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Abstract. We developed the WULFFSS, a stochastic
monthly gridded forest-fire model for the western United
States (US). Operating at 12 km resolution, WULFFSS cal-
culates monthly probabilities of fires that burn at least 100 ha
of forest area as well as the forest area burned per fire.
The model is forced by variables related to vegetation, topo-
graphic, anthropogenic, and climate factors, organized into
three indices representing spatial, annual-cycle, and lower
frequency temporal domains. These indices can interact,
so variables promoting fire in one domain amplify fire-
promoting effects in another. Fire probability and size mod-
els use multiple logistic and linear regression, respectively,
and can be easily updated as new data or ideas emerge. Dur-
ing its training period of 1985–2024, WULFFSS captures
71 % and 86 % of observed interannual variability in western
US forest-fire frequency and area, respectively. It reproduces
regional differences in seasonal timing, frequencies, and
sizes of fires, and performs well in cross-validation exercises
that test the model’s accuracy in years or regions not consid-
ered during model training. While lacking fine-scale fire dy-
namics, use of classic statistics promotes interpretability and
efficient ensemble generation. Designed to run within a veg-

etation ecosystem model, bidirectional feedbacks between
vegetation and fire can identify how ecosystem changes have
altered or will alter fire-climate relationships across the west-
ern US. The model’s predictive power should improve with
increasingly accurate and extensive observational data, and
its approach can be extended to other regions. Here we pro-
vide a thorough description of the WULFFSS model, includ-
ing the motivation underlying its development, caveats to our
approach, and areas for future improvement.

1 Introduction

In the western United States (US), the annual wildfire area
increased by approximately 250 % from 1985–2024, largely
because annual forest-fire extent increased 10-fold (902 %)
during this time (Fig. 1a). These rapid increases in an-
nual area burned over the last few decades occurred de-
spite consistent efforts to suppress wildfire (Fig. 1b), signi-
fying a break from the ease with which fires were contained
through most of the 20th century. Importantly, the frequency
of western US forest fires has not increased in recent decades
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(Syphard et al., 2025), so it is the growing sizes of fires rather
than their numbers that are responsible for the rapid increases
in area burned (Juang et al., 2022). Severe, stand-replacing
forest fires also appear to have been more prevalent in recent
decades than in previous centuries (Parks and Abatzoglou,
2020; Hagmann et al., 2021; Higuera et al., 2021; Parks et
al., 2023; Williams et al., 2023). Thus, even though west-
ern US fires are still less common than during pre-European
centuries (Parks et al., 2025), the rapid recent increase in fire
activity has often not been ecologically restorative (Coop et
al., 2020). Further, carbon emissions from increasingly large
and severe fires work against carbon-neutrality targets for cli-
mate change mitigation (Anderegg et al., 2022, 2024; Jones
et al., 2024). Growing sizes and spread rates (Balch et al.,
2024) of severe forest fires in the western US have also com-
bined with growing human populations in fire-prone areas
(Radeloff et al., 2023) to increasingly put people and prop-
erty in harm’s way (Higuera et al., 2023), including via air
pollution far from the flames themselves (Burke et al., 2023).
Continued growth in forest-fire sizes and severities may also
alter mountain hydrology, with cascading impacts on water
resources and flood risk (Kampf et al., 2022; Williams et
al., 2022). These trends motivate improved understanding of,
and capability to model, past and future changes to western
US forest-fire activity.

Drying and warming have been primary drivers of the in-
crease in western US forest area burned in recent decades
(Westerling et al., 2006; Abatzoglou and Williams, 2016;
Holden et al., 2018; Williams et al., 2019; Brown et al.,
2023). Precipitation declines from the early 1980s to the
early 2020s were promoted by trends toward the cool states
of the El Niño-Southern Oscillation and Pacific Decadal
Variability (Lehner et al., 2018), which were probably mostly
due to natural climate variability but potentially also pro-
moted by anthropogenic forcing (Hwang et al., 2024; Jiang
et al., 2024). The linkage between anthropogenic forcing and
warming is clearer and likely to continue (Vose et al., 2017).
Warming primarily reduces forest fuel moisture by enhanc-
ing the atmosphere’s evaporative demand, melting snow ear-
lier in the year, and extending the season of vegetation wa-
ter use. Temperature drives atmospheric moisture demand
through its exponential impact on the vapor pressure deficit
(VPD), and this variable is strongly correlated with annual
forest-fire area in the western US (He et al., 2025) (Fig. 2, left
side). Fuel moisture and wildfire activity are also critically
affected by other climate variables, including precipitation
total, precipitation frequency, and dry windiness (Abatzoglou
and Kolden, 2013; Williams et al., 2015; Holden et al., 2018;
Brey et al., 2021). Considering a number of methods to quan-
tify fuel aridity, Abatzoglou and Williams (2016) attributed
approximately half of the western US forest area burned from
1984–2015 to anthropogenic climate trends. However, that
study’s analysis was not spatially explicit, it focused exclu-
sively on area burned, and it did not consider contributions

from other human impacts on fire, such as through land use,
fire suppression, or ignitions.

Fuel characteristics are also key determinants of wildfire
activity, in part because they modulate the sensitivity of fire
to climate (Bradstock, 2010; Littell et al., 2018). As long
there are sufficient lightning or human ignitions, increased
abundance and connectivity of flammable fuels will make
fire activity more responsive to aridity. In non-forested ar-
eas of the western US, where fuels are generally more lim-
iting due to less biomass and connectivity, the relationship
between area burned and aridity is considerably weaker than
in forested areas (Fig. 2, right side) despite non-forest areas
on average being warmer, drier, and therefore more likely to
burn based on fuel moisture alone.

Fuel characteristics also modulate how fire responds to cli-
mate within forests, and thus fire activity in a given region
and time period may be strongly affected by that region’s
fire history. In a meta-analysis of > 1000 western US for-
est fires, Parks et al. (2015) found a self-regulating effect
of fire, where fuel reductions caused by past fires tended to
limit subsequent fire spread for 5–20 years. In other meta-
analyses, Parks et al. (2018a) and Hakkenberg et al. (2024)
found that pre-fire fuel abundance, and ladder fuels in partic-
ular, strongly affect fire severity.

The US practice of fire exclusion has led to artificially
high levels of vegetation biomass, spatial continuity, and
understory vegetation in many western US forests (Hag-
mann et al., 2021). This has been especially detrimental for
semi-arid forests where pre-European fire frequencies were
on the order of 5–30 years (Swetnam, 1993; Swetnam and
Baisan, 1996; Van de Water and Safford, 2011). In these
forests, a century or more of little-to-no fire represents a dra-
matic departure from a historical fire regime typified by fre-
quent, low-intensity surface fires. Resultant fuel accumula-
tion has been conducive to vertical movement of fire into
forest canopies (Steel et al., 2015; Hagmann et al., 2021).
Accordingly, in many semi-arid western US forests, fire ex-
clusion is partly responsible for the strength of the positive
response of annual forest-fire area to warming and drying.

In the coming decades, continued changes to western US
forest ecosystems due to changes in climate, fire regimes, and
human activities will feed back to modify how fire sizes, fre-
quencies, severities are affected by fluctuations and trends
in climate (Williams and Abatzoglou, 2016; Littell et al.,
2018; Buotte et al., 2019). For example, a continued rapid
increase in forest-fire area may become increasingly self-
regulating as fuel loads and connectivity decline (Parks et
al., 2015, 2018b). Forecasting the timing, magnitude, and
geography of this effect requires understanding of complex
fire-induced mortality and succession (Harvey et al., 2016).
In simulations with the LANDIS-II model, Hurteau et al.
(2019) found that both coupled and uncoupled simulations
resulted in large increases in area burned and fire emissions,
but the coupled simulations had a small self-regulating ef-
fect that reduced projected trends by 10 %–15 %. However,
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Figure 1. Annual western US wildfire extent and suppression expenditures. (a) Time series of annual western US (grey) total wildfire area,
(green) forest area burned, and (brown) non-forest area burned from 1985–2024. Bold lines show the Theil-Sen trends in the logarithm of area
burned. Delta (1) values indicate the relative change from the first to last year of each trend and p-values indicate trend significance assessed
with one-tailed block (2 year) bootstrap. (b) Scatterplot of annual federal fire suppression cost versus forest-fire area (colors correspond
to year) from 1985–2023 (suppression cost unavailable for 2024). Federal suppression costs from https://www.nifc.gov/fire-information/
statistics/suppression-costs (last access: 30 December 2025) and inflation-adjusted to 2024 US dollars. Fire dataset described in Sect. 3.1.

Figure 2. Annual wildfire area versus atmospheric aridity. Regres-
sions are shown for forested (circles with green outlines) and non-
forested (squares with brown outlines) areas of the western US. The
vapor-pressure deficit (VPD) is a measure of the aridity of the atmo-
sphere and March–October (Mar–Oct) is a time period when VPD
is particularly strongly correlated with annual area burned. Fire and
climate data are described in Sect. 3.1 and 3.3.

LANDIS-II is computationally intensive, so this study was
confined to three representative transects within the Sierra
Nevada, rather than the whole Sierra Nevada. In addition,
Hurteau et al. (2019) made simplifying assumptions that fire
ignitions are randomly distributed across the landscape and
fire effects on biomass only last for 10 years. Taking a much
simpler approach, Abatzoglou et al. (2021) performed sim-
ulations treating the entire western US forest area as essen-
tially a single model grid cell to assess how sensitive future
western US trends in forest-fire area should be to the strength
of fire’s self-regulating effect. Even simulations that assumed
a strong self-regulating effect projected continued rapid in-
creases in forest fire area, though at only half the rate as sim-

ulations assuming no self-regulation. In addition to not con-
sidering spatial variability, Abatzoglou et al. (2021) focused
solely on area burned and the simulations lacked ecological
dynamics. As such, they modeled only until 2050 and did not
assess the self-regulation effect on other variables such as fire
intensity, severity, or biomass combusted.

Most wildfire impacts are caused by a relatively small
number of fires (Moritz et al., 2005) and approximately 90 %
of the total area burned in the western US is accounted for by
fewer than 10 % of wildfires (Short, 2022). Given that larger
fires tend to burn at higher severity (Cova et al., 2023), re-
alistic simulation of future fire-vegetation coupling requires
modeling extreme fire events. For realistic simulations of
complex processes, a mechanistic modeling approach that
explicitly simulates fine-scale processes such as combustion
and energy transfer is ideal. However, the temporal and spa-
tial scales at which fine-scale mechanistic fire models can be
run are severely limited by computational constraints. For ex-
ample, coupled atmosphere/fire models such as HIGRAD/-
FIRETEC (Linn, 1997; Linn et al., 2012), CAWFE (Coen,
2013) and WRF-Fire (Muñoz-Esparza et al., 2018) can only
feasibly operate at a scale of tens of kilometers at most, in-
sufficient to understand the drivers of historical and future
wildfire activity across the large scale of the western US.
One model designed for efficient simulation of fire dynam-
ics across regions as large as the western US is SPITFIRE
(Thonicke et al., 2010; Lasslop et al., 2014), which is de-
scribed as process-based because it simulates fire intensity
and wind-driven fire spread following Rothermel’s equations
(Rothermel, 1972; Andrews, 2018). However, the rules that
govern ignitions and whether fuels are abundant and dry
enough to burn are empirically parameterized. An advantage
of mechanistic, or process-based, models is that they are de-
terministic; a given set of predictor conditions will always
lead to the same fire outcome, making them diagnosable and
replicable. Their disadvantage is that at the relatively low
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spatial and temporal resolutions necessary for decadal to cen-
tennial simulations across a large region like the western US,
a model like SPITFIRE is likely to underrepresent variability
and extremes.

Due to the limitations of all other forest-fire models, we
developed a new stochastic forest-fire model for the west-
ern US, WULFFSS. We designed this model to operate in
a coupled framework within a forest ecosystem model, the
Dynamic Temperate and Boreal Fire and Forest-Ecosystem
Simulator (DYNAFFOREST) (Hansen et al., 2022). The
WULFFSS simulates the monthly occurrences and sizes of
forest fires ≥ 1 km2 in size on a 12 km resolution grid.
Fire probabilities and sizes are determined as functions of
fuel characteristics, topography, human population, and cli-
mate/weather. WULFFSS reproduces realistic spatiotempo-
ral variations in fire frequency and area burned under his-
torical conditions, and its use of conventional statistics pro-
motes interpretability of model behavior and outputs. The
model’s computational efficiency and stochastic nature allow
for many simulations of monthly forest-fire activity across
the western US for decades or centuries at a time. Implemen-
tation of WULFFSS within a forest ecosystem-model such
as DYAFFOREST will allow for simulation of the coupled
interactions between fire and ecosystems that will ultimately
shape how the western US forest-fire regime evolves under
anthropogenic climate change. While WULFFSS is built to
be coupled with DYNAFFOREST, it is designed in a modular
fashion where coupling with other vegetation models should
be relatively straight forward.

2 Geographic domain

Our study area is the forested domain of the eleven western-
most states of the coterminous US: Arizona, California, Col-
orado, Idaho, Montana, New Mexico, Nevada, Oregon, Utah,
Washington, and Wyoming. Consistent with other work in
the region (Buotte et al., 2019; Hansen et al., 2022), we de-
termine the forested domain from the 250 m forest map from
Ruefenacht et al. (2008), from which we calculate a 1 km res-
olution map of fractional forest coverage. We classify a given
1 km grid cell as forested if≥ 50 % of the 250 m grid cells are
forest. From this 1 km forest map, we determine our 12 km
resolution model domain to include all 12 km grid cells con-
taining at least one forested 1 km grid cell. We remove 12 km
grid cells immediately south of the Canadian border because
some of our landcover- and population-related predictor vari-
ables require information from surrounding grid cells. In to-
tal, there are 11 132 12 km grid cells within our forested
western US study domain (Fig. 3). In assessments of regional
model performance we consider the four quadrant regions
mapped in Fig. 3: Pacific Northwest (PNW), Northern Rock-
ies (N Rockies), California and Nevada (CA/NV), and the
four-corner states (4 Corners).

Figure 3. The western US study domain. Grey contours outline
the western US forested study region. Shades from white to green:
fractional forest cover in each 12 km grid cell within the forested
study region according to Ruefenacht et al. (2008). Orange dots:
ignition locations of forest fires ≥ 100 ha in the study region from
1985–2024. Yellow: non-forested areas of the western US. Grey:
outside the western US. Colored boundaries identify the four quad-
rant regions considered in regional analyses: Pacific Northwest (red,
PNW), Northern Rockies (blue, N Rockies), California and Nevada
(green, CA/NV), and the four-corner states (purple, 4 Corners).

3 Data

3.1 Forest fire

To parameterize the fire model we use the Western US
MTBS-Interagency (WUMI2024a) database of observed
wildfires from 1984–2024 (Williams et al., 2025). Like
its predecessor described by Juang et al. (2022), the
WUMI2024a was developed by harmonizing several public
US government sources and it does not include fires< 1 km2

in size. The WUMI2024a contains a list of western US wild-
fire events, including ignition date, ignition location, and fi-
nal fire size, as well as fire perimeters and 1 km resolution
maps of the area burned for each fire. See Williams et al.
(2025) for details about the data sources and the methods
underlying the WUMI2024a. We constrain calibration of the
WULFFSS to 1985–2024 due to a suspicious absence of fires
from Wyoming and New Mexico in 1984.

We estimate forest area burned by each fire in the
WUMI2024a and only retain fires that burned≥ 1 km2 of for-
est area. To estimate the forest area burned by each fire, we
multiply each 1 km grid cell of fractional area burned by the
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fractional forest area and then sum. Of the 21 570 wildfires
represented in the WUMI2024a in 1985–2024, 7639 have
≥ 1 km2 forest area burned. However, a number of wildfires
are identified in the WUMI2024a as “parent fires” composed
of smaller sub-fires. This occurs because, although the most
accurate dataset feeding into the WUMI2024a is the MTBS,
that dataset sometimes attributes burned areas from multiple
fires to a single event. The WUMI2024a notes these cases,
and we replace parent fires with their associated sub-fires. To
keep burned areas consistent with the high-quality calcula-
tions from MTBS, we re-scale the forest area burned by each
set of sub-fires so that they sum to the parent fire’s value. In
cases where a sub-fire’s ignition location is not within a 1 km
forested grid cell that burned, we reassign the ignition loca-
tion to the nearest grid cell with forest area that burned. We
find 56 parent fires composed of at least two sub-fires with
≥ 1 km2 forest area burned after rescaling. After replacing
parent fires with their sub-fires, our dataset consists of 7799
wildfires with ≥ 1 km2 forest area burned from 1985–2024.
This number is reduced to 7635 after removing fires ignited
in areas outside our western US study domain shown in Fig. 3
because they ignited near the Canadian or Mexican border or
in a 12 km grid cell containing no 1 km grids with ≥ 50 %
forest area.

3.2 Topography

We calculate topographic predictors from the 1 km digital
elevation model produced by the NOAA GLOBE project
(Hastings and Dunbar, 1998). From the 1 km grid of mean el-
evation we calculate 1 km grids of slope and aspect. We then
calculate 12 km grids of mean slope to represent steepness
as well as the standard deviation of 1 km elevation values to
represent terrain ruggedness.

3.3 Climate

3.3.1 Daily 1/24° gridded climate

We calculate climate predictors from daily gridded climate
data with 1/24° (∼ 4 km) geographic resolution for January
1951–December 2024. This period begins in 1951 rather than
coincident with our 1985–2024 study period because the
longer climate record is used to spin-up our forest simula-
tions (Sect. 3.4). Daily variables are precipitation total (prec,
mm), maximum temperature (tmax, °C), minimum tempera-
ture (tmin, °C), vapor pressure (ea, hPa), mean downwelling
solar radiation at the surface (solar, Wm−2), and mean 2 m
wind speed (wind, ms−1). For prec, tmax, and tmin, data
come from the 1/24°-resolution nClimGrid Daily dataset
produced by the National Oceanic and Atmospheric Admin-
istration (Durre et al., 2022), which covers 1951–present.
For ea we apply the Clausius Clapeyron formulation to the
daily 1/24°-resolution dew point (tdew, °C) dataset from the
PRISM group at Oregon State University (Daly et al., 2021).

This dataset is better than reanalysis products because it is
based on station observations. However, the daily PRISM
dataset starts in 1981. For 1951–1980, we use a dynamically-
downscaled version of the ERA5 reanalysis for the western
US (Rahimi et al., 2022). This reanalysis has 9 km spatial
resolution and covers September 1950–April 2025. We use
daily outputs of mean specific humidity (q, m3 m−3) and sur-
face pressure (p, hPa) to estimate ea: pq/(0.622+ 0.378q).
We then bilinearly interpolate to 1/24° resolution and use
quantile mapping to bias correct the Rahimi et al. (2022) data
such that, for each grid cell and each of the 12 months, the
distributions of daily ea estimated from Rahimi et al. (2022)
match those estimated from PRISM during their period of
overlap. For solar and wind, we prioritize the daily outputs
from Rahimi et al. (2022) because there are no long-term spa-
tially continuous records of direct observations of these vari-
ables and the Rahimi et al. (2022) data have uniquely high
spatial resolution and long temporal coverage. We downscale
the Rahimi et al. (2022) solar and wind data to 1/24° resolu-
tion using bilinear interpolation.

For solar, we account for the effect of slope and aspect
on incident solar angle (e.g., solar intensity is higher on
south-facing slopes). The Rahimi et al. (2022) reanalysis ac-
counts for the effect of elevation on solar intensity, but not
the effect of slope and aspect. To do this, we used the 1 km
maps of slope and aspect described in Sect. 3.2. Our method
is to, for each day in a generic 365 d year and assuming
a top-of-atmosphere solar constant of 1367 Wm−2, use the
method developed by Kumar er al. (1997) to estimate the
mean downwelling solar intensity at the surface at 1 km reso-
lution for two scenarios: one with observed elevation, slope,
and aspect (solar_topo) and another with observed eleva-
tion but assuming a flat topography within each 1 km grid
cell (solar_flat). For each day we then calculate an adjust-
ment factor representing the fractional effect of slope and as-
pect on incident solar radiation at the surface as solar_adj
= solar_topo/solar_flat. We then upscale the daily grids of
solar_adj to 1/24° resolution and calculate a topography-
adjusted version of solar (solar_topo) by multiplying each
daily map of solar by its corresponding map of solar_adj.

We use the 1/24° daily climate maps described above to
calculate a number of fire-relevant derived variables. We cal-
culate daily mean VPD as the average of the daily maximum
and minimum VPD (VPDmax and VPDmin, respectively),
where VPDmax is calculated as the saturation vapor pres-
sure (es) at tmax minus ea and VPDmin is calculated using
es at tmin. As a metric representing daily atmospheric fire
weather, we use a modified version of the hot-dry-windy in-
dex (HDWI, hPams−1) representing surface conditions. The
standard formulation of the HDWI (Srock et al., 2018) multi-
plies wind by VPD at multiple vertical levels within the bot-
tom 500 m of the atmosphere on a sub-daily time scale (e.g.,
6-hourly), and then defines each day’s HDWI value as the
maximum among all values from at any vertical level or time
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step. Our simplified approach is to estimate daily HDWI as
VPDmax multiplied by wind.

To represent the effect of snowpack we use the 4 km
daily gridded climate data to simulate daily mean snow-water
equivalent (SWE, mm) using the SnowClim model (Lute et
al., 2022), which is designed for efficient simulation of west-
ern US snow dynamics in response to gridded forcing data at
a daily or sub-daily time step.

To represent fuel moisture we calculate the daily 100 and
1000 h dead fuel moisture content (FM100 and FM1000, re-
spectively, %) following the method of the National Fire
Danger Rating System (NFDRS) (Cohen and Deeming,
1985). The 100 and 1000 h fuel classes represent woody fuels
25–76 mm and 76–203 mm in diameter, respectively, and the
names of the fuel classes represent the approximate e-folding
time required for moisture content to equilibrate with the at-
mosphere. We include the effect of simulated snow in our
calculations by setting relative humidity to 100 % when the
snow depth is ≥ 5 mm and by withholding precipitation that
increases the water content of the snowpack until it melts out
of the snowpack.

3.3.2 Monthly 12 km climate predictors

We calculate nearly all monthly climate predictors from the
daily 1/24° grids described above. In addition to monthly
means we also consider variables representing fire-relevant
sub-monthly quantities (e.g., maximum 1 or 3 d mean HDWI
or VPD, maximum single-day SWE of the past 12 months)
as well as variables representing the integration of climate
conditions over multiple months (e.g., 3, 6, 9, or 12 month
mean VPD).

In addition to 12 km climate predictors derived from our
daily 1/24° dataset, we also consider lightning frequency
using the 0.1°-resolution daily maps of lightning-strike
density from the National Lightning Detection Network
(NLDN, https://www.ncei.noaa.gov/pub/data/swdi/, last ac-
cess: 26 March 2025). This dataset begins in 1987 and we
aggregate to monthly maps of 12 km lightning frequency
for 1987–2024. However, NLDN methodology changed over
time so we only use maps of long-term and monthly climato-
logical mean lightning frequencies as predictors. To account
for temporal variability in lightning potential on interannual
timescales, we consider monthly mean convective available
potential energy (CAPE) as well as maximum 1 and 3 d mean
CAPE from Rahimi et al. (2022), which we upscale to 12 km
resolution using bilinear interpolation.

3.4 Landcover

Due to a lack of spatially continuous and temporally evolving
observational maps of fire-relevant forest biomass variables
throughout our study period, we simulate forest biomass
during our study period using the Dynamic Temperate and
Boreal Fire and Forest-Ecosystem Simulator (DYNAFFOR-

EST) (Hansen et al., 2022). DYNAFFOREST is a process-
based forest ecosystem model designed to efficiently sim-
ulate forest dynamics across the western US at a medium
spatial resolution (grid cell size of 1 km2). The model rep-
resents 11 forest types and one grass/shrub type, runs at an
annual time step, and simulates a suite of variables repre-
senting various stand structure characteristics and ecosys-
tem functions. DYNAFFOREST is a cohort based model.
In each forested 1 km grid cell, a single tree representing
one forest type is simulated. Simulated metrics from the sin-
gle tree are then used to estimate stand structural character-
istics for each grid-year, such as stand age, density, basal
area, mean canopy height, and diameter at 1.35 m above the
ground. DYNAFFOREST tracks 3 live and 3 dead above-
ground biomass pools: stem, branch, and foliage, and stand-
ing snags, downed coarse wood, and forest floor litter. Co-
hort mortality occurs probabilistically as a function of back-
ground causes, drought, and fire.

When a fire occurs, DYNAFFOREST estimates percent
crown kill of the cohort as a function of fuel aridity, tree
size, and forest-type specific crown dimensions. Probability
of mortality is estimated as a function of crown kill and bark
thickness. Following a fire, forest establishment and recov-
ery is simulated in DYNAFFOREST probabilistically based
on the fecundity of the surrounding forest types, dispersal
distance in the target grid cell and surrounding grid cells,
and the effects of climate on seed germination and establish-
ment. Key functional traits related to postfire recovery, like
cone serotiny and asexual resprouting, are included. If stand-
replacing fire occurs and postfire establishment does not oc-
cur the next year, then the landcover is assumed to convert to
grass/shrub, though forest can return when seed supplies and
climate conditions allow.

Because DYNAFFOREST outputs are not observational,
our empirically parameterized fire model will not perfectly
represent how observed forest characteristics affect the prob-
abilities and sizes of forest fires. However, DYNAFFOR-
EST has been well benchmarked across large diverse for-
est types of the western US (Hansen et al., 2022) and used
to simulate coupled fire-forest relations in the context of fu-
els management (Daum et al., 2024). Additionally, we find
reasonable representation of ecoregional differences in most
above-ground biomass pools when we compare DYNAF-
FOREST outputs with the US Forest Service’s Forest Inven-
tory and Analysis survey data (USDA Forest Service, 2019).
Further, in the DYNAFFOREST simulation used to produce
the 1985–2024 forest maps that we use to parameterize the
fire model, we apply the observed 1 km maps of forest area
burned from WUMI2024a. By allowing DYNAFFOREST to
simulate forest responses to known fires, our parameteriza-
tion reflects not just the effects of naturally occurring, long
lasting gradients in forest condition on fire, but also more
transient, sharper gradients caused by prior fires.

To assure realistic and stable forest dynamics leading
into the 1985–2024 parameterization period, we conduct a
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> 334 year spin-up using WULFFSS coupled with DYNAF-
FOREST. For the first 300 years (1651–1950), we force
DYNAFFOREST with detrended climate data from 1901–
1950 and climate years are randomly selected with replace-
ment. For 1951–1984, we use observed climate so that forest
condition in the WULFFSS parameterization can reflect the
legacies of recent climate variations. With the exception of
the variables used to force WULFFSS, the climate variables
used by DYNAFFOREST are mean June–August 0–100 cm
soil moisture and annual forest-type specific temperature
metrics such as growing-degree days and freezing-degree
days. Monthly 0–100 cm moisture is modeled from monthly
12 km climate data from 1901–2024 following Williams et
al. (2017, 2020) and bilinearly interpolated to 1 km resolu-
tion. The temperature metrics are calculated from monthly
1/24° grids of mean tmax and tmin. We downscale the
1/24° grids to 1 km resolution guided by the TopoWx dataset
(Oyler et al., 2015). Specifically, TopoWx provides monthly
grids of tmax and tmin from 1948–2016 with resolutions of
1/24 and 1/120° (∼ 800 m). For each month and variable, we
use the 1/120° version to calculate a mean 1980–2016 clima-
tology with 1 km resolution (estimating 1 km values from the
1/120° grid using nearest-neighbor interpolation) and then
produce a 1 km map of offsets that relate each 1 km clima-
tological mean value to its overlying 1/24°-resolution value
from the same years. We apply the offsets to the monthly
mean tmax and tmin from NOAA nClimGrid (Vose et al.,
2014) to produce 1 km maps of monthly mean tmax and tmin
from 1901–2024. Thus, we force the non-fire portion of the
DYNAFFOREST simulations with observed climate data for
the 1901–2024 period.

Due to lack of fine-scale data on forest ecosystems from
the pre-spin-up period, we initialize the spin-up using a 1 km
resolution map of observed modern forest types that we de-
rived from the Ruefenacht et al. (2008) map of forest types.
Initial fuel loads are representative of the 11 forest types and
the biomass pools stabilize after approximately 250 years of
spin-up.

For landcover variables not simulated by DYNAF-
FOREST, we use the maps of land-cover type from the
US Geological Survey’s National Land Cover Database
(NLCD; https://www.usgs.gov/centers/eros/science/
annual-national-land-cover-database, last access: 8 Jan-
uary 2025). The NLCD provides annual maps of landcover
classifications at 30 m resolution across the US for 1985–
2024. Because the NLCD map for a given year often reflects
the effects of fires during that year, and we do not wish to
mistake the effects of fires for their causes, we consider each
year’s landcover to be represented by the prior year’s NLCD
map (for 1951–1985 we assign the 1985 landcover). From
these 30 m maps of landcover we calculate 1 km maps of
fractional coverage for four non-forest categories: unburn-
able (water, ice, wetland, barren), developed (low, medium,
high intensity), agriculture (cultivated, pasture, developed
open space), and grass/shrub (grass/herb, shrub/scrub).

For each year from 1951–2024 we rescale these fractional
coverages so that, for grid-years where the DYNAFFOREST
simulation does not indicate forest coverage, these non-
forest classes sum to full coverage. Likewise, for grid-years
where DYNAFFOREST simulates forest coverage, we set
the non-forest types to zero.

In addition to 1 km maps of aboveground forest biomass
density (in distinct pools and in total), mean canopy height,
mean diameter at breast height, and fractional coverage by
landcover type, we also calculate 1 km maps of forest con-
nectivity. We define this as, for each 1 km grid cell, the
fraction of adjoining grid cells with ≥ 10000 kgha−1 live
biomass density, which corresponds to approximately the
5th percentile of all simulated 1 km2 live biomass density
values for 1985–2024. Specifically, for each 1 km grid cell
with ≥ 10000 kgha−1 live biomass we calculate the number
of consecutive adjoining grid cells in each of the 8 direc-
tions radiating away from the central grid cell that also have
≥ 10000 kgha−1 live biomass. In each of the four directions
radiating north, south, east, and west, we consider the 6 near-
est grid cells. In each of the four diagonal directions we con-
sider the nearest 4 grid cells. We then calculate connectivity
as 1 (for the central grid cell) plus the sum of the total num-
ber of adjoined grid cells with ≥ 10000 kgha−1 grid cells
the 8 directions divided by the number of grid cells consid-
ered (41). This approach allows for efficient recalculations
of connectivity when simulations are run in coupled mode
with DYNAFFOREST and the size of the area represented is
roughly aligned with that of a large wildfire 10 000 ha in size.

From the 1 km grids of annual forest properties and frac-
tional coverage by landcover type described above we cal-
culate 12 km maps of averages within each 12 km grid cell.
Given that fire sizes can also be influenced by landcover be-
yond the ignition location, we also consider variables that
represent spatial averages within the area of a very large
500 km2 (50 000 ha) fire, which we approximate as a 23km×
23km square. Likewise, our use of sub-12 km landcover data
to produce landcover predictors allows our modelling to in-
clude the effects of within-grid heterogeneity of fuel condi-
tions, which is important given that most fires are smaller
than 144 km2.

3.5 Human population and roads

Humans cause approximately half of all ignitions (Balch et
al., 2017) and attempt to suppress almost all wildfires in the
western US. We therefore include predictor variables related
to population density and distance to populated areas. Be-
cause the US Census changed how it provides population in-
formation in 2020, so that reported numbers are sometimes
swapped among Census units (“blocks”) to maintain con-
fidentiality, we work with census-based housing-unit den-
sity instead. Specifically, we use the shapefiles of census-
based, block-level housing density in 2000, 2010, and 2020
developed by the SILVIS Lab (https://silvis.forest.wisc.edu/
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data/wui-change/, last access: 20 May 2024) (Radeloff et
al., 2018, 2023). For 1950–1990 we use decadal hindcast
maps of housing density produced by the SILVIS Lab us-
ing partial block-group level census data. For 2030, which
is used with 2020 to interpolate housing density for 2021–
2024, we use a projection based on county-level forecasts
of housing density from Woods & Poole Economics (https://
www.woodsandpoole.com/our-databases/united-states/, last
access: 20 May 2024), which is downscaled to the block level
by the SILVIS Lab based on 2020 housing density patterns.
For each decade we rasterize the polygon data to a 1 km grid
of housing density. We then produce annual maps of 1 km
housing density for 1951–2024 by linearly interpolating be-
tween the decadal maps.

From the annual 1 km maps of housing density we produce
two sets of 1 km maps to represent distance from populated
areas. In the first, we map the distance to the nearest grid cell
with ≥ 5 housing units per km2 to represent distance to a rel-
atively sparsely populated community. In the second we map
the distance to the nearest grid cell with ≥ 50 housing units
per km2 to represent distance from a more heavily urbanized
area.

Related to population, we also consider spatiotemporal
variations in total and per-capita gross domestic product
(GDP) as proxies for variations in fire-suppression capacity.
We use the annual 0.5°-resolution maps of GPD and GDP
per capita from 1990–2022 from Kummu et al. (2025) and
bilinearly downscale to 12 km resolution.

The geographic distribution of ignitions and fire-
suppression activities also depend on roads. We use the
2013 Global Roads Open Access Data Set, Version 1
(gROADSv1; https://search.earthdata.nasa.gov/search/
granules?p=C1000000202-SEDAC, last access: 17 Septem-
ber 2024). This dataset specifies for each road segment a
Functional Class: Highway, Primary, Secondary, Tertiary,
Local/Urban, Trail, Private, or Unspecified. We aggregate
these into two classes: major (Highway and Primary) and
minor roads (all others). We then produce 1 km maps of the
distance to the nearest major road, distance to nearest minor
road, and distance to nearest road of any class. We treat
the road network as static in time due to unavailability of
construction or closure dates.

Finally, we calculate 12 km maps of mean 1 km housing
density, distance to nearest location with ≥ 5 or ≥ 50 hous-
ing units per km2, and distance to nearest major road, mi-
nor road, or any road as predictor variables in the forest-fire
model.

4 Model description

The WULFFSS model has a spatial resolution of 12 km
across the forested domain of the western US (Fig. 3) and op-
erates monthly. The model is parameterized on the dataset of
7635 forest-fire locations and sizes described in Sect. 3.1. A

schematic visualizing the general framework of WULFFSS
is provided in Fig. 4.

WULFFSS consists of three statistical models, loosely fol-
lowing Westerling et al. (2011). The general framework is
that first model estimates, for each grid-month, the probabil-
ity of ≥ 1 wildfire (P ) from a multi-variate logistic regres-
sion with predictor variables representing landcover, topog-
raphy, humans, and climate. To account for the possibility of
> 1 wildfire in a given grid-month, the second model uses
P as a single predictor in a logistic regression to estimate
the probability that any given number of wildfires occurs in
each grid-month (N ). The third model is a fire-size model
that uses multi-variate regression to estimate the forest area
burned (A) by each wildfire as a function of landcover, to-
pography, humans, and climate, similar to the P model.

The P andAmodels each consist of three components rep-
resenting spatial variability (S), the mean annual cycle (C),
and temporal anomalies (T ), as well as interactions between
these components (SC, ST , and CT ). The S component is
constructed first to capture how variations in fire activity are
driven by factors that are far more variable in space than
in time, as these factors (e.g., forest biomass, lightning fre-
quency, variables related to human population and fire sup-
pression) are likely to modulate the sensitivity of fire ac-
tivity to temporal variables. The C component is then con-
structed to account for variations in fire activity that are due
to the mean annual climate cycle. Finally, the T component
is constructed to account for effects of climate variations on
timescales of interannual and longer, which are likely to be
strongly modulated by the effects of the S and C variables
already accounted for.

The S component represents drivers of forest-fire occur-
rence or size that are most variable in the spatial domain,
such as topographic slope, fuel availability, human popula-
tion, mean annual lightning frequency, and long-term mean
aridity, all of which may directly influence fire occurrence
and also modulate the effects of C and T . Each potential S
predictor is standardized such that all grid-month values in
the study domain have a mean of 0 and standard deviation
of 1 for the calibration period (1985–2024). Many S pre-
dictors represent alternate expressions of a single predictor,
for example house density, log10(house density), mean house
density within 50 kha, and log10(mean house density within
50 kha). Logarithmic transformations are made on many of
the S variables to give these variables more Gaussian distri-
butions.

The C component represents climatological drivers of
forest-fire occurrence or size that are most variable in the do-
main of the mean annual cycle, such as long-term means of
each month’s lightning frequency as well as variables that
influence the seasonality of fuel moisture such as prec, so-
lar, and VPD. For all potential C predictors, mean annual
cycles are calculated based on the calibration period. As for
S, most potential C variables are permutations of common
variables. For example, the effects of climate variables re-
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Figure 4. Flowchart outlining the general framework of the WULFFSS.

lated to fuel moisture may accumulate over several months,
so the annual cycle of each climate variable is considered
as 1, 2, 3, 4, and 5 month running means. Further, two ver-
sions of most C variables are considered. In the first, each
grid cell’s mean annual cycle is scaled from 0–1, where 0
and 1 represent the mean annual minimum and maximum,
respectively, so all spatial variability is due to variability in
the timing of the annual cycle. In the second, mean annual
cycles are not scaled and these variables retain spatial dif-
ferences in each month’s mean conditions. For each of these
unscaled C variables, values are standardized relative to all
calibration-period grid-months.

The T component represents climatological drivers of
forest-fire occurrence or size that are most variable in the
temporal domain of interannual and longer. Potential T pre-
dictors include the standardized precipitation index (SPI)
(McKee et al., 1993), frequency of wet days with ≥ 2.54 mm
prec (Holden et al., 2018), FM1000, FM100, VPD, solar,
HDWI, CAPE, and SWE. As for C, many potential T vari-
ables are permutations to represent cumulative effects over
various ranges of months. In addition, monthly measures of
some sub-monthly meteorological conditions are considered
such as the highest 1 or 3 d mean VPD within a month. Be-
cause T is meant to represent climate variability beyond the
annual cycle, T variables are standardized so that for a given
variable in a given grid cell, values have a mean of 0 and
standard deviation of 1 for each of the 12 months during the
calibration period.

In both the P and Amodels, each of the three components
is represented by a single composite index that expresses the
combined effect of multiple predictor variables. The vari-
ables that contribute to each of the three components (S, C,
and T ) are selected stepwise and only retained if they con-

tribute significantly to model skill (see Sect. 4.1). Thus, each
model ultimately uses only a subset of the potential predic-
tors. Lists of all potential predictors are listed in Tables A1–
A3 (see Tables S1–S3 in the Supplement for variable descrip-
tions). For some variables, it is logical that the effect on P
or A should be only positive or negative. For example, the
direct effect of fuel availability on fire occurrence and size
is far more likely to be positive than negative, but a statis-
tical model may detect a hump-shaped or even negative re-
lationship due to the co-occurring influences of moisture on
fuel availability (positive) and flammability (negative) (Brad-
stock, 2010; Krawchuk and Moritz, 2011). To avoid includ-
ing unrealistic effects due to co-linearities or model overfit-
ting, we do not allow some predictors to be included if the
sign of their effects are inconsistent with our understanding
of western US forest fire (see Tables A1–A3).

4.1 Model framework

We use stepwise multiple regression to build the P and A
models. We use multiple logistic regression to calculate our
estimates of P (Pest):

Pest = 1/(1+ e−XP βP ) (1)

where βP is a vector of logistic regression coefficients and
XP is a matrix of the three S, C, and T composite predictors
(SP , CP , and TP , respectively), as well and their interaction
terms (SPCP , SP ,TP , and CP ,TP ), such that

XPβP =βP0+βP1SP +βP 2CP +βP3TP +βP4SPCP

+βP 5SP TP +βP 6CP TP . (2)

Each of the three composite predictors, SP , CP , and TP , rep-
resents contributions from a number of S,C, and T variables,
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where each S, C, and T variable included has been selected
in a stepwise process and transformed to linearize its rela-
tionship with P following methods described below.

To model A, we follow a similar approach as for P except
that we use multiple linear, rather than logistic, regression to
estimate size-weighted and normalized anomalies ofA (Azw;
details in Sect. 4.4):

Azw = XAβA, (3)

where βA is a vector of linear regression coefficients and XA
is a matrix of S, C, and T composite variables (SA, CA, and
TA, respectively) and their interactions (SACA, SA,TA, and
CA,TA) such that

XAβA =βA0+βA1SA+βA2CA+βA3TA+βA4SACA

+βA5SATA+βA6CATA. (4)

We considered including three-way interactions between the
S, C, and T predictors in the P and A models but doing so
did not improve model skill. In the rest of this subsection we
describe the parts of the model-building framework that are
common to the P and A models. Details specific to just the
P or A model will be described in Sect. 4.2 and 4.4, respec-
tively.

Both models are built sequentially, first constructing the
spatial composite predictor (Sx , where subscript x is P for
the P model or A for the A model). Next the annual cycle
composite predictor (Cx) and its interaction with Sx (SxCx)
are built. Finally the temporal anomaly predictor (Tx) and its
interactions with Sx and Cx (SxTx and CxTx , respectively)
are built.

To construct Sx , we first assess the general shape and
strength of the relationship between each potential S pre-
dictor and the variable we are modeling, x, using a binned
regression. We sort each potential Sx predictor into equally
sized bins (45 for the Px model and 25 for theAx model), and
calculate the mean of x for each bin. For each potential pre-
dictor we then regress the binned mean x values against the
means of the binned predictor values and quantify the rela-
tionship using linear, quadratic, and cubic fits. The accuracy
of each fit is assessed with the Akaike Information Criterion
with a correction for low sample size (AICc) (Akaike, 1974;
Hurvich and Tsai, 1989) and penalty for higher-order fits.
Curve fits resulting in AICc> 0 are immediately dismissed.
Among the remaining curve fits, a Monte Carlo significance
test is conducted in which x is randomized and re-binned 100
times for the P model and 200 times for the A model. Curve
fits are only considered if the actual AICc is more negative
than at least 95 % of the AICc values from the Monte Carlo
test. Finally, the variable and curve fit combination with the
most negative AICc is tentatively accepted as the initial pre-
dictor (VS1) to represent Sx . Specifically, VS1 is calculated by
applying the selected curve fit to all the values of the selected
variable and then Sx is calculated by standardizing VS1 rel-
ative to a mean of 0 and standard deviation of 1. An initial

version of the model is then developed by applying Sx as the
single variable to estimate x. Model accuracy is assessed as
correlation between modeled and observed values of x (see
Sect. 4.2 and 4.4 for details about the correlation tests spe-
cific to the P and A estimates). At this point in the model-
building process, the model coefficients and correlation val-
ues are recalculated 100 times when VS1 values are randomly
reordered (200 times for the A model). If the model’s corre-
lation value is not > 95 % of the alternative correlation val-
ues, then the variable under consideration is dismissed and
we consider the potential predictor that led to the next lowest
AICc value in the binned regression analysis.

After Sx is initially created from a single variable, we cal-
culate residuals in x and explore whether additional S vari-
ables should be included within Sx . We do this by regressing
binned means of the residuals, representing variance in x not
yet accounted for by the model, against the binned values
for all potential Sx predictors still under consideration. No-
tably, if the predictor variable selected in the previous step
has a log10 counterpart, or vice versa, the counterpart is not
considered in subsequent model-building steps. As before,
only curve fits resulting in a negative AICc and satisfying the
Monte Carlo significance test are considered. If ≥ 1 curve
fit satisfies these criteria, the variable and curve fit with the
most negative AICc is passed on for further consideration as
VS2 by updating the calculation of S by adding VS2 to VS1
and re-standardizing. We then re-fit the regression equation
using Sx to estimate the predictand and calculate an updated
correlation between model estimates and observations. If the
updated correlation is more positive than the previous corre-
lation and is also more positive than 95 % of the Monte-Carlo
generated correlations calculated with randomized VS2 val-
ues, then the model is updated using VS1 and VS2. If these
correlation criteria are not satisfied, the variable and curve
fit that resulted in the next most negative AICc value is con-
sidered as a potential VS2. This process is repeated until no
additional variable and curve fit satisfies the above criteria
for inclusion in Sx .

Next, the Cx component is added, constructed in the same
stepwise manner as Sx , where aC variable is only included in
Cx if (1) the binned regression with residuals leads to a neg-
ative AICc that is lower than 95 % of values produced when
residuals are randomized in the Monte Carlo repetitions and
(2) model estimates of x correlate more positively with ob-
servations than did the previous model’s estimates and also
more positively than 95 % of Monte Carlo correlations calcu-
lated when the C variable under consideration is scrambled
randomly. A difference from construction of Sx is that now
the model is a multivariate regression with three predictors:
Sx , Cx , and their interaction, SxCx . To avoid nonsensical in-
teractions in SxCx where two negative predictor anomalies
would have the same effect as two positive anomalies, we
positive-shift all Sx and Cx values by subtracting each pre-
dictor variable’s minimum value before multiplying them.
For the P model, we subtract the lowest SP and CP val-

Geosci. Model Dev., 19, 1157–1191, 2026 https://doi.org/10.5194/gmd-19-1157-2026



A. P. Williams et al.: The Western United States Large Forest-Fire Stochastic Simulator 1167

ues to occur among all grid-months in the calibration period.
For the A model, we subtract the lowest SA and CA values
among grid-months that cooccurred with calibration-period
fire. We then calculate SxCx as the standardized product of
the positive-shifted Sx and Cx predictors such that the values
of SxCx have a mean of 0 and standard deviation of 1.

Finally, the same methods are used to construct Tx to cap-
ture temporal variability not accounted for by Sx and Cx .
With Tx included, the matrix of normalized predictors (X)
includes all 6 predictor variables shown in Eqs. (2) and (4)
(Sx , Cx , Tx , and 3 interactions).

Following parameterization of the initial models, we found
that some potential predictor variables not selected initially
could contribute significantly if considered in a second pass.
This was unsurprising because each stepwise improvement to
one component of the model affects the influence of the other
components through interactions. We thus perform a second
pass in the model-building process in which S,C, and T vari-
ables that were not selected in the original construction of Sx ,
Cx , and Tx are given another opportunity for inclusion. In
addition, we consider a small number of variables that were
not considered in the first pass. For example, some variables
such as temporally varying SWE and fractional snow cover-
age do not fall cleanly into one of the three categories. Snow
may be viewed as a landcover feature that inhibits fire spread
or modulates the ability of climate anomalies to affect fuel
moisture, in which case S is appropriate, but snow presence
and amount are highly variable in time. Breaking snow qual-
ities into monthly climatologies and standardized anomalies
about those climatologies is not ideal, however, as SWE and
fractional coverage are highly non-normal and dominated by
zeros. We therefore allow, in the second round of stepwise
model fitting, for monthly SWE and fractional snow cover-
age to be considered as both S and T variables. We also con-
sider some additional S variables representing distance from
road as well as landcover characteristics that are not outputs
from the DYNAFFOREST model. These variables are only
considered in the second round because (1) we do not have a
temporally varying dataset of road networks and (2) we pre-
fer that the effect of landcover on modeled fire is dominated
by variables that we can simulate with DYNAFFOREST as
coupled interactors with fire. Tables A1–A3 specify the vari-
ables we only consider in the second rounds model fitting.

4.2 The forest-fire probability model

To model P , we use all available grid-months in the ob-
served 1985–2024 forest-fire dataset to fit a logistic regres-
sion (Eqs. 1 and 2). During this period, forest fires occurred
in 7394 unique grid-months. For more efficient model param-
eterization and to avoid biasing the model with conditions
under which large forest fires are exceedingly improbable,
we exclude grid-months from our logistic regression where
mean daily SWE exceeds the 99th percentile (0.76 mm) of
values, leaving 7318 forest fires. Mean SWE exceeds this

value in 20 % of calibration-period grid-months, leaving a
sample size of 4 286 622 grid-months with which to parame-
terize the P model. Among these grid-months, the observed
frequency of ≥ 1 forest fire is 0.0017.

We assess the accuracy of the logistic P model using the
Matthew’s correlation coefficient (MCC) (Matthews, 1975),
which rewards correct classifications and penalizes against
incorrect classifications. Because Pest is scalar (0–1), we con-
vert Pest to 500 potential predictions of binary fire occurrence
by, for each grid-month, drawing 500 random, uniformly dis-
tributed numbers from 0–1, predicting fire occurrence (1) in
all cases where the random number is less than Pest, and pre-
dicting no fire (0) when the random number is greater than
Pest. This allows for calculation of 500 MCC values and we
consider the mean value to represent the MCC of the model.

To construct the Sp component we consider 54 potential
predictors initially and 14 additional predictors in the second
pass (Table A1). Variables and curve fits selected by the step-
wise process to build the composite Sp predictor are shown
in Fig. 5a. Variables not included in the original round of
model fitting but added in the subsequent round are indicated
by “2nd round” in Fig. 5.

The construction of Sp indicates that Pest is promoted by
topographic slope, lightning frequency, high fractional forest
coverage and forest connectivity, and high prior-year precip-
itation total where grass and shrub cover is abundant. Pest is
reduced in areas of high housing density, near roads, in ar-
eas with high unburnable cover (barren land and water), and
where the mean climatology is very wet (mean annual aridity
index > 2 standard deviations above the mean).

To construct Cp, we consider 48 potential predictors ini-
tially and 16 additional predictors in the second pass (Ta-
ble A2, Fig. 5b). The annual cycle of Pest is dominated by
annual cycles in fire weather (high HDWI), fuel moisture (as
represented by wet-day frequency, VPD, and solar radiation),
and lightning frequency.

To construct Tp, we consider 25 potential T predictors ini-
tially and 12 additional predictors in the second pass (Ta-
ble A3, Fig. 5c). High Pest is promoted when FM100 is low,
VPD has been anomalously high over the past 8–9 months,
and in months with high HDWI and infrequent precipitation,
but Pest can be suppressed if precipitation totals were anoma-
lously low between 1.5 and 0.5 years ago.

The spatiotemporal distribution of Pest generally agrees
well with observations (Fig. 6). However, there is a posi-
tive bias of Pest among very low values. In particular, among
the grid-months that we excluded from model calibration due
to mean daily SWE exceeding the 99th percentile, Pobs was
28.20 % of Pest. We therefore apply a bias adjustment to all
grid-months with SWE exceeding the above threshold by
multiplying Pest in these grid-months by 0.2820. Despite the
bias correction for snowy grid-months, our model still sys-
tematically overestimates Pest among grid-months with low
values of Pobs (Fig. 6a). Among the 50 % of 1985–2024 grid-
months where Pest is below the median (1.19× 10−4), the
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Figure 5. Predictor variables and associated curve fits in the fire-probability (P ) model. Variables are in three categories: spatial (Sp), mean
annual climate cycle (Cp), and temporal climate anomalies (Tp). Y axis values in each panel indicate observed fire probabilities (Pobs;
×10−3) not already accounted for prior to inclusion of that panel’s predictor variable. Bars indicate the mean residual Pobs values among
grid-months for which the predictor variable falls within each of 45 evenly spaced bins. Red lines/curves indicate the linear, quadratic, or
cubic fit used to approximate the response of Pobs residuals to each predictor variable. With the exception of some Cp predictor variables,
which are scaled from 0–1, predictors are expressed as standard-deviations from the mean. Statistics indicate each curve fit’s low-sample-
size Akaike Information Criterion (AICc) and the fraction of fits that produced a more negative AICc when the values being predicted are
randomly scrambled prior to binning (p-value). Variable names are provided above each panel and are defined in Tables A1–A3. Panels
representing variables selected in the second round of model fitting have grey text: “2nd round.”
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Figure 6. Fire probability estimates. (a) Mean observed and esti-
mated probabilities of grid-months with ≥ 1 fire (Pobs and Pest, re-
spectively) within each of 12 bins of Pest. Y axis values correspond
to the mean Pest within each bin. Filled black dots: mean simulated
versus observed frequency of all grid-months in the full western US
forested domain. Empty colored dots: analysis for each of the four
quadrant regions mapped in panel (b). Dashed black line: 1-to-1
line. Model estimates shown on y axis to aid visual interpretation
of model errors. (b) Map of modeled monthly Pest averaged over
May–September 1985–2024 with boundaries of the four regions.

mean Pobs is 52 % of modeled. This positive bias among very
low values of Pest is strongest in PNW (Fig. 6a). We do not
apply a further correction to account for this because the pos-
itive bias among low Pest values is of little consequence to the
accuracy of the P model. The vast majority of fires are simu-
lated to occur under higher Pest conditions; 96 % of simulated
fires occur where Pest is above the median. Among these
grid-months, Pest scales well with Pobs (Fig. 6a). This find-
ing of consistently strong model skill where Pest is above-
median holds at the regional scale as well (colored dots in
Fig. 6a represent the 4 regions mapped onto Fig. 6b). Fig-
ure 6b further shows a realistic geographic distribution of
mean Pest. Our model captures known areas of particularly
high fire densities such as in California’s Sierra Nevada and
North Coast ranges, the mountainous areas of southern Ari-
zona and New Mexico, and a relatively remote portion of the
northern Rocky Mountains in central Idaho.

4.3 Modeling number of forest fires per month

Following Westerling et al. (2011), we use the modeled prob-
ability of ≥ 1 forest fire occurring in a grid-month (Pest) as a
single predictor in a logistic regression to estimate the proba-
bility that the number of fires in a given grid-month equals or
exceeds N , where N can be 1, 2, or 3. For each possible N , a
logistic regression is fit using Pest from the 7394 grid-months
with ≥ 1 forest fire. PN is calculated as:

PN = 1/(1+ e(−βN0−βN1Pest)), (5)

where N varies from 1–3 and the βN values are empirically
fit logistic regression coefficients associated with each value
of N . By design, PN = 1 when N = 1 and PN reduces as
N increases (Fig. 7). The maximum N we consider is 3 be-

Figure 7. Probability of more than one wildfire. Given that ≥ 1 for-
est fire occurs in a given grid-month, the probability that the number
of forest fires equals or exceeds 2 or 3 as a function of the modeled
probability of ≥ 1 forest fire (Pest). The maximum number of fires
in a grid-month is 3 because there are very few (< 10) cases of a
given grid-month having > 3 fires in the observed dataset.

cause there are very few occurrences of grid-months in the
observed dataset with > 3 fires. To prevent unrealistically
large numbers of fires in a grid-month, PN is not allowed
to exceed the largest PN value that was associated with N
fires during model calibration.

4.4 The forest area-burned model

To model each fire’s forested area burned (A), we fit a multi-
variate linear regression based on spatial (SA), mean annual
cycle (CA), and temporal anomaly (TA) predictor variables
to estimate transformed values of A for the 7635 forest fires
(Eqs. 3 and 4). Because fire sizes have a highly skewed dis-
tribution with large fires disproportionately dominating the
total area burned, we statistically transform the observed val-
ues ofA to quantiles and then transform the quantile values to
standardized anomalies (σ ) with a normal distribution (Az).

Because of the disproportionate influence of large fires on
area burned, we weight Az values by the logarithm of forest
area burned, linearly scaled from zero to one (Azw). Thus we
refer to the model estimating Azw values as the Azw model.
Weights of zero (100 ha forest area burned) are reassigned the
next lowest weight. To assess accuracy of theAzw model, we
use a weighted Pearson’s correlation (r).

In fitting the Azw model, we initially consider 82 poten-
tial SA predictors, 58 potential CA predictors, and 47 poten-
tial TA predictors (Tables A1–A3). Because fires often burn
over multiple months, the potential predictor variables forCA
and TA include climate conditions in the month following the
start date. In the second round we consider 22, 0, and 21 ad-
ditional variables for SA, CA, and TA, respectively. The pre-
dictor variables and curve fits selected for the Azw model are
shown in Fig. 8.

The variables selected for SA indicate that large fire size
is promoted where forest biomass and topographic slope are
high, the long-term average climate is not too wet, and roads
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Figure 8. Predictor variables and associated curve fits in the size-weighted area burned (Azw) model. Variables are in three categories:
spatial (SA), mean annual climate cycle (CA), and temporal climate anomalies (TA). Y axis values in each panel indicate residual Azw not
already accounted for prior to inclusion of that panel’s predictor variable. Most residual values are negative because the weighted regression
prioritizes large fires, so Azw predictions are biased positive. Bars indicate the mean residual Azw among observed forest fires for which
the predictor variable was split into 25 evenly spaced bins. Red lines/curves indicate the linear, quadratic, or cubic fit used to approximate
the response of Azw to each predictor variable. Statistics indicate each curve fit’s low-sample-size Akaike Information Criterion (AICc) and
the fraction of fits that produced a more negative AICc when the values being predicted are randomly scrambled prior to binning (p). With
the exception of some C predictor variables that are scaled from 0–1, units of x axis predictors are in standard-deviations from the mean.
Variable names are provided above each panel and are defined in Tables A1–A3.

and population centers are far away (Fig. 8a). Variables se-
lected for CA indicate the annual cycle in fire size is driven
by annual cycles of fuel moisture and fire weather (Fig. 8b).
Variables selected for TA indicate temporal variations in fire
sizes are also dominated by fuel moisture, as represented by
low FM1000, high VPD, and anomalously low prec over the
prior year and a half, and high fire-weather conditions in the
month of or following ignition (Fig. 8c).

4.4.1 Bias-correction of Az and transformation to
forest area burned

Modeled values of Azw are biased positive by an average
of 0.653σ relative to observed Az (Azobs) (Fig. 9a). This is

expected because the weighted regression preferentially rep-
resents larger fires. We find no systematic tendency for the
bias to vary seasonally or geographically. We apply a bias
correction to calculate our model estimates of Az (Azest)
as Azest = Azw−0.653σ . Although our fire-size model does
not account for the majority of variability among individual
Azobs values, it captures the underlying variability in mean
Azobs among larger groups of fires. For each of 10 Azest
bins, each representing an equal share of observed fires, the
mean of the corresponding Azobs values is near the mean of
the Azest values (Fig. 9b). The alignment of the colored dots
around the 1-to-1 line indicates that these results generally
hold at the regional scale, though with tendencies to under-
estimate fire sizes in N Rockies and overestimate in CA/NV.
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Figure 9. Fire-size estimates. Scatter plot of modeled, area-weighted normalized fire size anomalies (Azw) versus observations (Azobs).
Redder colors indicate a higher density of sample points. The rw and r values in the top-left correspond to the weighted and unweighted
correlations between Azobs and Azw. The y axis position of the green vertical line and the green bias value correspond to the mean of
Azw minus Azobs. (b) Scatter plot of binned means of modeled Az values after subtraction of the bias in Azw (Azest) versus the means
of corresponding Azobs values. Each black dot represents an Azest decile for the full western US domain, with the x and y axis locations
representing the mean Azobsand Azest values, respectively. Horizontal extents of the corresponding boxes bound the interquartile values of
Azobs and the vertical black line within each box is the median Azobs. Colored circles show binned means of Azest and Azobs when the
analysis was repeated for each of the four regions (PNW: Pacific Northwest, N Rockies: Northern Rockies, CA/NV: California and Nevada,
4 Corners: the four-corner states). Black diagonal dashed line: 1-to-1 line. In (a) and (b), grey vertical and horizontal dashed lines cross
through the zero intercepts to aid visual interpretation. We show model estimates on the y axis to aid interpretation of model errors. (c) Map
of each grid cell’s 95th percentile of May–September Azest during 1985–2024 to show geographic variability in the potential for an existing
fire to grow very large.

Figure 9c maps the simulated distribution of the potential for
large fires, highlighting California’s Sierra Nevada and Coast
Range and the eastern Cascades as particularly conducive to
large forest fires.

4.5 Accounting for stochastic variability

Across the western US and within the four regional quad-
rants, interannual variations in modeled total P and mean
Az generally correlate well with observations, but simulated
interannual variability is systematically muted relative to ob-
servations (Fig. 10). This is expected, as the occurrences and
sizes of individual fires are highly stochastic. For more real-
istic representation of variability in our simulations of fire oc-
currences and sizes, we add semi-random variability to each
modeled value of Pest and Azest. The distributions of random
variations are constrained empirically by the distributions of
errors in Pest and Azest.

4.5.1 Stochastic variations in fire probability

The distribution of uncertainty around any value of Pest is
difficult to characterize because fire probability in a given
grid-month can only be observed as binary, and errors in Pest
can only be assessed by comparing mean values of Pest to
Pobs across many grid-months. However, quantification of
error in Pest averaged across many grid-months does not pro-
vide direct guidance as to the distribution of errors surround-
ing any single grid-month’s Pest value. In exploratory anal-
ysis we found that the distribution of Pest uncertainty does

not scale predictably as a function of Pest (e.g., errors are
not systematically larger for larger Pest values) so we include
stochasticity in our modeling of P by simply adjusting Pest
with observed sequences of regionally averaged errors.

To identify regions where temporal variability in Pest is
relatively coherent, we perform a rotated principal compo-
nents analysis (PCA) on monthly regional errors. Initially, we
divide our western US forested study domain into 64 regions
based on the map of coterminous US pyromes from Short et
al. (2020). To reduce the number of regions, we merge each
of the 59 pyromes that averaged fewer than seven fires per
year during 1985–2024 with the nearest pyrome, producing
10 forested regions with adequate fire frequencies for char-
acterization of monthly error in Pest. For each region we cal-
culate monthly sums of Pest and Pobs, calculate 3 month run-
ning means centered on the middle month (Pest3 and Pobs3)
to reduce the effects of extreme Pobs outliers, and define the
monthly error (Perror) as Pobs3/Pest3. We then perform a PCA
on the 10 monthly time series of Perror, and retain the five
principal components (PCs) with eigenvalues ≥ 1 as distinct
modes of variability. The loadings associated with these PCs
are rotated using the varimax method and multiplied against
Perror to reproject the original Perror variance onto the five
new rotated PC time series (PCr). The 10 original pyrome
groups are combined into five new groups of relatively co-
herent Perror variability based on correlation between Perror
and PCr (Fig. 11).

To include stochastic variability in our model simulations,
we calculate an adjusted version of Pest (Pestadj) by multi-
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Figure 10. Interannual variability. Scatter plots of annual modeled versus observed forest-fire probability (P ) and normalized fire-size
anomalies (Az) for the western US and each of the four quadrant regions, 1985–2024. (a–e) Modeled annual sum of P across all grid-months
(6Pest) versus observed annual sum of grid-months with ≥ 1 forest fire (6Pobs). (f–j) Modeled annual means of Az (Azest) corresponding
to the grid-months of the observed fires versus observed annual means ofAz (Azobs). Diagonal dashed lines are 1-to-1 lines. Model estimates
shown on y-axes to aid interpretation of model errors. Correlation (r) indicates Pearson’s correlation between observed and modeled time
series. The σy/σx values express the standard deviation of the modeled time series as a percentage of the standard deviation of the observed
time series.

Figure 11. Intra-annual error in modeled fire probability by pyrome group. Time series of 3 month running means of the modeled (red; Pest3)
and observed (blue; Pobs3) monthly sums of grid cells with ≥ 1 forest fire in each of five pyrome groups. Each group is composed of a group
of pyromes (Short et al., 2020) with similar time series of monthly error in modeled fire probability (Perror = Pobs3/Pest3). In each panel,
the red area in the map indicates the pyrome group represented by the time series and the other groups are infilled with lighter colors.

plying each simulated calendar year of Pest values by a ran-
domly drawn year of Perror from the 40 year model calibra-
tion period, where each month’s map of Perror represents the
regions shown in Fig. 11 (to avoid extreme values we bound
Perror between 0.33 and 3). This approach preserves realistic
Perror autocorrelation both spatially and between months. To
demonstrate the effectiveness of this approach at eliminating
the bias toward too little temporal variability in Pest (shown
previously in Fig. 10a–e), we produce a 1000-member en-
semble of Pestadj (Fig. 12). Including errors in our simula-

tion successfully gives Pestadj (middle box plots in Fig. 12)
a wider distribution than Pest (left box plots) that is gener-
ally better aligned with observations (right box plots). The
percentage value above each set of box plots in Fig. 12 indi-
cates how the median standard deviation of annual simulated
sums of Pestadj compares to the observed standard deviation.
These values are now closer to 100 % than was the case for
Pest (compare to percentage values in Fig. 10a–e), indicating
that our approach improves the realism of temporal variabil-
ity in simulated P .
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Figure 12. Distributions of modeled and observed interannual fire
probability. Box plots of annual observed and modeled annual sums
of the probability of ≥ 1 fire per month (P ) averaged across all
forested grid cells (mean(6P )) in the West US study region and
the four quadrant regions. For each region, the light-colored box-
plot on the left represents the distribution of the originally modeled
annual time series of mean(6Pest): thick line is median among an-
nual mean(6Pest) value, box bounds interquartiles, whiskers bound
inner 90 % range. The boxplot in the middle represents the mean
distribution across 1000 simulated time series of mean(6Pest) after
adjustments to include random errors (mean(6Pestadj)). The white
box plot on the right represents the distribution of observed sums
of mean mean(6P ) (mean(6Pobs)). Percentage numbers indicate
the magnitude of the mean standard deviation among the 1000 sim-
ulated time series of annual 6Pestadj relative to the standard devi-
ation of the observed time series. Differences between these values
and the percentages provided in Fig. 10a–e are due to inclusion of
error in the 1000 simulations represented here. Values of annual
6P are averaged across all grid cells for each region to reduce the
influence of large regional differences in 6P in the figure.

4.5.2 Stochastic variations in fire size

The distribution of uncertainty around estimates of Azest
is easier to assess than that of Pest because error in Azest
(εAzest) can be quantified for each fire. In addition, εAzest
values are normally distributed and increase as a function
of Azest (Fig. 9b). As Azest increases, the spread among
corresponding εAzest values widens and remains symmetri-
cal. When we bin Azest into deciles, the standard deviation
among εAzest values increases linearly with Azest (Fig. 13).
The relationship detected at the large scale of the western
US also remains generally consistent at the regional scale,
though the slope of the εAzest versus Azest relationship is
higher than the west-wide mean in CA/NV and lower in N
Rockies and PNW. Overall, we conclude that we can charac-
terize the uncertainty Azest with reasonable accuracy by sim-
ply treating it as a linear function of Azest itself, though fu-
ture work should diagnose and ideally resolve regional vari-
ations in mean εAzest.

For each simulated value of Azest we calculate an adjusted
Az estimate (Azestadj) by adding an error value drawn from
a normal distribution with a mean of zero and a standard de-

Figure 13. Variability among modeled fire-size errors. Standard
deviation of error in estimates of normalized fire-size anomalies
(εAzest) as a function of Azest for (white dots, black regression
line) the entire western US forested domain as well as the four quad-
rant regions within: (red) Pacific Northwest (PNW), (blue) North-
ern Rockies (N Rockeis), (green) California and Nevada (CA/NV),
and (purple) Four Corners (4 Corners). εAzest is the observed nor-
malized fires-size anomaly (Azobs) minus Azest. For each domain,
Azest values associated with observed fires are binned into deciles
and, for each decile, the standard deviation of εAzest is plotted
against mean Azest. Regression lines show the least-squares fit for
each domain and the grey area bounds the 95 % confidence interval
around the black regression line for the full West US domain, which
corresponds to the equation at the bottom of plot.

viation of εAzest, where εAzest is calculated as a linear func-
tion of Azest following the equation in Fig. 13. Based on a
1000-member ensemble of simulated Azestadj, this method of
widening the distribution of Azest aligns the distribution of
Azestadj with observations (Fig. 14).

Adding error to Azest enhances the interannual variability
of mean Azestadj (Fig. 15). However, there is still a tendency
toward too-little variation in Azestadj. This is likely because
errors in our estimates of Az (εAzest) are spatially and tem-
porally autocorrelated. We do not account for this because
imposing realistic spatiotemporal covariance among εAzest
values would risk overfitting the model and reducing its in-
terpretability.

4.6 Transformation of normalized fire-size anomalies
to area burned

Previous work has shown that fire sizes can be effectively ap-
proximated by a positively-skewed generalized pareto (GP)
distribution (Buch et al., 2023; Preisler et al., 2011; West-
erling et al., 2011). We transform all values of Azestadj to
hectares of forest area burned (Agpest) by assuming that
fire sizes follow a GP distribution with the shape and scale
parameters estimated from the observed forest-fire sizes.
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Figure 14. Effect of adding errors on the distribution of modeled fire sizes. Cumulative distribution functions of observed and modeled
normalized fire-size anomalies (Az) for (a) the whole western US domain and (b–e) the quadrant regions. Thin solid lines represent observed
Az (Azobs). Dashed lines represent simulatedAz before including error (Azest). Grey areas represent 1000 simulations ofAz after adjustment
to include errors (Azestadj).

Figure 15. Distributions of modeled and observed interannual vari-
ability in mean standardized fire size. Box plots of modeled and
observed annual means of normalized fire-size anomalies (Az) in
the (grey) western US and (colors) four quadrant regions. For each
region, the light-colored boxplot on the left represents the distri-
bution of the originally modeled time series of mean annual Az
(mean(Azest)). The middle boxplot represents the average distri-
bution among 1000 simulated time series of mean(Azest) after ad-
justments to include random errors (mean(Azestadj)). The white
box plots on the right represent the time series of observed mean
annual Az (mean(Azobs)). Boxes bound inter quartiles, whiskers
bound 5th and 95th percentiles, and thick black bars represent me-
dians of annual values. Percentages indicate the magnitude of the
mean standard deviation among the 1000 simulated time series of
mean(Azestadj) relative to the standard deviation of the time series
of mean(Azobs). Differences between these values and the percent-
ages in Fig. 10f–j are due to inclusion of error in the 1000 simula-
tions represented here.

However, a comparison of the distribution of observed A
(Aobs) versus the GP-transformed values calculated by back-
transforming Azobs using the empirical GP distribution pa-
rameters (Agpobs) reveals a bias in the Agpobs distribution
because the GP is an imperfect representation of the true
distribution of Aobs (Fig. 16a). We quantify the observed
bias (Agp_bias_log10) as log10(Agpobs) minus log10(Aobs),
which we plot as a function of log10(Aobs) in Fig. 16b. Much
of the bias arises because the Aobs distribution has a lower
bound of 100 ha (Fig. 16a), which causes the most frequent,

small values of Agpobs to be too small and the least frequent,
largest values of Agpobs to be too large.

To reduce shortcomings of the GP distribution we
bias correct such that the bias-corrected observed fire
sizes (Abcobs) take on a distribution more consistent
with that of Aobs (Fig. 16c). This is done by estimating
Agp_bias_log10 (Agp_bias_log10_est) as a 4th-order func-
tion of log10(Agpobs) for small fires (Agpobs < 223 ha) and
as a 5th-order function of log10(Agpobs) for larger fires
(Fig. 16b). Specifically, Abcobs is calculated by subtract-
ing Agp_bias_log10 from log10(Agpobs) and transforming
the log10 values back to normal, thereby restoring Abcobs
to nearly the original distribution of Aobs. In simulations,
bias-corrected fire sizes (Abcest) are calculated in the same
way except Agp_bias_log10_est is calculated as a function
of log10(Agpest) rather than log10(Agpobs). The grey shad-
ing behind the blue and red points in Fig. 16c represents an
ensemble of 1000 simulations ofAbcest, where in each simu-
lation we estimate all values of Aobs. The strong overlap be-
tween the grey, blue, and red CDFs in Fig. 16c indicates that
our method produces realistic fire-size distributions. To pre-
vent unrealistically large bias estimates in simulations, val-
ues of Agp_bias_log10_est should not be allowed to exceed
the empirically calculated range of Agp_bias_log10 values.

4.7 Cross-validation

To assure the skill of WULFFSS is not due to overfitting, we
perform temporal and spatial cross-validations. In the tem-
poral cross validation, we retrain the models 13 times, each
time withholding a period of 3–4 consecutive years such that
each year in the 1985–2024 calibration period is withheld
once from the training period. We then use each of the 13
models to simulate fire for the withheld periods. For the spa-
tial cross-validation we again produce 13 models, now with-
holding from each calibration a contiguous region approx-
imately 500km× 500km in area. Each model is then used
to simulate 1985–2024 fire for its withheld region. For each
cross-validation approach, a full set of out-of-sample simula-
tion outputs are produced for the western US for 1985–2024
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Figure 16. Bias correction of fire-size distributions. (a) Cumulative distribution function (CDF) of the observed fire sizes (red, Aobs) and
the same observed fire sizes after being turned into quantiles and then back-transformed to hectares (ha) based on the observed generalized
pareto (GP) distribution parameters (blue, Agpobs). (b) Scatter plot of the bias in Agpobs caused by the imperfect match between the actual
fire-size distribution and that estimated by the GP. For small fires < 223 ha, the green curve represents a 4th-order fit of the Agp bias as a
function of Aobs. For larger fires, the orange curve represents a 5th-order fit. (c) Comparison of the CDFs of (red) observed fire sizes (Aobs;
same as in panel a) and (blue) bias-corrected observed fire sizes (Abcobs), where, Aobs values were first converted to normalized fire size
anomalies (Azobs), then back transformed to hectares assuming a generalized pareto distribution (Agpobs), and finally bias corrected based
on the curve fits in (b). The CDFs of Aobs and Abcobs are overlaid on the range of CDFs produced from 1000 simulations of modeled fire
sizes (grey, Abcest), where, in each simulation, the model is used to estimate the observed fire sizes.

and correlated against observations for assessment of out-of-
sample skill.

5 Model Performance

The WULFFSS simulations of frequency and extent of west-
ern US forest fires are generally highly skilled. Figures 17
and 18 show observed versus simulated time series of forest-
fire frequency and forest area burned at the full scale of
the western US as well as for each of the four regions. See
Figs. S1 and S2 in the Supplement for plots representing each
of the 11 western US states. The mean of a 100-member en-
semble of simulations accounts for 71 % (r = 0.84) of the
observed interannual variability in western US forest-fire fre-
quency (Fig. 17a, left side). Model performance remains high
out-of-sample. In the 13-fold temporal cross-validation, the
cross-validated correlation between observed and ensemble-
mean simulated annual fire frequency remains high at 0.81.
The model performs similarly well in the 13-fold spatial
cross-validation (r = 0.83). WULFFSS also accurately sim-
ulates the mean annual cycle of forest-fire frequency. Corre-
lation between the full monthly time series of observed and
modeled fire frequency is strong (r ≥ 0.90) (Fig. 17a, right
side).

The model generally performs well at the regional level,
accounting for ≥ 62 % of variability in annual fire frequency
in PNW (r ≥ 0.79; Fig. 17b),≥ 71 % in N Rockies (r ≥ 0.84;
Fig. 17c), and ≥ 50 % in 4 Corners (r ≥ 0.71; Fig. 17e). The
CA/NV region is an exception to the strong performance of
the P model (Fig. 17d), where the ensemble-mean accounts
for just 16 %–21 % of interannual fire-frequency variability

(r = 0.40–0.46), due mostly to large underestimates in 1987
and 2008 as well as recent overestimates in 2021–2022 and
2024. Reasons for model underperformance in CA/NV are
numerous. In California (Fig. S1c), the large observed fire
frequencies in 1987 and 2008 were due to anomalous dry
lightning events (Kalashnikov et al., 2022), which are not ad-
equately represented in WULFFSS. The more recent overes-
timates in California fire frequency may be due to increased
resources for fire detection and suppression in California,
increased public and corporate awareness of fire hazards,
and reductions in fuel continuity due to drought and related
bark-beetle outbreaks that our modeling does not capture.
Nevada also contributes to the relatively low model skill in
CA/NV (Fig. S1g); WULFFSS overestimates mean fire fre-
quency by approximately 70 % in Nevada, a far larger bias
than for any other state. The overestimates of fire activity
in Nevada’s sparse and isolated Great Basin forests suggest
that our approach underestimates the ability of low biomass
and vegetation connectivity to limit fire activity and/or that
our DYNAFFOREST-based estimates of biomass and con-
nectivity are too high there. In addition, while our model in-
dicates that fire frequency is positively related to remoteness
from human population (Fig. 5), ignitions may be a limit-
ing factor in forested areas of Nevada with especially light
human footprints. The model also majorly underestimates
2024 fire frequency in PNW due to a failure to capture the
large number of fires in Oregon and southwest Idaho that ig-
nited from outbreaks of dry lightning in mid and late July
(Fig. S1e and i). While WULFFSS does consider long-term
mean patterns of lighting activity, it does not model fire as a
function of temporal variability in lightning because the only
long-term lighting dataset we are aware of (from the NLDN,
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Figure 17. Modeled versus observed forest-fire frequency. Plots for
(a) the western US and each of the four quadrant regions: (b) Pacific
Northwest (PNW), (c) Northern Rockies (N Rockies), (d) Califor-
nia and Nevada (CA/NV), and (e) 4 Corners. Panels on the left show
annual frequency of (black) observed and (colored) modeled forest
fire. Panels on right show the mean annual cycle of monthly values.
The three colored lines indicate 100-member ensemble means from
(dots) the fully calibrated model, (squares) the 13-fold temporally
cross-validated models (CVtime), and (triangles) the 13-fold spa-
tially cross-validated models (CVspace). Colored shading bounds
the inner 95 % of ensemble members of the fully-calibrated model.
In each panel, the three correlation values (r) indicate Pearson’s
correlation between observations and the ensemble means from the
fully calibrated model, the 13-fold CVtime models, and the 13-fold
CVspace models, respectively. In the annual-cycle panels on the
right, r values indicate correlation between the full observed and
modeled time series of monthly fire-frequency over 1985–2024, not
the mean annual cycle.

Figure 18. Modeled versus observed forest-fire area. Plots for
(a) the western US and each of the four quadrant regions: (b) Pacific
Northwest (PNW), (c) Northern Rockies (N Rockies), (d) Califor-
nia and Nevada (CA/NV), and (e) 4 Corners. Panels on the left show
annual (black) observed and (colored) modeled forest area burned.
Panels on right show the mean annual cycle of monthly values.
The three colored lines indicate 100-member ensemble means from
(dots) the fully calibrated model, (squares) the 13-fold temporally
cross-validated models (CVtime), and (triangles) the 13-fold spa-
tially cross-validated models (CVspace). Colored shading bounds
the inner 95 % of ensemble members of the fully-calibrated model.
In each panel, the three correlation values (r) indicate Pearson’s
correlation between observations and the ensemble means from the
fully calibrated model, the 13-fold CVtime models, and the 13-fold
CVspace models, respectively. In the annual-cycle panels on the
right, r values indicate correlation between the full observed versus
modeled time series of monthly forest area burned over 1985–2024,
not the mean annual cycle.
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1987–present) has temporal instabilities due to instrumental
changes and it does not cover the full model-calibration pe-
riod. While CAPE is considered to be a T variable due to its
coincidence with lightning and atmospheric instability, high
CAPE is also associated with precipitation, limiting its value
as a proxy for dry lightning.

The model does generally well at capturing regional dif-
ferences in the mean annual cycle of fire frequency (Fig. 17,
right-hand panels). For example, the model correctly simu-
lates that peak monthly fire frequency occurs in August in
PNW and N Rockies but in June–July in 4 Corners (Fig. 17b–
e). WULFFSS accurately simulates regional differences in
the timing of onset and termination of the mean annual
fire starts. On the other hand, the spatial cross-validation
reveals that when training data are withheld from 4 Cor-
ners, the model underestimates fire frequencies in that region
(Fig. 17e).

Model performance is also strong in terms of area burned,
accounting for 86 % (r = 0.93) of interannual variability in
the logarithm of area burned when fully calibrated and ≥
72 % (r ≥ 0.85) in our cross-validated exercises (Fig. 18a).
At the regional scale, model performance remains strong, ac-
counting for 55 %–81 % of cross-validated variability in the
four regions. The model also reproduces observed regional
differences in nuanced characteristics of annual area burned.
For example, the model captures the tendency for interannual
burned-area variability to be dominated by extreme years in
N Rockies and 4 Corners, but for interannual variability to
be more evenly distributed in PNW and CA/NV (Fig. 18b–
e). The model also generally captures mean annual cycles
and sub-annual variations in area burned, though in CA/NV it
consistently over-estimates burned areas throughout the fire
season (Fig. 18d). In our state-specific analysis we find that
overestimates of area burned in CA/NV are apparent in both
California and Nevada, but the bias is more severe and sys-
tematic in Nevada, where WULFFSS estimates nearly four
times more area burned than is observed (Fig. S2). This is
the largest such bias among the 11 states, followed by Utah
where estimates of area burned exceed observations by a
factor of two. Consistent overestimates of area burned in
Nevada and Utah, home to the relatively dry and spatially
discontinuous forests of the Great Basin, further implicate
fuel limitation in sparsely forested areas as a cause of error
for WULFFSS.

The years with the largest errors in regional area burned
are 2020 and 2024, both years when observed forest-fire ex-
tent exceeded simulations. In 2020, WULFFSS grossly un-
derestimates area burned in PNW, and to a lesser extent in
CA/NV (Fig. 18b and d). Potential contributing factors in-
clude rare lightning storms from tropical storm Fausto in Au-
gust 2020, two extreme heat waves in the days to weeks im-
mediately following the lightning storms, and overstretched
suppression resources due to a high concentration of large
forest fires in California and Oregon and the COVID-19 pan-
demic. In 2024, the large underestimate of fire frequency in

PNW noted above (Fig. 17b), in Oregon and Idaho specif-
ically (Fig. S1), translated to underestimates in total area
burned (Figs. 18b and S2). However, it is likely that our ob-
servational record of area burned is biased high in 2024, as
MTBS maps are not yet available for most large wildfires
in that year, so the currently available maps of many of that
year’s largest fires do not represent within-fire spatial het-
erogeneity in area burned. On average, MTBS maps indicate
that approximately 20 % of area within forest-fire perimeters
is unburned, consistent with Meddens et al. (2016), so it is
likely that our underestimate of area burned in 2024 will be
lessened somewhat once MTBS data become available.

6 Discussion, strengths, and limitations

The WULFFSS simulates the monthly gridded probabilities
and sizes of forest fires in the western US as a function
of land cover, topography, human population, and climate.
The model uses standard regression-based statistical meth-
ods, which constrains flexibility but enhances interpretability
and reproducibility. The skill of our model should serve as a
benchmark for more complex but methodologically opaque
modeling efforts.

Our model has high skill. It simulates realistic charac-
teristics of fire such as annual cycles, ranges of interan-
nual variability, and fire-size distributions, as well as inter-
regional differences in these characteristics. The model also
has strong out-of-sample skill when reconstructing observed
variations in forest-fire activity for time periods or regions
withheld from the training data. This suggests that the model
can reliably simulate western US forest-fire activity under
idealized historical or projected conditions as long as those
conditions are not far beyond those that occurred during the
model training period.

The model can be easily updated as additional or improved
records of observed wildfires become available. Updates and
improvements of the observed fire record are enabled by
the streamlined method to easily update our WUMI2024a
database with newly available wildfire data (Williams et al.,
2025). Our model’s ability to produce trustworthy simula-
tions under future, warmer climate scenarios will likely im-
prove over time as more climate extremes and their effects
on forest fires are observed.

A unique feature of WULFFSS is that it was developed in
parallel with the forest-ecosystem model, DYNAFFOREST
(Hansen et al., 2022), specifically to enable coupled sim-
ulations in which fire and forest ecosystems interact. This
is important for several reasons. First, we are motivated to
simulate and understand more features of fire beyond event
frequency and area burned. By coupling with an ecosys-
tem model, we can also simulate fire severity, biomass con-
sumed, and ecosystem transitions, all crucial for anticipat-
ing changes to ecosystem health, pollution, hydrology, and
terrestrial carbon storage. Further, as vegetation responds to
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changes in climate and fire behavior, these responses will
feed back to modulate fire-climate relations. Coupling be-
tween fire and forest-ecosystem models is therefore essential
for plausible projections of western US forest fire activity be-
yond the next couple decades.

Another feature of WULFFSS is its computational effi-
ciency, which allows for large ensembles of simulations. A
standard laptop can simulate several decades of forest fire
across the western US in seconds, enabling easy generation
of hundreds or thousands of simulations. This is important
under climate warming because forest-fire sizes appear to
respond exponentially to positive forcings such as warm-
ing and drying (Juang et al., 2022), which should cause the
range of internal variability of area burned to grow under
continued warming in many forested regions of the west-
ern US. Indeed, the range of modeled uncertainty in total
forest-fire area is much wider in high-VPD years (Fig. 19).
Although running WULFFSS while coupled within the DY-
NAFFOREST model is considerably more computationally
expensive, DYNAFFOREST was also designed to facilitate
large simulation ensembles and it is feasible to run tens of
century-scale coupled simulations in the matter of days on
a high-performance computer cluster. With a large ensemble
of tens of historical or future coupled forest and fire simula-
tions, one can explore the mean response (e.g., aboveground
biomass consumed) to a given forcing as well as the uncer-
tainty around the mean. Further, if an ensemble of coupled
simulations is produced where each represents a plausible re-
alization of fire effects on forest biomass, connectivity, etc.,
then these forest outputs can be used to force additional un-
coupled WULFFSS simulations to greatly enhance the en-
semble size in terms of simulated fire frequencies and burned
areas.

There are a number of caveats, some of which represent
opportunities for improvement while others are structural
features of our approach. Opportunities include considera-
tion of changing road networks in the past, use of road rout-
ing to more intelligently map the distance of forested areas to
human population, and addition of aboveground utility lines
and their ages. In addition, the model’s ability to capture the
effects of spatiotemporal changes in fuel characteristics is
limited by a lack of spatially continuous observational data
covering the four-decade model-calibration period. For ex-
ample, while the model does account for the majority of the
observed increase in western US annual forest-fire area since
1985, it systematically overestimates burned area in the first
half of the record. One likely explanation is that the DY-
NAFFOREST datasets we use to parameterize WULFFSS
do not fully represent fire-promoting trends in fuel amount,
connectivity, and structure in recent decades. Because DY-
NAFFOREST is a single-cohort model, it does not explicitly
simulate understory fuels, so variables related to vertical for-
est structure and ladder fuels are not currently considered by
WULFFSS. As spatially continuous remotely sensed fuels
datasets, which are so far only available for smaller regions

Figure 19. Western US annual forest-fire area versus March–
October vapor-pressure deficit (VPD). Large dots with black out-
lines are observations and the black curve is the least-squares re-
gression line relating the logarithm of observed area burned to ob-
served VPD averaged across March–October. Small dots with grey
outlines are outputs from an ensemble of 100 simulations under
identical forcings, including observed climate (ensemble spread due
to stochastic errors added to modeled estimates of fire probabilities
and sizes). Colors correspond to years from 1985–2024.

(Hudak et al., 2020), become available across the western
US, this will almost certainly improve our ability to simulate
historical probability and size.

Another limitation is that WULFFSS and DYNAFFOR-
EST do not explicitly represent non-forest vegetation. DY-
NAFFOREST assumes non-forest is grass and shrub, but
does not explicitly simulate grass and shrub growth and
decomposition. Representation of non-forest fuel dynamics
would likely improve our ability to simulate fire events, par-
ticularly near the dry edges of forests and when and where
simulated forest biomass is relatively sparse. This limitation
appears most clearly in our simulation of fire in the iso-
lated forests atop the narrow and arid mountain ranges of the
Great Basin. In Nevada, for example, WULFFSS overesti-
mates fire frequency by 70 % and area burned by a factor of
four. In addition to limitations caused by our current lack of
representation of non-forest fuel dynamics, overestimates of
Great Basin fire activity are also probably promoted by posi-
tive biases in our DYNAFFOREST-simulated maps of forest
biomass and connectivity in the Great Basin region. This fur-
ther motivates the need for spatially continuous maps of ob-
served vegetation biomass across the western US that cover
the time period of 1980s to near present at timesteps of an-
nual or finer, which could be used as forcings in WULFFSS
simulations of the observational period and to improve vege-
tation ecosystem models such as DYNAFFOREST.

Likewise, more mechanistic consideration of fuel-
moisture dynamics would improve the realism of
WULFFSS. In the current parameterization, we mecha-
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nistically model snowpack and allow this to affect our
calculation of dead fuel moisture, but the NFDRS formu-
lations we use to estimate dead fuel moisture are relatively
simple and non-mechanistic. Live fuel moisture would
likely improve model skill beyond the skill yielded from
our estimates of dead moisture (Rao et al., 2023), but our
current approach instead relies on hydroclimate predictors
to implicitly represent live fuel moisture. More thoroughly
representing the complexity of moisture dynamics in an
internally consistent framework that can be coupled with
our ecosystem simulations would likely enhance the skill
of WULFFSS. That said, fuel-moisture simulations are
challenging due to the limited availability of ground-truth
measurements across the complexity of fuel moisture
dynamics related to species, fuel sizes, types, ages, soil
type and geology, rooting depth, position within the vertical
profile of the forest, stand density, and live versus dead
status.

Another opportunity for improvement is to explicitly sim-
ulate fire spread. Currently, WULFFSS only estimates the fi-
nal forest area burned by each simulated fire. When coupled
within DYNAFFOREST, the ignition of a given simulated
fire is assigned to a random 1 km forested grid cell within
the 12 km grid cell of WULFFSS and the fire spirals through
adjoining or nearby forested cells until the pre-determined
fire size is achieved or no nearby forested cells remain. Fu-
ture improvements to WULFFSS should include estimating
ignition location at sub-12 km resolution and modeling fire
spread while maintaining computational efficiency. For ex-
ample, WULFFSS could make probabilistic determinations
of sub-grid ignition location, sub-month ignition date, fire-
spread duration, and daily spread rate and direction. Re-
lated to processes affecting fire spread, with the exception of
our consideration of CAPE to represent likelihood for light-
ning or plume development, we currently only rely on sur-
face climate to represent potential for rapid fire spread. Fu-
ture work should consider how fire spread is linked to three-
dimensional atmospheric dynamics.

A limitation to essentially all fire models that oper-
ate across large areas, especially statistical models like
WULFFSS, is that the observations used for model param-
eterization inherently reflect the impacts of modern society.
These impacts include non-lightning ignitions and restricted
fire sizes due to suppression, as well as the indirect effects of
humans on fuels (e.g., fuel accumulation due to fire suppres-
sion) and climate. Future improvements should include dis-
tinguishing human- versus lightning-caused ignitions. More
challenging is to estimate fire sizes in the absence of suppres-
sion or under changes to suppression practices. The North
American Fire-Scar Network, a database of historical fire
scars in trees (Margolis et al., 2022), could provide guidance
as to how simulated fire sizes could be adjusted to represent
a fire regime with little or no suppression.

However, spatiotemporal differences in human behavior
cause uncertainty in WULFFSS, even in the observed pe-

riod. In 2020, for example, the observed area burned in the
western US was on the upper fringe of values simulated
by WULFFSS (Fig. 18). Interestingly, WULFFSS accurately
simulates fire frequency in 2020, but systematically under-
estimates 2020 fire sizes in CA/NV and PNW. A likely ex-
planation is that, when a rare summertime lightning event
coincided with hot and dry conditions to produce widespread
wildfire activity, coupled with the COVID-19 pandemic, sup-
pression efforts had difficulty keeping up. If human activities
related to ignitions or suppression change in the future (e.g.,
California’s new ALERTCalifornia camera network instan-
taneously identifies fires across the vast majority of the state;
https://alertcalifornia.org, last access: 30 December 2025),
then the WULFFSS model in its current formulation will lose
accuracy. Variables more directly related to suppression ca-
pacity than population and road density may be helpful in
future modelling efforts. Notably, our consideration of an-
nual maps of gross domestic product, a variable used in some
earth-system modeling schemes to serve as a proxy for sup-
pression capacity (Li et al., 2024a), did not contribute to
model skill. Federal suppression resources may make up for
much of the regional variability in wealth. Finer-scale fea-
tures such as distance to the nearest fire station or aircraft
availability for aerial firefighting may prove valuable in fu-
ture efforts.

WULFFSS does not capture the important contributions of
dry-lightning events, particularly near the west coast where
lightning is relatively rare and thus a single anomalous event
can cause a large increase in annual fire frequency and area
burned. For example, the very high fire counts in CA/NV
in 1987 and 2008 and in PNW in 2024 were due in part
to anomalous outbreaks of dry lighting. Temporal variations
in lightning frequency are not currently used as predictors
in WULFFSS because we are not aware of an observational
lightning dataset that spans our full model-calibration period
and is not free of temporal inconsistencies due to changes in
observational methods. Ideally, lightning would be a variable
that can be modelled based on meteorological data, allowing
lightning to force model simulations representing time peri-
ods or idealized scenarios beyond the 1985–2024 period of
focus here. While lightning frequency has been shown pre-
viously to be well correlated to CAPE multiplied by precip-
itation total (Romps et al., 2018), the likelihood of ignition
from lightning is substantially reduced if it coincides with
precipitation. We thus consider CAPE on its own as a poten-
tial proxy for dry lightning potential, but ultimately CAPE
was not selected by our fire-probability model. Future efforts
to identify meteorological proxies for dry-lightning poten-
tial would likely enhance our model’s simulations of fire-
frequency extremes.

Finally, in developing the WULFFSS we made the uncon-
ventional choice to bin separately the effects of predictors
whose variance lies primarily in one of three domains: spa-
tial, mean annual climate cycle, and lower-frequency tempo-
ral variability of climate. Our reasoning was that spatial vari-
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ations in the potential for fires to ignite and spread modulate
the fire-promoting potency of temporal variations in weather
and climate. For example, climate conditions that dry out fu-
els are more likely to translate to heighted potential for wild-
fire in areas where fuels and potential ignition sources are
abundant. However, the logic behind separating out the ef-
fects of climate into those driven by the mean annual cycle
versus lower-frequency anomalies is debatable. On one hand,
there is probably not a major difference between the mecha-
nisms that cause wildfire activity to exhibit an annual cycle
versus those that cause interannual variability, so allowing
the model to represent these sources of variability as separate
mechanisms is not ideal. On the other hand, many climate
variables share a similar annual cycle and climatological dif-
ferences between opposing ends of the annual cycle are often
much larger than the range of climatic variability that distin-
guishes years of high versus low fire potential. Thus, a sta-
tistical fire model trained on both intra- and inter-annual cli-
mate variability simultaneously risks over-representing vari-
ables that best correlate with the mean annual cycle in fire oc-
currences or sizes (e.g., solar intensity) but are not dominant
drivers of interannual variability. That bias would dampen
lower-frequency variability in simulated fire activity and in-
hibit the diagnosis of past and future changes in western US
forest-fire activity. High-quality data on live and dead fuel
moistures could ameliorate the need to simulate the drivers
of intra- and inter-annual variability separately by reducing
our reliance on the multiple and covarying climate predictors
that we currently use to represent the water balance (e.g., pre-
cipitation total, wet-day frequency, FM1000, and VPD over
multiple time scales).

7 Conclusions

We developed a monthly stochastic forest-fire model, the
WULFFSS, for the western US that operates on a 12 km
resolution grid and simulates the probabilities and sizes of
large forest fires (≥ 1 km2 forest area burned). Predictor
variables include vegetation characteristics, topography, hu-
man population, and climate. When trained with observed
data, WULFFSS reliably reproduces observed spatiotempo-
ral variations in fire occurrence and area burned. Model
performance remains high when tested in cross-validations
against out-of-sample observations. The complex nature of
wildfire and its nonlinear responses to many interacting vari-
ables has motivated efforts to model wildfire with machine-
learning techniques (Wang et al., 2021; Brown et al., 2023;
Buch et al., 2023; Li et al., 2024b). These efforts are valu-
able, but should not wholly replace models such as ours
that use conventional statistical methods that are gener-
ally more straight-forward to interpret and understandable
for more people. Models developed using relatively sim-
ple methods provide value by establishing baselines against
which machine-learning efforts can be compared. Further, it

is increasingly evident that fire needs to be simulated within
ecosystem and hydrological models in order for plausible
simulations of future changes to ecosystem composition, ter-
restrial carbon storage, snowpack, and streamflow (Bowman
et al., 2009; Anderegg et al., 2022; Koshkin et al., 2022;
Williams et al., 2022). Statistical modeling approaches there-
fore remain valuable in wildfire science, as ecosystem and
land-surface modeling groups may be hesitant to adopt a
machine-learning based fire model that is difficult to im-
plement or explain. In the case of WULFFSS, we devel-
oped it to be coupled with our western US dynamical forest-
ecosystem model, DYNAFFOREST (Hansen et al., 2022).
With WULFFSS and DYNAFFOREST, we can efficiently
perform large ensembles of tens or hundreds of century-
scale simulations of the coupled forest and wildfire processes
across the western US. With this coupled approach we can
quantitatively address questions about the relative contribu-
tions of human-caused climate change and fire-management
practices to recent increases in forest-fire activity, how these
contributions have varied geographically, and how forest
ecosystems and western US fire regimes may evolve under
future climate change. Further, fire research is often heav-
ily focused on fire frequency and size because these metrics
are easiest to observe. Coupling WULFFSS with a forest-
ecosystem model will allow for simulation of other impor-
tant fire metrics such as severity and biomass loss. Finally,
WULFFSS is a long-term, evolving project. Improvements
will include simulation of fire spread, simulation of multi-
ple tree cohorts to simulate ladder-fuel effects, simulation of
grass and shrub communities to better represent fuel conti-
nuity, distinguishing between human versus natural fire igni-
tions, and explicit simulation of human effects on ignitions
and fire sizes via suppression.
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Appendix A

Table A1. Potential predictor variables dominated by spatial variability. “P model use” indicates whether the sign of the effect of a given
variable on fire probability had to be positive (+) or negative (–), or if a given variable was not considered as a potential predictor of fire
probability. “Size model use” is same as “P model use” but for the fire-size model. “Round 2 only” indicates variables (×) only considered
in the second round of model fitting. Variables with “in50kha” represent average conditions within a surrounding area of approximately
50 000 ha (a 23km× 23km box). Variables with “log10” are log-transformed. See Table S1 in the Supplement for variable descriptions.

Number Name P model use Size model use Round 2 only

V1_space connectivity + +

V2_space connectivity_log10 + +

V3_space connectivity_in50kha × +

V4_space connectivity_in50kha_log10 × +

V5_space forestfrac + +

V6_space forestfrac_log10 + +

V7_space forestfrac_in50kha × +

V8_space forestfrac_in50kha_log10 × +

V9_space livebiomass_total + +

V10_space livebiomass_total_log10 + +

V11_space livebiomass_total_in50kha × +

V12_space livebiomass_total_in50kha_log10 × +

V13_space deadbiomass_total + +

V14_space deadbiomass_total_log10 + +

V15_space deadbiomass_total_in50kha × +

V16_space deadbiomass_total_in50kha_log10 × +

V17_space biomass_total + +

V18_space biomass_total_log10 + +

V19_space biomass_total_in50kha × +

V20_space biomass_total_in50kha_log10 × +

V21_space livebiomass_coarse + +

V22_space livebiomass_coarse_log10 + +

V23_space livebiomass_coarse_in50kha × +

V24_space livebiomass_coarse_in50kha_log10 × +

V25_space livebiomass_fine + +

V26_space livebiomass_fine_log10 + +

V27_space livebiomass_fine_in50kha × +

V28_space livebiomass_fine_in50kha_log10 × +

V29_space deadbiomass_coarse + +

V30_space deadbiomass_coarse_log10 + +

V31_space deadbiomass_coarse_in50kha × +

V32_space deadbiomass_coarse_in50kha_log10 × +

V33_space deadbiomass_fine + +

V34_space deadbiomass_fine_log10 + +

V35_space deadbiomass_fine_in50kha × +

V36_space deadbiomass_fine_in50kha_log10 × +

V37_space cohort_dbh + +

V38_space cohort_dbh_log10 + +

V39_space cohort_dbh_in50kha × +

V40_space cohort_dbh_in50kha_log10 × +

V41_space cohort_height + +

V42_space cohort_height_log10 + +

V43_space cohort_height_in50kha × +

V44_space cohort_height_in50kha_log10 × +

V45_space spi_17to6monthsbefore_grass_shrub
V46_space spi_23to12monthsbefore_grass_shrub
V47_space spi_29to18monthsbefore_grass_shrub
V48_space spi_35to24monthsbefore_grass_shrub
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Table A1. Continued.

Number Name P model use Size model use Round 2 only

V49_space unburnable – – ×

V50_space unburnable_log10 – – ×

V51_space unburnable_in50kha × – ×

V52_space unburnable_in50kha_log10 × – ×

V53_space agriculture – ×

V54_space agriculture_log10 – ×

V55_space agriculture_in50kha × – ×

V56_space agriculture_in50kha_log10 × – ×

V57_space developed
V58_space developed_log10
V59_space developed_in50kha ×

V60_space developed_in50kha_log10 ×

V61_space slope +

V62_space slope_log10 +

V63_space elevstd
V64_space elevstd_log10
V65_space aridityindex – –
V66_space aridityindex_log10 – –
V67_space hdwimaxann + +

V68_space hdwimaxann_log10 + +

V69_space fm1000 – –
V70_space fm1000_log10 – –
V71_space fm100 – –
V72_space fm100_log10 – –
V73_space seasindex + +

V74_space seasindex_log10 + +

V75_space lightning + ×

V76_space lightning_log10 + ×

V77_space housedensity
V78_space housedensity_log10
V79_space housedensity_in50kha ×

V80_space housedensity_in50kha_log10 ×

V81_space dist5hpkm
V82_space dist5hpkm_log10
V83_space dist50hpkm
V84_space dist50hpkm_log10
V85_space gdp – –
V86_space gdp_log10 – –
V87_space gdp_pcap – –
V88_space gdp_pcap_log10 – –
V89_space fracsnow_1month – – ×

V90_space fracsnow_log10_1month – – ×

V91_space fracsnow_1monthafter – – ×

V92_space fracsnow_log10_1monthafter – – ×

V93_space swemean_1month – – ×

V94_space swemean_log10_1month – – ×

V95_space swemean_1monthafter – – ×

V96_space swemean_log10_1monthafter – – ×

V97_space roaddist_major ×

V98_space roaddist_major_log10 ×

V99_space roaddist_minor ×

V100_space roaddist_minor_log10 ×

V101_space roaddist_all ×

V102_space roaddist_all_log10 ×
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Table A2. As in Table A1 but potential predictor variables representing the mean annual climate cycle. Climate predictors with “mean”
indicate the mean annual cycle of monthly values during the model calibration period (1985–2024). Variables with “mean_scaled” are mean
annual cycles linearly scaled between zero for the annual minimum and 1 for the annual maximum. Durations at the end of variable names
(e.g., “3month”) indicate that monthly values are averaged with a moving window of the indicated duration prior to calculation of the annual
cycle, with the moving window ending in the month for which the average is assigned (e.g., the 3 month average assigned to March is
calculated across January–March). Variables with “1monthafter” represent mean climate of the next month (e.g., the mean annual cycle
value assigned to January represents that of February). See Table S2 in the Supplement for variable descriptions.

Number Name P model use Size model use Round 2 only

V1_seas aridityindex_mean_scaled_1month – –
V2_seas aridityindex_mean_scaled_2month – –
V3_seas aridityindex_mean_scaled_3month – –
V4_seas aridityindex_mean_scaled_1monthafter × –
V5_seas prec_mean_scaled_1month – –
V6_seas prec_mean_scaled_2month – –
V7_seas prec_mean_scaled_3month – –
V8_seas prec_mean_scaled_1monthafter × –
V9_seas wetdays_mean_scaled_1month – –
V10_seas wetdays_mean_scaled_2month – –
V11_seas wetdays_mean_scaled_3month – –
V12_seas wetdays_mean_scaled_1monthafter × –
V13_seas vpd_mean_scaled_1month + +

V14_seas vpd_mean_scaled_2month + +

V15_seas vpd_mean_scaled_3month + +

V16_seas vpd_mean_scaled_1monthafter × +

V17_seas solar_mean_scaled_1month + +

V18_seas solar_mean_scaled_2month + +

V19_seas solar_mean_scaled_3month + +

V20_seas solar_mean_scaled_1monthafter × +

V21_seas cape_mean_scaled_1month + +

V22_seas lightning_mean_scaled_1month + ×

V23_seas hdwi_mean_scaled_1month + +

V24_seas hdwi_mean_scaled_1monthafter × +

V25_seas hdwi_max1day_scaled_1month + +

V26_seas hdwi_max1day_scaled_1monthafter × +

V27_seas hdwi_max3day_scaled_1month + +

V28_seas hdwi_max3day_scaled_1monthafter × +

V29_seas aridityindex_log10_mean_1month – –
V30_seas aridityindex_log10_mean_2month – –
V31_seas aridityindex_log10_mean_3month – –
V32_seas aridityindex_log10_mean_1monthafter × –
V33_seas fm1000_mean_scaled_1month – –
V34_seas fm1000_mean_scaled_1monthafter × –
V35_seas fm100_mean_scaled_1month – –
V36_seas fm100_mean_scaled_1monthafter × –
V37_seas prec_log10_mean_1month – –
V38_seas prec_log10_mean_2month – –
V39_seas prec_log10_mean_3month – –
V40_seas prec_log10_mean_1monthafter × –
V41_seas wetdays_mean_1month – –
V42_seas wetdays_mean_2month – –
V43_seas wetdays_mean_3month – –
V44_seas wetdays_mean_1monthafter × –
V45_seas vpd_mean_1month + +

V46_seas vpd_mean_2month + +

V47_seas vpd_mean_3month + +

V48_seas vpd_mean_1monthafter × +
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Table A2. Continued.

Number Name P model use Size model use Round 2 only

V49_seas solar_mean_1month + +

V50_seas solar_mean_2month + +

V51_seas solar_mean_3month + +

V52_seas solar_mean_1monthafter × +

V53_seas cape_mean_1month + +

V54_seas lightning_mean_1month + ×

V55_seas hdwi_mean_1month + +

V56_seas hdwi_mean_1monthafter × +

V57_seas hdwi_max1day_1month + +

V58_seas hdwi_max1day_1monthafter × +

V59_seas hdwi_max3day_1month + +

V60_seas hdwi_max3day_1monthafter × +

V61_seas fm1000_mean_1month – –
V62_seas fm1000_mean_1monthafter × –
V63_seas fm100_mean_1month – –
V64_seas fm100_mean_1monthafter × –
V65_seas vpdmax_mean_scaled_1month + + ×

V66_seas vpdmax_mean_scaled_2month + + ×

V67_seas vpdmax_mean_scaled_3month + + ×

V68_seas vpdmax_mean_scaled_1monthafter × + ×

V69_seas vpdmin_mean_scaled_1month + + ×

V70_seas vpdmin_mean_scaled_2month + + ×

V71_seas vpdmin_mean_scaled_3month + + ×

V72_seas vpdmin_mean_scaled_1monthafter × + ×

V73_seas vpdmax_mean_1month + + ×

V74_seas vpdmax_mean_2month + + ×

V75_seas vpdmax_mean_3month + + ×

V76_seas vpdmax_mean_1monthafter × + ×

V77_seas vpdmin_mean_1month + + ×

V78_seas vpdmin_mean_2month + + ×

V79_seas vpdmin_mean_3month + + ×

V80_seas vpdmin_mean_1monthafter × + ×
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Table A3. As in Table A1 but potential predictor variables representing temporal variability at timescales beyond the mean annual cycle.
Durations at the end of variable names (e.g., “3month”) indicate that monthly values are averaged with a moving window of the indicated
duration prior to calculation of anomalies, with the moving window ending in the month for which the average is assigned (e.g., the 3 month
average assigned to March is calculated across January–March). Variables with “1monthafter” represent mean climate of the next month
(e.g., the mean annual cycle value assigned to January represents that of February). Variables with “anom” are standardized such that, for
each of the 12 months, the mean is zero and standard deviation is 1 during the model calibration period of 1985–2024. See Table S3 in the
Supplement for variable descriptions.

Number Name P model use Size model use Round 2 only

V1_temporal spi_1month – –
V2_temporal spi_2month – –
V3_temporal spi_3month – –
V4_temporal spi_4month
V5_temporal spi_5month
V6_temporal spi_6month
V7_temporal spi_9month
V8_temporal spi_12month
V9_temporal spi_1monthafter × –
V10_temporal spi_17to6monthsbefore
V11_temporal spi_23to12monthsbefore
V12_temporal spi_29to18monthsbefore
V13_temporal spi_35to24monthsbefore
V14_temporal wetdays_anom_1month –
V15_temporal wetdays_anom_2month –
V16_temporal wetdays_anom_1monthafter × –
V17_temporal vpd_anom_1month + +

V18_temporal vpd_anom_2month + +

V19_temporal vpd_anom_3month + +

V20_temporal vpd_anom_4month + +

V21_temporal vpd_anom_5month + +

V22_temporal vpd_anom_6month + +

V23_temporal vpd_anom_9month + +

V24_temporal vpd_anom_12month + +

V25_temporal vpd_anom_1monthafter × +

V26_temporal cape_anom_1month + +

V27_temporal cape_anom_max1day_1month + +

V28_temporal cape_anom_max3day_1month + +

V29_temporal hdwi_anom_1month + +

V30_temporal hdwi_anom_1monthafter × +

V31_temporal hdwi_anom_max1day_1month + +

V32_temporal hdwi_anom_max1day_1monthafter × +

V33_temporal hdwi_anom_max3day_1month + +

V34_temporal hdwi_anom_max3day_1monthafter × +

V35_temporal fm1000_anom_1month – –
V36_temporal fm1000_anom_1monthafter × –
V37_temporal fm1000_anom_min3day_1month – –
V38_temporal fm1000_anom_min3day_1monthafter × –
V39_temporal fm100_anom_1month – –
V40_temporal fm100_anom_1monthafter × –
V41_temporal fm100_anom_min3day_1month – –
V42_temporal fm100_anom_min3day_1monthafter × –
V43_temporal vpd_anom_max3day_1month + +

V44_temporal vpd_anom_max3day_1monthafter × +

V45_temporal fracsnow_anom_1month – –
V46_temporal fracsnow_anom_1monthafter × –
V47_temporal swemax_last12months_anom – –
V48_temporal swemax_last12months – – ×
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Table A3. Continued.

Number Name P model use Size model use Round 2 only

V49_temporal fracsnow_1month – – ×

V50_temporal fracsnow_log10_1month – – ×

V51_temporal fracsnow_1monthafter × – ×

V52_temporal fracsnow_log10_1monthafter × – ×

V53_temporal swemean_1month – – ×

V54_temporal swemean_log10_1month – – ×

V55_temporal swemean_1monthafter × – ×

V56_temporal swemean_log10_1monthafter × – ×

V57_temporal vpdmax_anom_1month + + ×

V58_temporal vpdmax_anom_1monthafter × + ×

V59_temporal vpdmin_anom_1month + + ×

V60_temporal vpdmin_anom_1monthafter × + ×

V61_temporal vpdmax_anom_max1day_1month + + ×

V62_temporal vpdmax_anom_max1day_1monthafter × + ×

V63_temporal vpdmax_anom_max3day_1month + + ×

V64_temporal vpdmax_anom_max3day_1monthafter × + ×

V65_temporal vpdmin_anom_max1day_1month + + ×

V66_temporal vpdmin_anom_max1day_1monthafter × + ×

V67_temporal vpdmin_anom_max3day_1month + + ×

V68_temporal vpdmin_anom_max3day_1monthafter × + ×

Code and data availability. The datasets used to
produce the WULFFSS model can be found at
https://doi.org/10.5061/dryad.63xsj3vdb (Williams, 2025a).
The code to produce the model can be found at
https://doi.org/10.5281/zenodo.18102839 (Williams, 2025b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-19-1157-2026-supplement.
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