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Abstract. The growing availability of glacier observations
poses a challenge for models to integrate this heteroge-
neous information in a dynamically consistent way. At the
same time, estimates of current glacier volume and area re-
main uncertain, as many global inventories and thickness
datasets date back to the early 2000s. We present the Open
Global Glacier Data Assimilation Framework, named AG-
ILE, a time-dependent variational method inspired by 4D-
Var data assimilation. AGILE is built on a reimplementation
of the OGGM flowline glacier evolution model in PyTorch,
enabling full differentiability through automatic differentia-
tion (AD). We test AGILE v0.1 in a series of idealized ex-
periments designed to reflect common initialization and cal-
ibration scenarios in global glacier modeling. The goal is to
recover glacier bed topography and distributed ice volume in
2020 through transient calibration, based on dynamical sim-
ulations starting in 1980. In these experiments, we assume
a perfectly known mass balance and fixed ice dynamics pa-
rameters. While this setup simplifies real-world complexity,
it allows us to isolate and evaluate the core functionality of
the approach. Our results show that AGILE efficiently opti-
mizes multiple control variables by leveraging AD-derived
gradients, requiring only a few iterations to substantially im-
prove upon initial guesses. We also examine the potential to
reconstruct earlier glacier states (e.g., in 1980) without di-
rect observations and find that this is fundamentally limited
because glacier dynamics are governed by a diffusion equa-
tion, which leads to a loss of information about past states
over time, even in an idealized setting. Overall, our exper-
iments demonstrate AGILE’s potential as a flexible and ef-

ficient data assimilation framework. Its ability to integrate
diverse datasets in a dynamically consistent manner makes it
a promising tool for future real-world glacier modeling ap-
plications.

1 Introduction

Mountain glaciers are retreating globally (The GlaMBIE
Team, 2025; Hugonnet et al., 2021; Zemp et al., 2015), caus-
ing significant impacts on sea level rise (e.g., Marzeion et al.,
2020; Rounce et al., 2023; Slangen et al., 2022; Zemp et al.,
2019), freshwater resources (e.g., Aguayo et al., 2024; Huss
and Hock, 2018; Ultee et al., 2022; Wimberly et al., 2025),
and ecosystems (e.g., Bosson et al., 2023; Cannone et al.,
2008; Gobbi et al., 2021). Predicting these impacts requires
dynamic glacier evolution models that rely on past observa-
tions to simulate glacier behaviour into the future. However,
many glaciers are located in remote and hard-to-access re-
gions, making direct measurements difficult to obtain and
scarce. As a result, global models are highly dependent on
Earth observation (EO) data from satellites.

Early EO datasets mainly included glacier outlines (e.g.,
RGI 6. Consortium, 2017; RGI 7 Consortium, 2023) and dig-
ital elevation models (e.g., COP-DEM, 2022; NASA JPL,
2020). Recently, more glacier-specific datasets have become
available (e.g., Hugonnet et al., 2021; Millan et al., 2022), al-
lowing global glacier models to shift towards using glacier-
specific observations for calibration rather than relying on
regional averages or data from a few well-studied glaciers
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(Zekollari et al., 2024; Marzeion et al., 2012). This shift is
reflected in the design choices of the eight large-scale glacier
models participating in the recent Glacier Model Intercom-
parison Project 3 (GlacierMIP3; Zekollari et al., 2025).

The GlacierMIP3 models adopt different calibration and
initialization strategies, but share many common features and
rely on the same datasets. The initial glacier surface geome-
try and corresponding start date are defined using RGI ver-
sion 6 outlines (RGI 6. Consortium, 2017) and their asso-
ciated timestamps. Mass balance is calibrated separately by
matching to a geodetic mass balance observation over a pe-
riod of approximately 20 years, using data from Hugonnet
et al. (2021) (seven models) or Shean et al. (2020) (one
model), while assuming a fixed glacier geometry during this
period. All models rely on the consensus ice thickness esti-
mates from Farinotti et al. (2019), either by directly using the
distributed fields or by matching total glacier volumes on a
glacier-specific or regional basis.

Although widely used, the consensus ice thickness esti-
mate from Farinotti et al. (2019) is not a direct observation
but rather the mean result from an ensemble of models. In
large-scale glacier modelling, however, it is often treated as
an observed quantity (i.e. a target to match via calibration)
because glacier volume is essential for estimating a plausible
initial glacier state. Improving glacier-specific volume esti-
mates in absence of observations remains an active area of re-
search, with several methods currently being developed and
tested in selected regions, aiming for future global applica-
tions (e.g., Cook et al., 2023; van Pelt and Frank, 2025).

To better approximate initial conditions and account for
glacier evolution prior to the outline date, three GlacierMIP3
models include a dynamic spin-up during initialization. In
these cases, a past glacier state is defined, and the model is
run forward in time to match specific targets. The Commu-
nity Ice Sheet Model v2.1 (CISM2; Lipscomb et al., 2019)
matches the ice thickness field, the Global Glacier Evolution
Model ice flow (GloGEMflow; Zekollari et al., 2019) targets
the glacier-specific total volume and glacier length from the
outline, and the Open Global Glacier Model (OGGM; Maus-
sion et al., 2019) uses the glacier total area, total volume and
geodetic mass balance to additionally refine its previously
calibrated mass balance by accounting for evolving surface
geometry (Aguayo et al., 2024).

Outside GlacierMIP3, an adapted version of OGGM’s dy-
namic spin-up was extended to incorporate a second glacier
outline in a small region of the Alps, enabling the model to
simultaneously match observed area and volume changes at
regional scale for the first time (Hartl et al., 2025). This en-
hancement allowed performance improvements when tested
against additional validation data and increased confidence in
the model’s projections through 2100 compared to the setup
relying solely on globally available datasets.

Another recent approach in the Alps is presented by Cook
et al. (2023), who use the Instructed Glacier Model (IGM;
Jouvet, 2022), a deep learning based 3D ice flow model. IGM

assimilates various observations such as distributed thick-
ness data (GlaThiDa; Welty et al., 2020) and surface velocity
fields (Millan et al., 2022) to initialize glaciers in a dynam-
ically consistent state. The transient simulation then begins
from this point, removing the need for a spin up. However,
all inputs must correspond to the same timestamp, such as
the outline date, since the method is limited to snapshot in-
versions. IGM also focuses only on ice dynamics and bed re-
construction and does not include a dedicated mass balance
model.

Despite these efforts, current approaches face several lim-
itations. Most models neglect past glacier evolution dur-
ing initialization and do not account for surface geometry
changes during calibration. They are tailored to currently
available global datasets and struggle to incorporate new ob-
servation types or repeated measurements in a seamless way,
limiting their flexibility to use all available data on a glacier-
specific scale. It is also often implicitly assumed that all
observations apply at the outline timestamp. Furthermore,
many methods rely on computationally intensive optimiza-
tion schemes where only one parameter is adjusted at a time,
or they apply steady state assumptions to manage the general
problem of overparameterization in global glacier modelling
(e.g., Rounce et al., 2020).

To overcome these limitations, an ideal calibration method
should ensure dynamic consistency, be able to use tempo-
rally distributed observations, avoid assumptions about the
glacier’s dynamic state, and allow the simultaneous opti-
mization of multiple model parameters and state variables.
It must also remain computationally efficient to be applica-
ble at regional and global scales.

To move closer to the transient calibration of large scale
glacier models, we present a proof-of-concept for the Open
Global Glacier Data Assimilation Framework, named AG-
ILE. AGILE is based on a time-dependent variational as-
similation approach, inspired by 4D-Var methods (Lorenc,
1997), which extend the spatial domain (x,y,z) of 3D-Var
or snapshot approaches by adding time as a fourth dimen-
sion. Following this concept, AGILE treats time as a coordi-
nate during assimilation, enabling the consistent integration
of temporally distributed observations.

In line with this concept, AGILE iteratively adjusts all con-
trol variables of a dynamic glacier evolution model during
a transient (forward) simulation to minimize a cost function
that quantifies the mismatch between model output and avail-
able observations. To ensure computational efficiency, AG-
ILE is implemented in PyTorch, a machine learning frame-
work (Paszke et al., 2019), which enables the use of auto-
matic differentiation (AD). AD-based methods have previ-
ously been applied to snapshot inversions in regional glacier
modeling (Cook et al., 2023) and in ice sheet modeling
(Brinkerhoff and Johnson, 2013), as well as to transient as-
similation in ice sheet modeling (Goldberg and Heimbach,
2013; Recinos et al., 2023). To our knowledge, AGILE rep-
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resents the first application of a transient AD-based assimila-
tion approach in the context of global glacier modeling.

In this study, we introduce AGILE v0.1, which reimple-
ments the dynamic flowline model of OGGM in PyTorch to
make it fully differentiable through AD (Sect. 2). We evalu-
ate the implementation using idealized experiments with syn-
thetic glaciers and observations designed to reflect globally
available datasets (Sect. 3). The objective is to initialize a dy-
namically consistent glacier by optimizing bed topography
and ice volume distribution as control variables, assuming
a perfectly known mass balance and fixed dynamic parame-
ters. While these assumptions simplify real-world complex-
ity, they allow us to isolate and assess how effectively AD
guides the optimization of control variables during a transient
model run (Sect. 4). We conclude by discussing the broader
implications of our results and outlining future directions for
real-world applications (Sect. 5).

2 Methods

AGILE is developed as an open-source extension of the Open
Global Glacier Model (OGGM) framework (Maussion et al.,
2019), with the code publicly available at https://github.com/
OGGM/AGILE (last access: 21 January 2026), and version
0.1 archived on Zenodo (Schmitt et al., 2025). The follow-
ing sections provide a detailed description of the underlying
methodology and its individual components.

2.1 General principles

The general approach of AGILE is illustrated in Fig. 1. A
set of initial control variables, referred to as the first guess
and which may represent a combination of model param-
eters, state variables or boundary conditions, is iteratively
adjusted to minimize the mismatch between the output of
a glacier evolution model and available observations. This
mismatch is quantified by a cost function, which combines
the discrepancies across all observational targets into a sin-
gle value, with each contribution normalized by its associated
uncertainty. In addition, regularization terms are included in
the cost function to address the ill-posed nature of the prob-
lem and to reduce the risk of overfitting. The optimization
aims to minimize this cost function by systematically adjust-
ing the control variables.

To support this process efficiently, AGILE leverages au-
tomatic differentiation (AD) through PyTorch. This enables
flexible definition of control variables while still allowing the
calculation of their gradients with respect to the cost func-
tion. These gradients guide the optimization and allow for ef-
ficient and simultaneous updates of all variables. More tech-
nical details about the AD implementation in PyTorch are
provided in Appendix A1.

Figure 1. Principle workflow of AGILE: Starting with a First Guess
at the top, an initial glacier evolution model run is performed (blue
line). The mismatch between the model output and observations
(depicted in green), in particular one total volume, one volume
change and one total area, is calculated using a cost function. If the
cost function has not reached a minimum, all control variables (i.e.,
the unknown variables we aim to estimate) are updated simultane-
ously using AD, and a new glacier evolution model run is conducted
(orange line).

2.2 Glacier representation and forward model

AGILE re-implements the glacier evolution model from
OGGM (Maussion et al., 2019) in PyTorch, making it fully
differentiable. The model is based on the shallow ice approxi-
mation to compute depth-integrated ice velocity (Eq. A3) and

https://doi.org/10.5194/gmd-19-1301-2026 Geosci. Model Dev., 19, 1301–1319, 2026

https://github.com/OGGM/AGILE
https://github.com/OGGM/AGILE


1304 P. Schmitt et al.: AGILE v0.1: The Open Global Glacier Data Assimilation Framework

a mass conservation equation, where changes in ice thickness
at a point equal the mass balance input minus the divergence
of the ice flux (Eq. A4). Since version 1.6.0, OGGM uses
a semi-implicit numerical scheme instead of the scheme de-
scribed in Maussion et al. (2019). Details on this scheme are
provided in Appendix A2.

AGILE uses the same 1.5D flowline representation as
OGGM. In this approach, glacier dynamics are computed
along a flowline with variable surface widths. The flowlines
are derived from geographical input data, including glacier
outlines and a digital elevation model (DEM), using the ’ele-
vation band flowlines’ method (e.g. Huss and Farinotti, 2012;
Huss and Hock, 2015; Werder et al., 2019), which preserves
the glacier’s area-height distribution. Each grid point along
the flowline is assigned a trapezoidal bed shape with a 45°
wall-slope, and the bottom width depends on the glacier bed
height (see Sect. 2.3.1 for more details). The 1.5D flowline
setup reduces spatial complexity compared to full 2D or 3D
models, making it computationally feasible to track the full
computational graph during model runs to be used for AD,
without running into memory limitations (see Appendix A1
for details about AD in PyTorch).

To integrate height-dependent Mass Balance (MB) forc-
ing into the computation of gradients, AGILE includes a Py-
Torch wrapper (see Appendix A3 for details). This accounts
for changes in MB forcing caused by dynamically evolv-
ing glacier surface heights. The wrapper allows the use of
any OGGM-compatible MB model for dynamic simulations
without re-implementing it in PyTorch. However, this ap-
proach does not support gradient computation for MB model
parameters (e.g., the melt factor in temperature index mod-
els), but this can be added in the future.

2.3 Cost function

The cost function is defined as

J (2)= Jobs(2)+ λJreg(2), (1)

where Jobs represents the target observational component
(see Sect. 2.3.1), and Jreg is the regularization component
(see Sect. 2.3.2). The control variables are denoted with 2
(see Sect. 2.4), and λ determines the weight of the regular-
ization term relative to the observational term.

2.3.1 Target observational cost component

The target observational component, Jobs, measures the
alignment of the model with the target observations using
squared differences. For a single observed quantity x, it is
defined as

Jobs,x =
(xmdl− xobs)

2

σ 2
x

, (2)

where xmdl is the modeled quantity, xobs is the correspond-
ing target observation, and σx represents the uncertainty of

the target observation. This ensures that discrepancies within
the uncertainty bounds have values smaller than one and also
scales different types of target observations. For multiple ob-
servations, Jobs is averaged over all normalized discrepan-
cies.

Jobs =
1
nobs

nobs∑
j

Jobs,j , (3)

where nobs equals the number of considered target observa-
tions.

In this study, we focus on target observations that are read-
ily available from global datasets. Specifically, a single area–
height distribution, one geodetic mass balance value (1M),
and one total glacier volume estimate (V ). The choice of
these variables and the implications for real-world applica-
tions were discussed in Sect. 1, these are the currently avail-
able global datasets used by the glacier models participating
in GlacierMIP3.

The area–height distribution is derived from a glacier out-
line and a DEM, and is also used to define the elevation-band
flowlines (see Sect. 2.2). As a result, we aim to match the
surface heights (S) at each grid point along the flowline at
the outline year. By doing so, we also match the area–height
distribution, since it was used to construct the flowlines. To
maintain this relationship during minimization, the bottom
width of the trapezoidal bed shape is adjusted at each iter-
ation based on the current bed height estimate (see control
variables in Sect. 2.4). This preserves the link between sur-
face height and the corresponding elevation-band area at each
grid point.

As an example, the target observational cost for volume is
given by

Jobs,V =
(Vmdl−Vobs)

2

σ 2
V

, (4)

while for surface height along the flowline it is

Jobs,S =

∑nx
i=1(S

i
mdl− S

i
obs)

2

σ 2
Snx

, (5)

where, nx is the number of grid points and Si is the surface
height at grid point i. Here, the volume represents a glacier-
integrated observation, while the surface heights are an ob-
servation along the flowline, incorporating the observed area-
height distribution. AGILE’s flexible cost function design al-
lows for expanding the range of supported target observa-
tions as long as corresponding model counterparts exist.

2.3.2 Regularization cost component

While Jobs ensures alignment with target observations, the
problem can remain ill-posed or prone to overfitting to ob-
servations. Regularization, Jreg, introduces constraints to ad-
dress these issues, typically focusing on smoothness (e.g.
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Goldberg and Heimbach, 2013; Fürst et al., 2017; Jouvet,
2022). The regularization term is scaled to ensure compat-
ibility with Jobs, similar to the observation uncertainties.

In this study, we apply regularization solely to enforce a
smooth glacier bed. This is defined as

Jreg,bed =
1
γbed

nx−1∑
i

(
bi+1
− bi

1x

)2

, (6)

where bi is the glacier bed height at grid point i, 1x is
the grid spacing, and γbed is the scaling factor based on
the smoothness of the first guess bed height bfg (γbed =∑nx−1
i

(
bi+1

fg −b
i
fg

1x

)2

). At the start of the flowline (the high-

est point), an additional grid point is introduced to preserve
the bed slope. Without this extra grid point, the algorithm
would lower the bed height at the highest point to match the
height of the second-highest point, minimizing the smooth-
ness term. This effect gets stronger with larger values of λ.
The extra grid point acts as an additional regularization to
counteract this effect, regardless of the value of λ.

For our experiments we defined Jreg = Jreg,bed. However,
this regularization framework could be extended in future
studies, for instance, to include smoothness constraints on
the initial flux. Such extensions will become increasingly im-
portant when working with real-world target observations,
which are subject to measurement uncertainties. In these
cases, regularization plays a crucial role in preventing the
model from overfitting to noisy data.

2.4 Control variables

Control variables, denoted as 2= [21,22, . . .,2n], are ad-
justed at each iteration to minimize the cost function (see
Sect. 2.3). They represent the unknown variables to be es-
timated or optimized. In theory, these can include any un-
known aspect of the system, such as flowline-geometry vari-
ables (e.g. glacier bed height), dynamic parameters (e.g. the
deformation-sliding parameter A of Eq. A3), MB model pa-
rameters (e.g. melt factor), or a combination of these. The
flexibility of AD enables the simultaneous calculation of
gradients for multiple control variables, providing essen-
tial information to guide the minimization algorithm (see
Sect. 2.5). However, this is constrained by observational data
availability and the risk of overfitting.

In this study, we set the control variables to be the glacier
bed elevation and the distributed ice volume in 1980 at
each grid point. This choice reflects our primary goal: to
demonstrate, as a proof-of-concept, that variables with dif-
ferent types, meanings, and magnitudes can be optimized si-
multaneously within each iteration. We also aim to explore
whether AGILE can (i) improve upon the current OGGM bed
inversion, which assumes equilibrium and may introduce bi-
ases for non-steady-state glaciers, and (ii) reconstruct glacier
conditions in 1980. The second objective is of secondary im-

portance and mainly serves to enable transient simulations
from 1980 to 2020. This allows us to incorporate target ob-
servations at their respective timestamps, such as the area-
height distribution and the total volume both in 2000, as well
as the geodetic mass balance from 2000 to 2020. The goal
is to obtain a dynamically consistent glacier state in 2020,
which is not part of the optimization but is important for ini-
tializing future projections.

To handle control variables with varying magnitudes, we
apply min-max normalization. For a given control variable
2x , this scaling is defined as

2x,scaled =
2x −2x,min

2x,max−2x,min
, (7)

where2x,min and2x,max represent the defined minimum and
maximum bounds, respectively. This ensures all scaled vari-
ables are within the range [0, 1], making changes proposed
by the minimization algorithm approximately proportional
across all variables. The minimum and maximum values for
the bed heights are defined such that the resulting ice thick-
ness at the time of the observed outline and DEM remains
within ±60 % of the first-guess estimate. Similarly, the 1980
ice volume at each grid point is constrained within ±40 % of
the first guess. Additionally, ten extra grid points are added
beyond the terminus for the ice volume, allowing the glacier
to be initialized with a larger extent than observed. For these
extra points, the scaling boundaries are set to 0 and the maxi-
mum value at the terminus grid point (140 % of the first guess
volume).

We also must account for the non-uniform grid used in
the 1.5D flowline representation (see Sect. 2.2), where grid-
cell areas vary along the flowline. These variations influence
glacier-wide properties when control variables are changed.
For example, a change in the bed height affects the glacier
area-height distribution more in a larger grid cell than in
a smaller one. To account for this, we multiply the glacier
bed height by the initial surface width at each grid point
and use the resulting values as our control variables. Dur-
ing each iteration, these control variables are divided by the
same initial surface width to recover the estimated glacier
bed, which is then used in the dynamic simulation. The initial
surface width is set during flowline initialization to preserve
the observed area-height distribution and remains constant
throughout minimization (see Sect. 2.2). We use width in-
stead of grid-cell area because the spacing along the flowline
is the same for all grid cells, making it a constant factor. The
1980 glacier volume at each grid point naturally accounts for
varying grid-cell sizes. For the actual control variables, we
divide the volume by the constant grid-cell spacing along the
flowline and use the resulting volume per unit length as the
control. This corresponds to the cross section area at each
grid point.
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2.5 First guess and minimization

To initiate the algorithm, an initial estimate of the con-
trol variables, specifically the glacier bed height and the
1980 volume distribution, is required. In our experiments,
we used two methods to generate these estimates, allow-
ing us to assess AGILE’s sensitivity to the first guess. The
first method relies on the default OGGM bed inversion, a
mass-conserving approach based on an equilibrium assump-
tion and an apparent mass balance, as described in Maussion
et al. (2019). The second uses the shear-stress-based GlabTop
method (Linsbauer et al., 2012), which depends solely on
surface geometry.

In both cases, the estimated bed geometry directly pro-
vides the initial values for both the bed height and the 1980
volume distribution. However, it is important to note that the
volume estimates from both methods correspond to the out-
line year (2000), and we introduce a temporal mismatch by
using them as the first guess 1980 volume distribution.

The minimization process is conducted using the L-
BFGS-B algorithm, as implemented in the Python package
SciPy (Virtanen et al., 2020, https://www.scipy.org/, last
access: 21 January 2026). L-BFGS-B is a limited-memory
quasi-Newton optimization algorithm that, given a smooth
objective function, its gradient, an initial guess, and simple
bound constraints on the control variables, iteratively approx-
imates the inverse Hessian to efficiently find a constrained
minimum (Byrd et al., 1995; Zhu et al., 1997; Morales and
Nocedal, 2011). Similar algorithms have been used in com-
parable geophysical studies (e.g., Goldberg and Heimbach,
2013; Fürst et al., 2017). In our case, we set the bounds for
the control variables to the minimum and maximum values
defined in Sect. 2.4.

3 Experiments

The goal of these experiments is to demonstrate that AG-
ILE can recover both the glacier bed heights along the flow-
line and the dynamic glacier state in 2020 by performing a
transient simulation from 1980 to 2020. A key objective is
to show that AGILE improves upon OGGM’s bed inversion,
which assumes glacier equilibrium and may introduce errors
for retreating or advancing glaciers, while at the same time
producing a dynamically consistent glacier state in 2020 that
could serve as the initial condition for future projections. To
achieve this, we define the control variables as the glacier
bed height and the 1980 ice volume at each grid point (see
Sect. 2.4).

The target observations are based on globally available
datasets, used here in an idealized setting. Specifically, we
use an area–height distribution and a total volume estimate
for the year 2000, along with a geodetic mass balance be-
tween 2000 and 2020. This setup is considered idealized be-
cause we exclude uncertainties in both mass balance forc-

ing and ice dynamics. While this simplification does not re-
flect real-world complexity, it serves as a proof of concept,
demonstrating that AGILE is correctly implemented and that
gradients obtained with AD can be used to optimize multiple
control variables simultaneously.

To create a controlled test environment, we generate syn-
thetic glaciers using OGGM and treat the model output as ob-
servations. This gives us complete knowledge of the system,
allowing us to directly assess the accuracy of our method-
ology. This type of setup, often referred to as an “inverse
crime” (Colton and Kress, 2013), offers an optimistically
favourable testing environment. However, demonstrating ro-
bust and reliable performance under such idealized condi-
tions is an essential first step for validating a new inversion
method (Goldberg and Heimbach, 2013).

3.1 Creation of synthetic glaciers and measurements

The idealized experiments are designed to replicate realistic
glacier geometries. We selected the glaciers Aletsch in the
Alps (Europe), Artesonraju in the Cordillera Blanca (South
America), Baltoro in the Karakoram (Asia), and Peyto in the
Canadian Rockies (North America) because they represent
a range of different climates and glacier area size. For each
glacier, a flowline is constructed using the RGI v6 outline
(RGI 6. Consortium, 2017), DEM data from NASADEM
(NASA JPL, 2020), and the consensus ice thickness estimate
(Farinotti et al., 2019). Based on these flowlines, we gener-
ate dynamic glacier simulations from 1980 to 2020 for three
different dynamic states: retreating, advancing, and equilib-
rium.

In particular, the retreating and advancing cases allow us
to evaluate whether AGILE can improve upon OGGM’s bed
inversion, which assumes a glacier is in equilibrium. The re-
sulting glacier geometries, shown in Fig. 2 panels a and b for
Aletsch, and in Fig. S1 panels a and b for Artesonraju, panels
e and f for Baltoro, and panels i and j for Peyto, serve as the
ground truth we aim to invert for.

The driving mass balance is defined using a simple degree-
day model (see Eq. 1 in Schuster et al., 2023), with pre-
cipitation and temperature inputs taken from the W5E5
dataset (Lange, 2019) for each glacier’s location. Precipi-
tation factors (ranging from 1.4 to 5.2), degree-day factors
(3.1 to 6.5 kg m−2 °C−1 d−1), and temperature biases (−5.6
to 0.9 °C) follow the calibration values from OGGM v1.6.
The deformation-sliding parameter A (ranging from 0.1 to
7.9× 10−24 s−1 Pa−3) is also taken from OGGM v1.6, lead-
ing to different dynamic behaviors for each synthetic glacier.

For the creation of advancing and retreating cases, we first
performed a 60-year dynamic simulation using climate data
from 1920 to 1980, followed by a second simulation from
1980 to 2020. For each glacier, dynamic state, and simula-
tion period, temperature biases were applied to ensure that
the total volume changes from 1980 to 2020 were of simi-
lar magnitude for both retreating and advancing conditions.
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For the equilibrium state, we defined a constant mass bal-
ance profile based on the average over specific historical peri-
ods (Aletsch: 1988–1998, Arensonraju: 1981–1983, Baltoro:
1981–1993, Peyto: 1948–1966). This profile was applied for
120 years before 1980 to allow the glacier to reach equilib-
rium, and the same mass balance was then used from 1980
to 2020. Figure 2 panels c and d show the resulting mass bal-
ance and volume evolution for the different dynamic states
of the Aletsch glacier. For the other glaciers, see Fig. S1 pan-
els c and d for Artesonraju, panels g and h for Baltoro, and
panels k and l for Peyto.

During the creation of the synthetic glaciers, we “mea-
sure” the target observations used in our experiments. Specif-
ically, we record the surface elevation at each grid point in
the year 2000 (S2000) for capturing the area height distribu-
tion (for details see Sect. 2.3.1), the total glacier volume in
2000 (V2000), and the geodetic mass balance from 2000 to
2020 (1M2000/2020). We define the associated measurement
uncertainties to reflect the typical order of magnitude found
in reported real-world data, setting them as σS = 10 m (Uue-
maa et al., 2020), σ1M = 100 kg m−2 yr−1 (Hugonnet et al.,
2021) and σV = 10 % of V2000 (Farinotti et al., 2019). These
target observations are designed to reflect the type of readily
available global datasets and represent the only inputs pro-
vided to both the first-guess methods and AGILE in our ex-
periments.

3.2 Performance measurements

To evaluate how well AGILE can reconstruct the glacier bed
and the dynamic glacier state in 2020, we track the mean
absolute difference (MAD) of key variables throughout the
optimization process. Specifically, we compute the MAD of
the glacier bed elevation (MAD_BED) and the distributed ice
volume in 2020 (MAD_V_2020). Since the simulation runs
dynamically from 1980 to 2020 and the distributed volume
in 1980 is one of the control variables, we also calculate the
MAD of the distributed ice volume in 1980 (MAD_V_1980).
Although we do not expect to accurately reconstruct the 1980
glacier state, given the lack of target observations before
2000 and the inherently diffusive nature of glacier dynamics,
tracking MAD_V_1980 still offers valuable insight into how
strongly diffusion limits the ability to recover past glacier
states.

4 Results and Discussion

We begin by evaluating the performance of the two first guess
methods in Sect. 4.1, with a particular focus on the glacier
bed. As noted in Sect. 2.5, a temporal mismatch is introduced
in the first guess of the 1980 volume distribution, which lim-
its the interpretability at this stage.

This is followed by an evaluation of AGILE’s core func-
tionality (Sect. 4.2), beginning with the synthetic Aletsch

Figure 2. Synthetic glacier geometry inspired by Aletsch, shown
for retreating, equilibrium, and advancing glacier states. Panel (a)
displays the defined glacier bed, ice thickness along the flowline,
and area-height distribution for the year 2000. Panel (b) presents
the volume distribution along the flowline for the year 2000. Panel
(c) illustrates the driving mass balance used during the simulation
from 1980 to 2020, and panel (d) shows the corresponding total
glacier volume over the same period.

glacier geometry in a retreating dynamic state (Sect. 4.2.1).
We then expand the analysis across different glacier geome-
tries and dynamic states (Sect. 4.2.2), and finally examine the
recovery of control variables along the flowline (Sect. 4.2.3).
Next, we evaluate how different first guess methods affect
AGILE’s performance (Sect. 4.3). Finally, we assess the im-
pact of varying cost function settings, including different val-
ues of λ and numbers of target observations (Sect. 4.4).

4.1 First guess performance

Using our synthetic glacier measurements, we evaluated the
two first guess methods described in Sect. 2.5. At this stage,
we focus only on the glacier bed, as we acknowledge the tem-
poral mismatch introduced by using a volume distribution
estimate from 2000 as the first guess for the 1980 state (see
Sect. 2.5). In later analyses, however, we return to the 1980
volume distribution to assess AGILE’s ability to reconstruct
past glacier states prior to the first available observation.

Starting from OGGM’s first guess glacier bed, Fig. 3
shows the best performance in the equilibrium state, with
a maximum absolute difference of 39.5 m and a MAD of
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1.5 m. This is expected, as OGGM’s inversion assumes the
glacier is in equilibrium. In contrast, bed elevations are sys-
tematically underestimated in the retreating state and overes-
timated in the advancing state, especially near the terminus.
These states show maximum absolute differences of 56.1 m
(retreating) and 70.5 m (advancing), with MAD values of 8.7
and 12.7 m, respectively. This pattern holds across all glacier
geometries and reflects previous findings (e.g., Fig. 5, panel
d in Maussion et al., 2019), highlighting the importance of
assessing performance under varying dynamic conditions.

In contrast, the first guess glacier bed of the GlabTop
method shows similar behavior across all dynamic states,
as it relies solely on surface geometry and does not in-
corporate any mass balance forcing. The maximum abso-
lute differences for Aletsch in Fig. 3 are 96.0 m (retreating),
100.9 m (equilibrium), and 162.2 m (advancing). This behav-
ior is consistent across all tested geometries.

For all other glacier geometries and dynamic states
the performance metrics of the two first guess methods
are summarized in Table S1, using mean absolute differ-
ences for bed height (MAD_BED), distributed volume in
1980 (MAD_V_1980), and in 2020 (MAD_V_2020). The
MAD_V_2020 metric is computed after running the glacier
evolution model from 1980 to 2020 with the prescribed mass
balance. The OGGM values listed in the table are later used
to normalize performance metrics, allowing for easier assess-
ment of whether AGILE improves upon the OGGM first-
guess results.

Across all cases, Table S1 shows that OGGM generally
performs as well as or better than GlabTop, with the most
accurate results seen in equilibrium states. This trend is par-
ticularly pronounced for the Baltoro glacier, where OGGM
outperforms GlabTop by nearly an order of magnitude. Con-
sequently, Baltoro represents an especially relevant case for
evaluating AGILE’s ability to improve upon poor initial
guesses that deviate strongly from the synthetic truth.

4.2 Proof of concept for AGILE functionality

4.2.1 Aletsch retreating

The first experiment showcases the proper functionality of
AGILE and illustrates that gradient calculations are work-
ing as expected. For this we selected our synthetic Aletsch-
retreating case and set λ to 0.01 (see Eq. 1). Further we use
all three target observations we took during the glacier cre-
ation, as defined in Sect. 3.1 (S2000, V2000 and 1M2000/2020)
and our first guess is coming from OGGM. Our control vari-
ables consist of the distributed volume in 1980 as well as the
bed height at each grid point, which gives in total 120 control
variables.

Figure 4 panel a shows the evolution of the cost function
over 20 iterations, with the largest decrease occurring in the
first two iterations, reducing the cost from 2.3 to 0.2. This
demonstrates that the gradient-informed updates to the 120

Figure 3. Difference between the synthetic glacier bed for Aletsch
and the glacier bed for the two first guess methods, OGGM and
GlabTop (see Sect. 4.1), shown for all three dynamic states: retreat-
ing, equilibrium, and advancing.

control variables are working as intended. The correctness of
the gradient calculations, along with the simultaneous updat-
ing of all control variables, is further highlighted by AGILE
requiring only 21 forward model runs for 20 iterations (see
Fig. 4 panel c), with most iterations needing just one run to
find a smaller cost value. This indicates that the minimiza-
tion algorithm rarely performs ’search’ runs, where updates
to control variables fail to reduce the cost.

Examining individual cost components (Fig. 4, panels a
and b), the largest initial contributor is the mismatch to ob-
served surface heights along the flowline S2000, followed by
the volume V2000 and the geodetic mass balance1M2000/2020
terms. The S2000 mismatch significantly decreased after two
iterations, becoming smaller than 1M2000/2020, but later in-
creasing slightly again. This highlights that not all obser-
vation mismatches decrease monotonically and may tem-
porarily increase as the total cost continues to decrease. The
regularization term, starting at 0.005, remained almost con-
stant throughout the iterations. However, as the total cost de-
creases, its relative importance grows, eventually becoming
the dominant cost component after 13 iterations (Fig. 4, panel
b).

Analyzing the performance metrics (MAD_BED,
MAD_V_1980, and MAD_V_2020) over iterations (Fig. 4,
panel c) confirms that reductions in the cost function led
to improved agreement with the synthetic truth. Significant
improvements were observed for both the bed height and
the distributed volume in 2020 compared to the first guess.
While the distributed volume for 1980 initially worsened
during the early iterations, it began improving relative to the
first guess after the sixth iteration.
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This experiment demonstrates AGILE’s ability to adapt
120 control variables in just a few iterations, achieving sig-
nificant improvements over the OGGM-provided first guess.
Additionally, the computational demand is minimal, with
each iteration (forward model run and gradient calculation)
taking approximately 1.3 s for the Aletsch geometry on a
laptop equipped with an 11th Gen Intel(R) Core(TM) i7-
1165G7 CPU (2.8 GHz) and 16 GB RAM (see Table S2
for other computing times of other dynamic states and ge-
ometries). The gradient calculation, specifically the back-
ward propagation through the computing graph (see Ap-
pendix A1), requires only around 0.1 s, or roughly ten per-
cent of the total iteration. This efficiency makes the method
highly promising for regional to global-scale applications.

4.2.2 Performance across glacier geometries and
dynamic states

To evaluate the performance of AGILE across a range of
conditions, we generated 12 synthetic glaciers representing
four geometries (Aletsch, Artesonraju, Baltoro, and Peyto),
each in three dynamic states: retreating, equilibrium, and ad-
vancing, as described in Sect. 3.1. In this section, we further
examine the core functionality of the method by assessing
its ability to minimize the cost function under these varying
configurations. We focus here only on experiments relying
on the OGGM first guess.

In the equilibrium experiments, the OGGM first guess per-
forms very well, which is expected given its underlying equi-
librium assumption. The only exception is Baltoro, where the
first guess for the equilibrium case closely resembles that of
the retreating case. As a result, the minimization process also
mirrors the retreating scenario.

As an example of typical behavior in the equilibrium case,
Fig. 4 panels d to f show the results for the Aletsch geometry
starting from the OGGM first guess. The strong performance
of the OGGM first guess is evident in the low initial total
cost of just 0.18 (panel d), indicating that mismatches for
all observations fall within their defined uncertainty ranges,
suggesting that further optimization is not strictly necessary.
Nonetheless, AGILE is able to refine the solution and im-
prove upon this already strong first guess, as shown by the
decreasing values of the performance metrics in panel f.

Beyond the equilibrium case, a consistent pattern in
the performance metrics across many experiments is
that MAD_BED and MAD_V_2020 improve more than
MAD_V_1980, highlighting the limited ability to recover
earlier glacier states. For example, Fig. 5, panel c (Arteson-
raju, advancing) and panel f (Peyto, retreating), both start-
ing from the OGGM first guess, show similar behavior.
This highlights the broader challenge of reconstructing past
glacier states in the absence of direct observations, regardless
of glacier geometry or dynamic state. This limitation stems
from the diffusive nature of glacier dynamics and the result-
ing loss of information over time.

Figure 4. Evolution of the cost function and performance metrics
for Aletsch retreating (a to c) and equilibrium (d to f), starting from
the OGGM first guess, with a λ value of 0.01. Panels (a) and (d)
show the evolution of the cost function over minimization iterations,
with individual cost terms represented in different colors. The rela-
tive contribution of the cost terms to the total cost is shown in panels
(b) and (e). Panels (c) and (f) illustrate the evolution of performance
metrics over the same iterations. The numbers in boxes along the x-
axis indicate the total number of forward model runs required for
each corresponding iteration.

For all glacier geometries and dynamic states, AGILE re-
quired 21 to 27 model runs over 20 iterations, demonstrat-
ing its ability to efficiently inform the minimization algo-
rithm with accurate gradients. An exception was the retreat-
ing Peyto experiment (Fig. 5, panel f), where the number of
model runs increase substantially from Iteration 14 ongoing.
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Figure 5. Same as Fig. 4, for Artesonraju advancing (a, b and c) and
Peyto retreating (d, e and f) starting from the OGGM first guess.

This hints that the minimization algorithm has difficulties in
further minimizing the cost as probably a local minimum is
reached. For real-world applications, AGILE includes an op-
tion to limit the number of forward model runs (default: 100)
to reduce computational effort. Forward model run times var-
ied between 0.7 and 2.5 s (see Table S2), depending on the
maximum glacier velocity and corresponding time-step con-
straints imposed by the stability criterion (Eq. A19).

4.2.3 Distributed differences along the flowline

Figure 6 shows the differences between the modeled results
and the synthetic truth along the flowline across iterations for
the Aletsch-retreating and Baltoro-advancing cases. Specifi-

cally, it shows the difference in bed height (panels a and d),
distributed volume in 1980 (panels b and e), and distributed
volume in 2020 (panels c and f).

For Aletsch, improvements are visible along most of the
flowline, except near the highest points (start of the flow-
line, at 0 distance). At these points, a persistent noisy pat-
tern is observed in DIF_BED, which appears in several of the
12 synthetic experiments. As iterations increase, these noisy
patterns either dampen or remain stable in DIF_V_2020, but
can sometimes become more pronounced in DIF_V_1980.
This behaviour depends on the glacier volume distribution
along the flowline (Fig. 2, panel b; Fig. S1, panels b, f, and
j). These patterns likely reflect the diffusive nature of glacier
dynamics and the inherent limitations in accurately invert-
ing for distributed glacier volume when relying on glacier-
integrated observations.

Overall, improvements across most grid points are seen re-
gardless of the dynamic state or first-guess method. One no-
table exception is the Baltoro advancing case (Fig. 6, panels
d to f), where AGILE was unable to correct an overly high
glacier bed at the terminus. Despite this local limitation, clear
improvements are observed between 5 and 25 km along the
flowline. Since a large portion of the glacier’s total volume
is located within this section (Fig. S1, panel f), the overall
distributed volume is still substantially improved.

4.3 Influence of first guess

This section compares AGILE’s performance when initial-
ized with either the OGGM or GlabTop first guess (see
Sect. 2.5). Looking at the Aletsch-retreating case, shown
panel a of both Figs. 4 and 7, the initial cost value at iteration
0 is significantly higher for GlabTop (10.1) than for OGGM
(2.3), due to larger mismatches with the target observations
(S2000, V2000, and 1M2000/2020). Despite this, AGILE effec-
tively minimizes the cost function, reaching a comparable
value to OGGM’s initial cost after three iterations and con-
tinuing to decrease thereafter.

Examining the performance metrics (Fig. 7, panel c),
we find that at Iteration 0, GlabTop has a slightly better
MAD_BED compared to OGGM, while MAD_V_1980 and
MAD_V_2020 are approximately twice as large. With fur-
ther iterations, all three metrics improve. After three iter-
ations, MAD_V_2020 improves enough to outperform the
OGGM first guess (value< 1). However, MAD_V_1980
shows only minor improvement after 20 iterations and re-
mains roughly twice as large as the value achieved with
OGGM.

To further assess AGILE’s performance under more chal-
lenging conditions, we examine the Baltoro-retreating case
initialized with the GlabTop first guess (Fig. 7, panels d to f).
The poor initial performance is evident from the high total
cost of 82.5 (panel d) and large values of the performance
metrics, around 10, which means they are approximately ten
times higher than those for the OGGM first guess.
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Figure 6. Differences between the synthetic truth and AGILE guess
after every fifth iteration along the flowline for Aletsch retreating
(a to c) and Baltoro advancing (d to f), starting from the OGGM
first guess (0 Iteration) with a λ value of 0.01. Panels (a) and (d)
show the differences in bed height, panels (b) and (e) shows the
differences in volume for 1980, and panels (c) and (f) show the dif-
ferences in volume for 2020. All differences are displayed for every
grid point along the flowline.

Despite this challenging starting point, AGILE is able
to substantially improve the solution. After 20 iterations, it
reaches performance levels close to those of the OGGM first
guess, with values around 1.4 (where 1 indicates equal per-
formance to the OGGM first guess). When AGILE is allowed
to continue beyond 20 iterations, it further improves the re-
sults, achieving values around 0.5 for both MAD_BED and
MAD_V_2020 after 40 iterations (not shown in panel f).
However, MAD_V_1980 does not improve further beyond
20 iterations.

These results highlight that starting from a worse first
guess, such as GlabTop, can reduce the accuracy of recon-
structing the glacier state in 1980. This limitation is partly
due to the diffusive nature of glacier dynamics, which leads
to a gradual loss of information over time during dynamic
simulations. Nonetheless, AGILE demonstrates its ability to
improve even a poor first guess, successfully refining the
glacier bed and simultaneously initialize the model with the
2020 dynamic glacier state.

Figure 7. Same as Fig. 4, for Aletsch (a, b and c) and Baltoro (d, e
and f) retreating using GlabTop first guess.

4.4 Different cost function settings

Since the cost function is central to AGILE, we analyzed
here the impact of different cost function settings (λ values
and number of provided target observations) for retreating
and advancing cases, for individual glacier geometries using
the OGGM first guess. Specifically, we explored 30 differ-
ent values of λ, including 0 (no regularization) and 29 val-
ues ranging logarithmically from 10−4 to 103. Additionally,
we varied the number of provided target observations (S2000,
V2000 and 1M2000/2020) across seven configurations: using
only one of the three target observations, all combinations
of two target observations, and all three target observations
together. We evaluated the performance in Fig. 8 by looking
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if the first guess of MAD_BED and MAD_V_2020 could be
improved after 20 iterations and the range of λ values that
result in improved performance.

For Aletsch (Fig. 8, panels a to g), in both the retreat-
ing and advancing cases, surface height observations (S2000)
had the strongest influence in improving MAD_BED and
MAD_V_2020 compared to the OGGM first guess. This is
expected, as surface height provides distributed information
about the glacier’s slope along the flowline, while V2000 and
1M2000/2020 are integrated over the entire glacier. Interest-
ingly, even with only providing V2000, small λ values im-
proved MAD_V_2020.

Combining two target observations consistently outper-
formed single target observations, especially when S2000
were included. Notably, combining V2000 and 1M2000/2020
produced significant improvements compared to using either
target observation alone. Furthermore, using two target ob-
servations broadened the range of λ values that yielded im-
provements over the first guess, especially in the advancing
case. Using all three target observations simultaneously did
not provide substantial benefits compared to configurations
that included two target observations, particularly when S2000
was one of them. This suggests that two target observations
may already provide sufficient information for the control
variables for this particular experiment.

For Artesonraju (Fig. 8, panels h to n), S2000 was by far the
most important target observation. Even when used alone, it
achieved results comparable to using two or all three observa-
tions. Combining V2000 and1M2000/2020 did not outperform
using these observations individually.

For Baltoro (Fig. 8, panels o to u), in the retreating
case (solid lines) single observations alone were insuffi-
cient to improve upon the first guess, with V2000 showing
the best performance. Combining V2000 with either S2000
or 1M2000/2020 resulted in substantial improvements, with
the best performance achieved using all three target observa-
tions. For the advancing case (dotted lines), S2000 alone was
sufficient to improve MAD_BED and MAD_V_2020, with
further gains observed when combining target observations.

In the retreating case for Peyto (solid lines in Fig. 8, panels
v to z, aa, ab), simultaneous improvement of MAD_BED and
MAD_V_2020 was only achieved by using all three target
observations. For other configurations, improving one metric
often led to no improvement or degradation in the other. In
the advancing case (dotted lines), S2000 alone improved both
metrics, with further improvements observed when combin-
ing target observations, though using all three added little ad-
ditional value.

The importance of specific target observations varies with
glacier geometry and dynamic state. While it is challenging
to disentangle the roles of geometry and state, increasing the
number of target observations consistently improves perfor-
mance. All cases benefit from using all three target observa-
tions, though in some instances, performance with one or two
target observations is nearly equivalent.

Furthermore, the results demonstrate that the range of ef-
fective λ values is relatively broad, with many retreating and
advancing cases performing well for λ values between 10−4

and 10−1. We observed small to no improvements when tran-
sitioning from no regularization (λ= 0) to small values of
λ. However, as λ increased further, performance worsened.
This indicates that overly large regularization weights cause
AGILE to prioritize smoothing the bed over matching target
observations. It is important to note that in this experiment,
we used perfectly accurate target observations. With real, im-
perfect data, regularization becomes more crucial to prevent
overfitting, which explains why λ= 0 performed well under
these idealized conditions.

5 Conclusion and future work

Our experiments show that AGILE can adjust many control
variables in just a few iterations, proving that the gradient
calculations using AD work well. Adding more target obser-
vations makes the inversion more reliable, but in some cases,
good results can be achieved with fewer target observations.
Reconstructing the glacier volume in 1980 was harder than in
2020 because no direct target observations were used before
2000, and the diffusive nature of glacier dynamics, which
leads to a gradual loss of information over time during dy-
namic simulations.

These results are promising, but AGILE has not yet been
tested on real-world data. Its flexibility offers many possibil-
ities, but these need careful exploration. For example, with
new glacier bed estimates becoming available (e.g., Cook
et al., 2023; van Pelt and Frank, 2025), AGILE could focus
on other aspects, like combining the calibration of glacier dy-
namics and mass balance models. Setting up test cases with
plenty of observations for validation will be key to under-
standing what AGILE can do in practical applications.

In our idealized experiments, we assumed the target obser-
vations were perfect, so regularization was less important. In
real-world cases, where observations are uncertain, regular-
ization will be critical to avoid overfitting. Finding the right
balance for the regularization weight (λ) will be necessary.
Techniques like L-curves (see, e.g., Hansen, 1992; Gillet-
Chaulet et al., 2012; Recinos et al., 2023; Wolovick et al.,
2023), could help in deciding this balance.

The next step for applying AGILE to real-world problems
would be to include a differentiable mass balance model. A
simple temperature index model (e.g., Marzeion et al., 2012)
could be a good starting point. For more complex mass bal-
ance models (e.g. PyGEM Rounce et al., 2020) it will be im-
portant to check if their equations work with AD. Similarly,
adding dynamic processes like calving or debris cover will
require compatibility with AGILE’s AD framework. There-
fore, AD may limit how complex the models can get, which
is further restricted by the availability of target observations.
On the other hand, AGILE’s ability to work with diverse
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Figure 8. MAD_BED (orange color) and MAD_V_2020 (blue color), normalized by the OGGM first guess values, for retreating (dot and
solid line) and advancing (cross and dotted line) experiments after 20 iterations, starting from the OGGM first guess. Results are shown
for Aletsch (a to g), Artesonraju (h to n), Baltoro (o to u), and Peyto (v to z, aa, ab). The y-axis shows the number of provided target
observations, and the x-axis shows different values of λ (λ= 0 is shown with a dot or a cross to the left of the axis). The gray shaded area
indicates the region where the OGGM first guess could be improved after 20 iterations.

datasets could support more complex models as more target
observations become useable in a consistent way.

AGILE provides a promising way to integrate new datasets
as they become available or to use all available glacier-
specific observations in a consistent way. This could help ad-
dress the issue of equifinality in global glacier modeling (e.g.
Rounce et al., 2020) by combining all available information.
Additionally, AGILE could generate consistent glacier histo-
ries, filling in data gaps from the past (e.g., creating a reanal-
ysis dataset for glaciers) or providing a solid starting point
for future projections.

Appendix A: Model implementations using PyTorch

A1 Automatic Differentiation in PyTorch

PyTorch implements automatic differentiation (AD) using a
system called Autograd, which is designed for deep learning
optimization tasks. This system enables the construction of a
dynamic computation graph and efficient gradient computa-
tion. We use this system in our forward model by replacing
NumPy arrays with PyTorch tensors.

During a forward pass, PyTorch constructs a dynamic
computational graph that keeps track of all operations on ten-
sors requiring gradients, in our case the control variables. For
those, all operations involving this tensor are tracked for later
differentiation.
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After the forward pass, we call PyTorch’s .backward()
function on the cost function tensor. This triggers PyTorch
to compute the gradient of that tensor with respect to all ten-
sors requiring gradients, in our case the partial derivatives of
our control variables with respect to the cost function. This
computation is done by propagating the computational graph
backward and applying the chain rule

dy
dz
=

dy
dx

dx
dz

(A1)

for each operation applied during the forward pass. To
achieve this, PyTorch stores the derivatives of all standard
operations.

PyTorch also allows users to add custom operations by
defining both a forward computation and a corresponding
backward computation (the derivative of the forward com-
putation). This can be useful for optimizing parts of the code
where the derivatives are known. We applied this approach
in our semi-implicit solver (see Sect. A2).

A2 Semi-Implicit Solver including AD

With the idea of a global application in mind, AGILE uses
the same 1.5D flowline representation as OGGM. In partic-
ular, AGILE uses one flowline with changing widths. The
bed shape is trapezoidal, with a constant wall angle of 45°.
The flowlines are generated from the geographical input date
using the “elevation band flowlines” method (e.g. Huss and
Farinotti, 2012; Huss and Hock, 2015; Werder et al., 2019).

The glacier evolution model from OGGM (originally in-
troduced by Oerlemans, 1997)

∂C

∂t
= wṁ−∇ · q (A2)

is adapted in AGILE and re-implemented with PyTorch. This
advection equation for the cross-section areaC (m2) provides
flexibility for varying surface widths w (m) and allows the
use of mixed bed shapes with the same equation. Further
ṁ is the mass balance (kg m−2 s−1), q = Cu is the ice flux
(m3 s−1) and u is the depth-integrated shallow-ice velocity
(m s−1). This velocity is defined as

u=

(
2A
n+ 2

h+ fs
1
h

)(
−ρgh

∂s

∂x

)n
(A3)

where A is the ice creep parameter (s−1 Pa−3), n is the ex-
ponent of Glen’s flow law (n= 3), h is the ice thickness
(m), fs is a sliding parameter (s−1 Pa−3), ρ is the ice density
(900 kg m−3), g is the gravitational acceleration (9.81 m s−2)
and ∂s

∂x
is the surface slope, where s is the surface height (m).

By default, the sliding parameter fs is set to 0 s−1 Pa−3 be-
cause there are currently no methods/observations available
on a global scale to distinguish the contributions of ice defor-
mation (defined by A) and sliding to the total velocity.

Besides the explicit forward finite difference approxi-
mation scheme of OGGM also a semi-implicit scheme is
included in AGILE. The reason for this is that numeric
instabilities can occur (a known problem, see e.g. https:
//oggm.org/2020/01/18/stability-analysis/ and https://oggm.
org/2020/07/08/numerics/, last access: 21 January 2026)
which cause problems when using AD. In particular, during
the backward pass for the gradient calculation, these instabil-
ities are amplified and dominate the resulting gradients. The
semi-implicit scheme was derived by starting from Eq. (A2)
and rearranging it from an advection equation into a diffusion
equation

∂C

∂t
= wṁ+∇ ·

(
D
∂s

∂x

)
(A4)

with Diffusivity D

D =

(
2A
n+ 2

h+ fs
1
h

)
(ρgh)n

∣∣∣∣ ∂s∂x
∣∣∣∣n−1

C. (A5)

In the following the derivation of the semi-implicit scheme
using a rectangular cross-section C = wh is shown. This
simplifies the problem because for a rectangular bed shape
the surface width is not changing over time ( ∂C

∂t
=

∂wh
∂t
=

w ∂h
∂t

). Afterwards, this solution is generalized for a trape-
zoidal cross-section. First, we modify Eq. (A4) by using the
rectangular cross-section area

∂h

∂t
= ṁ+

1
w
∇ ·

(
D
∂s

∂x

)
(A6)

with Diffusivity D

D =

(
2A
n+ 2

h2
+ fs

)
(ρgh)n

∣∣∣∣ ∂s∂x
∣∣∣∣n−1

w. (A7)

For the discretization, the ice flux q is defined on a staggered
grid denoted with indices i± 1/2. Further using (∇q)i =
qi+1/2−qi−1/2

1x
,
(
∂s
∂x

)
i+1/2 =

si+1−si
1x

and q t =Dt
(
∂s
∂x

)t+1
we

get

ht+1
i
−ht

i

1t
= ṁ

+
1
wi

Dt
i+1/2

(
st+1
i+1−s

t+1
i

1x

)
−Dt

i−1/2

(
st+1
i −s

t+1
i−1

1x

)
1x

. (A8)

For spatial interpolation of variables from the unstaggered to
the staggered grid an arithmetic mean value is used. This is
needed in the calculation of D for h and w (e.g. hi+1/2 =
hi+hi+1

2 ).
Next, we rearrange the equation to put all terms involving

the future time-step t + 1 on the left side

ht+1
i −

1t

1x2wi

·

(
Dti−1/2s

t+1
i−1 − (D

t
i+1/2+D

t
i−1/2)s

t+1
i +Dti+1/2s

t+1
i+1

)
= hti +1tṁ. (A9)
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and use the definition of the surface height s = b+h (where
the glacier bed height b is constant over time) together with
a vector notation[
−

1t

1x2wi
Dti−1/21+

1t

1x2wi
(Dti+1/2+D

t
i−1/2)−

1t

1x2wi
Dti+1/2

]

·

ht+1
i−1
ht+1
i

ht+1
i+1


= hti +1tṁ+

1t

1x2wi

[
Dti−1/2− (D

t
i+1/2+D

t
i−1/2)D

t
i+1/2

]
·

[
bi−1
bi
bi+1

]
. (A10)

Finally, this equation can be used to set up a final linear equa-
tion for all grid points. We include the boundary conditions
D−1/2 =Dnx+1/2 = 0 for all time steps, where nx denotes
the last grid point of the unstaggered grid and the unstaggered
grid starts with index 0. With this, we define two nx×nx ma-
trices

Mh =δi+1,j ·


−

1t

1x2w0
D−1/2

−
1t

1x2w1
D1/2

...

−
1t

1x2wnx
Dnx−1/2

+

+δi,j ·


1+ 1t

1x2w0
(D−1/2+D1/2)

1+ 1t

1x2w1
(D1/2+D3/2)

...

1+ 1t

1x2wnx
(Dnx−1/2+Dnx+1/2)

+

+δi,j+1 ·


−

1t

1x2w0
D1/2

−
1t

1x2w1
D3/2

...

−
1t

1x2wnx
Dnx+1/2



(A11)

and

Mb =δi+1,j ·


1t

1x2w0
D−1/2

1t

1x2w1
D1/2
...

1t

1x2wnx
Dnx−1/2

+

+δi,j ·


−

1t

1x2w0
(D−1/2+D1/2)

−
1t

1x2w1
(D1/2+D3/2)

...

−
1t

1x2wnx
(Dnx−1/2+Dnx+1/2)

+

+δi,j+1 ·


1t

1x2w0
D1/2

1t

1x2w1
D3/2
...

1t

1x2wnx
Dnx+1/2



(A12)

where δ is the Kronecker delta defined as

δi,j =

{
0 if i 6= j

1 if i = j
(A13)

and

δi+1,j =


0 0 · · · 0 0nx
1 0 · · · 0 0
0 1 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 1 0nx

 ,

δi,j+1 =


0 1 0 · · · 0nx
0 0 1 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 1
0 0 0 · · · 0nx

 .

The final linear equation we solve is defined as

Mh ·


ht+1

0
ht+1

1
...

ht+1
nx

=

ht0
ht1
...

htnx

+1tṁ+Mb ·


b0
b1
...

bnx

 (A14)

which can be solved by using the function
scipy.linalg.solve_banded from the Python
package SciPy (Virtanen et al., 2020).

This solution for a rectangular cross-section can be gener-
alized to a trapezoidal cross-section by using the definition
of the area

C =
1
2
(w+w0)h, (A15)

where w0 is the bottom width (m) and the surface width w
(m) is defined as

w = w0+ ηh, (A16)

where η defines the angle of the side wall (e.g. η = 2 is a
45° wall angle). Now we can use this definition of the cross-
section area in the definition of the diffusivity (Eq. A5)

D =

(
2A
n+ 2

h2
+ fs

)
(ρgh)n

∣∣∣∣ ∂s∂x
∣∣∣∣n−1

w0+w

2
. (A17)

Further we can rewrite ∂C
∂t

by inserting the trapezoidal cross-
section (Eq. A15) together with the surface width definition
(Eq. A16) to get

1
2
∂

∂t
(h(2w0+ ηh))=

1
2
∂h

∂t
(2w0+ ηh)+

1
2
hη
∂h

∂t

=
1
2
(2w0+ 2ηh)

∂h

∂t
= w

∂h

∂t
. (A18)

With this we are able to rewrite Eq. (A4) again into Eq. (A6)
and use our solution derived before. The only difference is
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that we need to use the diffusivity of the trapezoidal cross-
section defined in Eq. (A17).

For the time-stepping the stability criterion

1t < cfl_nr
1x2

max(Di+1/2/wi+1/2)
(A19)

is used. This criterion derives from a linearised form of
Eq. (A6) (assumingD is constant), which will become a heat
equation with diffusivity D/w. Therefore the stability crite-
rion of the heat equation is adapted here. The cfl_nr was set
to 0.5 following Hindmarsh (2001) equation 91.

To use this semi-implicit solver now in AGILE we further
need a differentiable version of the linear equation solver
scipy.linalg.solve_banded. Otherwise, the linear
solve would need too many operations and the computa-
tional graph (see Sect. A1 more infos about the computa-
tional graph) will become very large and hence the memory
consumption when using AD. For this, a new function is de-
fined which uses the original SciPy solver during the for-
ward pass, which solves Eq. (A14) for ht+1 by

ht+1
=M−1

h · rhs (A20)

where

ht+1
=


ht+1

0
ht+1

1
...

ht+1
nx

 (A21)

and

rhs =


ht0
ht1
...

htnx

+1tṁ+Mb ·


b0
b1
...

bnx

 . (A22)

For the backward pass of this newly defined function, the
Eqs. (7) and (8) from Goldberg and Heimbach (2013) are
used to calculate the adjoints δ∗Mh and δ∗rhs with

δ∗rhs =M−Th · δ
∗ht+1 (A23)

and

δ∗Mh =−δ
∗rhs · (ht+1)T � (δi,j+1+ δi,j + δi+1,j ), (A24)

where � is an element-wise matrix multiplication. This ma-
trix multiplication ensures that we only get gradients of the
non-zero elements of Mh. The δ∗ notation is used for the
adjoints and how they are connected to the gradients is ex-
plained in more detail in Goldberg and Heimbach (2013).
The implementation of the gradient calculation of this new
function was tested against a finite-difference approximation
using torch.autograd.gradcheck from Pytorch.

A3 Mass-Balance Model wrapper

The idea of the wrapper is to circumvent the need to re-
implementing part of the modelling chain with PyTorch, but
still incorporate its influence on the gradient calculation. The
downside is that with this you can not obtain gradients of
variables used in the wrapped part.

In our case, we decided to put the MB model forcing into
a wrapper. The MB model gives us for each year a value for
the climatic MB depending on the height mborig(height). The
MB height profile is defined each year by the temperature and
precipitation input.

The idea is to utilize the differentiable 1D interpolation
tool from https://github.com/aliutkus/torchinterp1d (last ac-
cess: 21 January 2026). With this, we define constant height
bins hbins which cover the vertical glacier extension. The dif-
ferentiable MB wrapper finally looks like

mbtorch,i(h)= torchinterp1d(hbins,mborig,i(hbins))(h) (A25)

for a year i.
This method works best if the desired modelling part is

smooth and does not change too much depending on the in-
put. The spacing of bins (hbins in our case) should be deter-
mined by the variability of the output of the wrapped func-
tion.

Code availability. AGILE is written in Python and openly
available on GitHub (https://github.com/OGGM/AGILE, last ac-
cess: 21 January 2026) under a BSD 3-Clause License. Ver-
sion 0.1 is also archived on Zenodo with a permanent DOI
(https://doi.org/10.5281/zenodo.17774989, Schmitt et al., 2025).
Under this DOI, all scripts used to run the experiments and
generate the figures presented in this study are included in the
folder agile1d/sandbox/paper_v01_code, along with a
README that provides instructions on using a bash script to re-
produce the results. In addition, we provide Docker images of
the computing environment used, publicly accessible via GitHub
Packages (https://github.com/OGGM/AGILE/pkgs/container/agile,
last access: 21 January 2026). All results presented in this
work were produced using the Docker image https://ghcr.io/
oggm/agile:20230525, archived on Zenodo with a permanent DOI
(https://doi.org/10.5281/zenodo.18314100, Schmitt et al., 2026).

Data availability. No data sets were used in this article.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-19-1301-2026-supplement.
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