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Abstract. This study explores the influence of implement-
ing a multi-layer snow scheme on the climatological bias
within a seasonal forecast system. Traditional single layer
snow schemes in land surface models, particularly those util-
ising a composite snow-soil layer, often inadequately rep-
resent the insulating effect of snowpack, resulting in cold
and warm biases during winter and snowmelt seasons, re-
spectively. By contrast, multi-layer snow schemes improve
the simulation of energy exchange between the land surface
and atmosphere by realistically capturing snowpack thermal
processes. To examine this impact, two sets of LSM offline
experiments are conducted, using either a single-layer or a
multi-layer snow scheme. Results show that the multi-layer
configuration better reproduces the observed Northern Hemi-
sphere snow seasonality. To further assess the role of snow
insulation in coupled forecast systems, two sets of experi-
ments with the Global Seasonal Forecast System (GloSea)
version 6 are compared over 24 years (1993-2016) corre-
sponding to the incorporation of single- (G6single) and multi-
layer (G6my1ii) snowpack schemes. In G6pyyi, the onset of
snowmelt is delayed by approximately 1-2 weeks, postpon-
ing springtime evaporation, slowing soil moisture depletion,
and improving the memory of soil moisture. Increased soil
moisture enhances the partitioning of available energy into
latent heat flux, thereby promoting evaporative cooling and
suppressing excessive water-limited land—atmosphere cou-
pling. The improved model fidelity of land-atmosphere inter-
actions, particularly over mid-latitude regions, mitigate near-

surface warming biases across the entire diurnal period and
reduce the sensitivity of atmospheric conditions to land sur-
face variability. The model performance in simulating pre-
cipitation is also improved with the increase in precipitation
occurrence over snow-covered regions. Above all, this study
demonstrates the value of implementing a multi-layer snow-
pack scheme in seasonal forecast models, not only during the
snowmelt season but also for the subsequent summer season,
for model fidelity in simulating temperature and precipitation
along with the reality of land-atmosphere interactions.

1 Introduction

Subseasonal-to-seasonal (S2S) forecasts have become in-
creasingly pivotal in numerous fields, encompassing agricul-
ture, water resource management, energy, transportation, and
disaster preparedness. The significance of S2S forecasting
stems from their ability to provide actionable insights into
forthcoming weather and climate conditions over the span
of weeks to months. The predictability of S2S forecasts is
strongly tied to the quality of the initial conditions and data
assimilation technique, which mathematically finds optimal
values with minimized analysis errors to merge observations
into a dynamical model, has been employed to create im-
proved global analyses (Seo et al., 2021; Kumar et al., 2022).
Forecasts across various time scales underscore the neces-
sity for precise initial states of distinct components within the
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forecast model, as each component retains information over
inherently disparate time scales (Richter et al., 2024). As the
memory of initial land conditions can extend out to approx-
imately 2 months, the importance of realistic land surface
initialization in determining skill of the subseasonal forecast
is paramount (Koster et al., 2011; Guo et al., 2011; Seo et al.,
2019).

In particular, soil moisture (SM) plays a pivotal role in hy-
drological and meteorological dynamics, acknowledged as
an essential climate variable by the World Meteorological
Organization (WMO) (Seneviratne et al., 2010; Santanello
et al., 2018). Its persistence or memory can significantly en-
hance forecast accuracy, particularly at time scales extend-
ing to 1-2 months (Dirmeyer et al., 2016, 2018; Seo and
Dirmeyer, 2022a). The fidelity of modelled SM contributes
to a more accurate portrayal of land-atmosphere interactions,
facilitating the exchange of water and energy fluxes at the
land surface (Seo et al., 2024). This enhanced representation
holds potential for predicting extreme climate events, partic-
ularly those intensified by land-atmosphere feedback within
extended range forecast systems (Seo et al., 2020; Tak et al.,
2024; Dirmeyer et al., 2021). SM is directly constrained by
the components of the typical water balance equation: pre-
cipitation, latent heat flux, and runoff, but the modelled snow
affects the representation of snow characteristics.

The pivotal role of snow in land-atmosphere interactions
highlights the significance of accurately representing cold
processes related to snow in hydrometeorology and dynam-
ical predictions. Compared to other land surface variables,
snow exhibits distinctive characteristics such as high albedo,
high thermal emissivity, and low thermal conductivity, which
profoundly influence radiation budget and surface moisture
and energy fluxes to the atmosphere. The presence or absence
of snow can result in a disparity of approximately 10 K in the
climatology of surface air temperature (Betts et al., 2014).
This discrepancy primarily stems from the reduction in net
shortwave radiation attributable to the high albedo of snow.
Snow-atmosphere feedback evolves through three distinct
stages: before, during, and after snowmelt. Meanwhile, the
coupling strength of snow cover to near-surface atmospheric
variables, as measured by the phase similarity of members
of an ensemble forecast induced by specifying identical land
surface conditions (Koster et al., 2006), is strongest during
snowmelt and the coupling strength after snowmelt (delayed
soil moisture impact) is stronger than that before snowmelt
(radiative impact from surface albedo) (Xu and Dirmeyer,
2011). Therefore, during the warm season, SM dynamics
become intricately linked to the physical characteristics of
snow, affecting the initiation of evaporation and runoff due to
snowmelt. It plays a crucial role in determining the model’s
ability to accurately simulate atmospheric variables through
land-atmosphere coupling processes.

Some Land surface models (LSMs) still use a single-layer
snowpack scheme, which has proven insufficient in accu-
rately capturing the seasonal evolution of snow cover. The
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snowpack insulates the land surface, inhibiting energy ex-
change between the land surface and the atmosphere. Con-
sequently, a single layer snowpack scheme typically leads to
cold and warm biases during winter and snow melting sea-
sons, respectively. While single-layer schemes can theoreti-
cally account for insulation through adjusted thermal resis-
tance, implementations that combine snow and the upper-
most soil layer into a single thermal store (as used in the
control experiment of this study) cannot represent a vertical
temperature gradient within the snowpack. Consequently, in
such composite configurations, surface temperature changes
are transmitted directly to the soil below, enhancing the ef-
ficiency of energy exchange. Addressing these limitations,
recent advancements in LSMs aim to integrate the multi-
layer snow scheme to enhance the representation of snow
dynamics and mitigate associated biases. For instance, Noah-
Multiparameterization (Noah-MP) LSM represents the lat-
est iteration of Noah LSM, a land component widely imple-
mented with a single layer snowpack in various regional and
global operational forecast models. It incorporates multiple
enhancements aimed at improving the realism of biophysi-
cal and hydrological processes (Niu et al., 2011). Notably,
for a more accurate representation of snow physics, Noah-
MP adopts the multi-layer snowpack scheme. This scheme
dynamically adjusts the number of snow layers based on the
depth of snow, ensuring a more realistic conceptualization of
snow accumulation and melt processes. The Joint UK Land
Environment Simulator (JULES) LSM features the utiliza-
tion of a multi-layer snow scheme in its current operational
system. It also dynamically adjusts the number of snow lay-
ers, with each layer having prognostic variables for temper-
ature, density, grain size, and both liquid and solid water
content (Best et al., 2011). Unlike the simpler single layer
snow model, which treats snow as an adaptation of the top-
soil layer, the multi-layer scheme accounts for independent
snow layer evolution and the impact of snow aging on albedo
through simulated grain size changes. By explicitly simulat-
ing snow insulation effects and meltwater percolation, this
scheme better captures seasonal snow variability and its in-
fluence on soil thermal regimes, including surface cooling
during winter, delayed ground thaw in spring, and subsur-
face heat retention in summer. This implementation signifi-
cantly improves soil temperature simulations, leading to bet-
ter representation of land surface processes (Burke et al.,
2013; Walters et al., 2017). JULES is incorporated within the
GloSea forecast system (MacLachlan et al., 2015).
Numerous studies have aimed to improve the sophisti-
cation of snow physics and highlighted its advancement
in numerical models (Xue et al., 2003; Arduini et al.,
2019; Cristea et al., 2022). For instance, among 13 op-
erational models participating in sub-seasonal to seasonal
(S2S) prediction project (Vitart et al., 2017, 2025), only
three — BoM (POAMA P24), CNR-ISAC (GLOBO), and
NCEP (CFSv2) — employ a single-layer snowpack scheme,
whereas the remaining ten models, including those de-
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veloped by CMA (BCC-CPS-S2Sv2), CNRM (CNRM-
CM 6.1), CPTEC (BAM-1.2), ECCC (GEPSS8), ECMWF
(CY49R1), HMCR (RUMS), IAP-CAS (CAS-FGOALS-f2-
V1.4), IMA (CPS3), KMA (GloSea6-GC3.2), and UKMO
(GloSea6), now used multi-layer snowpack schemes. De-
spite this broad adoption, the impact of multi-layer snow
schemes on S2S forecasts remains insufficiently explored
and understood. Hence, this study conducts a comparative
analysis between single layer and multi-layer snowpack in
the JULES LSM, as well as the fully coupled forecast sys-
tems GloSea5 and GloSea6 — past and present operational
forecast systems at the UK Met Office and the Korea Mete-
orological Administration (KMA), in retrospective forecast-
ing in order to investigate the impact of an advanced snow
scheme. The primary objective of this study is to assess the
seasonal cycle of snow and land surface variables throughout
the snow-covered period and evaluate the model’s capabil-
ity to replicate the mean climatology of key land surface and
near-surface atmospheric variables, e.g., surface SM, surface
air temperature, and precipitation, during the boreal warm
season. The evaluation is restricted to the Northern Hemi-
sphere (NH) and mainly to snow-affected mid-latitude re-
gions. Daily mean, maximum, and minimum temperatures
are validated at sub-daily time scales to elucidate the time
of significant improvements in model performance. Further-
more, the model fidelity in the simulation of land-atmosphere
interactions, corresponding to water- and energy-limited pro-
cesses, is diagnosed to identify the realism of land coupling
regimes by implementing the advanced snowpack scheme.

The paper is organized as follows. Section 2 describes the
GloSea5 and GloSea6 models, and the validation datasets
used in this study. Section 3 provides the methodology to
evaluate the model performance. Section 4 presents and dis-
cusses the results of this study. Finally, Sect. 5 summarizes
the results and their implications for future applications.

2 Model Description and Data
2.1 Forecast Model

This study explores the performance of the Global Seasonal
forecast system (GloSea) version 5 and 6, which are abbre-
viated as GloSea5 and GloSea6, respectively. These are the
fully coupled ensemble forecast models with atmosphere-
land-ocean-sea ice components, developed by the UK Met
Office. GloSea5 (MacLachlan et al., 2015) Global Coupled
model 2.0 (GC2; Williams et al., 2015) configuration con-
sist of UM (Unified Model) version 8.6 atmospheric compo-
nent (GA6.0; Walters et al., 2017) having N216 horizontal
resolution of 0.56° latitude x 0.83° longitude with vertically
85 hybrid-sigma coordinates topped at 85 km, JULES (Joint
UK Land Environment Simulator) version 4.7 land surface
model (GL6.0; Best et al., 2011) with four soil layers (0-10,
10-35, 35-100, and 100-300 cm depth), as well as NEMO
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(Nucleus for European Modelling of the Ocean) version 3.4
oceanic component (GO5.0; Megann et al., 2014) and CICE
(Los Alamos Sea-ice Model) version 4.1 sea-ice component
(GSI6.0; Rae et al., 2015) on an ORCA tripolar 0.25° global
grid with 75 vertical levels. Those components exchange in-
teractive variables with the OASIS3 coupler (Valcke, 2013).
GloSea6 Global Coupled model 3.2 (GC3.2) updates the at-
mospheric, land, ocean, and sea-ice components to the ver-
sion of UM vn11.5 (GA7.2), JULES vn5.6 (GL8.0; Wiltshire
et al., 2020), NEMO vn3.6 (GO6.0; Storkey et al., 2018),
and CICE vn5.1.2 (GSI8.1; Ridley et al., 2018) without any
modification in the resolution. The model components of
GloSea6 are coupled with the OASIS3-MCT (Model Cou-
pling Toolkit; Craig et al., 2017).

Substantive changes in the GloSea6 compared with
GloSea$5, mostly in model physics, have been implemented
throughout all model components (Williams et al., 2015,
2018). For instance, the atmospheric physics are modified in
radiation (improving gaseous absorption through upgrades in
McICA (Monte Carlo Independent Column Approximation)
and parameterization in ice optical properties), microphysics
(updates in warm rain parameterization and newly imple-
menting ice particle size-dependent parameterization), cloud
physics (including radiative effects from convective cores),
gravity wave drag (implement heating from gravity-wave
dissipation), boundary layer (correcting cloud top entrain-
ment during decoupling to the land), cumulus parameteriza-
tion (improving updraught numeric in convective process and
updating CAPE closure as a function of large-scale vertical
velocity), and new modal aerosol scheme (UKCA GLOMAP
(Global Model of Aerosol Processes) scheme; Mann et al.,
2010). Aforementioned atmospheric physics updates in the
GloSea6 are likely to improve the performance of model sys-
temic errors, particularly in the overestimated vertical profile
of cloud fraction at upper troposphere, tropospheric cold and
dry biases, the underestimated jet stream, the overestimated
precipitation, and the negative bias of troposphere geopoten-
tial height during boreal summer (Williams et al., 2018).

Land surface types in the both forecast systems are clas-
sified with five vegetation (broadleaf trees, needleleaf trees,
C3 grasses, C4 grasses and shrubs) and four non-vegetated
surfaces (urban, open water, bare soil and permanent land
ice) and the monthly climatology of leaf area index, derived
from MODIS satellite product (Yang et al., 2006), is pre-
scribed corresponding to the plant functional types. However,
in GloSea06, there are two major updates in land physics: the
implementation of a multi-layer snow scheme and the re-
alization of shortwave surface albedo. GloSea5 employs a
single-layer snow scheme using a composite approach, in
which the snow and the uppermost soil layer are combined
into a single thermal store (Best et al., 2011). Because the
snow and top-soil layer share the same prognostic tempera-
ture, the scheme effectively allows direct heat exchange be-
tween the surface atmosphere and the soil, limiting the rep-
resentation of a thermal gradient through the snowpack. It
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combines the snow and the uppermost soil layer into a sin-
gle thermal store, with the increased snow depth leading to
areduction in the effective thermal conductivity. This reduc-
tion is not a dynamic representation of the intrinsic properties
of snow but rather an adjustment to account for the insulat-
ing effect of the snow. This scheme lacks proper closure of
the surface energy budget (Fig. S1 in the Supplement) and a
dynamic representation of snowpack evolution with the in-
adequate depiction of the snowpack’s insulating properties.
The improvement from the implementation of the multi-layer
snow scheme is shown not only in the realization of the snow
melt season, but also in the soil temperature and permafrost
extent (Walters et al., 2019). For instance, the multi-layer
snow scheme leads to surface warming of the soil tempera-
ture during the winter season, as the heat flux from the soil to
the atmosphere is reduced, but shows a surface cooling in the
spring season, as the increase in insulating radiation inhibits
snowmelt. In the snow frontal regions, the increase in land
surface albedo is due to the delay in the onset of snowmelt
by the multi-layer snowpack.

In both forecast models, the snow-free surface albedo
for each grid box is calculated as a weighted average of
the albedos of different surface types, with MODIS bare
soil albedo (Houldcroft et al., 2009) and GlobAlbedo sur-
face albedo in other non-vegetated surface types (Muller et
al., 2012). The albedo of vegetated surface types is defined
as a combination of the bare soil albedo and the full leaf
albedo, with the weighting determined by the leaf area index
(LAI) of the respective vegetation type. In GloSea6, to im-
prove surface albedo representation, these albedos are mod-
ified as a function of shortwave wavelength. Since surface
albedos, which are independent of wavelength, limit spec-
tral variability, photosynthetically active radiation (PAR) and
near-infrared radiation (NIR) are calculated separately us-
ing the canopy radiation model (Sellers, 1985). In addition,
the generation of the surface albedos of land surface types
is amended. The mapping from the International Geosphere
Biosphere Programme (IGBP; Loveland et al., 2000) clas-
sification to JULES land surface types has been refined in
GloSea6. The proportion of bare soil within the grassland,
cropland, and crop-natural mosaic the IGBP classes was re-
duced and the coverage of vegetated land types, especially
for C3 grass cover is extended (Walters et al., 2019; Wilt-
shire et al., 2020). The shift from bare soil to vegetated sur-
faces decreases surface albedo (Fig. 2e), as the vegetation can
penetrate snow cover during the winter season. Therefore,
the surface albedo differences observed during the snow-
covered season can be attributed to amendments in land sur-
face type classification, whereas the albedo differences dur-
ing the snow-free period are understood to result from the in-
corporation of wavelength-dependent calculations in the sur-
face albedo scheme. Other land surface physics are consistent
in GloSea5 and GloSeab.

In terms of initial conditions for each model component,
GloSea5 and GloSea6 commonly utilize ERA-interim and
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a variational data assimilation system for the NEMO ocean
model (NEMOVAR; Mogensen et al., 2012) analysis for
the atmospheric and ocean and sea-ice initializations, re-
spectively. Land surface reanalysis, where the land offline
simulation is forced by atmospheric boundary conditions
from Japanese 55 years Reanalysis (JRA-55; Kobayashi et
al., 2015) and European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis version 5 (ERAS; Hersbach
et al., 2020), is used to initialize land surface variables for
GloSea5 and GloSea6, respectively. GloSea5 and GloSea6
have been used to carry out 60d (depending on ensem-
ble or variable, 6-month forecast is conducted for the sea-
sonal prediction) retrospective forecasts starting on the 1st,
Oth, 17th, and 25th of every month for 26 years (1991-
2016) and 24 years (1993-2016), respectively, but evalua-
tions are conducted with 24-year forecasts for the fair com-
parison between both systems. To operate ensemble fore-
casts, the Stochastic Kinetic Energy Backscatter (SKEB2;
Tennant et al., 2011) and the Stochastic Perturbation of Ten-
dencies (SPT; Sanchez et al., 2016) schemes are used to
perturb initial states in GloSea5 and GloSea6, respectively.
Compared to the SKEB2, the SPT scheme imposes addi-
tional constraints on energy and water conservation, lead-
ing to an increase in the spread of ensemble without degrad-
ing ensemble mean fields, which is especially beneficial over
the tropics. Based on these methods, GloSea5 and GloSea6
operate 3 and 7 ensemble forecasts and have been imple-
mented by the KMA in international S2S prediction project
for 2020-2022 and 2023—present, respectively.

To solely understand the impact of the multi-layer snow-
pack scheme in a fully coupled forecast system, we have car-
ried out another experiment by implementing a single layer
snowpack scheme in GloSea6. We have conducted 6-month
long retrospective forecasts with a 4-member ensemble ini-
tiated on 1 March for 24 years (1993-2016). Throughout
this paper, we refer GloSea5, GloSea6 and GloSea6 with a
single-layer snow scheme to GSsingle, GOmulti and G6gingle,
respectively. The description of model configurations is sum-
marized in Table 1.

2.2 JULES offline experiments

To explore the impact of the multi-layer snowpack scheme on
land-atmosphere coupling processes in coupled and uncou-
pled (land only) model configurations, we further conduct
two sets of LSM offline experiments using GL8.0 (represent-
ing a specific configuration of JULES version 5.6 within the
coupled system): implementing single layer (JULESgingie)
and multi-layer (JULES,,1i) snowpack schemes, respec-
tively. The offline LSM simulations are driven by observed
atmospheric near-surface variables, including 2m air tem-
perature and humidity, 10 m wind speed, downward radiative
fluxes, and pressure at the surface. These historical observa-
tions are employed by the hourly ERAS reanalysis (Hersbach
et al., 2020). Precipitation is forced by the hourly averaged

https://doi.org/10.5194/gmd-19-1261-2026



E. Seo et al.: Implementation of a multi-layer snow scheme in the GloSea6 seasonal forecast system

1265

Table 1. Description of the G5gingle; GOmulti> and G6gjngle model configurations.

GSgingle (GloSea5)

G6multi (GloSeab) G6single

Hindcast period 26 years (1991-2016) 24 years (1993-2016)
Ensemble Method Stochastic Kinetic Energy Stochastic Perturbation of Tendencies (SPT)
Backscatter (SKEB2)
numbers 3 7 4
Resolution Atmosphere Horizontal: N216 (0.83° x 0.56°)

Vertical: L85 (~ 85km)

Initial conditions Atmosphere

ECMWEF ERA-interim

Land JULES offline run (JRAS5

atmospheric forcing)

JULES offline run (ERA5 atmospheric forcing)

Ocean/Sea-ice

NEMOVAR (UKMO)

Model physics Atmosphere GA6.0 GA7.2
Land GL6.0 GL8.0 (multi-layer snowpack) GLS8.0 (single layer snowpack)
Ocean GOs5.0 G06.0
Sea-ice GSI16.0 GSI8.1
Coupler OASIS3 OASIS3-MCT

Integrated Multi-satellitE Retrievals for GPM (IMERG) ver-
sion 7 (Huffman et al., 2023). Both offline experiments are
conducted over global land areas from January 2001 to De-
cember 2022 at a spatial resolution of 0.56° latitude x 0.83°
longitude, consistent with the resolution of the fully coupled
forecast systems.

The single layer scheme represents snow as a modifica-
tion of the uppermost soil layer, applying a fixed thermal
conductivity without explicitly resolving vertical snow struc-
ture. This simplification results in direct heat exchange be-
tween the surface and soil, leading to excessive soil cool-
ing in winter and rapid warming during spring melt. In con-
trast, the multi-layer scheme explicitly represents up to three
snow layers with predefined layer thicknesses of 0.04, 0.12,
and 0.34 m, dynamically adjusting the number of active lay-
ers based on snow depth (Best et al., 2011). It incorpo-
rates a density-dependent thermal conductivity parameteri-
zation, improving the simulation of snow insulation effects
and reducing soil temperature biases. Additionally, the multi-
layer scheme includes a prognostic snow densification pro-
cess driven by overburden stress and temperature, while also
explicitly handling meltwater retention, percolation, and re-
freezing. Snow albedo is also treated with a prognostic ap-
proach that accounts for snow aging and grain size evolu-
tion, enhancing radiative feedback representation. Lastly, the
multi-layer snowpack ensures surface energy budget closure
by explicitly solving for the energy balance of each snow
layer, addressing limitations in the single layer scheme that
can lead to inconsistencies in snowmelt partitioning.
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2.3 Validation Data

The daily maximum and minimum temperature over land at
a height of 2m are sourced from NCEP CPC analysis pro-
duced by NOAA Physical Sciences Laboratory (PSL; https:
/lpsl.noaa.gov, last access: 3 February 2026). The tempera-
ture data have a 0.5° horizontal resolution and are available
for 1979—present. The daily mean temperature is acquired by
arithmetically averaging maximum and minimum tempera-
ture. Hereafter, daily mean, maximum, and minimum tem-
perature will be referred to as Tinean, Tmax> and Tiin, respec-
tively.

The ERAS-Land is an offline land reanalysis (Mufioz-
Sabater et al., 2021) of the Tiled ECMWF Scheme for Sur-
face Exchanges over Land incorporating land surface hydrol-
ogy (H-TESSEL) land surface model with four soil layers
(0-7, 7-28, 28-100, and 100-289 cm depth), forced by the
ERAS atmospheric reanalysis. ERAS5-Land has a horizontal
resolution of ~ 0.08° and an hourly temporal resolution. To
enhance the spatial resolution of the ERA5-Land, ERAS near
surface atmospheric variables (e.g., temperature, humidity,
and pressure) used for boundary conditions are corrected to
account for the altitude difference that came from the lower
resolution of ERAS.

This study uses Japanese Reanalysis for Three Quarters
of a Century (JRA-3Q; Kosaka et al., 2024) as a reference
for snow water equivalent (SWE) to diagnose the modelled
snow. It employs an offline version of the Simple Biosphere
(SIB) model (Sellers et al., 1986). Compared to the satellite-
based and in situ datasets, the snow cover and depth are ac-
curately described in its predecessor, the Japanese 55-year
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Reanalysis (JRA-55) (Orsolini et al., 2019). JRA-3Q incor-
porates daily snow depth data from the Special Sensor Mi-
crowave/Imager (SSM/I), the Special Sensor Microwave Im-
ager Sounder (SSMIS), and in situ measurements using a uni-
variate two-dimensional optimal interpolation (OI) approach.
Although this procedure is comparable to that used in JRA-
55 (Kobayashi et al., 2015), two issues — unrealistic analy-
sis near coastal areas and unintended increments caused by
satellite data biases — have been resolved in JRA-3Q. Addi-
tionally, JRA-3Q employs the multi-layer snowpack scheme
whereas JRA-55 uses a single layer snowpack scheme. JRA-
3Q has a horizontal resolution of 0.375° and 3-hourly tem-
poral resolution.

A time-filtered satellite product of daily surface SM, origi-
nated from the COMBINED European Space Agency (ESA)
Climate Change Initiative (CCI) Soil Moisture v08.1 dataset
(Dorigo et al., 2017), is used to assess the global SM memory
(SMM) simulated by forecast models. Remotely sensed SM
datasets inherently contain random and periodic errors, par-
ticularly in high-frequency variability, due to the radiomet-
ric instrument performance, viewing angle variations, spa-
tial resampling, imperfect parameterizations used in retrieval
algorithms, and so on. Due to these errors, the daily time
series of satellite-based SM retrieval often shows intervals
with an increase in SM without rainfall or any other water
supply (see Fig. 6 in Seo and Dirmeyer, 2022a), which is un-
explainable by the surface water budget. This erroneous SM
behavior hampers the representation of realistic SM dynam-
ics and land-atmosphere interactions due to a decrease in the
SM autocorrelation value. Since the SMM is calculated with
the time-lagged SM autocorrelation, assuming that the daily
SM time series is exponentially decaying, the inherent error
in the satellite data leads to an underestimation of SMM. To
avoid the problem, this study uses the time-filtered surface
SM product covering 21 years (2000-2020) with 0.25° spa-
tial resolution, using a Fourier transform with LSM datasets
(Seo and Dirmeyer, 2022a). The time-filtered SM product
provides a better representation of the surface SM time se-
ries, which also contributes to the improvement of the SM
characteristics (i.e., SM memory and error) compared to the
result from in situ observations. Hereafter, we refer to the
adjusted ESA CCI SM based on the LSM simulations as
ESACCl,;.

The Global Land Evaporation Amsterdam Model version
4 (GLEAM; Miralles et al., 2025) provides a dataset of global
terrestrial heat fluxes and soil wetness. It combines satel-
lite observations, reanalysis products, and in situ data using
a hybrid modelling framework that includes physical prin-
ciples and machine learning-based estimations of evapora-
tive stress. Based on the Penman’s equation, GLEAM es-
timates potential evaporation using additional atmospheric
control factors (e.g., wind speed, vapor pressure deficit,
and vegetation height) not only for net radiation and near-
surface air temperature observations. Actual evaporation is
then derived by applying a multiplicative evaporative stress
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factor, calculated from observed Vegetation Optical Depth
(VOD) and estimated root-zone soil moisture. The GLEAM
dataset demonstrates reliable performance in capturing ob-
served seasonal cycles, particularly in evaporation anoma-
lies across diverse climates, when evaluated against global
eddy-covariance flux tower observations. Compared to other
datasets (e.g., ERAS-Land and FLUXCOM), the GLEAM
shows improved agreement with observations. Although the
GLEAM performs better than other available reanalysis
datasets, it should not be considered an observational dataset.
GLEAM estimates evaporation using training data from flux
tower observations; however, these towers are mainly eco-
logical monitoring networks that are skewed toward wetter
vegetated sites. As a result, while GLEAM is generally re-
liable in wetter areas, its accuracy in drier regions may be
limited due to sparse observational constraints. Nevertheless,
since this study focuses on mid- and high-latitude regions
where flux towers are plentiful, snow processes dominate and
GLEAM’s performance is more robust, it is used as the pri-
mary reference dataset. Accordingly, to evaluate model per-
formance, this study utilizes the daily surface SM, evapo-
ration, sensible heat flux, and net radiation (defined as the
sum of latent and sensible heat fluxes) from version 4.2a
(https://www.gleam.eu/, last access: 3 February 2026), cov-
ering 44 years (1980-2023) with a 0.1° spatial resolution.

The Multi-Source Weighted-Ensemble Precipitation
(MSWEP) version 2.8 is the gauge-, satellite-, and
reanalysis-based precipitation dataset used for validation,
available from 1979 to the present. The precipitation data
have a 0.1° horizontal resolution and 3-hourly temporal
resolution (Beck et al., 2019a). Its superior performance is
primarily attributable to the inclusion of daily gauge ob-
servations compared with 26 gridded precipitation datasets
(Beck et al., 2019Db).

3 Methodology

This study aims to investigate the impact of an improved
snow scheme in the seasonal forecast system on the fidelity
of snow behavior contemporaneously and during the next
warm season after snow melt. To compare model perfor-
mance between GOyl and GSgingle for analyzing the clima-
tology of the seasonal cycle, 100d long retrospective fore-
casts initiated on the 1st day of October—April spanning 24
years (1993-2016) are used. For the comparison between
G6multi and Gbgingle, 6-month retrospective forecasts starting
on 1 March are only used (Fig. 2).

The shift of the snow melting season, attributed to the im-
plementation of multi-layer snowpack scheme in the coupled
forecast system, alters the availability and variability of SM
for spring and summer seasons. 6-month long retrospective
ensemble forecasts starting on 1 March of 24 years in GOy
and GOgingle are used to demonstrate snow’s effect on the
model climatological bias of surface SM, surface air tem-
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perature, and precipitation during the NH warm season when
land-atmosphere feedback is most active. Model prediction
skill as a function of forecast lead time is not assessed in
this study, because the ability of seasonal forecast systems
to capture the temporal evolution of near-surface variables
is insignificant after a 3-month lead forecast in land areas.
It is more strongly influenced by ensemble size than by the
differences in model version (Fig. S4).

Most of the evaluations are based on the accuracy of simu-
lated land—atmosphere interactions, assessed using the daily
mean time series from all forecast runs during the boreal
summer, thereby representing the model climatology of cou-
pling metrics. The ensemble mean values are used for the
analysis of climatological bias, while coupling metrics are
calculated individually for each ensemble member with 4-
month forecast time series (May—August) and then averaged
across all members to avoid the physical correlation between
variables being diminished in the ensemble-averaged time
series. To account for the imbalance in ensemble sizes be-
tween GOy (7 members) and G6gipgle (4 members), a re-
sampling analysis was conducted. Results using a matched
4-member subset of G6py; showed no statistically signif-
icant difference from the 7-member mean for the variables
analyzed, suggesting the findings are robust to ensemble size.

To identify climatological differences between single- and
multi-layer snowpack schemes in offline and coupled experi-
ments, statistical significance is tested using all samples (i.e.,
all years and ensembles) with the Student’s ¢-test. The statis-
tical significance in the time series of the differences (Figs. 1
and 2) is assessed within a +5d window centered on each
calendar date, and a False Discovery Rate (FDR) corrected
t-test (Benjamini—Hochberg) is used at the 10 % level across
the spatial grid to prevent the inflation of false positives,
thereby ensuring the statistical robustness in the spatial do-
main of the differences found (Figs. 1, 3, 5, and 7).

3.1 Soil moisture memory

To evaluate the SM persistence simulated in the model, the
autocorrelation-based SMM is employed. First, assuming
that the evolution of the daily SM time series follows a first-
order Markov process (Vinnikov and Yeserkepova, 1991),
the decay frequency (f) of SM can be defined by a function
of SM autocorrelation (AR) at lag day (t) (Dirmeyer et al.,
2016; Seo and Dirmeyer, 2022a). Its formulation is followed
as:

AR(1) = exp(— 1)

The SMM is defined with an e-folding decay time, at
which the autocorrelation of SM drops to 1/e. By a linear
fitting of In[AR(7)], the memory is calculated as the value
of 7, when the linear extrapolation between In[AR(t = 1)]
and In[AR (7 = 2)] is intersected to In[AR ()] = —1. Since
the SM behavior is not perfectly fitted on the first-order
Markov process, the displacement of the extrapolated linear
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fit at T = 0 is defined with the measurement error mostly at-
tributed to random errors (Robock et al., 1995). To measure
the SMM under the assumption that there is no measurement
error, the extrapolated linear fit is shifted to intersect origin
point and the intersected t value between the shifted linear
fit and In[AR (t)] = —1 is the corrected SMM. Time-filtered
ESA CCI and modeled SM products exhibit the marginal
measurement error (Seo and Dirmeyer, 2022a), so that this
study focuses on the improvement in the representation of
the corrected SMM in the model simulations. The autocorre-
lation is calculated by concatenated time series of daily SM
over JJA (June—August) of 17 years (2000-2016) with mod-
elled and time-filtered satellite SM time series. In the cal-
culation of the SMM in both seasonal forecast systems, to
minimize the impact of systematic forecast drift, the JJA SM
time series for each year are constructed by concatenating 1-
month lead forecasts for each respective month, specifically
June from the 1 May initialization, July from 1 June, and
August from 1 July. The time series for each year are further
concatenated to produce the 17-year JJA SM time series. The
SMM is calculated in each ensemble forecast and represented
by the median of the ensemble values. Additionally, the sta-
tistical significance of SMM biases in both simulations and
their difference between GloSea5 and GloSeab6 is tested us-
ing a Monte Carlo approach. The probability of a significant
SMM is estimated by random sampling, where randomly se-
lected yearly JJA SM time series (92 samples) are used to
create all-year JJA time series, repeatedly, to generate 100
samples in observational and modelled datasets. For test-
ing the statistical significance of the modeled SMM biases,
randomly calculated SMMs from time-filtered CCI, ERAS-
Land, and GLEAM products are used to generate 300 obser-
vational samples (3 products x 100 random SMMs), which
are compared to 300 and 700 random samples from GloSea5
(3 ensembles x 100 random SMMs) and GloSea6 (7 ensem-
bles x 100 random SMMs), respectively, using a Student’s
t-test. The statistical significance of the SMM difference be-
tween the two model simulations is also tested with the ran-
domly calculated 300 and 700 SMM samples.

3.2 Granger causality in evaporation-precipitation
feedback

To characterize the causality of land-atmosphere interac-
tions, this study adopts the Granger causality test, that
originates from the field of econometrics (Granger, 1969;
Salvucci et al., 2002). This is a statistical principle to iden-
tify the potential dependence of a target variable on source
variable beyond any persistence (memory) inherent in the
target variable. To explore the quantitative understanding
of evaporation-precipitation feedback, this study investigates
the causality between a source variable (SV: hypothesized to
trigger a feedback) and target variable (TV: responding to the
feedback), where the statistical time-lagged response of the
land-atmosphere feedback is applied by setting a 1 d time lag
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Figure 1. Spatial patterns of climatological difference (JULESpy — JULESgjpgle) of (a) snow cover and (b) snow water equivalent, av-
eraged over March—April for the 22-year (2001-2022), where the dotted area indicates the difference is statistically significant at a 95 %
confidence level after FDR control across the grid. The green contour line in (a) indicates a snow cover of 0.15 from JULES;,,1; experiment.
Climatological seasonal cycle of 24-year averaged (a) snow cover, (b) snow water equivalent, (c¢) surface soil moisture, (d) latent heat flux,
and (e) surface soil temperature simulated by JULESgjnele (red) and JULES i (blue) over the Eurasian continent (0-130° E, 45-55° N). To
denote the response of land variables to the snow physics scheme, the green dashed line in (d) denotes JRA-3Q snow water equivalent grey
solid lines in (¢)—(g) display the difference between JULES,yy; and JULESgjngje throughout the snow accumulation and melting seasons. In
(¢)—(g), the black outlines on the red markers indicate when the climatological difference within the 11 d window on each calendar date is
statistically significant at a 95 % confidence level.
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Figure 2. Climatological seasonal cycle of 24-year (1993-2016) averaged (a) snow water equivalent, (b) surface soil moisture, (c) surface soil
temperature, (d) surface air temperature, (e) surface albedo, (f) net radiation, (g) latent heat flux, (h) sensible heat flux and (i) precipitation
simulated by G6gingle (red) and G6pyyy; (GloSeab, blue) over the Eurasian continent (0-130°E, 45-55°N). 100d forecast lines fade at
increasing lead forecasts and coloured marks indicate initial states on the first day of each month, where 21 d running averaged time series
are not displayed with coloured marks (surface soil temperature shows 60 d forecast due to data availability), while 180 d forecast lines are
denoted on 1 March initiated runs. Grey lines in (a)—(i) display the climatological difference (solid: G6my1ti—G5single, dashed: G6myji—
G6single) throughout the snow accumulation and melting seasons. The red markers edged in black indicate that the difference of G6pyyji—
Gbsingle Within the 11 d window on each calendar date is statistically significant ata 95 % confidence level. (j) Lead-lag correlation coefficient
for the daily time series of the difference between G6pmyy; and G6gingle for the coupling of SSM-LH (red) and LH-PR (blue) with 120d

forecast initiated at each year on 1 March. A positive lagged day indicates that SSM and LH leads LH and PR, respectively, and negative is
vice versa.
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in the time series of TV compared with SV. This is formu-
lated as:

F(TV:1€2-1) # F(TV;[€2-1 = SV;—1) ey

where F is the conditional distribution of TV on a given
day, 2,1 denotes the set of all knowledge available at r — 1
time, and 2,1 —SV,_; represents all knowledge except SV.
We employ evaporative fraction (EF = LE/(H + LE)) and
precipitation (PR) in each role to identify the response of
precipitation variability to the land surface flux partition-
ing (GC(PR(|EF,_1)) and vice versa (GC(EF;|PR,_1)). As
the null hypothesis equates that SV does not affect TV, the
rejected probability of the null hypothesis (1 — p) is calcu-
lated to intuitively understand the causality. Nevertheless, as
Granger causality only tests for predictive precedence, the re-
sults may reflect statistical associations of predictive prece-
dence due to shared external drivers and should not be in-
terpreted as definitive physical causation between both vari-
ables. Specifically, shared external atmospheric drivers can
influence both evaporation and precipitation, potentially con-
founding the identified causal links. The analysis is con-
ducted using 24-year forecast runs initialized on 1 March for
each forecast experiment, and to compare to the causality in
observations, EF and PR are taken from the GLEAM and
MSWERP datasets, respectively.

3.3 Methodology to characterize land coupling

This study evaluates model performance in the simulation
of land coupling processes in fully coupled forecast mod-
els. Land-atmosphere interaction is controlled by land sur-
face energy and water exchanges. Depending on their rela-
tive dominance, water- and energy-limited regimes are cate-
gorized, where the flux partitioning between sensible and la-
tent heat flux is controlled by the availability and variability
of SM or by net radiation mainly dictated by the atmosphere,
respectively. They are separated by a critical value of SM at
each location; the dry and wet side of the critical value ex-
hibits water- and energy-limited coupling processes, respec-
tively. Corresponding to the dominant response of the parti-
tioning of land heat fluxes attributed to either the land state or
the atmosphere, the direction of land-atmosphere coupling is
land-to-atmosphere or atmosphere-to-land, respectively (see
Fig. 2 in Seo et al., 2024).

To quantify the strength of land-atmosphere coupling
based on either the water- or energy-budget predominance,
this study compares the temporal correlation of latent heat
flux (the key variable linking water and energy budgets) with
the surface SM [R(SSMLH)] and net radiation [R(R,LH)],
respectively. While both latent heat flux and net radiation are
physically linked (as latent heat is energetically constrained
by net radiation), the correlation between them helps infer
the extent to which surface fluxes follow the available energy
signal. However, it is important to note that R(R,LH) is not
independent of the water budget, and high correlation values
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may still occur in water-limited regimes if increased net ra-
diation results in greater latent heat flux under sufficient SM.
Therefore, these metrics are interpreted as complementary
diagnostics, with R(SSMLH) highlighting land-state sensi-
tivity and R(R,LH) indicating energy control, rather than
mutually exclusive regime indicators. While direct differ-
ences between G6mui and G6gingle isolate the mean state im-
pact, these metrics provide process-based validation by as-
sessing the model’s fidelity in simulating the underlying pro-
cesses. The analysis is conducted using MJJA time series of
24-year forecast runs initialized on 1 March for each forecast
experiment and ensemble member. The results exhibit a neg-
ligible discrepancy with the analysis of the JJA time series
(not shown), which accounts for forecast drift and seasonal-
ity during the transitional period.

4 Results
4.1 Seasonality of land surface variables

To assess the impact of multi-layer snowpack scheme on the
simulation of snow freezing and melting processes, this study
compares the representation of the seasonal cycle of land sur-
face variables between JULESgjngle and JULES ). In both
JULES offline experiments, the seasonal cycle of snow cover
peaks in late December over the mid-latitudes of Eurasia
(Fig. 1c), while SWE reaches its peak approximately two
months later (Fig. 1d). When the multi-layer snow scheme
is applied in JULES 15, the insulating effect of the land sur-
face delays the onset of snowmelt, resulting in higher val-
ues of both snow cover and SWE during early spring season
(March—April), which more closely resemble the observed
seasonal cycle of SWE. The multi-layer snow scheme leads
to an expansion of snow-covered areas, shifting the spring-
time snow frontal zone northward to around 40° N and sig-
nificantly increasing the amount of snow within the snow-
covered regions (Fig. la, b). The effect of the multi-layer
snow scheme on soil and air temperatures depends on the
snow accumulation, snow peak, and snow melting seasons.
The air temperature response will be specifically addressed
in Fig. 2, which is based on the coupled model simulation,
since the offline model is forced by near-surface atmospheric
variables, including surface air temperature.

The snowpack plays the role of limiting the transfer of heat
between air and soil due to the enhanced insulation. There-
fore, the multi-layer snow scheme provides a stronger insu-
lating effect, simulating significantly warmer soil tempera-
ture from snow cover onset through March, when air is colder
than the land surface (Fig. 1g). The warmer soil temperature
in JULES 4 (Fig. 1g), induced by the snow insulation ef-
fect, increases the fraction of unfrozen SM. Unlike soil ice,
liquid water in the soil remains mobile, contributing to sub-
surface runoff and potentially evaporation, resulting in drier
soil (Fig. 1e). JULES 1 simulates abundant snow variables
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in March, accompanied by an increase in latent heat flux
(Fig. 1f). Following the largest difference in snow between
the two JULES runs in March, the SM difference begins to
decrease, subsequently resulting in wetter soil conditions in
the JULES experiment during April. This, in turn, leads to
enhanced latent heat flux in April, but the differences for land
surface variables in the offline experiments is insignificant
after April.

Furthermore, to explore the model performance in sim-
ulating snow freezing and melting processes in fully cou-
pled forecast systems, we also compare the seasonal cy-
cle of the land variables for GSsingle, G6single, and G6muit;-
Specifically, the effect of a multi-layer snowpack scheme
during October-February and March—August is primarily
compared t0 GOmuli—GSsingle and GOmu1ti—GObsingle, respec-
tively. Although the land initial conditions are generated
by different atmospheric forcing in GloSea5 (GSsingle) and
GloSea6 (G6gingle and G6myli), an analysis of 1d forecast
fields, which serve as a robust proxy for the initial land state
due to their slow evolution, confirms that the difference in
initial snow amount is statistically insignificant (Fig. S2).
Differences in winter precipitation between both models may
lead to variations in snow accumulation; however, although
GloSeab generally simulates slightly higher precipitation, the
magnitude of this difference is negligible compared to the
difference in snow water equivalent (not shown). Therefore,
the impact of precipitation on snow accumulation is not con-
sidered in this study. GloSea6 simulates the seasonal cycle of
snow freezing process over the Eurasian continent (Fig. 2a)
similarly to the results from the JULES offline run. Given
that the primary source of energy for snowmelt is the atmo-
sphere, snow melting process is tied to the variation of sur-
face air temperature (cf. Fig. 2d). Snow dissipates 1-2 weeks
earlier in the early summer when a single layer snowpack is
adopted in G3gjpgle and G6gingle. For instance, G6gingle and
G6muli consistently initiate a snow peak in March and are
initiated with similar snow conditions in that month, but the
snow in G6single disappears before June while it persists until
early June in G6pyjg;.

Although similar SM states are initialized in GloSea5
and GloSea6 for the entire analysis period, G5gingle shows
a model forecast drift in the wet direction from October to
March (Fig. 2b). The differences in SM initial conditions in
October and November are attributed to differences in the
atmospheric forcing used to drive the LSM during the gen-
eration of land surface initial states. Because the snowpack
serves as a barrier to energy and water exchange between
the land and the atmosphere, in the single layer snowpack,
the early onset of evaporation manifests the physical process
of drying out SM during snow melting season. Wetter soil
moisture is simulated in G3;jpgle during October, when snow
cover is minimal, which is attributed to a positive precipita-
tion bias (not shown). Thus, the implementation of the multi-
layer snowpack results in the climatologically drier and wet-
ter SM, respectively, preceding (November—March) and fol-
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lowing (April-June) the onset of snowmelt. However, in the
JULES offline simulations, the implementation of the multi-
layer snowpack results in wetter SM only during April, with
no significant differences persisting into the summer. This
suggests that the influence of advanced snow physics be-
comes more pronounced when the land is coupled with the
atmosphere, allowing its effects to extend into the summer
season. The drier SM climatology of G3;jngle compared to
G6single indicates that the realization of the model climatol-
ogy is not only due to the advancement of snow physics, but
also to other updates in GloSea6.

For the radiation balance, net radiation during the snow
freezing season can decrease due to enhanced upward long-
wave radiation driven by surface warming, despite a concur-
rent increase associated with reduced surface albedo. These
two opposing effects tend to offset each other, resulting
in minimal differences in net radiation during this period
(Fig. 2f). However, during the snow peak season (February—
March), the surface albedo effect becomes more dominant
(Fig. 2e), leading to an increase in net radiation. In late spring
(April-May), when differences in snow variables become
more pronounced, surface albedo increases and surface cool-
ing occurs (Fig. 2d), which plays a role opposite to that ob-
served in winter. During this period, the stronger influence of
increased surface albedo leads to a decrease in net radiation.

In the coupled model simulations, the effect of the multi-
layer snow scheme on soil temperature during the snow-
covered is consistent with the results from the JULES of-
fline simulations, but the soil temperature cooling is observed
during the summer season (Fig. 2c), which is responsible
for surface air temperature. For the surface air temperature,
GO6mur is colder during the snow freezing season due to
limited energy transfer from the cold air to the snow sur-
face (Fig. 2d). During the two-month snow peak period from
mid-January, GOy simulates higher air temperature due to
warmer ground, resulting in less cooling from the soil. The
air temperature cooling observed from mid-March is asso-
ciated with decreased net radiation due to enhanced surface
albedo. The continuous cooling after diminishing the snow
effect can be explained by evaporative cooling driven by in-
creased latent heat flux (Fig. 2g). In other words, the radia-
tion is primarily balanced by latent heat flux in G6yy;; due
to abundant SM, but sensible heat flux decreases due to air
temperature reductions (Fig. 2h).

Additionally, the increased latent heat flux supplies water
to the boundary layer, triggering precipitation and thereby
increasing the mean climatology of precipitation (Fig. 21i).
While the additional 1 Wm™2 of latent heat flux appears
marginal, it is critical to consider the accumulated effect over
the seasonal forecast period. A small anomaly can be sig-
nificant when persistent, in the context of land-atmosphere
coupling. For instance, a persistent difference of 1 W m™2
in latent heat flux over one month translates to a cumu-
lative change of ~ 1 mm in the water budget. Such an al-
teration in the regional water and energy budget is physi-
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cally meaningful and can serve as a non-negligible source
of memory and predictability in precipitation. To illustrate
the physical sequence between land surface variables by the
realization of snow physics, the lead-lag correlation of ma-
jor water budget variables is compared between G6gingle and
G6muni (Fig. 2j). The results show the hydrological chain of
SSM — LH — PR with a positive correlation among vari-
ables in each segment, characterized by a lead-lag time of
approximately one week. In other words, the increased soil
moisture in mid-latitude regions likely increases precipita-
tion based on positive evapotranspiration-precipitation feed-
back. The positive feedback is typically observed in numeri-
cal forecast systems, including HadGEM2-AO (atmosphere-
land only coupled forecast model of GloSea$), in contrast to
observation-based analyses, which indicate a negative cou-
pling between SM and precipitation (Taylor et al., 2012).

The substantial difference between GSgingle and G6gingle
confirms that updates other than the snow scheme contribute
significantly to the climatological mean change in the sim-
ulation of land surface variables. However, the core finding
of this study is the demonstration that the implementation of
the multi-layer snow scheme yields a statistically significant
and physically consistent impact that is independent of these
other updates.

4.2 Evaluation of model climatological error and bias
over the Northern Hemisphere

Although soil moisture has historically not been a verifiable
quantity in weather forecast models (Koster et al., 2009), the
adoption of soil moisture data assimilation makes soil mois-
ture a variable for validation (Seo et al., 2021). To examine
the representation of surface SM when implementing multi-
layer snowpack scheme, this study compares the climatolog-
ical mean of land variables relevant to water budget between
G6single and GOy (Fig. 3). The difference in SM simula-
tion for May—August is large poleward of 40°N (Fig. 3f),
which is pronounced over the snow frontal region, suggest-
ing that the difference is related to the additional snow insu-
lating effect in the G6y1; LSM. The difference in snow vari-
ables (i.e., SWE and surface albedo) for the spring season
shows that the multi-layer snowpack significantly prolongs
the snow properties over snow covered regions (Fig. 3d, e).
Since SMM is a key factor in the subseasonal forecast-
ing because of its persistence over a few weeks, model fi-
delity of SMM is crucial for forecast skill. Because mem-
ory is shortened by occurrences of precipitation, it is pro-
longed where the climate is relatively dry. For instance, SM
persistence is relatively short over East Asia where the mon-
soon flow throughout the summer season leads to an in-
creasing likelihood of rainfall, accompanying wet soil. The
spatial patterns of SMM from ESACCl,q4j, ERAS-Land, and
GLEAM are similar (Fig. 4a, b, ¢), but ESACCl,q; is noisy
at high-latitudes because SM dynamics are not perceived by
the satellite when the surface is frozen. The NH averaged val-
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ues of SMM from ESACCl,4j, ERAS5-Land, and GLEAM are
8.6, 8.5, and 11.1d. The spatial distribution of SMM deter-
mined from the observational products is reliably simulated
over the NH in G6gingle and G6yyyi- Improvements in SMM
spatial agreement are shown in G6p1; (Fig. 4d, €), where the
spatial correlation of the SMM with GLEAM is increased. In
contrast, the SMM in G614 is increased when the soil wet-
ness becomes wetter even though its positive bias is observed
in G6gingle compared to the SMM from GLEAM. When the
soil becomes wet due to the late onset of snow melting, the
SM decay in response to rainfall is slow, thereby significantly
increasing the SMM in mid-latitude regions (Fig. 4f).

Features of the surface air temperature simulation in
G6mul during the NH summer season include reduced posi-
tive biases in both daily mean and sub-daily timescales over
snow frontal regions (Fig. 5), which can be explained by the
updated land surface physics, including changes in snow and
soil processes. GOyl simulates colder temperatures over the
mid-latitudes, compared to G6gingle (Fig. Sc). To identify the
impact of a major modification in the LSM on temperature
simulation, the assessment of Tmean is decomposed into the
Tmax and Tmin. Both daytime and nighttime temperatures
are analysed in addition to daily mean temperature to assess
whether temperature changes associated with land surface
processes occur preferentially during the day or night. Since
many coupled land-atmosphere processes are typically more
active during the daytime due to greater available energy
(net radiation), sub-daily analysis is essential for realistically
capturing their effects (Yin et al., 2023; Seo and Dirmeyer,
2022b). Furthermore, relying solely on Tmean can be mis-
leading, as it conflates errors in maximum and minimum
temperatures, and thus does not necessarily reflect an over-
all improvement in model performance (Seo et al., 2024).
The effect of the multi-layer snow scheme on forecasting
temperature is primarily surface cooling over snow frontal
areas throughout the entire day (Fig. 5c), even though the
temperature response is more sensitive during the daytime
when land-atmosphere interactions are most active (Fig. 5f,
1). This is because there is a larger latent heat flux during the
daytime, resulting in a larger evaporative cooling.

Model performance in simulating precipitation is also
evaluated in G6gingle and GOyl Both models show an over-
estimation over East Asia and high-latitude regions and an
underestimation over the central US and western and central
Eurasia (Fig. 5j, k). While the positive bias is amplified or
maintained in areas that have wet biases in G6gjpgle, the area
noted by the negative bias is decreased (Fig. 5j, 1). The in-
creased precipitation in GOy, over the mid-latitude regions
(Fig. 51) is explained by the abundant SM from snow melting
process under positive evapotranspiration-precipitation feed-
back (cf., Fig. 8).

To demonstrate the impact of land-atmosphere interactions
on the model’s ability to simulate precipitation, this study
assesses the time-lagged Granger causality between EF and
PR. The observed causality generally represents that the null
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Carlo method.

hypothesis is rejected (1 — p value > 0.05) regardless of feed-
back direction, indicating evaporation-precipitation feedback
over mid-latitude regions (Fig. 6a, b). The causal probability
in the direction from PR to EF, GC(EF,|PR;_1), is generally
pronounced over the globe, with particularly strong feedback
over the areas where precipitation variability is primarily at-
tributed to large-scale atmospheric circulations (e.g., South
and East Asia), while the dominance of GC(PR;|EF;_1)
is strongest over western North America (Fig. 6¢). How-
ever, Gbgingle shows the overall overestimation in both ca-
sual directions between EF and PR (Fig. 6d, e), whereas
a negative bias in GC(EF;|PR;_;) is shown over the high-
latitudes of Eurasia. The difference map of GC(EF;|PR;_1)
and GC(PR;|EF;_;) simulated in G6gjngle shows a nega-
tive bias over western North America and northern Eurasia
due to overestimated GC(PR; |EF;_;) and underestimated
GC (EF, |PR;_1) (Fig. 6f), respectively. The biases of the
evaporation-precipitation feedback in both casual directions
are reduced in Gbpy (Fig. 6g, h).

4.3 Representation of land coupling processes

The exchanges at the land surface are constrained by the wa-
ter and energy balance equations, and the strength of water-
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versus energy-limited processes is quantified by the temporal
correlation coefficient of latent heat flux to surface SM or net
radiation, respectively, as described in Sect. 3.3. The spatial
pattern of the GLEAM land coupling is similar to the distri-
bution of the SM climatology, such that water-limited pro-
cesses are pronounced over climatologically dry areas and
vice versa. The classification of the land coupling results
from the synthetization of the spatial pattern of R(SSMLH)
(Fig. 7a) and R(R,LH) (Fig. 7b), recognizing that both vari-
ables are interconnected through the surface energy and wa-
ter budgets. Since latent heat flux is influenced by both SM
availability and incoming radiation, positive correlations in
both R(SSMLH) and R(R,LH) can occur simultaneously,
especially in transitional regimes (cf., Denissen et al., 2020).
This overlap does not contradict the diagnostic framework
but reflects the continuum of land-atmosphere coupling con-
ditions. For instance, the spatial distribution of R(SSMLH)
and R(R,LH) is a zonal dipole structure over CONUS but
is meridionally banded over Eurasia. Note that R(SSMLH)
and R(R,LH) are not mutually exclusive and may both be
positive in transitional regimes.

G6single exhibits an overestimation of R(SSMLH) over the
mid-latitude regions, which results in the expansion of water-

Geosci. Model Dev., 19, 1261-1280, 2026
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limited areas and the degradation of the spatial characteristics
in the observation, while the negative bias is particularly evi-
dent over high-latitude regions (Fig. 7c). G6pyyl; represents
a similar bias pattern to the G6gingle, Whereas the positive
and negative biases in the high-latitude areas are direction-
ally improved (Fig. 7¢). Gbsingle reveals a negative bias in
the energy-limited coupling, especially over the high-latitude
areas (Fig. 7d), but G614 significantly promotes the energy-
limited coupling strength, which mitigates the negative bias
of R(Ry,LH) (Fig. 7f). The delayed snowmelt simulated
in GOy leads to increased SM during the warm season,
which likely contributes to enhanced evaporative partition-
ing. While this may weaken the sensitivity of latent heat flux

Geosci. Model Dev., 19, 1261-1280, 2026

to SM (i.e., reducing R(SSMLH)) and strengthen the rela-
tionship with net radiation (i.e., increasing R (R, LH)), we
acknowledge that this interpretation is subject to direct evi-
dence of causal feedback by snow-related land surface pro-
cesses. Furthermore, the pattern agreement between the land
coupling features simulated by both forecast models and the
observation is measured by the spatial correlation coefficient
of R(SSMLH) (SCy,) and R(R,LH) (SC.) (Fig. 7g). While
G6single and G6pmy1; show superior performance in capturing
the observed pattern in energy-limited processes, the multi-
layer snowpack scheme assists in increasing spatial consis-
tency in both land coupling processes along with the im-
provements in modelled mean bias. Therefore, constructing
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the squared spatial correlation with SCy, x SCe, which syn-
thesizes the model performance of the land coupling pro-
cesses in terms of the water- and energy-limited coupling,
shows higher values in G6pyys.

5 Summary and Conclusions

Some land surface models have employed a single layer snow
scheme that treats snow as a modification of the top-soil
layer. While effective for very thin snow cover, such a com-
posite scheme struggles to simulate the true insulating effect
of the snowpack because it lacks the internal thermal gra-
dient necessary to buffer energy transport between the land
and atmosphere in deeper snow. Therefore, the benefits of
the multi-layer scheme demonstrated in this study should be
interpreted as an improvement over this specific single-layer
formulation.

This study primarily investigates the impact of implement-
ing a multi-layer snow scheme on the climatological bias
in both LSM offline simulations and fully coupled forecast
systems. Two sets of LSM experiments are conducted using
JULES version 5.6, the land surface component of GloSea6
— one employing the single layer snow scheme and the other
incorporating the multi-layer snowpack scheme. The multi-
layer configuration yields a more realistic simulation of snow
seasonality compared to reanalysis data. Notably, it captures
the onset of snowmelt more accurately by better representing
the insulating effect of snow.

https://doi.org/10.5194/gmd-19-1261-2026

To elucidate the role of snow insulating effect in cou-
pled forecast system, we analyse GloSea global retrospec-
tive seasonal forecasts over 24 years (1993-2016) from two
model versions: GloSeab (G6bmuyi), which implements the
multi-layer scheme, and GloSea5 (G5gingle), Which retains
a single-layer scheme. Furthermore, we have conducted an
additional experiment that implements a single layer snow-
pack scheme in GloSea6, referred to as G6gingle, to isolate
solely the effects of the advancement of snow physics. Im-
provements in the model simulations appearing in areas with
high snow variability can be understood as the effect of the
multi-layer snow scheme. The improved snow physics with a
multi-layer snowpack better captures the observed snow dis-
sipation season (Fig. 2a) and influences land and near-surface
variables throughout the snow accumulation and melting sea-
sons. The near-surface warming and cooling caused by the
insulating effect of the snowpack during the snow peak and
melting seasons (Fig. 2d) results in a late onset of snow melt
and wetter SM during the subsequent summer season, par-
ticularly in mid- to high-latitude regions (Figs. 2b and 3f).
The changes in land surface processes also affects land sur-
face characteristics, e.g. SM memory is generally increased,
which improves spatial agreement compared to the obser-
vational analysis (Fig. 4). Moreover, the greater SM from
the advanced snow physics leads to a decrease in surface
air temperature with evaporative cooling throughout the en-
tire day (Fig. 5) and increases the likelihood of precipita-
tion explained by evapotranspiration-precipitation feedback
(Fig. 6). However, the effect of improved snow physics in
the fully coupled model is not consistent with the result from
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the LSM offline experiments, particularly after snowmelt, be-
cause the impacts of realized snow behaviour become more
pronounced when the atmosphere interacts with the land.

The spatial distribution of the land coupling reflects the
underlying SM climatology, with the majority of water- and
energy-limited coupling corresponding to relatively dry and
wet soils, respectively (Fig. 7). Evaluating these regimes is
essential for understanding model behaviours associated with
land-atmosphere coupling processes. Comparing the land
coupling processes simulated by G6gingle and GOy, the
increased SM in G6p alters the coupling characteristics,
weakening water-limited coupling while enhancing energy-
limited processes (Fig. 7e, f). Although both models still tend
to overestimate and underestimate water- and energy-limited
coupling over mid- and high-latitude regions, respectively,
the multi-layer snow scheme reduces this bias. The increased
SM due to the late onset of snowmelt restricts water-limited
coupling, evidenced by increased R(R,LH) and decreased
R(SSMLH). This shift demonstrates a robust improvement
in the underlying land-atmosphere coupling processes, lead-
ing to a better simulation of near-surface atmospheric vari-
ables (namely temperature and precipitation).

Since realistic snow states influence the water and energy
budgets not only in winter but also in spring and summer
(Fig. 8), the realization of snow characteristics should be a
priority in the process of developing a model. Importantly,
modifying land surface schemes to improve warm-season
processes without addressing snow dynamics may lead to in-
creased errors — even if snow is realistically simulated. It is
also worth noting that improvements in climatology do not
directly translate to enhanced forecast skill; in this study, im-
provements in temperature and precipitation skill in GloSea6
are primarily attributed to the larger ensemble size (Figs. S3
and S4). In conclusion, the implementation of a multi-layer
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snow scheme is essential for realistically simulating land sur-
face processes in S2S dynamical forecast systems. From a
climate perspective, as global warming increases both the
variability and uncertainty in modelled snow conditions, re-
liable future climate projections will depend on the selective
use of models that are able to simulate realistic snow charac-
teristics.

Code availability. The MetUM is available for use under li-
cence. The source code for the Met Office Unified Model
(MetUM) cannot be provided due to intellectual property
right restrictions. For further information on how to apply
for a licence, see https://www.metoffice.gov.uk/research/approach/
collaboration/unified-model/partnership (last access: 3 February
2026). The source code for the JULES version 5.6 is avail-
able at https://jules.jchmr.org/ (last access: 3 February 2026).
The source code used in the model evaluation of this study
is provided in Seo et al. (2026) (https://github.com/ekseo/
Multi-layer_snowpack_GloSea.git, last access: 3 February 2026;
https://doi.org/10.5281/zenodo.11243938, Seo et al., 2026).

Data availability. The Copernicus Climate Change Service (C3S)
provides access to ERAS5-Land data freely through its online
portal at https://doi.org/10.24381/cds.e2161bac (Muiloz-Sabater
et al., 2021). The JRA-3Q dataset can be downloaded from
the Data Integration and Analysis System (DIAS, https:/
search.diasjp.net/en/dataset/JRA3Q, last access: 3 February 2026).
CPC Global Unified Temperature data is provided by the
NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, can be down-
loaded from their website at https://psl.noaa.gov/data/gridded/
(last access: 3 February 2026). MSWEP precipitation dataset
can be accessed at https://www.gloh20.org/mswep/ (last access:
3 February 2026). GLEAM data is publicly available at the
website: https://www.gleam.eu/ (last access: 3 February 2026).
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The ECMWF provides access to GloSea6-GC3.2 hindcast data
freely through its online portal at https://apps.ecmwf.int/datasets/
data/s2s/ (last access: 3 February 2026). GloSea5 and G6gingle
retrospective forecasts are available at Seo and Tak (2026)
(https://doi.org/10.5281/zenodo.18417662). Time-filtered ESA CCI
SM product used in this study can be obtained from Seo and
Dirmeyer (2026) (https://doi.org/10.5281/zenodo.18307464).
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