, agents form tempera-
ture forecasts using a simple statistical approach, described
in Sect. 2.3.1. First, they use cumulative CO2 emissions to

project the expected value of regional temperatures, as speci-
fied in Eq. (1). Second, they model stochastic deviations from
this expected value with an AR(1) process, given in Eq. (2).

To ensure consistency with NorESM2 – a key requirement
when coupling DIAM with the climate model – we estimate
the parameters of these two equations using data generated
by NorESM2. Specifically, we draw on three NorESM2 sim-
ulations with CO2 emissions as the sole forcing. The first
simulation begins in 1850, follows historical emissions un-
til 2014 (Eyring et al., 2016), and continues with a future
projection of CO2 emissions from SSP3-7.0 for 2015–2100
(van Vuuren et al., 2014; Kriegler et al., 2014; Riahi et al.,
2017). The other two simulations start in 1990 (branching
off from the first simulation) and extend to 2100, following
lower emissions trajectories derived from standalone DIAM
runs. All three simulations are shown in Fig. 7.

The estimation proceeds in two steps. In the first step, we
pool the three simulations and regress regional temperature
anomalies, T it − T i , on a quadratic function of cumulative
emissions (excluding a constant term), yielding estimates of
the parameters γi1 and γi2 in Eq. (1). In the second step, we
compute the residuals from this regression and regress them
on their lagged values (again excluding a constant) to esti-
mate ρi and σi in Eq. (2).

The relationship between temperature change and cumula-
tive CO2 emissions is referred to as the Transient Climate Re-
sponse to Cumulative CO2 Emissions (TCRE). It is generally
found to be nearly linear, both at the global scale (Matthews
et al., 2009; Canadell et al., 2021) and regionally (Leduc
et al., 2016). However, as seen in Fig. 7, in NorESM2 the
global temperature is a slightly concave function of cumula-
tive emissions. For that reason, we include a quadratic term
in Eq. (1), and we find that the estimates of γi2, the coefficient
on this term, are almost all negative (though small in absolute
value). This concavity likely reflects nonlinearities in certain
climate feedbacks captured by NorESM2, though exploring
these mechanisms lies beyond the scope of this paper.
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Figure 5. Regional productivity in 1990.

Figure 6. The greening function, showing the fraction of energy use
that is green.

Finally, Fig. 8 illustrates substantial heterogeneity in re-
gional warming responses: the amount of regional warming
associated with a one-degree increase in global mean tem-
perature (over populated areas only, relative to 1990) varies
widely, from less than one degree in much of the Southern
Hemipshere to more than one degree – and as high as several
degrees – in the northern latitudes. The AR(1) estimates also
display heterogeneity: the median estimate of ρi is 0.266,
with an interquartile range (IQR) of 0.206 to 0.316, while
the median estimate of σi is 0.632, with an IQR of 0.497 to
0.862.

5 Results

This section presents the quantitative findings from our new
coupled model. We begin by verifying that the candidate
equilibrium computed with the standalone model is consis-
tent with the behavior of the fully coupled system. We then

Figure 7. NorESM2 global mean temperature change from pre-
industrial over land against cumulative emissions since 1850. The
red line shows the global mean expected temperature over land ob-
tained by summing Eq. (1) across regions. The black dots are from
a NorESM2 simulation with historical CO2 emissions followed by
the CO2 emissions from SSP3-7.0. The light and dark gray dots are
from two NorESM2 simulations from 1990 until 2100 with much
lower total emissions at the end of the century.

analyze the secular trends in temperature and GDP projected
by the model, both globally and regionally. Finally, we in-
vestigate short-term fluctuations in global and regional GDP,
highlighting the deviations from long-term trends that arise
from internal variability in NorESM2–DIAM.

5.1 Assessing the candidate equilibrium

We initialize cumulative emissions in 1990 to match the
historical NorESM2 input (Eyring et al., 2016). Figure 9
presents the equilibrium path of cumulative emissions in
the standalone model (absent internal variability), alongside
historical emissions through 2014 and four Shared Socioe-
conomic Pathway (SSP) projections thereafter. From 1990
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Figure 8. Regional warming in response to a 1 °C increase in area-weighted average temperature (over regions with economic activity) based
on the statistical temperature forecast approach. The color bar is not linear; instead each increment in the color bar represents the same
number of regions.

Figure 9. Cumulative CO2 emissions (excluding land–use change)
since 1850 for the years 1980 to 2100 measured in GtC. The black
line is the emissions used by NorESM2 for historical simulations,
based on estimated historical emissions, and goes until 2014. The
four blue lines are the emissions used in the four most common
emission scenarios, starting in 2014. The yellow line is cumulative
emissions from the standalone model, which starts from the histor-
ical cumulative emissions in 1990.

to 2024, the standalone model closely tracks observed cu-
mulative emissions. Beyond 2024, its trajectory aligns most
closely with SSP3-7.0, before flattening and ultimately end-
ing the century between SSP2-4.5 and SSP3-7.0.

Figure 10 shows the difference in annual and cumulative
emissions between the standalone model and those gener-
ated by NorESM2–DIAM. In the coupled model, internal
variability in regional temperatures causes realized regional
emissions – which depend on actual rather than expected
temperatures – to diverge from expectations. These devia-
tions do not cancel out across regions: even at the global
level, emissions often differ from the standalone model by
several percentage points in absolute value, as shown by the
black line in Fig. 10. However, because annual flows are

Figure 10. Percentage difference in annual emissions (black)
and cumulative emissions (grey) between the coupled NorESM2–
DIAM simulation and the DIAM standalone.

small relative to the stock of cumulative emissions, the cou-
pled model’s cumulative emission path remains close to that
of the standalone model, differing by no more than 0.4 %
(gray line in Fig. 10). As a result, agents’ forecasts of fu-
ture expected temperature – based on the standalone model’s
cumulative emissions path – are highly accurate: account-
ing for the minor deviations in the coupled model would
change forecasts only marginally. Taken together with the
assumption that the AR(1) process describing deviations of
regional temperature from its expected path is invariant to
global warming (see Sect. 2.3.1), this result supports the con-
clusion that the behavior of the coupled model provides a
reasonable approximation to an exact economic equilibrium.

5.2 Global change

Figure 11a displays the path for population-weighted global
temperature in NorESM2–DIAM, together with the trend
path from the standalone model. (We use population-
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weighted temperature to focus on regions where people live;
recall that regional population shifts over time so that the
population weights change over time.) The global temper-
ature in NorESM–DIAM tracks the trend path, providing ad-
ditional evidence that the behavior of NorESM–DIAM aligns
with the candidate equilibrium from the standalone model.
There are substantial variations in global temperature around
this trend path, driven by internal variability in NorESM2.
Comparing with Fig. 10, there is a positive relationship be-
tween deviations of global emissions and deviations of global
temperature from their respective trend paths: higher temper-
atures tend to reduce global productivity (as we discuss fur-
ther below), in turn leading to lower energy use and fewer
emissions.

Note that the NorESM2–DIAM simulation begins from a
relatively cold temperature compared with the trend path in
the standalone model. This discrepancy reflects two factors:
the historical simulation used to initialize NorESM2–DIAM
is relatively cool in 1990, and the statistical temperature fore-
cast provides a less precise fit at low levels of cumulative
emissions (see Fig. 7). Nevertheless, the statistical tempera-
ture forecast captures NorESM2’s behavior well overall.

The corresponding change in global GDP is shown in
Fig. 11b, expressed as a percentage relative to 1990. To iso-
late the effects of climate change and population dynam-
ics, we remove the underlying constant growth rate of 1.5 %
driven by the exogenous component of productivity. As ex-
pected, GDP in NorESM2–DIAM closely tracks the stan-
dalone model, consistent with the alignment in temperatures
between the two models. Global GDP rises until around
2040, reaching about 35 % above 1990 levels, before be-
ginning to decline. The initial increase reflects population
growth, which peaks in the 2080s, while the subsequent
downturn results from both population shifts and the impacts
of climate change, as we discuss further below.

Finally, Fig. 11c displays the change in global GDP per
capita since 1990 (again with the underlying growth trend
of 1.5 % removed). Once again, NorESM2–DIAM tracks the
trend in the standalone model closely, and in both models
global GDP per capita declines by about 35 % by 2100.

To understand this decline, Fig. 11c also displays the re-
sults of two counterfactual experiments using the standalone
model, one in which the climate changes over time but re-
gional population does not, and another in which regional
population changes over time but the climate does not. These
experiments reveal that most of the decline in GDP per capita
(about 64 %) can be attributed to shifts in regional popula-
tion. In particular, as shown in Fig. 3, according to our pro-
jections, the distribution of global population changes strik-
ingly over time, with population tending to grow (shrink) in
regions that are relatively poor (rich) in 1990, as measured
by the initial value of the exogenous component of produc-
tivity (which in turn reflects differences in regional GDP per
capita in 1990). Even as global GDP increases initially (due
to a growing global population), global GDP per capita de-

Figure 11. Global mean values of (a) population weighted tem-
perature change from pre-industrial, (b) percentage change in GDP
since 1990, and (c) percentage change in GDP per capita since 1990.
For GDP and GDP per capita the exogenous growth is removed.
The solid line is the value from the DIAM standalone model, while
the dashed line is the calculated value from the coupled NorESM2–
DIAM. Panel (c) also shows the decomposition of GDP per capita
into contributions from population only (green), climate change
only (red), and interaction effects (yellow).

clines throughout because poor regions are becoming rela-
tively more populated.

Climate change alone, in turn, causes a decline of about
8 % in GDP per capita by 2100, or about 23 % of the to-
tal decline. This decline is a quantitative measure of the
global damages from climate change generated by NorESM–
DIAM when the global (population-weighted) temperature
increases by close to 3.5 °C. These global damages are larger
than in the most recent version of Nordhaus’s DICE model
(see Barrage and Nordhaus, 2024, in which damages are
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about 4 % of global GDP at 3.5 °C of warming) but in
line with other estimates in the literature (see, for exam-
ple, Rennert et al., 2022). In NorESM2–DIAM, global dam-
ages depend critically on the regional damage function D
(see Fig. 4), and the specific calibration of this function that
we use here can then be viewed as a reasonable one in the
sense that it generates quantitatively reasonable global dam-
ages (see Krusell and Smith, 2022, and Bjordal et al., 2022,
for a thorough discussion).

The rest of the decline in global GDP per capita (about
13 %) can be attributed to an interaction effect between cli-
mate change and population shifts, as shown in Fig. 11c:
in particular, population tends to shift over time not only
to poorer regions but also to hotter regions, that is, regions
whose initial temperatures in 1990 are to the right of the op-
timum temperature in see Fig. 4 and which therefore expe-
rience greater damages from climate change than cooler re-
gions. (The latter may even experience gains from climate
change if they are cool enough, a point to which we return in
Sect. 5.3 below.)

As discussed in Sect. 4.1, in our calibration the exogenous
component of productivity has the same constant growth rate
in all regions. A more realistic calibration might allow poorer
regions to grow faster initially as they catch up to the global
technology frontier. Such a calibration would lead to a differ-
ent decomposition than the one displayed in Fig. 11c, likely
reducing the role of population shifts in causing declines in
global GDP per capita. It is entirely feasible in our method-
ology to allow the growth rate of the exogenous component
of productivity to vary across time and space, but we leave
this to future work.

5.3 Regional change

We now turn to patterns of regional change. Figure 12 shows,
for both the standalone model and the fully-coupled model,
projected changes in regional temperature from 1990 to 2040
and 2090 in response to global warming. Consistent with
Fig. 8, regions in high northern latitudes warm the most, re-
flecting Arctic amplification (Meredith et al., 2019). Differ-
ences between the standalone and NorESM2–DIAM simula-
tions reflect internal variability in NorESM2–DIAM, which
is suppressed in the standalone model.

The maps in Fig. 13 show how the percentage change in
GDP per capita is distributed corresponding to the tempera-
ture maps in Fig. 12. Note that these are relative to the under-
lying trend path growing at 1.5 % per year (driven by growth
in the exogenous component of productivity). There are large
differences across regions, with many regions’ economies
growing relative to trend growth, often by large amounts,
and other regions’ economies shrinking. Moreover, the dif-
ferences across regions increase substantially over time, with
the percentage changes in regional GDP from 1990 to 2090
displaying much more spatial variation than the percentage
changes from 1990 to 2040.

These patterns, in turn, reflect how regional productivity
varies over time as the global climate warms. Cool regions,
located to the left of the optimum temperature in the dam-
age functionD in 1990 (see Fig. 4), warm over time, leading
to increases in productivity as their temperatures move to-
wards the optimum temperature. Initially warm regions, by
contrast, decline in productivity as their temperatures move
away from the optimum temperature.

As for regional temperatures, the percentage changes
in regional GDP differ across the standalone model
and NorESM2–DIAM, reflecting internal variability in
NorESM2–DIAM: realized regional temperatures fluctuate
relative to expected temperature, leading to fluctuations in
productivity and hence GDP. We discuss this variability in
Sect. 5.4 below.

In the maps in Fig. 13, GDP per capita increases in large
areas, seeming to suggest that global GDP per capita in-
creases over time, rather than decrease as shown in Fig. 11c.
But it is important to note that most of the regions in which
GDP per capita increases have small populations and con-
sequently contribute little to global GDP. To see this more
clearly, Fig. 14a and b aggregates regions into countries
and shows the percentage change in each country’s tem-
perature and GDP per capita from the last decade of the
20th century (1990–1999) to the last decade of the 21st cen-
tury (2090–2099). These figures reveal that for most, though
not all, countries, GDP per capita declines over the cen-
tury. Moreover, global GDP per capita (see the circle la-
beled “GLOBAL”) has a larger decrease than most individual
countries.

To better understand this finding, Fig. 14a emphasizes the
effect of population. Here, the size of each circle corresponds
to initial population and the color of each circle corresponds
to changes in population. Many of the countries with a large
decrease in GDP per capita also have a large increase in pop-
ulation, whereas for many of the countries in which GDP per
capita increases, population decreases. Consequently, global
GDP per capita falls by more than it does in many individual
countries.

Figure 14b is the analogue of Fig. 14a, but here the size
of each circle corresponds to initial temperature (i.e., the
decadal average for 1990–1999) and the color of each circle
corresponds to GDP per capita in 1990–1999. As is the case
for individual regions, in warm countries GDP per capita de-
creases over time (relative to the underlying trend), while in
colder countries it increases. This figure shows clearly that
most poor countries (i.e., those represented by smaller cir-
cles) experience large damages from climate change in the
sense that GDP per capita falls substantially in them.

5.4 Variability in productivity and GDP

Internal variability in NorESM2–DIAM leads to large fluc-
tuations in regional temperatures around their trend paths,
as quantified in the estimated coefficients of the AR(1) pro-
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Figure 12. Maps of temperature change from pre-industrial for years 2040 and 2090, for the DIAM standalone and the coupled NorESM2–
DIAM. (a) is the DIAM standalone for year 2040, (b) is NorESM2–DIAM for year 2040, (c) is the DIAM standalone for 2090, and (d) is
NorESM2–DIAM for year 2090.

Figure 13. Maps of percentage change in regional GDP per capita (relative to the underlying trend path growing at 1.5 % per year) from
1990 to 2040 and 2090. (a) is the standalone model for year 2040, (b) is NorESM2–DIAM for year 2040, (c) is the standalone model for
2090, and (d) is NorESM2–DIAM for year 2090. Note that the color bar is not linear; instead each increment in the color bar represents the
same number of regions.

cess that agents use to make forecasts of future regional tem-
peratures (see Sect. 2.3.1). Likewise, the global temperature
fluctuates substantially around its trend path, as illustrated in
Fig. 11a.

These temperature fluctuations, in turn, lead to quantita-
tively significant fluctuations in productivity and hence in re-
gional and global GDP. Figure 15 shows that in NorESM2–
DIAM, the standard deviation of (annual) regional GDP, ex-
pressed as a percentage relative to its trend, ranges from
near zero to 33 %, with most values lying between 2 % and
10 %. The large spatial heterogeneity in this measure of GDP

volatility has two sources. First, there is substantial spatial
heterogeneity in the volatility of regional temperature itself.
Second, average regional temperatures vary greatly across
space, so that regions are located at very different points
along the inverse U -shaped damage function (see Sect. 4.5)
determining regional productivity. For a given amount of
volatility in regional temperature, regions near the peak of
the damage function experience smaller fluctuations in pro-
ductivity than regions either to the left or right of the peak
where the slope of the damage function is larger (in absolute
value).

Geosci. Model Dev., 19, 1337–1365, 2026 https://doi.org/10.5194/gmd-19-1337-2026



J. Bjordal et al.: NorESM2-DIAM – model description 1353

Figure 14. Country-level change in temperature and GDP per capita
in 2090–2099 compared to 1990–1999. (a) and (b) show each coun-
try’s percentage change in decadal GDP per capita on the y axis
against decadal population-weighted temperature change on the
x axis as calculated by NorESM2–DIAM. (c) show the differences
between NorESM2–DIAM and the standalone model for the change
in temperature and GDP per capita. In (a) each country’s circle, as
well as the global mean, is colored based on the percentage change
in population (2090–2099 compared to 1990–1999), and the size
indicates the population in year 1990. In (b) and (c) the top row,
each country’s symbol, as well as the global mean, is colored based
on the 1990–1999 population-weighted temperature, and the size
indicates the GDP per capita average over 1990–1999.

Figure 14c illustrates this variability at the country
level. Specifically, this figure shows the differences between
NorESM2–DIAM and the standalone model, i.e., the differ-
ence between the change from 1990–1999 to 2090–2099 in
the two models. Averaging over a decade dampens a consid-
erable amount of the internal variability in NorESM–DIAM.
Nonetheless, even over this longer horizon, internal vari-
ability still leads to quantitatively important variations in
GDP per capita. (Note that the contribution from popula-
tion changes is not relevant here, as the two have the same
population changes.) For example, in a cold country that ex-
periences a higher-than-normal temperature, productivity in-
creases, leading to an increase in GDP per capita in the short
run. Similarly, in a hot country that experiences a lower-
than-normal temperature, productivity also increases, lead-
ing again to an increase in GDP per capita. By contrast, in a
cold country that experiences a lower-than-normal temper-
ature (or in a hot country that experiences a higher-than-
normal temperature), productivity and GDP per capita fall
in the short run.

Finally, as shown in Fig. 11b, global GDP itself experi-
ences large fluctuations relative to its trend, about 1 % in
magnitude. The patterns of spatial correlation in regional
temperatures generated by NorESM2 play a key role in driv-
ing this variability in global GDP. To examine the role of
these patterns, we simulated the behavior of the standalone
model with regional temperature shocks drawn according to
Eq. (2), with the parameters of the regional AR(1) processes
calibrated to simulated data from NorESM2 as described in
Sect. 4. In the standalone model, these shocks are assumed
to be statistically independent across regions and therefore
exhibit no spatial correlation by construction. In this case,
fluctuations in global GDP are about 0.1 %, an order of mag-
nitude smaller than in the fully-coupled model. Failing to ac-
count for patterns of spatial correlation would therefore lead
to a large understatement of volatility in global GDP.

To gain further insight into the role of spatial correlation
in generating aggregate fluctuations, Sect. A8 in Appendix A
shows analytically, in a stylized model, that spatial correla-
tion can amplify the size of these fluctuations under certain
conditions that our calibrated model satisfies.

6 Discussion

We have developed a coupled model consisting of two main
components – an IAM and an ESM – that exchange infor-
mation every year at a gridded level. We find, like Krusell
and Smith (2022), Bjordal et al. (2022), and Cruz and Rossi-
Hansberg (2024), that changes to GDP per capita induced
by global warming vary greatly across regions, underscoring
again the importance of making regional assessments of eco-
nomic impacts. In line with previous research (Kotz et al.,
2021, 2024; Kikstra et al., 2021; Waidelich et al., 2024), we
also find that internal variability – which is ignored in most
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Figure 15. Standard deviation of regional GDP (expressed as a percentage relative to trend).

IAMs – can be important for assessing the economic impacts
of global warming, both annually and on longer time scales.

The quantitative results depend critically on the shape of
the regional damage function. We show that our calibra-
tion of the damage function generates aggregate damages
in line with existing estimates, but it is important in future
work to provide stronger empirical foundations for this func-
tion. Specifically, we plan to evaluate the quantitative effects
of different damage functions, including those that depend
on additional climate and weather variables beyond annual
mean temperature. The damage function we use here also as-
sumes implicitly that a permanent change in climate (such
as a permanent increase in average annual temperature) has
the same economic impacts as a transitory change in weather
(such as relatively hot or cold year), ignoring possible adap-
tation to changes in climate. We hope to address this short-
coming in future work too.

In the prototype model implemented here, NorESM2 and
DIAM exchange only regional temperatures and emissions.
But the NorESM2–DIAM framework opens many possibil-
ities for future model development. For example, we can
easily extend our methodology to include additional climate
variables which have been shown to be important for assess-
ing the economic damages of climate change. (Waidelich et
al., 2024; Kotz et al., 2024). NorESM2 already provides in-
formation on a plethora of climate and weather variables.
Given a damage function that depends on (a subset of) these
variables, extending the methodology simply requires incor-
porating these additional variables into the statistical model
that agents use to forecast future regional damages.

Another important question is whether climate change af-
fects the growth rate of economic activity, rather than merely
shifting the level of activity as in our prototype model. This
issue remains unsettled (see, e.g., Dell et al., 2012; Howard
and Sterner, 2017; Burke et al., 2015), but again our frame-
work can be readily extended to accommodate such effects
by modifying the damage function accordingly.

The economic model (DIAM) in the prototype model de-
veloped here is relatively simple, with several important lim-
itations that could be important for assessing the spatial ef-
fects of climate change. These include constant exogenous
productivity growth across time and space, no capital mo-
bility, and exogenous population changes. We also limit at-
tention to CO2, though including forcings from other green-
house gases would permit better a better representation of
how the climate changes in response to economic decisions.
However, many of these limitations (with the possible excep-
tion of migration in response to climate change) can be easily
incorporated into the existing framework. The advantage of
starting with a simple model is that its output is relatively
easy to understand and interpret. This model can also serve
as a baseline against which future model versions with more
complex connections between climate and the economy can
be compared.

An important limitation of NorESM2–DIAM, compared
to existing IAMs, is its computational cost. While IAMs such
as DICE or PAGE can be run in a matter of minutes or less
(e.g. Moore et al., 2018) on any computer, full ESMs – and
consequently NorESM2–DIAM – take hours or days on a su-
percomputer. Therefore, we must limit the number and length
of model simulations. However, the computational cost is
close to that of running an ESM, so running NorESM2 with
an economic module has a negligible effect on the overall run
time. In principle, NorESM2–DIAM can be used for all the
same experiments as IAMs. However, due to the computa-
tional cost, it makes most sense to use NorESM2–DIAM to
answer questions where a good representation of the climate
system and the carbon cycle is important, such as how ex-
treme weather events and internal variability affect economic
outcomes.

In addition to the NorESM2–DIAM model, we now have
a simple representation of NorESM2’s climate in the stan-
dalone version of DIAM. The standalone model is computa-
tionally inexpensive relative to the full coupled model, so it
can be useful when speed is important, for example, to per-
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form many different simulations or very long simulations.
The standalone model can also be used as a guide to what
simulations it would be worthwhile to run in the full model.
Finally, in cases where we have already performed simula-
tions of the full model with similar emission trajectories, we
could use NorESM2 data for regional temperatures (and pos-
sibly other variables) as an input to the standalone model, in a
sort of offline coupling: different combinations of economic
growth, greening, and policy can in some cases deliver sim-
ilar paths for emissions and consequently temperatures, yet
still have very different economic impacts. Finally, the sim-
ple model could also be useful for teaching purposes.

7 Conclusions

In conclusion, the NorESM2–DIAM framework successfully
couples a state-of-the-art Earth System Model and a cost-
benefit Integrated Assessment Model with high geographi-
cal resolution. The new model exchanges temperature and
CO2 emissions on a yearly basis on a regional gridded level,
generating dynamic emissions trajectories. The results high-
light the importance of spatial and temporal variability for
economic outcomes as well as the wide range of outcomes
among regions.

A caveat to keep in mind is that these are early results us-
ing a coupled model that is, to our knowledge, the first of its
kind. The quantitative results presented here should therefore
be interpreted with caution. There are still large uncertainties,
particularly regarding the proper form of the damage func-
tion, and there are several important features (see the discus-
sion in Sect. 6) that we would like to add to the model in or-
der to assess their quantitative importance. Nevertheless, our
results demonstrate how the two components of the coupled
model work together and the framework we develop here is
a good starting point for future model development, opening
up a wide range of new opportunities for more comprehen-
sive and sophisticated simulations of climate-economy inter-
actions.

Appendix A

A1 Introduction

Sections A2–A6 of this Appendix explain how we solve
the regional dynamic programming problems. Section A7
gives details on how we execute a forward simulation using
NorESM2. Section A8 uses a stylized model to examine the
role of spatial correlation in generating fluctuations in global
aggregates.

A2 Setup

Time is discrete and starts in year 0, corresponding to the
real-world year R. Agents in region i assume that their tem-

perature in year t , Tit , is given by:

Tit = T it + zit , (A1)

where T it is region i’s expected temperature in year t and
zit is a region-specific random shock to regional tempera-
ture. Assume that T it = T i+γi1St +γi2S2

t , where T i is pre-
industrial temperature in region i and St is cumulative global
carbon emissions (since the pre-industrial era) at the begin-
ning of year t . Assume that zit follows an AR(1) process:

zit = ρizi,t−1+ εit , (A2)

where {εit }∞t=0 is an i.i.d. (independent and identically dis-
tributed) sequence of random variables with a N(0,σ 2

i ) dis-
tribution.

Let kit be the physical capital stock in region i at the be-
ginning of year t , let ωit denote wealth in region i at the
beginning of year t , and let xit denote energy use (measured
in BTUs) in region i during year t . Let δ be the rate at which
capital depreciates. Let population in region i in year t , Nit ,
evolve according to Ni,t+1 = (1+ gNi,t+1)Nit , where Ni0 is a
given number and {gNit }

∞

t=1 is an exogenous sequence.
Let ψφit be carbon emissions (in GtCs) per BTU in region

i in year t and let eit be carbon emissions in region i in year t ,
i.e., eit = ψφitxit . Then global emissions in year t are equal
to:

Et ≡

M∑
i=1

eit ,

where M is the number of regions. Then St+1 = St +Et
for t ≥ 0, where S0 is cumulative emissions (since the pre-
industrial era) through the beginning of real-world year R.
Alternatively, for t ≥ 1,

St = S0+

t−1∑
s=0

Es .

Each region takes as given the sequence {St }∞t=0. Using
Eq. (A1), this sequence in turn determines the sequence
{T it }

∞

t=0.
Finally, assume that St = S∗ for t ≥ t1 (i.e., starting in year

t1, φit = 0 for all i, so that there are no further carbon emis-
sions).

A3 Dynamic program of a typical region

Each region i solves the following dynamic programming
problem, where ωit is aggregate wealth in region i at the be-
ginning of year t and kit is the aggregate capital stock in
region i at the beginning of year t :
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vit (ωit ,zit ,Nit ,Ait )=

max
ki,t+1

[
Nit U

(
ωit − ki,t+1

Nit

)
+βEt

(
vit+1(ωi,t+1,zi,t+1,Ni,t+1,Ai,t+1)

)]
,

subject to Eqs. (A1), (A2), the borrowing constraint ki,t+1 ≥

0, and the law of motion for wealth:

ωi,t+1 =max
xi,t+1

(
F
(
kαi,t+1`

1−α
i,t+1,xi,t+1

)
−pixi,t+1

)
+ (1− δ)ki,t+1, (A3)

where `it =NitAitD(Tit ) is aggregate efficiency units of la-
bor in region i in year t , pi is the price of a unit of energy
(expressed in units of the final consumption good), D(Tit )
is a nonnegative, inverse U -shaped function with a unique
maximum at D(T ∗)= 1, and the sequence {Ait }∞t=0 obeys:
Ai,t+1 = (1+ gAi,t+1)Ait , where Ai0 is a given number and
{gAit }

∞

t=1 is an exogenous sequence. Note that the value func-
tion in region i, vit , implicitly depends on the region-specific
parameters T i , ρi , γi1, γi2, and σ 2

i ; the region-specific se-
quences of growth rates {gNit }

∞

t=1 and {gAit }
∞

t=1; and the com-
mon sequence {St }∞t=0.

Assume finally that, for t ≥ t2 > t1, gNit = g
N and gAit =

gA, i.e., the growth rates of population and exogenous tech-
nological progress are constant across time and space starting
in year t2.

A4 Detrending the dynamic program

For any variable yit , define the scaled variable

ŷit ≡
yit

NitAitD(T it )
.

Because the production function, F , is assumed to have
constant returns to scale in its two arguments, the law of mo-
tion for wealth (Eq. A3) can be rewritten:

ω̂i,t+1 =

max
x̂i,t+1

(
F
(
k̂αi,t+1

(
d it+1(Ti,t+1)

)1−α
, x̂i,t+1

)
−pi x̂i,t+1

)
+ (1− δ)k̂i,t+1, (A4)

where

d it (·)≡
D(·)

D(T it )
.

Assume that U(c)= c1−γ . Then

U

(
ωit − ki,t+1

Nit

)
=

(
AitD(T it )ω̂it −

Ni,t+1Ai,t+1

NitAit
AitD(T i,t+1)k̂i,t+1

)1−γ

=
(
AitD(T it )

)1−γ
·(

ω̂it −
(
1+ gNi,t+1

)(
1+ gAi,t+1

)
d it
(
T i,t+1

)
k̂i,t+1

)1−γ
.

Guessing that vit (ωit ,zit ,Nit ,Ait )=

Nit
(
AitD(T it )

)1−γ
v̂it (ω̂it ,zit ), rewrite region i’s dynamic

program as:

Nit
(
AitD(T it )

)1−γ
v̂it (ω̂it ,zit )=

max
k̂i,t+1,x̂i,t+1

[
Nit
(
AitD(T it )

)1−γ
·

(
ω̂it −

(
1+ gNi,t+1

)(
1+ gAi,t+1

)
d it (T i,t+1)k̂i,t+1

)1−γ
·

βEt
(
Ni,t+1

(
Ai,t+1D(T i,t+1)

)1−γ
v̂it+1(ωi,t+1,zi,t+1)

)]
,

subject to Eqs. (A1), (A2), (A4), and the borrowing con-
straint. Simplify this equation to get:

v̂it (ω̂it ,zit )= (A5)

max
k̂i,t+1,x̂i,t+1

[(
ω̂it −

(
1+ gNi,t+1

)(
1+ gAi,t+1

)
d it (T i,t+1)k̂i,t+1

)1−γ
+

β
(
1+ gNi,t+1

)(
1+ gAi,t+1

)1−γ (
d it (T i,t+1)

)1−γ
·

Et
(
v̂it+1(ω̂i,t+1,zi,t+1)

)]
,

subject to Eqs. (A1), (A2), (A4), and the borrowing con-
straint.

A5 Solving the dynamic program backwards

Starting in year t2, region i’s dynamic programming problem
then has a time-invariant solution and simplifies to:

v̂i(ω̂it ,zit )= (A6)

max
k̂i,t+1,x̂i,t+1

[(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)1−γ
+

β(1+ gN )(1+ gA)1−γ Et
(
v̂i(ω̂i,t+1,zi,t+1)

)]
,

subject to Eqs. (A1), (A2), (A4), and the borrowing con-
straint, where now

T it = T
∗

i ≡ T i + γi1S
∗
+ γi2(S

∗)2.

The first step in solving problem (A5) is to find the function
v̂i(ω̂it ,zit ) that solves Eq. (A6).
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Next, for t = t1, . . ., t2− 1, problem (A5) simplifies to:

v̂it (ω̂it ,zit )= (A7)

max
k̂i,t+1,x̂i,t+1

[(
ω̂it −

(
1+ gNi,t+1

)(
1+ gAi,t+1

)
k̂i,t+1

)1−γ
+

β
(
1+ gNi,t+1

)(
1+ gAi,t+1

)1−γ
·

Et
(
v̂it+1(ω̂i,t+1,zi,t+1)

)]
,

subject to Eqs. (A1), (A2), (A4), and T it = T
∗

i for all t . Note
that

v̂it2(ω̂i,t2 ,zi,t2)= v̂
i(ω̂i,t2 ,zi,t2),

where the latter function was computed in the first step. The
second step in solving problem (A5) is to find, working back-
wards from t = t2− 1 to t = t1, the sequence of functions
v̂it (ω̂it ,zit ) that solves Eq. (A7) for t = t1, . . ., t2− 1.

The third and final step is then to iterate backwards on
Eq. (A5), from t = t1− 1 to t = 0, to find the sequence of
functions v̂it (ω̂it ,zit ) that solves Eq. (A5) for t = 0, . . ., t1−
1.

A byproduct of solving problem (A5) is a set of decision
rules for each region i:

k̂i,t+1 = h
k
it (ω̂it ,zit )

x̂it = h
x
it (kit ,zit ),

for t = 0, . . ., t2− 1; and a pair of time-invariant decision
rules,

k̂i,t+1 = h
k
i (ω̂it ,zit )

x̂it = h
x
i (kit ,zit ),

for t ≥ t2.

A6 The endogenous grid method

This section describes how to use the “endogenous grid”
method to solve the dynamic program.

A6.1 The steady-state problem

Start with the steady-state problem (A6), now assuming that
U(c)= log(c):

v̂i(ω̂it ,zit )= (A8)

max
k̂i,t+1

[
log

(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)
+

β(1+ gN )Et
(
v̂i(ω̂i,t+1,zi,t+1)

)]
,

subject to Eqs. (A1), (A2), (A4), and the borrowing con-
straint. In Eq. (A4), the law of motion for wealth, note that
the optimal choice for x̂i,t+1 solves:

Fx

(
k̂αi,t+1

(
d it+1(Ti,t+1)

)1−α
, x̂i,t+1

)
= pi,

where Fx denotes the partial derivative of F with respect
to its second argument. Recalling that, in the steady state,
Ti,t+1 = T

∗

i + zi,t+1, this first-order condition implicitly de-
fines a time-invariant decision rule for (scaled) energy use:

x̂i,t+1 = h
x
i (k̂i,t+1,zi,t+1). (A9)

Substitute this decision rule into Eq. (A4):

ω̂i,t+1 =F
(
k̂αi,t+1

(
d it+1(Ti,t+1)

)1−α
,hxi (k̂i,t+1,zi,t+1)

)
−

pih
x
i (k̂i,t+1,zi,t+1)+ (1− δ)k̂i,t+1,

≡Gi(k̂i,t+1,zi,t+1). (A10)

The first-order condition to problem (A8) is then:

β−1(1+ gA)
(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)−1
=

Et
[
v̂iω(ω̂i,t+1,zi,t+1)G

k
i (k̂i,t+1,zi,t+1)

]
, (A11)

where v̂iω denotes the partial derivative of v̂i with respect to
its first argument and Gki denotes the partial derivative of Gi
with respect to its first argument. The right-hand side of this
first-order condition can be rewritten as:

Et
[
v̂iω(ω̂i,t+1,zi,t+1)G

k
i (k̂i,t+1,zi,t+1)

]
= (A12)∫

∞

−∞

v̂iω(Gi(k̂i,t+1,zi,t+1),zi,t+1)·

Gki (k̂i,t+1,zi,t+1)f
(
zi,t+1;ρizit ,σ

2
i

)
dzi,t+1 ≡

Hi(k̂i,t+1,zit ),

where f (z;µ,σ 2) is the density function for a random vari-
able z that has a normal distribution with mean µ and vari-
ance σ 2. So then the first-order condition can be written:

β−1(1+ gA)
(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)−1
=

Hi(k̂i,t+1,zit ). (A13)

The first step in the endogenous grid method is to use
Eq. (A13) to solve for ω̂it on a grid of points for k̂i,t+1 and
zit , given a guess for Hi on the grid. Let the grid points be
{k
′

j }
nk
j=1 (where ′ denotes “next period”) and {z`}

n`
`=1, respec-

tively, and guess on an initial set of values forHi on this grid,
i.e., {{H 0

i (k
′

j ,z`)}
n`
`=1}

nk
j=1. Then, for each (j,`) pair,

ω0
j` = β

−1(1+ gA)
(
H 0
i

(
k
′

j ,z`
))−1
+ (1+ gN )(1+ gA)k

′

j

thereby determining, for each `, the optimal choice for sav-
ings on the implied grid for ω (which varies with `):

k
′

j = h
k
i

(
ω0
j`,z`

)
, j = 1, . . .,nk. (A14)

In the second step, choose a fixed grid for ω, i.e., {ωj }
nω
j=1,

where the grid points for ω in this case do not depend on
z`. For each `, interpolate (linearly) using the information in
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Eq. (A14) to determine the optimal choice for savings, k
′

j`,
at the grid points (ωj ,z`), j = 1. . .,nω:

k
′

j l = h
k
i (ωj ,z`), j = 1, . . .,nω. (A15)

The information in Eq. (A15) can then be used (using bilinear
interpolation) to calculate optimal savings choices for any
(ω,z) pair; call this interpolated function k′ = ĥki (ω,z).

In the third step, use the envelope condition to problem
(A8) to update the guess on H 0

i . In particular, the envelope
condition is:

v̂iω(ω̂it ,zit )=
(
ω̂it − (1+ gN )(1+ gA)k̂i,t+1

)−1 (A16)

Update one period:

v̂iω(ω̂i,t+1,zi,t+1)

=
(
ω̂i,t+1− (1+ gN )(1+ gA)k̂i,t+2

)−1

=
(
Gi(k̂i,t+1,zi,t+1)−

(1+ gN )(1+ gA)ĥki (ω̂i,t+1,zi,t+1)
)−1

=
(
Gi(k̂i,t+1,zi,t+1)−

(1+ gN )(1+ gA)ĥki (Gi(k̂i,t+1,zi,t+1),zi,t+1)
)−1

≡3i(k̂i,t+1,zi,t+1).

To update the guess on H 0
i , calculate

H 1
i (k̂i,t+1,zit )

= Et
[
3i(k̂i,t+1,zi,t+1)G

k
i (k̂i,t+1,zi,t+1)

]
=

∫
∞

−∞

3i(k̂i,t+1,zi,t+1)G
k
i (k̂i,t+1,zi,t+1)·

f
(
zi,t+1;ρizit ,σ

2
i

)
dzi,t+1

≈ π−1/2
M∑
m=1

wm3i
(
k̂i,t+1,z

m
i

)
Gki
(
k̂i,t+1,z

m
i

)
,

where zmi = ρizit+
√

2σiam and (wm,am),m= 1, . . .,M , are
the Gauss-Hermite weights and abscissas for M-point Gaus-
sian quadrature. In particular, calculate H 1

i (·, ·) at the grid
points {{(k

′

j ,z`)}
n`
`=1}

nk
j=1, replace H 0

i with H 1
i at these grid

points, and then repeat the three steps above untilH 0
i andH 1

i

are close.

A6.2 Euler equation errors in the steady-state problem

One way to check the accuracy of the candidate decision rule,
ĥki (ω,z), computed in Sect. A6.1, to calculate Euler equation
errors, expressed in consumption units. These should be ex-
actly zero for any choice of the state variables. To obtain the
Euler equation, substitute the envelope condition (A16), up-
dated one period, into the first-order condition (A11):

β−1GA
(
ω̂it −G

ANk̂i,t+1
)−1
=

Et
[(
ω̂i,t+1−G

ANk̂i,t+2
)−1

Gki (k̂i,t+1,zi,t+1)
]
. (A17)

whereGA ≡ 1+gA andGAN
≡ (1+gA)(1+gN ). Using the

candidate decision rule and the function Gi , the right-hand
side of this equation can be rewritten:

Et
[(
ω̂i,t+1−G

ANk̂i,t+2
)−1

Gki (k̂i,t+1,zi,t+1)
]

= Et
[(
Gi(k̂i,t+1,zi,t+1)−

GANĥki (ω̂i,t+1,zi,t+1)
)−1

Gki
(
ĥki (ω̂it ,zit ),zi,t+1

)]
= Et

[(
Gi
(
ĥki (ω̂it ,zit ),zi,t+1

)
−

GANĥki
(
Gi
(
ĥki (ω̂it ,zit ),zi,t+1

)
,zi,t+1

))−1
·

Gki
(
ĥki (ω̂it ,zit ),zi,t+1

)]
≡8i(ω̂it ,zit ),

where the conditional expectation in the definition of8it can
be approximated via Gaussian quadrature as before. Inverting
both sides of Eq. (A17) and rearranging, the Euler equation
error, Ei(ω̂it ,zit ), is defined as follows:

Ei(ω̂it ,zit )

≡ ω̂it −G
ANk̂i,t+1−β

−1GA8−1
i (ω̂it ,zit )

= ω̂it −G
ANĥki (ω̂it ,zit )−β

−1GA8−1
i (ω̂it ,zit ). (A18)

This error should be close to zero for any pair (ω̂it ,zit ); it
would be exactly zero if ĥki were the exact decision rule. The
error relative to period-t consumption is:

Êi(ω̂it ,zit )≡
Ei(ω̂it ,zit )

ω̂it −GANk̂i,t+1

= 1−
β−1GA8−1

i (ω̂it ,zit )

ω̂it −GANĥki (ω̂it ,zit )
.

A6.3 The transition problem

Now consider the transition problem:

v̂it (ω̂it ,zit )= (A19)

max
k̂i,t+1

[
log

(
ω̂it −G

AN
i,t+1d

t+1
it k̂i,t+1

)
+

βGNi,t+1 Et
(
v̂i,t+1(ω̂i,t+1,zi,t+1)

)]
,

whereGNit ≡ 1+gNit ,GAit ≡ 1+gAit ,G
AN
it ≡ (1+g

N
it )(1+g

A
it ),

and d t+1
it ≡ dit (T i,t+1), subject to Eqs. (A1), (A2), (A4),

and the borrowing constraint. As in Sect. A6.1, the optimal
choice for x̂i,t+1 in the law of motion for wealth solves:

Fx

(
k̂αi,t+1

(
d it+1(Ti,t+1)

)1−α
, x̂i,t+1

)
= pi,

Along the transition path, Ti,t+1 = T i,t+1+ zi,t+1, so this
first-order condition defines a decision rule for (scaled) en-
ergy use that now depends on time:

x̂i,t+1 = h
x
i,t+1(k̂i,t+1,zi,t+1). (A20)
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Substitute this decision rule into Eq. (A4):

ω̂i,t+1 = F
(
k̂αi,t+1

(
d it+1(Ti,t+1)

)1−α
,hxi,t+1(k̂i,t+1,zi,t+1)

)
−

pih
x
i,t+1(k̂i,t+1,zi,t+1)+ (1− δ)k̂i,t+1,

≡Gi,t+1(k̂i,t+1,zi,t+1). (A21)

The first-order condition to problem (A19) is then:

β−1GAi,t+1d
t+1
it

(
ω̂it −G

AN
i,t+1d

t+1
it k̂i,t+1

)−1
=

Et
[
v̂ωi,t+1(ω̂i,t+1,zi,t+1)G

k
i,t+1(k̂i,t+1,zi,t+1)

]
, (A22)

where v̂ωi,t+1 denotes the partial derivative of v̂i,t+1 with re-
spect to its first argument, Gki,t+1 denotes the partial deriva-
tive ofGi,t+1 with respect to its first argument, andGAi,t+1 ≡

1+ gAi,t+1. The right-hand side of this first-order condition
can be rewritten as:

Et
[
v̂ωi,t+1(ω̂i,t+1,zi,t+1)G

k
i,t+1(k̂i,t+1,zi,t+1)

]
(A23)

=

∫
∞

−∞

v̂ωi,t+1(Gi,t+1(k̂i,t+1,zi,t+1),zi,t+1)·

Gki,t+1(k̂i,t+1,zi,t+1)f
(
zi,t+1;ρizit ,σ

2
i

)
dzi,t+1

≡Hi,t+1(k̂i,t+1,zit ),

where f (z;µ,σ 2) is the density function for a random vari-
able z that has a normal distribution with mean µ and vari-
ance σ 2. So then the first-order condition can be written:

β−1GAi,t+1d
t+1
it

(
ω̂it −G

AN
i,t+1d

t+1
it k̂i,t+1

)−1
=

Hi,t+1(k̂i,t+1,zit ). (A24)

Given knowledge of Hi,t+1(k̂i,t+1,zit ) on a grid points
{(k
′

j ,z`)}
n`
`=1}

nk
j=1, the goal is to calculate Hit (k̂it ,zi,t−1) and

then continue iterating backwards in a similar fashion to time
0.

To do so, use Eq. (A24) to solve for ω̂it at each grid point:

ωj` = β
−1GAi,t+1d

t+1
it

(
Hi,t+1

(
k
′

j ,z`
))−1
+GAN

i,t+1d
t+1
it k

′

j

thereby determining, for each `, the optimal choice for sav-
ings, at time t , on the implied grid for ω (which varies with
`):

k
′

j = h
k
it (ωj`,z`), j = 1, . . .,nk. (A25)

Next, choose a fixed grid for ω, i.e., {ωj }
nω
j=1, where the

grid points for ω in this case do not depend on z`. For each
`, interpolate (linearly) using the information in Eq. (A25)
to determine the optimal choice for savings, k

′

j`, at the grid
points (ωj ,z`), j = 1. . .,nω:

k
′

j l = h
k
it (ωj ,z`), j = 1, . . .,nω. (A26)

The information in Eq. (A26) can then be used (using bilinear
interpolation) to calculate optimal savings choices for any
(ω,z) pair; call this interpolated function k′ = ĥkit (ω,z).

The envelope condition for the transition problem (A19)
is:

vωit (ω̂it ,zit )

=
(
ω̂it −G

AN
i,t+1d

t+1
it k̂i,t+1

)−1

=
(
Git (k̂it ,zit )−G

AN
i,t+1d

t+1
it ĥkit (ω̂it ,zit )

)−1

=
(
Git (k̂it ,zit )−G

AN
i,t+1d

t+1
it ĥkit (Git (k̂it ,zit ),zit )

)−1

By definition,

Hit (k̂it ,zi,t−1)

= Et−1
[
v̂ωit (ω̂it ,zit )G

k
it (k̂it ,zit )

]
= Et−1

[(
Git (k̂it ,zit )−G

AN
i,t+1ĥ

k
it (Git (k̂it ,zit ),zit )

)−1
·

Gkit (k̂it ,zit )
]
.

Use this equation, together with the already-calculated ap-
proximate decision ĥkit , to calculate {{Hit (k

′

j ,z`)}
n`
`=1}

nk
j=1

and then iterate backwards following the same steps as laid
out above.

For t ≥ t2, gAit = g
A, gNit = g

N , and T it = T
∗

i as in the
steady-state problem. Therefore, when t = t2− 1, the first-
order condition (A24) is:

β−1GAd t+1
it

(
ω̂it −G

ANd t+1
it k̂i,t+1

)−1
=Hi(k̂i,t+1,zit ),

where Hi has already been computed when solving the
steady-state problem. Hi is, therefore, the starting point for
the backwards iterations.

A6.4 Euler equation errors in the transition problem

By analogy to the Euler Eq. (A17) in the steady-state prob-
lem, the Euler equation along a transition is:

β−1GAi,t+1 d
t+1
it

(
ω̂it −G

AN
i,t+1d

t+1
it k̂i,t+1

)−1
= (A27)

Et
[(
ω̂i,t+1−G

AN
i,t+2 d

t+2
i,t+1k̂i,t+2

)−1
Gki,t+1(k̂i,t+1,zi,t+1)

]
.
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The right-hand side of this equation can be rewritten:

Et
[(
ω̂i,t+1−G

AN
i,t+2 d

t+2
i,t+1k̂i,t+2

)−1
Gki (k̂i,t+1,zi,t+1)

]
= Et

[(
Gi,t+1(k̂i,t+1,zi,t+1)−

GAN
i,t+2 d

t+2
i,t+1ĥ

k
i,t+1(ω̂i,t+1,zi,t+1)

)−1
·

Gki,t+1
(
ĥkit (ω̂it ,zit ),zi,t+1

)]
= Et

[(
Gi,t+1

(
ĥkit (ω̂it ,zit ),zi,t+1

)
−

GAN
i,t+2 d

t+2
i,t+1ĥ

k
i,t+1·

(Gi,t+1(k̂i,t+1,zi,t+1),zi,t+1)
)−1
·

Gki,t+1
(
ĥkit (ω̂it ,zit ),zi,t+1

)]
= Et

[(
Gi,t+1

(
ĥkit (ω̂it ,zit ),zi,t+1

)
−

GAN
i,t+2 d

t+2
i,t+1ĥ

k
i,t+1·(

Gi,t+1
(
ĥkit (ω̂t ,zit ),zi,t+1

)
,zi,t+1

))−1
·

Gki,t+1
(
ĥkit (ω̂it ,zit ),zi,t+1

)]
≡8it (ω̂it ,zit ),

where the conditional expectation in the definition of8it can
be approximated via Gaussian quadrature. (Note that, in the
last period of the transition, when t = t2−1, ĥki,t+1 = ĥ

k
i , i.e.,

the decision rule from the steady-state problem.)
Inverting both sides of Eq. (A27) and rearranging, the Eu-

ler equation error, Eit (ω̂it ,zit ), at time t is:

Eit (ω̂it ,zit )

≡ω̂it −G
AN
i,t+1 d

t+1
it k̂i,t+1−

β−1GAi,t+1 d
t+1
it 8−1

it (ω̂it ,zit )

=ω̂it −G
AN
i,t+1 d

t+1
it ĥkit (ω̂it ,zit )−

β−1GAi,t+1 d
t+1
it 8−1

it (ω̂it ,zit ). (A28)

This error should be close to zero for any pair (ω̂it ,zit ). The
error relative to period-t consumption is:

Êit (ω̂it ,zit )≡
Eit (ω̂it ,zit )

ω̂it −G
AN
i,t+1 d

t+1
it k̂i,t+1

= 1−
β−1GAi,t+1 d

t+1
it 8−1

it (ω̂it ,zit )

ω̂it −G
AN
i,t+1 d

t+1
it ĥkit (ω̂it ,zit )

.

A6.5 Euler equation errors: numerical values

To check the accuracy of the computed decision rules, both
along the transition and in the steady state, we calculated Eu-
ler equations errors as described in Sects. A6.2 and A6.4.
These errors are very close to zero. In particular, the average
error relative to consumption (averaging across both regions
and the values of the state variables) is less than 0.0024 % (in

absolute value) in every time period. In addition, the average
of the absolute values of the errors is less than 0.021 % in
every time period. Finally, apart from a very small number
of outliers (fewer than 10), the largest error – looking across
all regions, time periods, and states – is smaller than 0.6 % in
absolute value.

A7 Simulating forwards using NorESM2

This section describes how to simulate the model using
NorESM2 up to, and including, year t0 < t1.

Each year t is divided into J subperiods indexed by j . Let
Titj be temperature in region i in subperiod j of year t and
define average temperature in region i in year t as follows:

Tit = J
−1

J∑
j=1

Titj .

Define ait ≡ AitD(T it ). The initial value of ai0 in each
region is chosen to match regional data in real-world year R.
The ratio of successive values of ait is given by:

ait

ai,t−1
=

Ait

Ai,t−1

D(T it )

D(T i,t−1)

=
(
1+ gAit

)
d it−1(T it ),

so that the sequence {ait }, for t ≥ 1, obeys the recursion

ait =
(
1+ gAit

)
d it−1(T it )ai,t−1, (A29)

where the sequence {T it } depends on the sequence {St } taken
as given when solving each region’s dynamic programming
problem.

At the beginning of year 0, k̂i0 and x̂i0 are chosen in each
region to match real-world data in year R. The value of cu-
mulative emissions in year 0, S0, is also chosen to match real-
world data in year R.

The simulation in any given year t proceeds in the follow-
ing steps, starting with t = 0:

1. If t ≥ 1, calculate ait according to Eq. (A29). (Recall
that ai0 is set to match regional data at time 0, i.e., in
real-world year R.)

2. If t = 0, calculate regional emissions according to:
ei0 = φi0Ni0ai0x̂i0, i = 1, . . .,M . If t ≥ 1, use expected
energy use, Et−1[x̂it ], as calculated in the simulation for
year t − 1, to calculate (expected) emissions in each re-
gion i:

eit = φitNitait Et−1[x̂it ] + e
z
i,t−1− ei,t−1,

where ezt−1 is actual emissions in region i in period t−1,
as defined in step 7 below. Expected emissions are used
to drive NorESM2 in step 3. The term ezi,t−1− ei,t−1
corrects for the deviation between actual and expected
emissions in any given period by adding this correction
to expected emissions in the subsequent period.
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3. Use {eit }Mi=1 in NorESM2 to generate time paths for
temperature in each region in each subperiod of year
t , i.e., {{Titj }Jj=1}

M
i=1, and use these in turn to calculate

average temperature in region i in year t , i.e.,

Tit = J
−1

J∑
j=1

Titj , i = 1, . . .,M.

For each region, calculate the deviation of its tempera-
ture in year t from its expected temperature in year t ,
i.e., zit = Tit − T it .

4. Calculate actual scaled energy use in each region: x̂zit =
hxit (k̂it ,zit ), i = 1, . . .,M . Note that the function ĥxit , as
defined in Eq. (A20), has a closed-form expression if
the production function, F , has a particular functional
form. (Recall too that the function hxit depends on T it .)

5. Insert x̂zit into Eq. (A4) to calculate (scaled) wealth in
each region i in year t :

ω̂it = F
(
k̂αit
(
d it (Tit )

)1−α
, x̂zit

)
−pi x̂

z
it+(1− δ)k̂it ,

i = 1, . . .,M.

(Recall too that d it (Tit ) depends on T it .)

6. Use the year-t decision rules to calculate regional sav-
ings in year t : k̂i,t+1 = h

k
it (ω̂it ,zit ), i = 1, . . .,M . The

function hkit is known only on a two-dimensional grid
of points, so use bilinear interpolation to calculate it off
the grid.

7. Calculate actual emissions in each region: ezit =

φitNitait x̂
z
it , i = 1, . . .,M .

8. Calculate the expected value of energy use in each re-
gion in period t + 1:

Et [x̂i,t+1] = Et
[
ĥxi,t+1(k̂i,t+1,zi,t+1)

]
.

Approximate the conditional expectation in this expres-
sion by replacing zi,t+1 with its conditional expectation
ρizit : Et [x̂i,t+1] = ĥ

x
i,t+1(k̂i,t+1,ρizit ).

9. The simulation in year t is now complete: return to step
1 to conduct the simulation for year t + 1.

Having completed the entire simulation, calculate actual
cumulative global emissions at the beginning of each year
according to: Szt+1 = S

z
t +E

z
t , where Ezt is actual aggregate

emissions in period t :

Ezt =

M∑
i=1

ezit .

(When t = 0, set Szt = S0.) Then calculate a new sequence
for expected regional temperature using the sequence {Szt }:
T
z

it = T i+γi1S
z
t +γi2(S

z
t )

2 for t ≥ 0. Finally, for each t , cal-
culate the differences Szt −St and {T

z

it−T it }
M
i=1 and confirm

that these differences are small.

A8 Spatial correlation and aggregate fluctuations: a
stylized model

This section uses a stylized model that captures some of the
key features of NorESM2–DIAM to show that spatial corre-
lation in regional temperatures can amplify aggregate fluc-
tuations under certain conditions that our calibrated model
satisfies.

Consider a model in which regional temperatures are
drawn from a jointly normal distribution at any point in time.
Specifically, assume that

T = (T1, . . .,TM)
>
∼N(T i,6),

with 6ii = σ 2 and 6ij = ρσ 2 for i 6= j , where ρ ∈ [0,1].
Define T̂i ≡ Ti − T

∗ and µi ≡ T i − T
∗, where T ∗ max-

imizes the damage function. Then T̂i ∼N(µi,σ
2) and

corr(Ti,Tj )= ρ for i 6= j , i.e., the deviation of regional tem-
perature from the optimal temperature, T ∗, is normally dis-
tributed with a region-specific mean, µi , and a common vari-
ance, σ 2, across regions; and the correlation between tem-
perature deviations in any pair of regions is equal to ρ.

Assume that the damage function D(Ti)= exp(−κ(Ti −
T ∗)2), so that D is symmetric around the optimal tempera-
ture (in NorESM2–DIAM, by contrast, the damage function
is not quite symmetric).

Let each region be assigned a weight wi , with

M∑
i=1

wi = 1.

and let S be the weighted average of the logarithm of regional
productivity:

S ≡

M∑
i=1

wi logD(Ti)=−λ
M∑
i=1

wi T̂
2
i .

The variance of S is then a measure of the volatility of aggre-
gate productivity, one of the key drivers of volatility in global
GDP. The question is how this variance varies as the corre-
lation between regional temperatures increases. The variance
is given by:

Var(S)=

2σ 2λ2[σ 2W2+ 2M2+ σ
2ρ2(1−W2)+ 2ρ

(
M2

1 −M2
)]
,

where

M1 ≡

M∑
i=1

wiµi, M2 ≡

M∑
i=1

w2
i µ

2
i , W2 ≡

M∑
i=1

w2
i .

This expression is an increasing function of ρ over the entire
range [0,1] if and only if M2

1 −M2 > 0, or equivalently, if
and only if R ≡M2

1/M2 > 1.
This condition can be checked using different weighting

schemes for the 16 826 distinct cells in NorESM2–DIAM,
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with the µis corresponding to the deviation of regional pre-
industrial temperatures from the optimal temperature. Most
relevant for global GDP is weights corresponding to re-
gional GDP in 1990, in which case R = 184.4. Alternatively,
for weights corresponding to regional population in 1990,
R = 722.5. In both cases, therefore, the required condition
is easily satisfied.

Although this simple model is quite stylized in that it does
not correspond exactly to the behavior of NorESM2–DIAM,
nonetheless these calculations do suggest that positive spatial
correlation between regional temperatures amplifies aggre-
gate fluctuations in NorESM2–DIAM. They are also consis-
tent with the finding reported in Sect. 5.4 that the standalone
model (in which spatial correlation is absent) produces much
smaller aggregate fluctuations than the fully-coupled model.

Code and data availability. The frozen NorESM2 source code
used in this study is archived as release-noresm2.0.9 on Zenodo
(https://doi.org/10.5281/zenodo.17865358; Seland et al., 2025).
The NorESM2 restart files required to run the simulations are
available on Zenodo (https://doi.org/10.5281/zenodo.17856602;
Bjordal, 2025), and the additional model input files not gen-
erated by our own scripts are likewise provided via Zenodo
(https://doi.org/10.5281/zenodo.17865023; NorESM Climate Mod-
eling Consortium, 2025). Further information on installing and con-
figuring NorESM2 can be found in The NorESM developers group
(2020).

The complete NorESM2–DIAM codebase – comprising the
standalone DIAM model, coupling scripts, input file genera-
tion scripts, all output data reported in this paper, and the
plotting scripts – is archived as release-v1.0.2 on Zenodo
(https://doi.org/10.5281/zenodo.17986166; Bjordal et al., 2025).
The accompanying README provides an overview of input and
output data for NorESM2–DIAM and detailed instructions for re-
producing the results and running the model.
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