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Abstract. Simple Climate Models (SCMs) are a key tool in
climate research, enabling the rapid exploration of climate
responses beyond the reach of more complex models and aid-
ing in the estimation of future climate uncertainty. Over the
past two decades, the number and diversity of SCMs have ex-
panded considerably, increasing their use but also complicat-
ing efforts to understand differences in model structure and
their implications. The reduced-complexity model intercom-
parison project (RCMIP) has begun to address this challenge
by comparing output from a wide range of SCMs. How-
ever, the need for a systematic analysis of model structure
remains. Here, we complement RCMIP’s work by systemat-
ically analysing the structure, components, and development
histories of the 14 SCMs participating in RCMIP. We begin
with a summary of the core principles underpinning SCM-
based climate simulation, then review genealogy and design
choices of each model. This synthesis provides a comprehen-
sive reference for both developers and users, clarifying the
diverse approaches within the SCM landscape and support-
ing informed use and further development of these models.

1 Introduction

Simple Climate Models (SCMs), alternatively termed
Reduced-complexity Climate Models (RCMs), are highly-
parameterised computationally-efficient climate simulators.
This efficiency is primarily achieved in two ways: (i) a re-

duction of temporal and spatial resolutions, typically oper-
ating with global-mean, annual-mean quantities, and (ii) a
simplification of simulated processes, often through param-
eterisation. Consequently, they are positioned at the lowest-
complexity level within the climate model hierarchy, beneath
Earth System Models of Intermediate Complexity (EMICs),
Atmosphere-Ocean General Circulation Models (AOGCMs)
and Earth System Models (ESMs). Their efficiency allows
SCMs to generate climate projections within seconds while
also being relatively easy to understand and use.

This speed makes them a critical tool in climate re-
search, enabling use cases beyond the capabilities of higher-
complexity climate models. They have been used in uncer-
tainty estimation (Meinshausen et al., 2009; Nicholls et al.,
2021; Smith et al., 2024), scenario creation (Meinshausen
et al., 2011b, 2020), ESM emulation (Raper and Cubasch,
1996; Cubasch et al., 2001), and climate projection (Tanaka
et al., 2009a; Williams et al., 2017; Goodwin, 2018; Vega-
Westhoff et al., 2019). SCMs are also often used as climate
emulators, emulating results from more complex models af-
ter being trained on their output. This is a key benefit of
SCMs, as it enables the inspection of the vast model space
left unexplored by ESMs. Due to the high computational
running costs of ESMs, they can only be executed with a
severely-limited set of architectures, boundary conditions,
configurations and scenarios, commonly referred to as the
“ensemble of opportunity” (Tebaldi and Knutti, 2007). This
ensemble of opportunity constitutes only a small fraction of
the potential model configurations resulting in realistic cli-
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mate projections. Furthermore, the heuristic nature of ESM
development means that the sampling of the model space is
neither systematic nor random, which might introduce signif-
icant biases in the exploration of this space. These limitations
raise fundamental questions about the uncertainty of the con-
clusions drawn from ESMs (Carslaw et al., 2018). SCMs, by
virtue of their speed and flexibility, transcend this limitation
by using their emulation capabilities to explore the model
space beyond the ensemble of opportunity.

Their emulation capability positions SCMs within the
broader family of climate emulators, at least when they are
operated in an emulator configuration. Although these two
terms are sometimes used interchangeably, the “emulator”
label strictly encompasses a greater number of models than
SCMs, as it applies to any model designed to approximate
the output of another model. In particular, the emulator label
also includes any machine learning and AI approach able to
mimic the output of more complex models through statistical
learning. The boundary between SCMs and data-driven em-
ulators is not always sharp – some SCMs employ techniques
such as impulse-response functions that could be viewed as
statistical. Nevertheless, SCMs generally adopt a more mech-
anistic emulation strategy, grounded in physical reasoning
and parametrisation.

Notwithstanding this ability to mimic certain dynamics
of more complex models, SCMs do not render other mod-
els obsolete. Complex models like ESMs are still required
and highly-useful tools. Firstly, SCMs require simulations
provided by more complex models to train their parame-
terisations and produce realistic projections. Furthermore,
ESMs still offer our most comprehensive understanding of
Earth’s climate, including many physical properties beyond
the scope of SCMs. Moreover, ESMs operate at finer scales,
benefitting local and regional analysis, although downscaling
approaches that leverage ESM data to generate regional cli-
mate emulators have also been explored, partially mitigating
this limitation (Beusch et al., 2020; Mitchell, 2003; Mathi-
son et al., 2025; Tebaldi et al., 2022; Sandstad et al., 2025).
These regional emulators can then be coupled with SCMs
to provide higher resolution functionality. Ultimately, SCMs
constitute a complementary suite of models that can be useful
in many scenarios, but they should be developed in conjunc-
tion with ESMs to leverage the strengths of both approaches.

The spectrum of SCMs is wide, ranging from simple lin-
ear regression models of global properties to sophisticated
schemes operating at regional levels. While this diversity
increases the likelihood of finding a suitable SCM for a
specific application, it also complicates the selection pro-
cess for users, particularly for those outside the SCM devel-
opment community. This problem is not unique to SCMs,
with the variety among ESMs also posing significant chal-
lenges. However, SCMs lack the extensive history of model
intercomparisons that ESMs have had under the Coupled
Model Intercomparison Project (CMIP) umbrella (Meehl
et al., 1997, 2000, 2007; Taylor et al., 2012; Eyring et al.,

2016), leading the Special Report on Global Warming of
1.5 °C (SR1.5, IPCC, 2018) to raise concerns about the va-
lidity of SCM simulations.

In recent years, a collective effort has been undertaken by
the SCM community to address this question through the sys-
tematic evaluation and comparison of SCM output via the
RCMIP presented in Nicholls et al. (2020, 2021). Phase one
of RCMIP focused on best estimates for global mean sur-
face air temperature (GSAT) response, while phase two as-
sessed the performance of probabilistic large ensembles to
emulate a range of climate metrics, incorporating uncertainty
in GSAT projections. While these efforts have significantly
increased our understanding of SCM performance, there re-
mains a need for a review on SCM structure and history to
aid with the interpretation of model results, as well as model
selection. As stated in Nicholls et al. (2020): “An overview
of the different models, their structure and relationship to one
another (in the form of a genealogy) would help reduce the
confusion and provide clarity about the implications of using
one model over another”.

Here, we address this need by providing a review of the
structure, shared components and development history of
SCMs. Additionally, we include information on all available
open-source implementations for the analysed models, an-
other gap in the field identified by Sarofim et al. (2021), hop-
ing to promote transparency and community engagement.
Our objective is to provide a clear overview of modern-day
SCMs to inform users and developers alike. However, we
explicitly consider SCM performance analysis outside the
scope of this review, as this is better accomplished under the
RCMIP umbrella.

Establishing criteria for model inclusion in the review was
a crucial first step. The decision was made to include all
models participating in the RCMIP exercise, as a proxy for
the most widely-used and actively-developed modern SCMs.
This decision was based on the assumption that SCM users
are likely to favour models exhibiting these characteristics, as
well as on a desire to mitigate potential biases arising from
a more ad-hoc model selection. Although this approach may
miss recent additions to the SCM landscape, the risk is con-
sidered low, given that the average first publication date of
RCMIP-participating models is 2010, with the latest being
2017, showing relative maturity in participating models.

This is a detailed review tailored to aid understanding of
these models, balancing the importance of a concept with
its complexity. Accordingly, simpler and more fundamental
concepts are reviewed in more depth, while more complex
and specific ideas are summarised and appropriately refer-
enced. Throughout this review, “complexity” refers to the
conceptual or process-level complexity of a model – i.e., the
number and intricacy of physical processes it represents –
rather than to other notions such as computational complex-
ity. Mathematical formulations also follow this rationale, be-
ing included only when they promote understanding with-
out hindering legibility. We hope this improves the flow of

Geosci. Model Dev., 19, 115–165, 2026 https://doi.org/10.5194/gmd-19-115-2026



A. Romero-Prieto et al.: Review of climate simulation by Simple Climate Models 117

the review, while creating a useful signposting document for
readers seeking more low-level descriptions.

The structure of this review is the following: to contex-
tualise this model review, Sect. 2 offers a brief historical
overview of SCM development; Sect. 3 introduces the reader
to the basics of SCMs, with some general observations and
descriptions of popular model schemes, serving as a refer-
ence for subsequent sections; Sect. 4 presents the review of
all SCMs participating in RCMIP, including development
history, model description, and some notable uses; Sect. 5
discusses notable commonalities and differences across re-
viewed models, as well as some limitations of this review;
finally Sect. 6 presents the conclusions from this exercise.

2 Historical overview

The history of SCMs is closely linked to the broader evolu-
tion of climate modelling, as simple analytical models based
on physical principles were initially the only tools available
for estimating climate change and assessing potential anthro-
pogenic impacts. The idea of using energy balance consider-
ations to estimate climate change dates back to the late nine-
teenth century, when the Swedish scientist Svante Arrhenius
published his pioneering work quantifying the effects of CO2
on global temperatures (Arrhenius, 1896) – a foundational
principle for SCMs. Arrhenius’ research built on earlier sem-
inal studies of the Earth’s climate, including Fourier’s work
on the greenhouse effect (Fourier, 1827) and Tyndall’s iden-
tification of greenhouse gases (Tyndall, 1861).

In the early twentieth century, efforts to model the global
climate often relied on rudimentary energy balance argu-
ments, which, despite their simplicity, are relatively simi-
lar to modern approaches (Ångström, 1925). However, the
development of these models was significantly limited by
the scarcity of meteorological data and the absence of com-
puters, which would not emerge until several decades later.
Budyko (1958) provided a detailed review of the state of the
field during the first half of the 20th century and discussed
the challenges faced by researchers at the time.

With the advent of computers and more reliable me-
teorological data, climate modelling experienced signifi-
cant advancements during the 1950s and 1960s. Budyko
(1969, 1972) and Sellers (1969) introduced one-dimensional
thermodynamic models based on heat balance considerations
that successfully approximated modern climate. These mod-
els not only rekindled interest in the field, but also laid the
groundwork for the development of more complex Energy
Balance Models (EBMs). At the same time, technical im-
provements enabled the creation of climate models that ex-
tended beyond what is currently considered within the realm
of SCMs, gradually achieving higher levels of complexity
and resolution. This progress culminated in the development
of the first AOGCM by Manabe and Bryan (1969), mark-
ing a pivotal shift towards physically-complex climate mod-

els aiming to explicitly resolve processes, rather than relying
on highly-parametrised approximations. The growing diver-
sity of models with varying levels of complexity led Schnei-
der and Dickinson (1974) to define a model hierarchy, cate-
gorising climate models from EBMs to AOGCMs, primarily
based on their degrees of freedom. Key publications from
this time are: North et al. (1981), providing a survey specifi-
cally about EBMs; MacCracken and Luther (1985), offering
a broader review of CO2 forcing and climate modelling; and
Schneider and Dickinson (1974), reviewing the state of cli-
mate models. These publications form a valuable set of re-
sources for understanding the historical context of climate
modelling during this period and provide the framework for
subsequent developments in the SCM field.

In the 1980s, Wigley and Schlesinger (1985) presented a
pure diffusion EBM, which served as a foundational step to-
ward the development of Upwelling-Diffusion Energy Bal-
ance Models (UD-EBMs) by Wigley and Raper (1987) and
Harvey and Schneider (1985). These models offered an en-
hanced representation of the oceanic heat sink through ad-
vection and diffusion processes, leading to more accurate
simulations of surface temperature anomalies and sea-level
rise. The model by Harvey and Schneider (1985) signifi-
cantly advanced our understanding of the Transient Climate
Response (TCR), a quantity that measures the temperature
increase after a doubling of pre-industrial carbon concen-
tration in the atmosphere, while the UD-EBM by Wigley
and Raper (1987) eventually evolved into the widely in-
fluential MAGICC model (described in Sect. 4.9). MAG-
ICC would become a cornerstone in the field of SCMs,
participating in all six IPCC assessment reports (IPCC,
1990, 1995, 2001, 2007, 2013, 2021b), estimating temper-
ature anomalies, sea-level rise, radiative forcing, and related
uncertainties, as well as serving as an emulator of more com-
plex models.

During the 1990s, SCMs began to increase in complex-
ity, incorporating additional climate-relevant processes such
as the carbon cycle and non-CO2 Greenhouse Gas (GHG)
representations (Wigley and Raper, 1992; Wigley, 1993; Fu-
glestvedt and Berntsen, 1999). These advancements were
critical for making SCMs applicable in policy-relevant sce-
narios. A useful reference for the state of the SCM field at
the turn of the century can be found in IPCC (1997), al-
though it primarily focuses on MAGICC as the only SCM
used in IPCC reports at the time. This period also saw the in-
troduction of Impulse Response Models (IRMs) by Joos and
Bruno (1996) to approximate the behaviour of more complex
models. This family of methods, and particularly the param-
eterisations presented in Joos et al. (1996) for the ocean car-
bon cycle, have proven highly influential in the development
of modern SCMs, with several models still employing these
emulation techniques, such as MAGICC, FaIR and CICERO-
SCM (more details on IRMs are presented in Sect. 3.3.3).

By the first decade of the new millennium, most of the key
components of modern SCMs had already been established.
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Modelling teams then shifted their focus towards enhancing
the flexibility of SCMs, calibrating them to align with the
latest findings from more complex ESMs, and coupling them
to other types of models. Notably, some SCMs were coupled
to socio-economic modules, giving rise to Integrated Assess-
ment Models (IAMs) (Stehfest et al., 2014; Huppmann et al.,
2019; Calvin et al., 2019). During this period, several no-
table SCMs were introduced, including OSCAR, an SCM
with a strong emphasis on the carbon cycle (Gitz and Ciais,
2003; Gitz, 2004), and ACC2, a model capable of running
in inverse mode to estimate parameter uncertainty (Tanaka,
2008). Additionally, Kriegler (2005) published the influen-
tial DOECLIM model, which combines a zero-dimensional
EBM with a one-dimensional ocean diffusion scheme, and
would be later adopted by several modern SCMs: ACC2,
Hector and SCM4OPT.

The 2010s witnessed a significant increase in the number
of SCMs, with most of the models discussed in this review
being introduced during this decade: GREB (Dommenget
and Flöter, 2011), EM-GC (Canty et al., 2013), AR5-IR (Joos
et al., 2013), Hector (Hartin et al., 2015), ESMICON (Ran-
ders et al., 2016), originally called ESCIMO, WASP (Good-
win, 2016), FaIR (Millar et al., 2017), MCE (Tsutsui, 2017),
and SCM4OPT (Su et al., 2017). This proliferation of mod-
els was driven by the need to assess a wide range of sce-
narios and processes, particularly for policy analysis. As a
result, there was a demand for a more diverse and flexible
family of models that could be calibrated to the outputs of
more complex ESMs, as well as coupled with IAMs to eval-
uate socio-economic scenarios in the context of climate pol-
icy. Many of these new models adopted an n-layer formu-
lation for their EBMs, building on the work of Held et al.
(2010) with a two-layer model and a three-layer model (Tsut-
sui, 2017, 2020) (see Sect. 3.3.2 for more details on n-layer
models). These formulations enabled a clearer distinction be-
tween “fast” and “slow” components of climate change, sim-
plifying interpretability and refining model accuracy and ap-
plicability.

In the early 2020s, following the strong demand for
climate emulation established in the previous decade and
fuelled by the rapid popularisation of artificial intelli-
gence (AI), data-driven emulators rose sharply in promi-
nence (Watson-Parris et al., 2021, 2022; Watt-Meyer et al.,
2023; Bassetti et al., 2024). These models typically provide
regional rather than global outputs and follow methodologi-
cal approaches that differ substantially from those of SCMs,
using machine learning and AI algorithms. For these reasons,
they fall outside the scope of the present review. Readers in-
terested in data-driven climate emulation are referred to the
comprehensive review by Tebaldi et al. (2025).

The rapid increase in the number of SCMs over the last
two decades highlighted the need for a systematic inter-SCM
comparison, akin to the Coupled Model Intercomparison
Project (CMIP, Eyring et al., 2016) initiative for AOGCMs
and ESMs. To satisfy this need and address the concerns

raised in the SR1.5 (IPCC, 2018) relating to the accuracy
of SCMs, the RCMIP initiative was born (Nicholls et al.,
2020, 2021), with the latest iteration (Romero-Prieto et al.,
2025) happening in preparation for the IPCC seventh assess-
ment report (AR7). This SCM intercomparison has become
a crucial resource for understanding modern SCMs and eval-
uating their performance. RCMIP has been instrumental in
identifying the strengths and weaknesses of different mod-
els, thereby guiding future developments in the field. How-
ever, this intercomparison project did not focus on the opera-
tional mechanisms or specific schemes employed by SCMs.
Addressing this gap is the main objective of this review,
which aims to provide an examination of the mechanisms
and methodologies underlying these models.

3 Core principles and mechanisms of SCMs

Typically, SCMs follow a simple framework to simulate cli-
mate change. This framework, referred to as the emissions-
climate change cause-effect chain by Nicholls et al. (2020),
consists of three stages:

1. Determine the atmospheric concentrations of climate-
relevant chemical species based on emissions and plan-
etary sinks.

2. Calculate the total radiative forcing, that is, the dis-
turbance of the planetary energy balance between in-
coming and outgoing energy. This may include contri-
butions from GHG species simulated in the previous
stage, as well as non-GHG-related contributions, such
as albedo changes and aerosols.

3. Estimate temperature change resulting from that forc-
ing, typically using an EBM.

These stages are followed by most SCMs in this review.
Consequently, they have been used to structure the descrip-
tion of the models in Sect. 4, which describes how each SCM
simulates each stage (when relevant). The current section dis-
cusses some generalities about these stages, as well as com-
mon approaches taken by SCMs. The objective is two-fold:
helping the reader gain some familiarity with SCMs schemes
in preparation for the model descriptions presented in Sect. 4,
as well as serving as a reference for these descriptions.

3.1 GHG concentrations

3.1.1 Mass balance model

The evolution of concentrations of atmospheric long-lived
non-CO2 species (and sometimes CO2) is typically modelled
by a mass balance model, alternatively known as a single-
reservoir box model:

dCx

dt
=5x −3x =

Ex

βx
−
Cx

τ x
. (1)
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In this representation, the change in concentration of a given
species x (Cx) is governed by its production (5x) and loss
rates (3x). The production rate is simply the species emis-
sions (Ex), converted to concentration units with a conver-
sion factor βx (this is sometimes omitted in model descrip-
tions). Emissions can be purely anthropogenic in origin, be
caused by natural processes or a combination of both, de-
pending on the species, the considered scenario, and the in-
ternal structure of the model. The loss rate is typically as-
sumed to be an exponential decay, characterised by a global
decay time τ x . This assumption makes the scheme a partic-
ular case of the wider family of impulse-response models,
as described in Sect. 3.3.3. The characteristic lifetime of the
species may not directly correspond to any single physical
process, but combine the effects of multiple sinks remov-
ing that species from the atmosphere at similar timescales.
In general, the lifetime can be state-dependent, altering its
value based on an number of climate properties. This is, for
instance, what the FaIR model does (Sect. 4.3) for CO2 and
CH4, including carbon and temperature feedbacks for those
species lifetimes. However, this is unusual in model repre-
sentations, with most SCMs adopting a constant lifetime.
This is particularly the case for minor GHGs (all GHGs ex-
cept CO2, CH4 and N2O). A more typical approach to in-
crease the flexibility of the lifetime scheme involves the in-
clusion of additional sinks acting at different timescales. This
is typically incorporated into models through the use of a to-
tal lifetime defined as:

1
τtotal
=

1
τ1
+

1
τ2
+ . . .+

1
τn

(2)

where n is the number of sinks considered. This is particu-
larly relevant for tropospheric methane, represented in most
models with a mass balance equation and a total lifetime with
contributions from multiple sinks, typically including its re-
action with hydroxyl radicals (OH) (∼ 11.2 years), strato-
spheric loss (∼ 120 years) and soil uptake (∼ 150 years)
(Prather et al., 2012; Myhre et al., 2013). Using Eq. (2) this
results in a total lifetime of ∼ 9.6 years.

This mass balance formulation focuses on the amount of
species x that remains airborne after some time t , without
providing any additional information about the fate or po-
tential impacts after its removal from the atmosphere. Often,
this level of detail is enough to satisfy SCM objectives, par-
ticularly for chemical species lacking a natural cycle. Con-
sequently, SCMs generally disregard the dynamics of these
species after they cease to be relevant for the calculation
of radiative forcing. However, this is not the case for CO2,
because this species possesses a strong natural cycle with
large fluxes across four reservoirs in the Earth’s system: at-
mosphere, ocean, land and biosphere. Understanding the re-
sponse of this cycle to anthropogenic disturbances, as well
as any potential tipping points, is therefore necessary for ac-
curate predictions of future atmospheric concentrations and
ultimately, to estimate compatible emission scenarios with

climate stabilisation targets (Friedlingstein et al., 2023). In-
deed, this is currently an area of intensive research, often dis-
cussed in terms of the Zero Emissions Commitment (ZEC),
which quantifies the global temperature change in a post-net-
zero world (Palazzo Corner et al., 2023). SCM development
teams, recognising the need for details on the carbon cy-
cle, have generally either started (Fuglestvedt and Berntsen,
1999; Gitz and Ciais, 2003; Tanaka, 2008; Hartin et al.,
2015; Goodwin, 2016; Su et al., 2017) or transitioned to-
wards CO2 representations (Wigley and Raper, 1992; Tsut-
sui, 2022) more complex than this mass balance model. By
far, the most popular representation for SCM carbon cycles,
particularly for the land component, is box-based carbon cy-
cle models, which simulate the flow of carbon through the
different Earth’s reservoirs.

3.1.2 Box-based carbon models

Box-based carbon models consist of a number of concep-
tual boxes, also known as pools or reservoirs, that abstract
away the carbon content of certain parts of the carbon cy-
cle (e.g., vegetation, soil, ocean (layers), atmosphere). These
boxes exchange carbon through fluxes which can be modu-
lated by climate properties. For example, the carbon transport
from vegetation to the soil can be simulated through a lit-
terfall flux, which can be magnified by higher temperatures.
The carbon inventories of the model boxes are determined
by the initial stocks and the carbon fluxes. SCMs typically
aim to represent all the main fluxes in the Earth’s carbon cy-
cle, such as net primary production (NPP), litterfall, decom-
position and respiration. See, for instance, the depiction of
the carbon cycles of Hector (Fig. 5a) and MAGICC (Fig. 7).
More details about the nature and magnitude of these fluxes,
as well as the wider Earth’s carbon cycle, can be found in
Reichle (2023).

SCMs can simulate these fluxes in different ways. Some
fluxes may be modelled by relatively simple analytical ex-
pressions, accounting for climate feedbacks. This is partic-
ularly common for the land component. Other fluxes may
be modelled by more complex schemes, such as carbonate
schemes to estimate the dissolution of atmospheric carbon
into the ocean mixed layer (OML), the uppermost layer of
the ocean exhibiting relatively uniform properties due to tur-
bulence homogenisation effects. A common approach, par-
ticularly for the ocean component, is the use of IRMs, which
are discussed in Sect. 3.3.3.

This seemingly simple representation of carbon reservoirs
and fluxes provides modelling teams with remarkable flex-
ibility. It is easy to extend, with the inclusion of new com-
ponents merely requiring the definition of the carbon con-
tent of the new pool and interacting fluxes. It also allows
the inclusion of multiple fluxes, each considering different
climate feedbacks and being calibrated independently. Fur-
thermore, it is a computationally efficient approach, with
the number of parameters and calculations required remain-
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ing relatively low. Crucially, box models offer an internally-
consistent framework that can keep track of the flux of car-
bon in a closed cycle. These qualities are further amplified
by the conceptual simplicity of these models, which aids in-
terpretability and visualisation, facilitating their adoption by
both users and developers.

The resolution of box models is typically global, with
boxes representing the entire Earth’s carbon content for that
category (e.g., soil, vegetation). However, some models like
Hector and OSCAR further partition these boxes into smaller
units representing regions or even regional biomes.

3.2 Radiative forcing

After computing the concentration of climate-relevant atmo-
spheric species, the next stage in the climate chain is cal-
culating the total radiative forcing. More details will be dis-
cussed in Sect. 3.3.1 on energy balance models and how the
climate response to forcing complicates the calculation, but
for now let us define radiative forcing as the perturbation of
the pre-industrial energy balance between incoming and out-
going energy fluxes.

Radiative forcing is a critical quantity, as it determines
the extent of warming or cooling that the Earth experiences
with respect to the pre-industrial state. Crucially, it is a lin-
ear quantity, allowing the total global radiative forcing to be
calculated simply as the addition of individual contributions
from different sources. This linearity is particularly advan-
tageous for comparing the relative influence of various forc-
ing sources—for example, assessing the impact of methane
concentrations in the atmosphere versus changes in cloud
properties. Such comparisons would be far less trivial us-
ing raw variables like methane concentrations and cloud op-
tical depth. The downside of this property, however, is that
measurement of individual forcing contributions is not pos-
sible; instead models are required to estimate it, introducing
a source of uncertainty.

Potential sources of radiative forcing, also known as
forcing agents, are numerous: CO2, CH4, N2O, minor
GHGs (CFCs, HCFCs, HFCs, and others – see Table 7.SM.6
in Smith et al. (2021a) for a full list), ozone (tropospheric and
stratospheric), aerosols (considering both direct impacts and
indirect via cloud interactions), changes in albedo (induced
by Land Use and Land Cover Changes (LULCC), as well
as black carbon deposition on snow), irrigation, aviation-
induced contrails, and natural phenomena like changes in so-
lar irradiance and volcanic eruptions. Most SCMs will cover
a subset of these forcing agents with varying degrees of com-
plexity, as summarised in Table 2.

Different categories of radiative forcing exist, depending
on which part of the Earth system is required to have reached
a thermal equilibrium before the energy imbalance is con-
sidered (IPCC, 2021a). Traditionally, approximations for the
stratospherically-adjusted radiative forcing (SARF) were a
popular option in SCMs, as this is an easier quantity to

compute (Myhre et al., 2013). However, effective radiative
forcing (ERF) has progressively emerged as the metric of
choice, as its inclusion of all climate adjustments offers a bet-
ter estimation of the surface temperature response to forcing
(Forster et al., 2016). A common approach to calculate ERF
is to compute SARF and multiply it by a scaling parameter
to account for tropospheric adjustments (Meinshausen et al.,
2020; Smith et al., 2024). However, consideration of these
nuances between forcing categories is often inconsistent in
SCMs. Models may employing SARF expressions to esti-
mate forcing without any further modifications, effectively
treating that quantity as ERF. Generally, unless otherwise
stated, ERF should be assumed whenever radiative forcing
is mentioned in this document, although the underlying for-
mula may have originally be intended to approximate SARF.

A common source for forcing estimations is the re-
ports written by the Intergovernmental Panel on Climate
Change (IPCC), which tend to use simplified analytical ex-
pressions to describe the impacts of forcing agents. In par-
ticular, there have been three studies which have been exten-
sively used in SCM forcing estimations:

– Myhre et al. (1998): established a logarithmic expres-
sion for the SARF resulting from elevated CO2 concen-
trations (Eq. 30), and square-root expressions for CH4
and N2O.

– Etminan et al. (2016): revised Myhre et al. (1998) ex-
pressions to account for CH4 shortwave effects and
overlapping in radiation absorption bands between CO2,
CH4 and N2O.

– Meinshausen et al. (2020): re-fit the Etminan et al.
(2016) expressions to reduce the error between the
curve fit and the radiative transfer model-derived SARF,
and extended the validity range to high CO2 concentra-
tions.

Most SCMs follow one of these studies to estimate forcing
from major GHGs, provided they possess a representation
of the relevant species concentration. Beyond these expres-
sions, consensus among SCMs diminishes and cross-model
variations abound in areas such as the number of considered
forcing agents, the estimation schemes for minor GHGs, and
the values used for their parameterisations. A common ap-
proach, particularly for halogenated compounds, is a linear
scaling of the species concentration (or emissions if it is a
short-lived species) by its radiative efficiency (Smith et al.,
2021a), thus considerably simplifying the calculation.

3.3 Temperature

3.3.1 Energy balance model

Once the total radiative forcing has been calculated, SCMs
need a method to translate that quantity into a global sur-
face temperature anomaly. This is usually achieved by an
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EBM (Wigley and Raper, 1987; Schlesinger et al., 1992;
Kriegler, 2005; Meinshausen et al., 2011a; Geoffroy et al.,
2013a; Goodwin, 2018). This type of model relies on a se-
ries of assumptions and approximations that will be briefly
described in this section. A more comprehensive review of
the derivation and validity of these assumptions can be found
in Appendix A of Kriegler (2005).

In an equilibrium state, incoming solar energy absorbed
by the Earth system (F in) must be equal to the outgoing ra-
diated infrared energy (F out). However, the atmosphere ab-
sorbs a significant amount of the outgoing radiation leaving
the Earth’s surface and emits it back down, increasing sur-
face temperature. This is known as the natural greenhouse
effect (G). Approximating the Earth as a black body, one
can estimate the outgoing surface radiation using the Stefan–
Boltzmann law: F out

= σT 4
S where TS is the average global

surface temperature and σ = 5.67× 10−8 W m−2 K−4 is the
Stefan-Boltzmann constant. In equilibrium, the outgoing en-
ergy flux must, therefore, equal the incoming radiation plus
the energy absorbed by the atmosphere:

F out
= σT 4

S = F
in
+G. (3)

If that energy balance is forced with a small perturbation to
the amount of incoming or absorbed energy (1E) the sys-
tem will respond with a heat flux at the surface, changing the
surface temperature until the system is back at equilibrium.
By conducting a Taylor expansion of the outgoing energy
around the original equilibrium surface temperature (T0) and
retaining only the first order term, one can approximate the
temperature response induced by this perturbation as:

F out(T )= σT 4
S ≈ σT

4
0 + 4σT 3

0 1T ⇒ (4)

1F out
= F out(T )−F out

0 ≈ σT
4

0 + 4σT 3
0 1T − σT

4
0

= 4σT 3
0 1T (5)

where 1T is the difference between the new and original
temperature, or temperature anomaly. This linear approxima-
tion is valid only for small temperature differences of a few
degrees, with non-linear terms becoming relevant for larger
anomalies (Bloch-Johnson et al., 2021). Consequently, the
heat flux (dH/dt) induced by this perturbation in the energy
balance during the transient state will be equal to the pertur-
bation (1E) minus the surface temperature response:

dH
dt
=1E− 4σT 3

0 1T (6)

where the perturbation can take place either in the incom-
ing radiation or the greenhouse effect: 1E =1F in

+1G.
1G corresponds to the anthropogenic greenhouse effect (as-
suming the perturbation is human in origin). Typically with
energy balance models this perturbation is assumed to be
separable into two terms:

– A radiative forcing term, F . In SCMs this is usually
taken to be the stratospherically-adjusted radiative forc-
ing or the effective radiative forcing (see Sect. 3.2).

– A temperature feedback term comprising all the climate
responses to a change in temperature that, in return,
have an impact on the energy imbalance. Usually this
is assumed to be a linear response to the temperature
anomaly (k ·4σT 3

0 1T ), which only holds for small dis-
turbances.

Under this assumption Eq. (6) can be rewritten as:

dH
dt
=1E− 4σT 3

0 1T = F + k · 4σT
3

0 1T − 4σT 3
0 1T

= F − λ1T (7)

where λ= 4σT 3
0 (1−k) is known as the climate feedback pa-

rameter and combines the effect of increased blackbody radi-
ation (4σT 3

0 ) and temperature feedbacks caused by the per-
turbation in the energy flux (4σT 3

0 k). While seemingly sim-
ple, Eq. (7) is arguably the single most important parametri-
sation in most SCMs, as it controls the model’s tempera-
ture response for a given forcing. The k parameter (or, in-
directly, the λ parameter) abstracts away the great complex-
ity of the climate system and its numerous feedbacks effects
(e.g., albedo change, aerosol interactions, etc.). In most in-
stances, this is a constant model parameter that can be tuned
to emulate results from other, more complex ESMs. How-
ever, more complex formulations are possible, like MAG-
ICC’s (Sect. 4.9.3) time-varying, and WASP’s (Sect. 4.5.3)
forcing-agent-specific time-varying λ parameters.

Typically, Eq. (7) is modified to assume that the heat flux
results in an increase in surface temperature, mediated by a
global heat capacity C, thereby converting it into the follow-
ing first order differential equation:

C
dT
dt
= F − λT . (8)

Note that the surface temperature anomaly, T , is presented
without the delta notation for the sake of simplicity, although
it continues to represent the same anomaly.

The formalism outlined thus far is common to most sim-
ple climate models. Where they diverge is in their treatment
of the heat flux distribution and effects across the Earth sys-
tem. While most models include a representation of the heat
flux towards the ocean, the largest heat reservoir in the Earth
system, how that heat is distributed across the ocean varies.
Heat diffusion to the deep ocean is often included, with the
occasional addition of heat transport by ocean currents. Rep-
resentations of the land heat sink are less frequently included.

3.3.2 n-layer EBM

Equation (8) provides an approximate representation of the
temperature response to the energy imbalance induced by ra-
diative forcing. Assuming a constant climate feedback pa-
rameter (λ), the resulting relationship provides an estimate
of the global temperature necessary for the climate system to
reach equilibrium with the new radiative forcing.
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However, this equilibrium is not achieved instantaneously.
The climate system exhibits a large thermal inertia (relative
to human timescales), primarily due to the stabilising influ-
ence of the deep ocean, which acts as a large heat reservoir.
The ocean is estimated to have absorbed around 89 % of the
additional heat coming into the Earth system as a result of the
historical energy imbalance (von Schuckmann et al., 2023).
Consequently, the transient temperature anomaly induced by
a certain amount of positive radiative forcing is smaller than
the eventual temperature once the system reaches a new equi-
librium.

A commonly-used method to incorporate this deep-ocean
thermal inertia to SCMs is the two-layer or two-box model
of temperature response. This model, referred to as the “Held
et. al two-layer model” in Nicholls et al. (2020), is based on
the work of Held et al. (2010). Fundamentally, this represen-
tation adds an additional box with a large heat capacity to
the EBM described by Eq. (8). As a result, the model pos-
sesses the original “rapid” box simulating the fast tempera-
ture response of the atmosphere, land and ocean boundary
layer to the changes in radiative forcing, and an additional
second “slow” box coupled to the first that emulates the slow
response of the deep ocean. Mathematically, this can be ex-
pressed as follows:

CF
dT
dt
= F − λT −Ho

Co
dTo

dt
=Ho (9)

where CF and Co are the heat capacities for the fast and slow
boxes, respectively, with Co� CF. Ho is the exchanged heat
between the two layers, which is assumed to be proportional
to the difference in temperature anomaly between the two
boxes, characterised by a heat exchange coefficient κ , Ho ≡

κ(T − To).
However, an important limitation to this model is its in-

ability to resolve evolving spatial warming patterns that oc-
cur as the system approaches equilibrium, as discussed in
Williams et al. (2008) and Winton et al. (2010). These evolv-
ing patterns modulate the outgoing energy flux to space,
impacting the global temperature response. Since this phe-
nomenon can be related to the ocean heat uptake, Held et al.
(2010) introduced an efficacy parameter, ε, to account for this
effect:

CF
dT
dt
= F − λT − εκ (T − To)

Co
dTo

dt
= κ (T − To) . (10)

This new formulation is equivalent to Eq. (9) but with heat
exchange and deep-ocean exchange coefficients scaled by ε,
defining κ ′ ≡ εκ and C′o ≡ εCo. Winton et al. (2010) re-
ported values for this efficacy parameter greater than one for
nearly all models under 1pctCO2 experiments. Rohrschnei-

der et al. (2019) provided analytical solutions to this sys-
tem of differential equations, and compared them with other
EBMs, specifically a two-region model – which they demon-
strated to be mathematically equivalent to the two-layer
model in its temperature response – a one-layer model with
a temperature-dependent feedback, and a hybrid of the two.

The two-layer model can be easily generalised to an n-
layer model by adding new ocean layers beneath the extra
layer introduced in Eq. (9), defining a system of n differential
equations (Cummins et al., 2020):

C1
dT1

dt
= F − κ1T1− κ2 (T1− T2)

C2
dT2

dt
= κ2 (T1− T2)− κ3 (T2− T3)

...

Cn−1
dTn−1

dt
= κn−1 (Tn−2− Tn−1)− εκn (Tn−1− Tn)

Cn
dTn
dt
= κn (Tn−1− Tn) . (11)

In this generalised formulation, the top layer corresponds to
the “fast” layer in Eq. (10) (C1, T1, κ1, κ2 and T2 areCF, T , λ,
κ and To, respectively). Note that the efficiency parameter, ε,
is only present in the penultimate layer, as the deepest layer is
still the largest reservoir of heat (i.e., it possesses the largest
heat capacity) dominating the deep ocean uptake.

A higher number of layers increases the number of dis-
tinct timescales in the system (see τi in Eqs. 12 and 13), and
therefore increases the complexity the model is able to dis-
play in its transient response. The equilibrium state, however,
remains independent from the number of layers, as Eq. (11)
reduces to T1 = F/κ1 when T1 = T2 = . . . = Tn. Typically,
the number of layers is limited to two or three in SCM imple-
mentations. A two-layer model, calibrated to Coupled Model
Intercomparison Project Phase 5 (CMIP5) model output (Ge-
offroy et al., 2013a, b), has been employed as the EBM mod-
ule in several SCMs, including OSCAR, AR5-IR, and FaIR
until v2.0. FaIR v2.0 increased the number of layers to three
by default based on evidence from Tsutsui (2017, 2020) and
Cummins et al. (2020) that suggested three layers are usually
sufficient to accurately capture the temperature response of
ESMs. Notwithstanding this finding, to further enhance the
model’s flexibility, FaIR v2.1 allows an arbitrary large num-
ber of n layers (as long as it is larger than one), although the
number of tuning parameters quickly increases as n becomes
larger. It is important to note that n-layer EBMs might not
be immediately recognizable as such, as they are sometimes
presented in an alternative formulation related to a broader
family of models, known as IRMs.

3.3.3 Impulse response models

As previously discussed, the primary purpose of SCMs is to
emulate the behaviour of more complex climate models ef-
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ficiently. In the preceding sections, methods were explored
that aimed to achieve this emulation through the development
of computationally efficient approximations of the Earth sys-
tem maintaining physical intuition. IRMs (Joos and Bruno,
1996) take a different route; they are not derived from fun-
damental physical principles but rather, offer a mathemati-
cal framework able to approximate the dynamics of any non-
linear system through empirical parameter tuning.

In particular, IRMs tune empirical Impulse-Response
Functions (IRFs) to simulate the behaviour (response) of a
variable of interest to a perturbation (impulse) in a related
property. This tuning is typically based on the output of more
complex models, such as AOGCMs or ESMs. IRFs are also
known as “Green’s functions” in other fields of physics.

IRFs can fully characterise the dynamical response of a
linear system, providing only an approximation for non-
linear systems. The quality of the approximation depends on
the extent of the system’s deviation from linearity. As previ-
ously discussed in the derivation of Eq. (8) for the standard
EBM, a quasi-linear assumption of the climate system is of-
ten employed when working with SCMs, justifying the use
of IRFs to approximate climate properties.

For climate-related quantities, IRFs typically take the form
of a sum of n decaying exponentials with characteristic
timescales τi and magnitudes Ai . Thus, the value of a prop-
erty of interest x(t) at time t can be approximated by evalu-
ating the convolution of the magnitude of the impulse F(t ′)
up to time t with the tuned response to that impulse (i.e., the
sum of exponentials):

x(t)=

t∫
0

F(t ′) · IRF(t − t ′)dt ′ =

t∫
0

F(t ′)
∑
i

Ai

exp
(
−
t − t ′

τi

)
dt ′. (12)

Alternatively, taking the time derivative of Eq. (12) yields
the equivalent differential equation which is also often em-
ployed:

dx(t)
dt
=

∑
i

[
AiF(t)−

xi(t)

τi

]
. (13)

As an example, the temperature anomaly T (t) after a unit of
radiative forcing at t = 0 (represented by a dirac delta func-
tion δ centered at time t ′ = 0) can be approximated using an
IRM by (Millar et al., 2015):

T (t)=

t∫
0

δ(t ′ = 0)
∑
i

Ai exp
(
−
t − t ′

τi

)
dt ′

=

∑
i

Ai

τi
exp

(
−t

τi

)
. (14)

Through the tuning of the τi and Ai parameters, Eq. (14)
can be calibrated to emulate the temperature response of

more complex climate models. Alternatively, IRFs can model
the increase in atmospheric CO2 concentration following an
emissions pulse at t = 0, as seen in the AR5-IR (Myhre et al.,
2013) and FaIR (Millar et al., 2017) models reviewed below
and discussed in Sect. 3.1.1, or the transfer of carbon from
the ocean mixed layer to the deep ocean (Joos et al., 1996).
This last IRM has been a particularly influential scheme in
the SCM field, being used to simulate the ocean carbon cy-
cle in three prominent SCMs: CICERO-SCM, OSCAR and
MAGICC. More details about this scheme are presented in
Sect. 4.8.1.

The family of n-time-constant temperature IRMs de-
scribed by Eqs. (13) and (14) is particularly interesting be-
cause it is mathematically equivalent (Millar et al., 2015;
Tsutsui, 2017; Leach et al., 2021) to the family of n-layer
temperature models described by Eq. (11). In its general IRM
form, Eq. (13) can be expressed as:

dTi
dt
=
AiF − Ti

τi
; T =

n∑
i

Ti (15)

which is a diagonalised form of the equation one would ob-
tain if Eq. (11) was expressed in matrix form (Leach et al.,
2021; Geoffroy et al., 2013a). Table 1 in Geoffroy et al.
(2013a) provides a list of conversions between the constants
in the two formulations for the case n= 2. Note that in this
formulation, the temperature anomaly at the surface, T , is the
addition of the contributions from the different temperature
components.

While the n-time-constant temperature IRMs and the n-
layer temperature models are mathematically equivalent, and
could therefore be fundamentally considered the same model
describing the same dynamics, the IRM formulation has the
advantage of a simple relationship (Geoffroy et al., 2013a)
between the parameters in Eq. (15) and two of the most crit-
ical and widely discussed quantities in climate science, the
equilibrium climate sensitivity (ECS) and the TCR:

ECS= F2×CO2

n∑
i=1

Ai (16)

TCR= F2×CO2

n∑
i=1

Ai

(
1−

τi

D

(
1− exp

(
−
D

τi

)))
(17)

whereD = ln(2)/ ln(1.01)≈ 69.7 years, is the time required
to double the atmospheric CO2 concentration under a 1 %
yearly increase scenario. These relations are highly advan-
tageous because, for the case n= 2, and given τ1 and τ2,
they can be inverted to determine A1 and A2 as functions
of ECS and TCR. This allows for a straightforward defini-
tion of an EBM consistent with any combination of ECS and
TCR values. Even for n > 2, Eqd. (16) and (17) remain rel-
evant, as they define a hyperplane where any combination of
ECS and TCR values can be easily obtained. Characteristic
timescales, τi , are typically taken following previous stud-
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ies of n-layer models. FaIR v1.0, for instance, based its 2-
time IRM on the characteristic timescales of the multi-model
mean of a 2-layer model tuned to CMIP5 AOGCMs by Ge-
offroy et al. (2013a).

4 Model description

This section provides descriptions for all SCMs participating
in the first and second phases of RCMIP, with the exception
of the “Held et al. (2010) two-layer model”. This model is
simply a two-layer EBM, which has already been described
in Sect. 3.3.2 regarding n-layer EBMs. For the remaining
models, an overview of their components and development
history is offered first, along with illustrative examples of
their application. Following this, each model is described
in greater detail, following the emissions-temperature cause-
effect chain described in Sect. 3, when applicable. For most
models, this translates into three subsections: “GHG concen-
trations”, “radiative forcing”, and “temperature”, each de-
scribing how the SCM simulates the relevant processes. Spe-
cial attention is given to the carbon cycle in the “GHG con-
centrations” sections, reflecting its role as the primary green-
house gas and the frequent inclusion of dedicated carbon-
cycle simulation schemes in SCMs. To minimise repeti-
tion, the models are generally presented in order of increas-
ing complexity, allowing references to previously discussed
components where appropriate. Tables 1–4 summarise de-
tails about the carbon cycle representations, included radia-
tive forcing agents, temperature modules and technical de-
tails from these models, while Figs. 1 and 2 depict their de-
velopment chronology. Finally, it is important to notice that
in phase 2 of RCMIP, the “AR5-IR” model referred to a 2-
time IRM EBM without any gas cycle representation. In con-
trast, this review adopts a broader definition of the “AR5-IR”
model, referring to a 2-time IRM EBM coupled to a 4-time
IRM simulating atmospheric carbon sinks. This expanded
interpretation aligns with the designation used by the FaIR
SCM publications, where FaIR was originally developed as
an extension of this expanded version. Hence, the adoption
of the broader definition is more relevant for this review.

4.1 EM-GC

The Empirical Model of Global Climate (EM-GC) is an
SCM developed at the University of Maryland College Park,
USA. It is based on an empirical linear regression model that
estimates the Global Mean Surface Temperature (GMST)
anomaly from various natural and anthropogenic sources of
radiative forcing. It does not include a representation of gas
cycles, requiring GHG concentration time series as input.
Despite this simplicity in the GHG cycles, EM-GC is one of
only two models in this review accounting explicitly for mul-
tiple oceanic sources of periodic inter-annual natural vari-
ability, such as El Niño–Southern Oscillation (ENSO) or the

Atlantic Meridional Overturning Circulation (AMOC), the
other model being SCM4OPT. While FaIR v2.1 and WASP
implement optional stochasticity to simulate internal vari-
ability, they lack the explicit connection to oceanic variabil-
ity present in EM-GC. In contrast, SCM4OPT takes a simi-
lar approach to EM-GC, and incorporates natural variability
through an ocean index, although it is limited to ENSO.

The EM-GC model has been utilised for various applica-
tions, including detrending the impacts of volcano eruptions
(Canty et al., 2013), conducting attribution analysis of global
warming (Hope et al., 2020; McBride et al., 2021) and eval-
uating scenario likelihoods to achieve climate goals (Hope
et al., 2017, 2020; McBride et al., 2021; Farago et al., 2025).

First formulated by Canty et al. (2013), the core of the
model has not seen major modifications since its incep-
tion. Hope et al. (2017) compared its output with CMIP5
model results and added the effects of land-cover changes
on albedo. Hope et al. (2020) added a representation of the
ocean mixed-layer heat content, improving the model’s rep-
resentation of heat exchange between atmosphere and ocean
through the modulation of the exchange based on the heat
differential. McBride et al. (2021) extended the historical
record used for model calibration and updated the model to
use Shared Socioeconomic Pathways (SSP) scenarios (Mein-
shausen et al., 2020) instead of Representative Concentration
Pathways (RCP) scenarios (Meinshausen et al., 2011b). Fi-
nally, Farago et al. (2025) updated the expressions estimating
GHG forcing, as well as the estimates for aerosol forcing, to
follow the Sixth Assessment Report (AR6) report (Forster
et al., 2021b).

4.1.1 Model description

The core of the model is defined by the following relationship
between monthly temperature anomaly (T ) and sources of
radiative forcing:

T =
1+ γ
λP

[
FGHG
i +FAER

i +F LUC
i −Qocean

i

]
+C0

+C1 ·SAODi−6+C2 ·TSIi−1+C3 ·ENSOi−2

+C4 ·AMOCi +C5 ·PDOi +C6 · IODi . (18)

The terms between squared brackets include anthropogenic
sources of radiative forcing – elevated GHG concen-
trations (FGHG

i ), aerosols (FAER
i ), LULCC changes in

albedo (F LUC
i ) – as well as the ocean heat sink (Qocean

i ).
These terms are multiplied by a (1+ γ )/λP factor to ac-
count for climate feedbacks, where λP = 3.2 W m−2 °C−1 is
the Planck feedback parameter, determining the temperature
response in the absence of feedbacks, and γ is a calibrated
factor determining the strength of those feedbacks. The GHG
term comprises forcings from CO2, CH4 (including 15 % in-
crease from stratospheric water vapour), N2O, and 31 halo-
genated compounds. In early versions of the model, the equa-
tions from Myhre et al. (1998) were used to estimate the
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Table 1. Summary of carbon cycle representations from the SCMs reviewed in this study. This includes the general type of model used
(Impulse-response model (IRM) or box model), its resolution, as well as the land-, ocean- and permafrost-specific representations (if any).
Inclusion of carbon-relevant processes in these SCMs (fire, precipitation and nitrogen cycle) is also summarised. OML-IRM is shorthand for
ocean mixed layer IRM, and references a specific IR scheme by Joos et al. (1996).

Carbon cycle

Model name Model type Resolution Land Ocean Permafrost Fire Precip. N cycle

ACC2 (V4.3) Box model Global 4 boxes 4 boxes – – – –

AR5-IR 4-time IRM Global – – – – – –

CICERO-
SCM (V1.1)

IRM Global 4-time IRM OML-IRM – – – –

EMGC – – – – – – – –

ESMICON System
dynamics box
model

Global Combined land/ocean 6 boxes 1 box Yes – –

FaIR (V2.1) State-
dependent
4-time IRM

Global – – – – – –

GREB – – – – – – Yes –

Hector (V3.2) Box model Global/biomes
for land,
high-low
latitude boxes
for ocean

3 boxes 4 boxes 1 frozen pool +
1 thawed pool

– – –

Held et
al. (2010)
2-layer model

– – – – – – – –

MAGICC (V7) Box model Global 3 boxes OML-IR 50 latitudinal
bands

– – Yes

MCE (V1.2) Box model –
IRM hybrid

Global 4-time IRM 4 boxes – – – –

OSCAR (V3.3) Box model Regional
biomes for
land, global for
ocean

3 boxes +
3 wood boxes
per biome per
region

Box-equivalent
of modified
OML-IR

1 frozen pool +
3 thawed pools
(2 regions)

Yes Yes –

SCM4OPT (V3.3) Box model Global 3 boxes 4 boxes – – – –

WASP (V3) Box model Global 2 boxes 5 boxes – – – –

forcing from these species concentration time series, along
with radiative efficiencies from WMO (2018). Forcing re-
lated to tropospheric ozone was also added by McBride et al.
(2021) to this term directly as an additional forcing time se-
ries. Similarly, the aerosol and LULCC terms are included
in the model directly as forcing time series data. The former
was taken from a combination of the SSP and RCP databases,
while the latter was based on Table AII.1.2 in IPCC (2013).
In the latest version of the model (Farago et al., 2025), GHG
and aerosol forcings were updated to follow the expressions
and magnitudes from chap. 7 and annex III of the AR6 report
(Forster et al., 2021b).

The ocean heat sink is a prognostic quantity in the model
which, since Hope et al. (2020), is calculated by comput-
ing the difference between temperature anomaly in the at-
mosphere and in the OML (the deep ocean is not considered
in this model). This difference is further modulated by an
ocean heat uptake efficiency that varies according to the ac-
cumulated ocean heat content and past radiative forcing. The
ocean heat content is a key metric of the model, as it is one
of the two quantities, along with global temperature anomaly,
that is used to calibrate it.

The terms outside the brackets represent natural sources
of variability: volcanos through stratospheric aerosol optical
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Table 2. Summary of included sources of radiative forcing in the models reviewed in this study. Generally, ERF should be assumed, although
the underlying mathematical expressions used by the models to compute this quantity may have been originally intended to approximate
SARF. More details can be found in Sect. 3.2 and the individual publications. a Contributions from these sources are included explicitly as
prescribed forcing time series, rather than internally estimated. b ESMICON follows a system dynamics framework and does not compute
radiative forcing estimates. It does, however, include effects of multiple radiative forcing agents.

Radiative forcing agents

Model CO2 CH4 N2O Halogens Trop. Strat. Strat. Aerosols Volc. Solar Contrails LULCC
O3 O3 H2O aerosols irr.

ACC2 (V4.3) Yes Yes Yes 30 Yes Yes Yes Yes Yesa Yesa – –
AR5-IR Yes – – – – – – – – – – –
CICERO-SCM (V1.1) Yes Yes Yes 27 Yesa Yes Yes Yes Yesa Yesa – Yesa

EM-GC Yes Yes Yes 31 Yesa – Yes Yesa Yesa Yesa – Yesa

ESMICON Yesb Yesb – – – – – – – Yesb – Yesb

FaIR (V2.1) Yes Yes Yes 40 Yes Yes Yes Yes Yesa Yesa Yes Yesa

GREB Yes – – – – – – – – – – Yes
Hector (V3.2) Yes Yes Yes 27 Yes – – Yes Yesa – – Yesa

Held et al. (2010) 2-layer model Yes – – – – – – – – – – –
MAGICC (V7) Yes Yes Yes 40 Yes Yes Yes Yes Yesa Yesa Yes Yesa

MCE (V1.2) Yes Yes Yes 41 Yesa Yesa Yesa Yesa Yesa Yesa Yesa Yesa

OSCAR (V3.3) Yes Yes Yes 37 Yes Yes Yes Yes Yesa Yesa Yesa Yes
SCM4OPT (V3.3) Yes Yes Yes 39 Yes Yes Yes Yes Yesa Yesa – Yes
WASP (V3) Yes Yes Yes 27 – – – Yes Yesa Yesa – –

Table 3. Summary of temperature simulation schemes from the models reviewed in this study. This includes the type of module used for
temperature estimation, the resolution of said module, and whether the model includes a representation of inter-annual variability beyond
solar and volcanic forcing, which are often added externally as time series (see Table 2). EBM is shorthand for energy balance model,
UD(E) for upwelling-diffusion(-entrainment), and IRM for impulse response model. The DOECLIM scheme combines a 0D EBM with a
1D diffusion scheme that simulates heat exchange with the deep ocean (Sect. 4.7.3).

Temperature simulation

Model name Model type Resolution Variability

ACC2 (V4.3) DOECLIM Global –

AR5-IR 2-time IRM Global –

CICERO-SCM (V1.1) UD-EBM Hemispheric –

EM-GC Multilinear regression Global Ocean indices

ESMICON System dynamics heat model Global –

FaIR (V2.1) 3-layer EBM Global Optional stochastic noise terms
for temperature and forcing

GREB Gridded 3-layer EBM 3.75°× 3.75° grid –

Hector (V3.2) DOECLIM Global –

Held et al. (2010) 2-layer model 2-layer EBM Global –

MAGICC (V7) UDE-EBM Hemispheric –

MCE (V1.2) 3-time IRM Global –

OSCAR (V3.3) 2-layer EBM Global –

SCM4OPT (V3.3) DOECLIM Global ENSO index

WASP (V3) 6-layer EBM with Global Stochastic noise terms
independent climate feedbacks for temperature and forcing
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Table 4. Summary of technical details about the models reviewed in this study, including available open source implementations, program-
ming languages used to develop them and time resolutions. A permanent archive of the publicly-available models reviewed in this work can
be found in the Code availability section. a This model supports variable timesteps, the shown value reflects the resolution most commonly
used. b OSCAR can run internally with sub-annual timesteps, but output is annual. Last access date for all URLs mentioned in this table:
30 December 2025.

Technical details

Model name Open source implementation Language Temporal
resolution

ACC2 (V4.3) – GAMS 1 year

AR5-IR – – 1 year

CICERO-SCM (V1.1) https://github.com/ciceroOslo/ciceroscm Python 1 year
Executables: https://github.com/openscm/openscm-runner Fortran 1 year

EMGC – IDL 1 month

ESCIMO http://www.2052.info/ESCIMO/ Vensim 1 year

FaIR (V2.1) https://github.com/OMS-NetZero/FAIR Python 1 year

GREB https://github.com/christianstassen/greb-official Fortran 12 h

Hector (V3.2) https://github.com/JGCRI/hector C++/R wrapper 1 year
https://github.com/openclimatedata/pyhector Python wrapper 1 year

Held et al. (2010), 2-layer model https://github.com/openscm/openscm-twolayermodel Python 1 year

MAGICC (V7) https://gitlab.com/magicc/magicc Fortran 1 month
https://github.com/openscm/pymagicc Python wrapper 1 month

MCE (V1.2) https://github.com/tsutsui1872/mce Python 1 yeara

OSCAR (V3.3) https://github.com/tgasser/OSCAR Python 1 yearb

SCM4OPT (V3.3) https://github.com/sooxm/scm4eco GAMS 1/6 year

WASP (V3) https://github.com/WASP-ESM/WASP_Earth_System_Model C++ 1 montha

depth (SAODi−6), total solar irradiance (TSIi−1), El Niño–
Southern Oscillation (ENSOi−2), the Atlantic Meridional
Overturning Circulation (AMOCi), the Pacific Decadal Os-
cillation (PDOi), and the Indian Ocean Dipole (IODi). These
are time series required as input by the model. Detailed ex-
planations of the indices used to characterise each of these
processes can be found in the studies cited above. It is worth
noting that these sources of natural variability are typically
turned off when the model is used to make future climate pre-
dictions due to the difficulty in deriving a timeseries that can
reasonably predict the behaviour of these natural processes.
C0–6 are calibration coefficients determined by minimising a
cost function defined as the difference between model predic-
tions and historical observations for temperature and ocean
heat content. The subscripts i reference the monthly resolu-
tion of the model, and the time lags between the sources of
radiative forcing and their effects (e.g., the model assumes
that the volcano contribution, SAODi−6, takes six months to
take effect).

4.2 AR5-IR

One of the many contributions of the IPCC Fifth Assessment
Report (AR5) (Myhre et al., 2013) was the creation of a min-
imal set of equations to simulate the concentration, radiative
forcing and temperature impact of CO2 in the atmosphere
(Myhre et al., 2013). The model extensively employs IRMs
(see Sect. 3.3.3), using a 2-time IRF to estimate the tem-
perature response to forcing and a 4-time IRF to simulate
the atmospheric carbon sinks, hence the AR5-IR name. This
transparent formulation was instrumental in generating the
climate projections presented in the report and underpins the
conclusions drawn from it.

In this review, the term “AR5-IR” follows the broader us-
age found in the FaIR literature, encompassing both the tem-
perature and carbon sink components. This contrasts with the
definition used in RCMIP Phase 2, where “AR5-IR” referred
solely to the energy balance component without representa-
tion of the gas cycle. This adoption enables a clearer link to
the FaIR SCM, which was initially developed as an exten-
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Figure 1. Chronology of SCM development. The evolution of each model is represented along a timeline, with all published references
documenting its development superimposed on the corresponding point in time. Colours indicate the programming language used for each
model’s implementation, as shown in the legend. No public implementation was found for AR5-IR, so no specific programming language was
associated with this model (None). Bands around MAGICC’s timeline denote a wrapper that allows interfacing with a different programming
language (Python) than the model’s native implementation.

sion of this broader “AR5-IR” model, and is reviewed later
in Sect. 4.3.

4.2.1 GHG concentrations

The only GHG species included in AR5-IR is carbon diox-
ide. Its gas cycle is simulated by a 4-time-constant IRM
based on the work of Joos et al. (2013), which argued that
four time components are enough to emulate the evolution of
atmospheric carbon concentrations from ESMs following a
100 Gt C pulse. This approach can be interpreted as a distri-
bution of the atmospheric carbon content into four different
reservoirs (Ri), each governed by a mass balance equation as
described in Sect. 3.1.1 (compare to Eq. 13):

dRi
dt
= aiE−

Ri

τi
, for i = 1, . . ., 4 (19)

where ai is the proportion of the total anthropogenic emis-
sions (E, in ppm per year) allocated to each reservoir. These
reservoirs do not correspond to any single physical entity, but
rather combine various atmospheric sinks operating at simi-
lar timescales.

Values for a1–4 and τ1–4 are provided in Myhre et al.
(2013), borrowed from Joos et al. (2013). Broadly speaking,
these pools account for:

– Indefinite airborne fraction (a0 = 0.2173 and
τ0= infinite years – usually implemented as a large
number to allow incorporation into an exponential-sum
framework, e.g., 106 years in FaIR v1.0 and 109 years
in FaIR v2.0).

– Deep ocean sink (a1 = 0.2240 and τ1 = 394.4 years).

– Biospheric and thermocline sinks (a2 = 0.2824 and
τ2 = 36.54 years).

– Rapid biospheric and ocean mixed-layer sink (a3 =

0.2763 and τ3 = 4.304 years).

Once the different Ri are calculated, the total atmospheric
concentration of CO2 is simply the sum of pre-industrial
concentrations (C0) and all considered reservoirs: C(t)=
C0+

∑
i

Ri .
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Figure 2. Chronology of SCM development. The evolution of each model is represented along a timeline, with all published references
documenting its development superimposed on the corresponding point in time. Colours indicate the programming language used for each
model’s implementation, as shown in the legend and Table 4. Bands around Hector’s timeline denote a wrapper that allows interfacing with
different programming languages (Python and R) than the model’s native implementation.

4.2.2 Radiative forcing

To compute the resulting radiative forcing from the
previously-simulated carbon concentration, AR5-IR multi-
plies the atmospheric burden (the sum of all Ri pools) by
the carbon radiative efficiency (A). This factor represents
the radiative forcing per additional unit of carbon mass, and
is approximated by taking the limit of carbon concentration
anomaly as it approaches 0 in the common logarithmic rela-
tionship of Myhre et al. (1998). This limit results in a radia-
tive efficiency of carbon ofA= 1.7517×10−15 W m−2 kg−1.
The applicability of such scheme is limited to small perturba-
tions, which is why SCMs typically use more complex forc-
ing schemes with wider applicability.

4.2.3 Temperature

The last step in the emissions-climate change chain is to
calculate the increase in surface temperature resulting from
this radiative forcing. AR5-IR follows Boucher and Reddy
(2008) and employs a two-time-constant IRM to produce
temperature anomaly estimation, taking n= 2 in Eq. (15).
Similarly to the equivalent 2-layer model, this temperature
response can be interpreted as the addition of two contribu-
tions: a fast contribution, including effects from atmosphere,

land and the OML, and a slow contribution accounting for
deep-ocean heat uptake.

4.3 FaIR

The Finite-amplitude Impulse Response model (FaIR) is an
SCM primarily developed by researchers at the universities
of Oxford and Leeds. Despite its short life, it has gained sig-
nificant popularity among SCM users and the broader cli-
mate modelling community. This is likely due to its rel-
ative simplicity, accurate performance and ease of usabil-
ity, as well as its status as an open-source model. FaIR has
been used in IPCC reports, such as the Special Report on
1.5 °C (IPCC, 2018) and the Sixth Assessment Report (IPCC,
2021b), to estimate future increases in radiative forcing. Ad-
ditionally, it was used in an analysis of the Global Methane
Pledge (Forster et al., 2021a) and research on substitut-
ing Hydrofluorocarbons (HFCs) in air-conditioning units for
propane (Purohit et al., 2022).

The initial version, v1.0 (Millar et al., 2017), extended the
AR5-IR model (Myhre et al., 2013) by introducing a new
parameter that allows carbon and climate feedbacks to influ-
ence the atmospheric carbon sinks. This version was limited
to CO2 as the sole forcing agent. However, FaIR v1.3 (Smith
et al., 2018) extended the model to include a comprehensive
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list of GHG species and radiative forcing agents. In particu-
lar, version 1.3 included a representation of 31 GHG species:
CO2, CH4, N2O, Kyoto Protocol covered species – HFCs,
Perfluorocarbons (PFCs), SF6 – and Montreal protocol cov-
ered species – Chlorofluorocarbons (CFCs), Hydrochloroflu-
orocarbons (HCFCs). It also accounted for non-GHG forc-
ing agents such as tropospheric and stratospheric ozone,
stratospheric water vapour, contrails, aerosols (including vol-
canogenic), black carbon on snow, land use change and so-
lar irradiance. This version also adopted the use of ERF, al-
lowing the specification of agent-specific efficacies to modify
the temperature response per unit of forcing (Hansen et al.,
2005).

The increased complexity resulting from these extensions
was addressed in v2.0 (Leach et al., 2021). This version sig-
nificantly simplified the model by introducing a set of six
simple equations to determine the behaviour and temperature
impact of all GHG and aerosol species. One of these equa-
tions generalised the carbon representation from FaIR v1.0 to
all GHG species, while another equation generalised the con-
version from atmospheric species concentrations to radiative
forcing. Additionally, the number of layers in its EBM was
increased from two to three.

The last published version, v2.1 (Smith et al., 2024), intro-
duced stochastic elements to the climate module, increased
the flexibility of the methane lifetime and generalised its
treatment of aerosol-cloud interactions.

4.3.1 GHG concentrations

Initially, FaIR v1.0 extended the IRM used to simulate the
carbon cycle in the AR5-IR model (Sect. 4.2.1) with an ad-
ditional equation to allow climate- and carbon-carbon feed-
backs. This scheme was later applied to all other included
GHGs (CH4, N2O, and 40 other halogenated gases, as well as
aerosols) in FaIR v2.0, albeit in a simplified manner. Specif-
ically, FaIR v1.0 modified the IRM described by Eq. (19) in
the AR5-IR model to include a state-dependent gas lifetime
through the addition of a scale factor α:

dRi
dt
= aiE−

Ri

ατi
, for i = 1, . . ., N (20)

and

C(t)= C0+

n∑
i=1

Ri(t) (21)

which effectively alters the sink strength for that gas species.
Similarly to AR5-IR, the number of carbon pools was set to
four (N = 4), although this is user-definable, while the num-
ber of sinks for all other species is kept to one by default.
Note that since v2.0, the state-dependent factor α is also ap-
plied to all other species, but other than CO2 and CH4 the
default α = 1 parameter is not modified.

To determine the appropriate value of this parameter
for carbon, FaIR v1.0 (Millar et al., 2017; Smith et al.,

2018) used the 100-year integrated impulse-response func-
tion (iIRF100) derived by Joos et al. (2013). This function
multiplies the estimated average airborne fraction by the in-
tegration time over a 100-year time span, thereby captur-
ing temporal variations in the remaining airborne carbon.
By equating this to a linear function dependent on temper-
ature (T ) and land-ocean carbon stock anomalies (Gu), the
value of α can be determined at each each time step, incorpo-
rating temperature and carbon feedbacks into the gas cycle.
However, solving this equation is computationally expensive,
so from v2.0 (Leach et al., 2021) onwards a simplified expo-
nential solution was adopted, which they present as a reason-
able approximation for a “wide range of values”:

α(t)= g0 exp
(
r0+ ruGu(t)+ rtT (t)+ raGa(t)

g1

)
(22)

with

Ga(t)=

n∑
i=1

Ri(t)

Gu(t)=

t∑
s=t0

E(s)−Ga(t)

g0 = exp

−
n∑
i=1
aiτi

(
1− e−100/τi

)
g1


g1 =

n∑
i=1

aiτi

(
1− (1+ 100/τi)e−100/τi

)
where g0 and g1 are new parameters controlling the magni-
tude and gradient of α. The raGa(t) term represents the sen-
sitivity of the gas species to its own atmospheric burden. This
has a small effect on CO2 atmospheric lifetime, but it is an
important factor in methane lifetime. In v2.1 this formulation
was further refined for methane, with a new atmospheric life-
time modulated by the burden of an arbitrarily large number
of species:

lnαCH4 = ln(1+ rtT (t))+
∑
i

ln(1+ riGi(t)) (23)

where ri denotes the sensitivity to the abundance of
species i, Gi . This Gi represents either atmospheric concen-
trations for GHGs or emission rates for short-lived climate
forcers, since their rapid decay prevents any significant accu-
mulation in the atmosphere.

No lifetime sensitivities are assumed for nitrous oxide and
halogen gases (ru, rT , ra = 0). Lifetime estimates for these
species are user-definable. The latest available calibration
(Smith et al., 2024) employed the AR6 values (Smith et al.,
2021a). Before V2.1, aerosols were converted from emis-
sions to concentrations by setting τ = 1 and taking a con-
version factor between emissions and concentrations of 1.
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Since V2.1, however, to account for their short lifetimes, the
concentration step is bypassed and the forcing is computed
using emissions directly.

Finally, while FaIR does not natively simulate permafrost
thaw, Steinert and Sanderson (2025) extended v1.6 by cou-
pling it with a simplified permafrost carbon response model.

4.3.2 Radiative forcing

To calculate the ERF, FaIR v2.0 generalised the expressions
offered in Myhre et al. (2013) to a single equation, approx-
imating the concentration-forcing relationships for all well-
mixed greenhouse gases (WMGHGs) (or emissions-forcing
in the case of aerosols due to their short atmospheric life-
times) by:

Fdet(t)=

forcing
agents∑
x

[
f x1 · ln

(
Cx(t)

Cx0

)
+ f x2 ·

(
Cx(t)−Cx0

)
+f x3 ·

(√
Cx(t)−

√
Cx0

)]
+Fext(t). (24)

Each term is multiplied by an f xi factor, allowing the model
to account for indirect effects by modulating the direct forc-
ing effects from GHG concentration (i.e., generating ERF es-
timations). This factor also enables the model to completely
switch off a term for a given species. For instance, CO2
forcing is approximated by a logarithmic and squared root
term (IPCC, 2001), so f CO2

2 = 0. Methane and nitrous ox-
ide contributions are approximated by the square-root term
exclusively, f CH4,N2O

1,2 = 0. Equally, setting f x1,3 = 0 reduces
Eq. (24) to the common linear expression often used for
minor GHGs, with f x2 becoming the radiative efficiency.
This is used by FaIR to approximate the contribution from
halogenated gases and the direct effects of aerosols (scaling
with sulfate, organic carbon, and black carbon emissions).
Fext covers any exogenous forcing, such as natural forcings
(volcanic activity and solar cycles) and albedo effects. These
are included in the model directly as forcing time series.

Beyond Eq. (24), FaIR also includes other sources of ra-
diative forcing which may depend on one or multiple species.
It parametrises both tropospheric and stratospheric ozone
contributions following Thornhill et al. (2021) as a linear
function of methane; nitrous oxide and ozone-depleting sub-
stances (ODSs) concentrations; as well as nitrate aerosol,
carbon monoxide, and volatile organic compounds (VOCs)
emissions. Contributions from stratospheric water vapour,
black carbon on snow, and aviation contrails are scaled lin-
early with, respectively, tropospheric methane concentra-
tions, black carbon emissions, and aviation sector NOx emis-
sions. Finally, indirect aerosol forcing effects due to cloud in-
teractions are approximated as the addition of a logarithmic
term from sulfate aerosol emissions and a linear term from
organic carbon and black carbon emissions.

FaIR v2.1 increased the model’s flexibility by implement-
ing the other three main approaches to radiative forcing:

Myhre et al. (1998), Etminan et al. (2016) and Meinshausen
et al. (2020). Users can choose which scheme to use, with the
model defaulting to Meinshausen et al. (2020) as the most ac-
curate among the four. The expression computing the forcing
from aerosol-cloud interaction was also updated following
Smith et al. (2021b), generalising it to potentially include the
effects from more species.

4.3.3 Temperature

FaIR calculates the temperature response using the IRM
formulation of an n-layer EBM, similar to AR5-IR (see
Sect. 3.3.3). However, successive versions of FaIR have in-
creased the complexity of the EBM. V2.0 increased the num-
ber of temperature components (or layers) from two to three,
following the findings of Tsutsui (2017, 2020) and Cummins
et al. (2020), which suggest three layers are better suited to
emulate impulse-like forcing scenarios. Subsequently, ver-
sion 2.1 adopted the model of Cummins et al. (2020), in-
corporating stochastic terms in the temperature and radiative
forcing responses, as well as allowing for an arbitrarily large
number of ocean layers greater than two. In the equivalent n-
layer formulation, the three-layer case can be expressed as:

C1
dT1(t)

dt
= Ftot(t)− k1T1(t)− k2 (T1(t)− T2(t))+ ξ(t)

C2
dT2(t)

dt
= k2 (T1(t)− T2(t))− εk3 (T2(t)− T3(t))

C3
dT3(t)

dt
= k3 (T2(t)− T3(t)) (25)

where C1–3, k1–3 and T1–3 denote the heat capacities, heat
transfer coefficients with the layer above (k1 being the cli-
mate feedback parameter) and temperature of the three lay-
ers respectively. ε is the deep ocean efficacy parameter
(Held et al., 2010; Geoffroy et al., 2013a) as discussed in
Sect. 3.3.2. The only difference with the standard 3-layer
EBM, as described in Eq. (11), is the addition of two stochas-
tic disturbances emulating climate’s internal variability: one
directly affecting the temperature response (ξ ), and another
affecting the total radiative forcing term (Ftot), which results
from the combination of the deterministic ERF determined
earlier (Fdet) and a red-noise component (ζ ) simulating time-
correlated variations from the mean (ζ ):

Ftot = Fdet+ ζ (26)
dζ
dt
=−γ ζ + η (27)

where γ is a parameter controlling the degree of temporal
auto-correlation and η represents a white noise addition.

4.4 MCE

The Minimal CMIP Emulator (MCE), developed by Dr. Ju-
nichi Tsutsui at the Central Research Institute of Electric
Power Industry, Japan, combines a three-constant IRM EBM
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with a carbon cycle component that utilises both a box-
based scheme and an IRF scheme. Tsutsui (2020) employed
this model to estimate ECS and TCR values using output
from CMIP5 and Coupled Model Intercomparison Project
Phase 6 (CMIP6) ESMs. Notably, MCE was instrumen-
tal in demonstrating that a minimum of three characteristic
timescales/boxes in EBMs is required to accurately approxi-
mate short-term ESM temperature response following instan-
taneous radiative forcing changes (Tsutsui, 2017), which is
particularly relevant for abrupt forcing scenarios such as vol-
canic eruptions, geoengeneering, and certain idealised model
scenarios (e.g., abrupt CO2 doublings and quadruplings).

Originally introduced by Tsutsui (2017), MCE was ini-
tially positioned at the simpler end of the SCM complex-
ity spectrum, driven only by two core equations: a bi-modal
forcing expression to convert CO2 concentrations into radia-
tive forcing, and a three-time IRM to translate that forcing
into surface temperature anomalies. Recently, Tsutsui (2022)
presented version 1.2 of the model, which incorporates a
more sophisticated carbon cycle and non-CO2 forcing cal-
culations. This updated version employs a four-time IRM for
the land component based on Joos et al. (1996), and a four-
box model for the ocean component based on Hooss et al.
(2001). Figure 3 provides an illustration of this enhanced
model structure.

4.4.1 GHG concentrations

The new carbon cycle module was introduced in the latest
version of the model, v1.2 (Tsutsui, 2022), where further de-
tails can be found. Fundamentally, this module consists of a
four-box model for the ocean-atmosphere system and an im-
pulse response scheme for the land component. Section 3.1.2
and 3.3.3 provide more details on these types of models.

Starting with the ocean-atmosphere component, this is im-
plemented as a four-box scheme (analogous to Eq. 11 with
n= 4):

dc0

dt
=−

η1

hs
cs+

η1

h1
c1+E− f

dc1

dt
=
η1

hs
cs−

η1+ η2

h1
c1+

η2

h2
c2

dc2

dt
=
η2

h1
c1−

η2+ η3

h2
c2+

η3

h3
c3

dc3

dt
=
η3

h2
c2−

η3

h3
c3 (28)

where ck is the excess carbon in layer k, hk is the depth of
the layer, ηk is the exchange coefficient between layers k−1
and k, E represents anthropogenic emissions, and f denotes
the carbon uptake by the land component. A peculiarity of
this model is that the top layer (c0) represents both the atmo-
spheric and ocean mixed layer carbon pools. Consequently,
c0 is partitioned into atmospheric (ca) and oceanic (cs) ex-
cess carbon, with the distribution between them being calcu-
lated through a complex chemical equilibrium scheme that

includes temperature feedbacks. Parameters hk and ηk have
been calibrated such that the evolution of c0 tracks an equiv-
alent four-constant IRM for airborne fraction in Hooss et al.
(2001). The characteristic timescales are set to 1.271, 12.17,
59.52 and 236.5 years, calibrated on a three-dimensional
ocean carbon cycle model (Hooss et al., 2001).

Terrestrial carbon uptake is governed by an IRM with
four characteristic timescales (τi), corresponding to four cat-
egories of land carbon: vegetation, wood, detritus and soil
organic carbon. Carbon input to the terrestrial system orig-
inates from an NPP flux, which is modulated by a sigmoid
function dependent on atmospheric CO2 concentration to ac-
count for fertilisation effects (βf([CO2])). Thus, the land car-
bon uptake is expressed as:

f (t)=

4∑
i=0

dci
dt
=

4∑
i=0

(
βf(t)NPP0Ãiτi −

ci

τi

)
(29)

where NPP0 is the pre-industrial net primary production, ci is
the carbon anomaly of the ith land carbon category and Ãi is
the amplitude of the ith IRF. Notice that the coefficient Ai
in Eq. (13) corresponds to the Ãiτi product in Eq. (29).
Values for τi and Ãi are set to 2.9, 20, 2.2 and 100 years
and 0.70211, 0.013414, −0.71846, and 0.0029323 yr−1, re-
spectively. These values were borrowed from Joos et al.
(1996), where the IRM was originally presented.

The model’s representation of non-CO2 sources of radia-
tive forcing remains limited. It does not include non-CO2 gas
cycles, requiring the use of prescribed concentration time se-
ries for CH4, N2O and halogenated gases to calculate the
resulting radiative forcing. This is set to change in a future
V1.3 version, where a simple gas cycle model will predict
non-CO2 concentrations from emissions (private communi-
cation). Similarly, MCE includes radiative impacts of tropo-
spheric and stratospheric ozone; stratospheric water vapour;
aerosols, including volcanic aerosols; solar irradiance; con-
trails; and LULCC albedo as prescribed forcing time series.

4.4.2 Radiative forcing

The radiative forcing from CO2 is calculated using the stan-
dard logarithmic expression (Myhre et al., 1998) for concen-
trations up to twice the pre-industrial:

FCO2(x)= α ln

(
CCO2(t)

C
CO2
0

)
(30)

where α is a scaling parameter and x is the ratio of CO2 con-
centration relative to the pre-industrial level. For higher con-
centrations, up to four times the pre-industrial level, MCE
uses:

F̃
CO2
2<x<4(x)= (β − 1)

(
FCO2(x)− 2FCO2(2)

)
·

(
2FCO2(x)

FCO2(2)
− 1

)
+βFCO2(x) (31)
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Figure 3. Illustration of model structure in MCE v1.2. The SCM consists of a three-time IRM to calculate the thermal response and a carbon
cycle model comprising a four-time IRM for the land and a four box model for the ocean. Figure based on Tsutsui (2022, Fig. 1).

where β = F̃CO2(4)/FCO2(4) represents a model-dependent
scaling factor for the transition from the first to the second
doubling of CO2. Both α and β have been calibrated to repli-
cate results from CMIP models (Tsutsui, 2020). For x > 4,
the quadratic term in Eq. (31) is omitted, and Eq. (30) is
reused with an adjustment such that the forcing is continu-
ous at x = 4.

If non-CO2 concentration time series are provided, MCE
uses the expressions from Etminan et al. (2016) to calculate
the forcing from methane and nitrous oxide, and from Myhre
et al. (2013) for halogenated gases.

4.4.3 Temperature

To translate the total radiative forcing (F ) into a temperature
anomaly (T ), the model’s default is a three-time IRM (a two-
time IRM is also available) as described in Eq. (12):

T (t)=

t∫
0

F(t ′)

λ

3∑
i

Ai

τi
exp

(
−
t − t ′

τi

)
dt ′, (32)

where τi and Ai are the characteristic times and amplitudes
of the ith decaying exponential used in the IRM, and λ is the
climate feedback parameter. The three characteristic times τi
are approximately 1, 10 and > 100 years. Notably, similar
to Eq. (29), the amplitudes from Eq. (12) have been slightly
redefined in Eq. (32), so Ai in Eq. (12) correspond to Ai/λτi
in Eq. (32).

4.5 WASP

The Warming, Acidification and Sea-level Projector (WASP)
is an SCM developed by Dr. Philip Goodwin at the Univer-
sity of Southampton. The model is characterised by its box-

model framework, which is applied both to its carbon cycle
and its EBM, with a particular focus on the oceanic compo-
nent of the climate system. WASP has played a fundamental
role in various studies, including an examination of the sur-
face warming after cessation of carbon emissions (Williams
et al., 2017), the generation of climate projections based on
a history-matching model calibration (Goodwin et al., 2018)
and a cost analysis of adaptation strategies to sea-level rise
for different scenarios (Brown et al., 2021).

WASP V1 was initially presented by Goodwin (2016) as
an 8-box model simulating the carbon flows through the
atmosphere-land-ocean system and the heat exchange be-
tween atmosphere and ocean, as depicted in Fig. 4. A com-
prehensive mathematical specification of the model is pro-
vided in its appendix. Subsequently, Goodwin et al. (2017)
augmented the model to include a representation of global
sea-level change, including thermosteric and isostatic con-
tributions. The following year, WASP V2 (Goodwin, 2018)
further refined the model by incorporating time-evolving cli-
mate feedback parameters in its EBM, and by including
volcanic and solar forcings. Goodwin et al. (2018) intro-
duced stochasticity to the model temperature response. Fi-
nally, WASP V3 (Goodwin and Cael, 2021) increased the
granularity of the model’s forcing representation, separating
the effects from different forcing agents, updated the model
to use SSP scenarios instead of RCPs, and included stochas-
ticity in the model’s forcing representation.

4.5.1 GHG concentrations

The only species whose atmospheric concentration is com-
puted prognostically in WASP is carbon dioxide. All other
species are included indirectly, either through radiative forc-
ing data in V1 and V2, or through prescribed concentration
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Figure 4. Diagram of the carbon and heat flows in the WASP SCM. Image based on Goodwin (2016, Fig. 2).

data in V3. WASP’s carbon cycle is an eight-box scheme,
with five of those boxes dedicated to the ocean. For all boxes,
carbon stocks are tracked using the carbon anomaly with re-
spect to pre-industrial stocks.

The key mechanism determining the distribution of an-
thropogenic carbon across the system in this SCM is ocean
carbon undersaturation (Goodwin et al., 2015). This measure
indicates the amount of carbon the ocean needs to absorb to
reach equilibrium with the atmosphere, and is calculated us-
ing a relatively complex scheme depending on atmospheric
carbon content, cumulative airborne emissions, an equivalent
carbon emissions term accounting for the ocean temperature-
CO2 solubility feedback (Goodwin and Lenton, 2009) and
the buffered carbon inventory (Goodwin et al., 2007). The
further the ocean is from equilibrium, the more carbon it ab-
sorbs, with the evolution of ocean layers towards an equilib-
rium with the OML and the atmosphere modelled via decay-
ing exponentials. How rapidly each layer approaches equi-
librium is dictated by the volume of each box and the char-
acteristic restoring e-folding timescale of each ocean layer.
This model also uses the amount of carbon in the atmosphere
and the carbon undersaturation in the OML to simulate ocean
acidification, using the carbonate chemistry solver by Fol-
lows et al. (2006) to estimate the pH change.

Comparatively, the land carbon cycle is simpler than its
ocean counterpart. NPP transfers carbon from the atmo-
sphere to a vegetation box, which eventually decays to a soil
box through a litterfall flux and returns to the atmosphere
via a heterotrophic respiration flux. The magnitude of NPP is
influenced by temperature (linear dependence) and CO2 fer-
tilisation effects (log dependence). Similarly, the effects of
surface warming on heterotrohic respiration are incorporated
through a linear influence on soil residence time.

4.5.2 Radiative forcing

Originally, WASP included three sources of radiative forc-
ing. First, atmospheric carbon dioxide, whose radiative
forcing is estimated via the logarithm of the increase
since pre-industrial concentrations. Second, Kyoto-protocol
agents (WMGHGs and CFCs), taking a forcing timeseries
from RCP scenarios as input. Third, non-Kyoto-protocol
agents (mainly aerosols), scaled proportionally to Kyoto-
protocol agents. This division is still employed if the model
is used to run any RCP scenario. However, since its update
to SSP scenarios in Goodwin and Cael (2021), WASP’s rep-
resentation of radiative forcing takes non-CO2 species con-
centrations as input and distinguishes between the following
agents: CO2, calculated following the logarithmic expression
in Myhre et al. (2013); CH4 and N2O, following Etminan
et al. (2016); 27 halogenated species, using radiative efficien-
cies from Smith et al. (2018); and aerosols, including both
direct and indirect contributions from black carbon, organic
carbon, sulphates, nitrous oxides, ammonia and VOCs, bor-
rowing the scheme from FaIR V1.3 (Smith et al., 2018). Ad-
ditionally, since Goodwin (2018), the model includes the ef-
fects of solar and volcanic radiative forcings via forcing time
series.

To represent the internal variability in Earth’s energy im-
balance, Goodwin and Cael (2021) included a noise term in
the model’s radiative forcing with parameters tuned to emu-
late the monthly and annual root-mean-square energy imbal-
ance in Trenberth et al. (2014).

4.5.3 Temperature

WASP follows the common energy balance model approach
(see Eq. 7), with the increase in surface temperature being
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proportional to the total radiative forcing minus the heat ab-
sorbed by the Earth system, which in this model is limited
to the ocean. To determine this heat uptake, a similar ap-
proach to the carbon cycle is employed: total radiative forc-
ing pushes the heat content of the atmosphere away from
equilibrium with the OML, inducing a heat flux into this
mixed layer and the four deeper ocean layers. This disequi-
librium is quantified by computing the eventual heat content
of the OML required to balance the instantaneous total ra-
diative forcing through a linear equivalence relationship. The
ocean heat uptake at each time step is then determined based
on the difference between the current heat content of the
OML and its equilibrium heat content. Similar to the carbon
cycle, the flux of heat from the OML to deeper ocean layers
is modelled by decaying exponentials that push the system
towards a new equilibrium. The characteristic timescales for
each ocean box are the same for both the heat and carbon
schemes.

Goodwin (2018) further refined the model’s EBM by
incorporating i forcing-agent-specific climate feedbacks
that can vary independently on a set of j feedback pro-
cesses (λi,j ), instead of a single climate feedback applica-
ble to all forcing agents (λ). In practice, this translated to a
reformulation of Eq. (7) into:

1T =

(
1−

N(t)

F (t)

)∑
i

 Fi

λplanck+
∑
j

λi,j (t)

 (33)

where N is the heat flux towards the surface (dH/dt in
Eq. 7), λplanck is the Planck climate sensitivity (Caldwell
et al., 2016), and F and Fi are the total and agent-specific
radiative forcings. Values for the new parameters were con-
strained by constructing a large ensemble of simulations us-
ing ranges of climate feedbacks from CMIP5 models and ap-
plying observational constraints.

The EBM described so far produces a deterministic tem-
perature response. However, since Goodwin et al. (2018),
this response has been further modified by a stochastic source
of variability. Specifically, a noise term was introduced for
both surface air temperature and sea surface temperature,
which was calibrated to reproduce the magnitude and auto-
correlation properties observed during the historical period.

4.6 GREB

As the sole model in this review with an explicit grid division
of the Earth’s surface, the Globally Resolved Energy Bal-
ance (GREB) serves as a bridge between globally-averaged
SCMs and general circulation models (not ESMs, as GREB
does not include a carbon cycle). While other SCMs, such
as OSCAR and Hector, use box models to represent biomes,
and most models use an EBM with multiple layers, GREB
is the only SCM in this review employing an explicit grid to
simulate Earth’s climate. Additionally, GREB has been de-
signed primarily to enhance the physical understanding of

processes driving the mean climate state, particularly for uni-
versity teaching. As a result, it resolves a somewhat atypical
list of processes: solar and thermal radiation, hydrological
cycle, sensible heat, atmospheric circulation simulating ad-
vective and diffusive transport, sea ice, and heat absorption
by the subsurface ocean (deep ocean is not considered).

The GREB model has been used in several studies: Dom-
menget et al. (2019) used it to create a climate scenario
database and to enhance the understanding of processes driv-
ing the mean climate state; Latif et al. (2023) investigated
the impacts of wind-induced latent heat flux changes on the
sea surface temperature of the Pacific ocean using GREB;
and Xie and Dommenget (2023) explored climate-ice sheet
feedbacks with GREB-ISM (Xie et al., 2022), a coupling of
GREB with an ice-sheet model.

The initial version of GREB was presented by Dommenget
and Flöter (2011), with its hydrological cycle being further
refined by Stassen et al. (2019) to improve representations of
precipitation, evaporation and horizontal transport of water
vapour.

4.6.1 Model description

Lacking a representation of any gas cycles beyond water
vapour dynamics (see hydrological cycle below), GREB es-
timates global temperature anomaly through a 3-layer EBM
(atmosphere, OML, subsurface ocean). This EBM possesses
two main peculiarities that set it apart from other SCMs in
this review. First, this EBM focuses on the surface energy
balance, as opposed to other SCMs that focus on the top-of-
atmosphere energy balance. This allows GREB to include ex-
plicitly turbulent heat fluxes like the sensible and latent heat
fluxes. Second, its resolution is unusually high for an SCM,
operating at 12h timesteps in a 3.75°× 3.75° cell grid. For
each cell, the surface temperature anomaly is governed by:

C
dTsurf

dt
= Fsolar+Fthermal+Flatent+Fsense+Focean

+Fice+Fcorrect. (34)

These are all the forcing agents included in the model,
which also determine the remaining prognostic variables:
atmosphere temperature anomaly, subsurface temperature
anomaly, humidity of surface layer, and thickness of ice
cover since GREB-ISM (Xie et al., 2022). Processes asso-
ciated with these agents are described below, except Fcorrect,
which is an empirical heat flux to correct for model error.
The cell heat capacity, C, varies depending on the nature of
the cell (ice-free ocean, frozen ocean or land). Note this is
a similar equation to that describing the typical SCM EBM
(see Eq. 8) with the only difference being that the tempera-
ture response (λT ) is part of the forcing terms in Eq. (34).
Table 1 of Dommenget and Flöter (2011) offers a list of all
prognostic and diagnostic GREB’s variables, as well as the
required boundary conditions.
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These forcing terms are determined by several parame-
terised processes, which are illustrated in Fig. 2 from Dom-
menget and Flöter (2011). These are:

– Solar radiation: the absorbed incoming solar radia-
tion (Fsolar) is determined by the 24 h average of radi-
ation reaching the surface, modulated by the day of the
year and surface as well as cloud albedo effects.

– Thermal radiation: the net thermal radiation (Fthermal)
is the difference between the black body emission from
the Earth’s surface and the downward thermal radiation
from the atmosphere. The latter depends on atmospheric
temperature, CO2 concentration (only GHG included in
the model, required as input), vertical integrated atmo-
spheric water vapour concentration, and cloud cover.
Although this is the forcing contribution closest to other
SCM forcing, the atypical nature of the included pro-
cesses results in slightly atypical parametrisations for
an SCM.

– Hydrological cycle: although parameterised, GREB is
the only SCM to include a hydrological cycle. The
scheme used to simulate it is relatively complex, resolv-
ing three main processes: evaporation, precipitation and
moisture transport. Evaporation is simulated via a bulk
formula approach, which, in turn, determines the latent
heat release to the surface layer (Flatent). Precipitation
is governed by the upward motion of air and its humid-
ity (a prognostic variable of the model), while moisture
transport is modelled through advection and diffusion
processes, following mean winds. Although present in
Dommenget and Flöter (2011), these processes were
further refined in Stassen et al. (2019), which is the best
resource for more details about GREB’s hydrological
cycle.

– Sensible heat: the amount of sensible heat exchanged
between the surface and the atmosphere (Fsense) is pa-
rameterised via the difference between surface and at-
mospheric temperatures. Atmospheric temperature is a
prognostic property of the model that depends on sensi-
ble heat exchange with the surface, thermal atmospheric
radiation, latent heat released by water condensation in
the atmosphere, and atmospheric circulation.

– Atmospheric circulation: the model includes a seasonal
mean atmospheric circulation independent from forc-
ing. Horizontal transport of heat and humidity is de-
termined via diffusion and advection parameterisations
and is further modulated by topographical effects.

– Subsurface ocean: the heat exchange between the sub-
surface and the OML (Focean) in GREB is determined
by the difference in temperature between the two ocean
layers, which controls the amount of turbulent mixing

and deeper-water entrainment into the surface layer. No-
tice that GREB does not consider the impacts of the
abyssal ocean, with the maximum depth of the subsur-
face ocean layer being only three times the OML depth
(between 100 and 1000 m), hence the reference to a sub-
surface ocean, rather than a deep ocean. The subsurface
ocean temperature (Tocean) is another prognostic prop-
erty of the model, which depends on the amount of heat
absorbed since the beginning of the simulation. Finally,
it is worth noting that GREB also includes an additional
empirical ocean heat flux to counteract model drifts in
the ocean temperature.

– Ice sheets: Xie et al. (2022) coupled the previously de-
scribed model with an ice sheet model, creating GREB-
ISM. This enhanced version of GREB incorporates
three types of ice surfaces: land ice, floating ice (ice
shelves), and ice over ocean. The thickness of these ice
layers is a prognostic variable within the coupled model,
evolving in response to the climatology provided by the
original GREB model. In turn, the ice module intro-
duces an additional heat flux to Eq. (34) (Fice), rep-
resenting the impact of ice on heat exchange with the
atmosphere. Furthermore, the presence of dynamic ice
sheets influences both albedo and topography of the cli-
mate module. Figure 2 in Xie et al. (2022) offers an il-
lustration of the coupling between the ice sheet model
and GREB, outlining the exchange of properties be-
tween the two components that conform GREB-ISM.

4.7 Hector

Hector is a box-based SCM developed at the Pacific
Northwest National Laboratory, emphasizing modularity and
clearly defined interfaces to support flexible integration and
development (Hartin et al., 2015). Beyond the open-source
versions presented in Table 4, this model also includes
an interactive online version at https://jgcri.shinyapps.io/
HectorUI/ (last access: 31 December 2025).

The model has been instrumental in multiple studies, in-
cluding the analysis of gas cycles and climate responses from
SCMs (Schwarber et al., 2019); examination of the effects of
climate sensitivity on sea-level change (Vega-Westhoff et al.,
2019); and emulation of ESM output for different RCP sce-
narios (Dorheim et al., 2020). Additionally, it has served as
the default climate module in the Global Change Analysis
Model IAM (GCAM, Joint Global Change Research Insti-
tute, 2023) since 2015 (GCAM-4.3, Calvin et al., 2019), an
open-source multisector model with representations of the
economy, energy, agriculture, and water supply in 32 geopo-
litical regions across the globe.

Originally introduced by Hartin et al. (2015) as a simple
global climate-carbon model incorporating atmospheric, ter-
restrial and oceanic carbon pools, Hector saw its first ma-
jor update with version 1.1 (Hartin et al., 2016), which im-
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plemented a new carbonate scheme for the upper ocean.
Version 2.0 (Vega-Westhoff et al., 2019) brought significant
enhancements, including the integration of the DOECLIM
EBM (Kriegler, 2005), and a new sea-level component based
on Wong et al. (2017) accounting for five different contri-
butions: thermal expansion, glaciers and small ice caps, the
Greenland ice sheet, the Antarctic ice sheet, and changes
in land water storage. The latest iteration, Hector V3.2, de-
scribed in Dorheim et al. (2024b), features a new permafrost
module (Woodard et al., 2021), some minor changes to the
carbon cycle and radiative forcing components, and the novel
capability to track the movement of carbon through different
pools (Pressburger et al., 2023).

4.7.1 GHG concentrations

Hector includes a representation of the gas cycle for CO2,
N2O, CH4 and 27 halocarbons. Atmospheric concentrations
for all these species except CO2 are governed by the mass
balance equation detailed in Sect. 3.1.1, incorporating an-
thropogenic emissions and sinks. Carbon concentrations are
determined by the box carbon cycle model described be-
low. Additionally, Hector estimates concentrations of tropo-
spheric ozone based on methane concentrations and emis-
sions of nitrogen oxides, carbon monoxide, and non-methane
volatile organic compounds (NMVOCs). For full details, see
Sect. 4 in Hartin et al. (2015).

The carbon cycle in Hector has remained largely un-
changed since V1. There are four categories of carbon reser-
voirs: a well-mixed atmosphere, land, ocean and Earth. The
latter represents long-term carbon storage, including fossil
fuels and carbon capture, which, since V3, can be specified
independently. A diagram of the model is provided in Fig. 5a.
An interesting peculiarity of Hector is that the model per-
forms a spin up stage before each run to ensure that its carbon
cycle is in equilibrium.

The land component consists of five categories of carbon:
vegetation, soil, detritus, permafrost and thawed soil. By de-
fault, the model operates with global carbon pools, but users
can specify an arbitrarily large number of “biomes”, each
with its carbon pools and parameter values. These parame-
ters include a warming factor to convert the global tempera-
ture anomaly into a biome-specific temperature anomaly. If
multiple biomes are configured, the processes described be-
low apply independently for each biome.

Net primary production transfers carbon from the atmo-
sphere to the land component, distributing it across three
carbon pools: vegetation, detritus and soil. This is modu-
lated by a logarithmic CO2 fertilisation factor and a land-use
change (LUC) factor, which accounts for vegetation loss and
gain (added in V3). A fraction of the carbon in the vegetation
pool flows to the detritus pool as litter, and a fraction of both
vegetation and detritus flows to the soil pool. Both detritus
and soil pools lose carbon to the atmosphere through het-
erotrophic respiration fluxes, modelled by first-order decay

equations modulated by temperature and carbon pool size.
Carbon residence times for detritus and soil pools are four
and fifty years, respectively. As of V3, Hector allows for two
independent gross LUC flows (rather than one net flow), one
for carbon loss and one for carbon uptake, impacting all three
carbon pools. Additionally, a permafrost module was added
in V3, which is controlled by land temperature, and releases
CO2 and CH4 into the atmosphere through an intermediate
“thawed soil” pool.

The ocean component of Hector’s carbon cycle is based on
the work of Lenton (2000) and Knox and McElroy (1984).
As depicted in Fig. 5a, the ocean carbon cycle is divided
into four boxes: two surface boxes for low and high lati-
tudes, an intermediate box and a deep ocean box. The ex-
change of carbon between the atmosphere and the ocean sur-
face boxes is governed by a linear function of the differen-
tial in carbon partial pressures between the two reservoirs,
further influenced by temperature and salinity. This carbon-
ate scheme resolves the following prognostic variables: car-
bon partial pressure (pCO2), pH, concentrations of HCO−3
and CO2−

3 , and saturation states of aragonite (�AR) and cal-
cite (�ca). Typically, the higher-latitude box, representing
subpolar gyres, acts as a carbon sink, while the lower-latitude
box outgasses carbon. Once dissolved into the surface boxes,
the carbon flows to the intermediate and deep ocean (if not
outgassed back to the atmosphere) through advection and
mass exchange, simulating a simple thermohaline circula-
tion.

4.7.2 Radiative forcing

At each time step, Hector computes the total radiative forcing
relative to the year 1750, including 39 sources (see Table S1
in Dorheim et al., 2024b): concentrations of carbon diox-
ide, methane, nitrous oxide, stratospheric water vapour, tro-
pospheric ozone, and 27 halogenated compounds; emissions
of black carbon, ammonia, organic carbon, sulphur dioxide;
as well as simulating aerosol cloud interactions and taking
externally defined time series for forcing related to LULCC
albedo, volcanic activity and miscellaneous sources. The last
contribution is zero by default, but allows the user to specify
an additional forcing time series. Since V3, Hector uses the
forcing equations from AR6 (IPCC, 2021b) to estimate the
forcing for most species (see Supplement in Dorheim et al.,
2024b), except for tropospheric O3 and stratospheric H2O,
which still follow the formulation in Hartin et al. (2015) us-
ing radiative efficiency factors.

4.7.3 Temperature

Since V2, Hector has used the Diffusion Ocean Energy
balance CLIMate (DOECLIM) model to estimate temper-
ature anomaly. Originally formulated by Kriegler (2005),
DOECLIM combines a zero-dimensional EBM with a one-
dimensional ocean heat diffusion scheme, as depicted in
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Figure 5. Hector’s diagrams. (a) Hector’s carbon cycle. Solid arrows indicate flows simulated internally by the system, while dashed arrows
denote externally supplied fluxes. The “Earth” box in Hector represents long-term carbon storage, including fossil fuels and carbon capture.
Image based on Dorheim et al. (2024b, Fig. 1). (b) Hector’s temperature module: the DOECLIM scheme. Radiative forcings over land (Fland)
and ocean (Focean) are applied to the combined land-atmosphere and ocean-mixed-layer-atmosphere boxes. The latter is also coupled to a
1D diffusion ocean, with constant diffusivity across the water column.

Fig. 5b. Near-surface air temperature anomaly is calculated
via a linear relationship with the total radiative forcing as
described in Sect. 3.3.1, using a scaling climate feedback
parameter λ. The DOECLIM scheme distinguishes between
forcing over land (Fland) and ocean (Focean), although Hector
assumes both these forcings are equal to the global forcing.
Heat transfer to the Earth’s system is then simulated through
a standard two-box scheme coupled to a 1D diffusion ocean
with uniform diffusivity across the water column. The two
boxes correspond to the combination of the upper land layer
and the atmosphere over land, and the ocean mixed layer and
the atmosphere over ocean. These two boxes are also allowed
to exchange heat between them based on their temperature
gradient. The model’s transient behaviour is primarily deter-
mined by the heat exchange with the deep ocean, due to its
much larger heat capacity. The model’s estimation of global
temperature is the area-weighted average of these land and
ocean box temperatures.

4.8 CICERO-SCM

The CICERO-SCM is a Simple Climate Model developed at
the Centre for International Climate Research at Oslo (CI-
CERO), Norway. It has been used in a range of studies, in-
cluding estimations of historical national and regional con-
tributions to climate change (den Elzen et al., 2005; Höhne
et al., 2011; Skeie et al., 2017), an exploration of the impact
of transportation and shipping sectors on global temperature
(Skeie et al., 2009; Tronstad Lund et al., 2012) and the evalu-
ation of mitigation strategies (Torvanger et al., 2012; Myhre
et al., 2011).

The model was first formulated by Fuglestvedt and
Berntsen (1999), where the main components of the model
were presented: emission-concentration gas cycles following

mass balance principles; an IRM to simulate the carbon cy-
cle, as described in Alfsen and Berntsen (1999) and based on
Joos et al. (1996); radiative forcing formulae largely follow-
ing IPCC (1995, 1997); and a semi-hemispheric UD-EBM
following Schlesinger et al. (1992). Since then, the model
has not experienced significant changes except for an up-
date to the radiative forcing formulae for CO2, CH4 and N2O
based on Etminan et al. (2016), incorporating the effects of
overlapping absorption bands between the species. Despite
this gradual development, the model has been re-calibrated
periodically as new sources of AOGCM and ESM data be-
came available. For an up-to-date and detailed reference of
the model, see Sandstad et al. (2024a), although the model
differences with the original publication are small.

4.8.1 GHG concentrations

Atmospheric CO2 concentrations in CICERO-SCM are de-
termined using a carbon cycle module following IRM prin-
ciples (see Sect. 3.3.3). The atmosphere-ocean carbon ex-
change is simulated using the mixed-layer IRM described by
Joos et al. (1996), while terrestrial carbon uptake is modelled
through an IRM that reduces the “effective” emissions seen
by the ocean component.

The scheme by Joos et al. (1996) simulates ocean carbon
uptake in two stages. First, it calculates the difference in car-
bon partial pressures between atmosphere and the OML to
estimate the carbon uptake by the OML (fo(t)), where the
ocean partial pressure is approximated via a parametrisation
modulated by mean global concentration of Dissolved Or-
ganic Carbon (DOC (δm(t)). Second, it calculates this global
concentration of DOC in the OML using an IRM to approxi-
mate the transport to the deep ocean. The IRM is represented
by the convolution of the historical carbon uptake by the
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OML with an IRF representing deep ocean uptake (R(t)),
akin to Eq. (12):

δm(t)=
c

d

t∫
t0

fo(u)R(t − u)du (35)

where c is a coefficient for unit conversion and d represents
the depth of the mixed layer. The original calibration of this
scheme by Joos et al. (1996) was conducted using data from
two models: the HILDA model (Siegenthaler and Joos, 1992)
and the Princeton 3D model (Sarmiento et al., 1992). While
CICERO-SCM employs the HILDA calibration, MAGICC –
another SCM utilising this scheme, reviewed in Sect. 4.9 –
employs the Princeton calibration.

For the terrestrial component, CICERO-SCM also adopts
an IRM approach, distinguishing itself from most other mod-
els in this review. Specifically, land carbon uptake is mod-
elled through an “effective” NPP flux, which modifies the
flux from anthropogenic emissions (E):

Eeff(t)= E(t)−NPPeff(t). (36)

The effective NPP term incorporates a CO2-dependent term
to account for carbon fertilisation effects, along with a convo-
lution term to represent carbon returning to the atmosphere
through overturning of terrestrial carbon (Joos and Bruno,
1996):

NPPeff(t)= NPP(t)−

t∫
−∞

NPP(t ′)rb(t − t ′)dt ′ (37)

NPP(t)= NPP0 ·β · ln
(

CO2(t)

278ppm

)
. (38)

It is this effective emissions term, Eeff, that the ocean com-
ponent uses to calculate the atmosphere-ocean carbon ex-
change, thus accounting for the terrestrial component of the
carbon cycle. A full description of this scheme can be found
in Sandstad et al. (2024a).

Concentrations for all remaining non-CO2 species (CH4,
N2O, and 27 halogenated species) in CICERO-SCM are gov-
erned by mass balance equations as described in Sect. 3.1.1.
The model includes a time-varying characteristic life-
time (τCH4 ) for methane, considering three contributions:
OH chemistry, stratospheric sink and soil sink, as per Eq. (2).

4.8.2 Radiative forcing

In terms of radiative forcing, CICERO-SCM uses the ex-
pressions found in Etminan et al. (2016) to estimate the ra-
diative forcing induced by elevated atmospheric concentra-
tions of CO2, CH4 and N2O, accounting for stratospheric
adjustments and the overlap between absorption bands. Ad-
ditionally, efficiency factors for each species can be used to
account for tropospheric adjustments, producing an estima-
tion for effective radiative forcings. Forcing from 27 other

WMGHGs (SF6, CFCs, HFCs, HCFCs) is calculated through
the usual linear efficiency approach, scaling with the con-
centration anomaly since pre-industrial. Other prognostic
sources of forcing included in the model are tropospheric and
stratospheric ozone, stratospheric water vapour and aerosols.
The contribution to total forcing of tropospheric ozone scales
based on its concentrations, which are estimated based on
methane concentrations and emissions of NOx , CO, and
NMVOCs. In the case of stratospheric ozone concentra-
tion, it decreases based on the concentration of chlorine-
and bromine-containing species three years prior to the eval-
uation step, to account for atmospheric transport. Forcing
related to stratospheric water vapour scales linearly with
methane concentrations, while aerosol forcing scales linearly
with emissions of sulfates, fossil fuels, biofuels, black car-
bon, organic carbon and biomass burning. Finally, albedo
changes and natural forcing agents (volcanic aerosols and so-
lar irradiance) can be added through prescribed forcing time-
series.

As described below, CICERO-SCM possesses a hemi-
spheric EBM, which requires a hemispheric partition of ra-
diative forcing. This is only relevant for three forcing agents
whose forcings are not split equally: tropospheric O3, albedo
changes and aerosols. The first is weighted by 1.45 for the
Northern Hemisphere and 0.55 for the Southern Hemisphere,
following Skeie et al. (2020), while the other two are split
following the results from Smith et al. (2020).

4.8.3 Temperature

To convert the total radiative forcing into a temperature re-
sponse, the CICERO-SCM implements a semi-hemispheric
UD-EBM following Schlesinger et al. (1992). As illustrated
in Fig. 6, this UD-EBM consists of four main parts for each
hemisphere: atmosphere, the OML (default depth 107 m),
deep-ocean layers (39 layers), and a sinking column of wa-
ter negligible in area compared to the ocean. The purpose
of this water column is to represent thermohaline circula-
tion, simulating polar deep water formation which later up-
wells through the ocean layers. Using the standard EBM re-
lationships described in Sect. 3.3.1, total hemispheric radia-
tive forcing is translated into temperature anomaly and ad-
ditional heat content in the atmosphere. This heat flows into
the OML and eventually into the deep ocean through thermal
diffusion across ocean layers, as well as via the sinking wa-
ter column mentioned earlier. Water in this column starts at
the OML, flowing downwards to the ocean bottom, then up-
welling through the ocean layers back to the OML, restart-
ing the cycle. The upwelling velocity in CICERO-SCM de-
pends on the global temperature anomaly, linearly decreasing
as the temperature anomaly increases, following Raper et al.
(2001). While the land is not integrated as a heat-exchanging
component, the model does incorporate the difference in
ocean extension between hemispheres. Atmospheric inter-
hemispheric heat exchange is included in the model, but it is
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Figure 6. Illustration of the hemispheric upwelling-diffusion energy balance model (UD-EBM) used in CICERO-SCM. The model simulates
heat transport across the ocean through two processes: diffusion (red arrows) and advection (black arrows). Figure based on Sandstad et al.
(2024a, Fig. 6).

rarely used. A full mathematical description of the UD-EBM
in CICERO-SCM can be found in Sandstad et al. (2024a).

This is a similar scheme to the EBM used in MAGICC,
as described in Wigley and Raper (1987), with two main dif-
ferences: entrainment (or alternatively, depth-dependent area
profile, as discussed in Sect. 4.9.3) was never added to the
CICERO-SCM, and heat exchange with the land is disre-
garded. An advantage of UD-EBM schemes like these is the
improved ability to estimate both ocean temperature anomaly
and ocean heat content, as a representation of the different
ocean layers and their temperatures exists, and a more flexi-
ble inclusion of forcing with possible hemispheric variations.

4.9 MAGICC

The Model for the Assessment of Greenhouse Gas Induced
Climate Change (MAGICC) stands as the most prominent
and long-established SCM, with nearly four decades of de-
velopment. It comprises several components: a box-model
representation of the terrestrial carbon cycle, an ocean car-
bon cycle based on a OML impulse response, a compre-
hensive list of forcing agents, and an Upwelling-Diffusion-
Entrainment Energy Balance Model (UDE-EBM) for simu-
lating energy balance dynamics. The model has been exten-
sively employed in IPCC reports for generating climate pro-
jections under different forcing scenarios, as demonstrated
in the Second Assessment Report (SAR, IPCC, 1995) and
for scenario design in the AR6 (IPCC, 2021b). Furthermore,
MAGICC has been instrumental in emulating the behaviour
of more complex AOGCMs and ESMs, as evidenced in the
Third Assessment Report (TAR, Cubasch et al., 2001). Be-

yond IPCC reports, MAGICC is widely used within the
IAM community, being the climate module in IAMs such
as IMAGE (Stehfest et al., 2014) at PBL Netherlands, MES-
SAGEix (Huppmann et al., 2019) at the International Insti-
tute for Applied Systems Analysis in Vienna, and GCAM
IAM (Calvin et al., 2019) at the Pacific Northwest National
Laboratory until version GCAM-4.3, after which the Hector
SCM was adopted as the default option.

The seminal publication for MAGICC was presented by
Wigley and Raper (1987), who built upon the upwelling-
diffusion scheme for ocean heat transport proposed by Hof-
fert et al. (1980) to explore projections of future sea level rise.
This scheme became the core EBM around which MAGICC
evolved. The transition from a simple EBM to a compre-
hensive SCM, incorporating both a carbon cycle and a rep-
resentation of non-CO2 species, occurred with Wigley and
Raper (1992). This iteration of MAGICC included a repre-
sentation of methane, nitrous oxide, 23 halocarbons species,
and sulphate aerosols in the forcing calculations. The new
carbon cycle module comprised a four-box terrestrial com-
ponent (Wigley, 1993) and an IRM for the ocean component
(Wigley, 1991). It was also around this time that the model
began to be referred to as MAGICC in the scientific literature
(Hulme et al., 1995).

With these advancements, MAGICC began to serve as an
emulator for more complex AOGCMs, beginning with the
Hamburg model (Cubasch et al., 1995; Raper et al., 2001)
and expanding to include multiple AOGCMs in the IPCC’s
TAR (IPCC, 2001). TAR used MAGICC version 4.1 (Raper
et al., 2001) while the Fourth Assessment Report (AR4,
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IPCC, 2007), employed version 4.2, though version 5.3 was
later made compatible with AR4. The primary differences
between the versions used in these two ARs lay in the param-
eter values, which were recalibrated to align with the AR4
and the Coupled Climate–Carbon Cycle Model Intercompar-
ison Project (C4MIP, Friedlingstein et al., 2006) findings.
Additionally, an updated sea level rise module was incorpo-
rated, following Wigley and Raper (2005). For a comprehen-
sive overview of the model changes between these reports,
refer to Appendix 2 in Wigley et al. (2009).

Meinshausen et al. (2011a) introduced MAGICC6, a ver-
sion of the model extensively used throughout the 2010s,
which offers the latest comprehensive description of the
model. Consequently, that publication stands as the best en-
try point for users seeking to understand the modern iteration
of MAGICC without delving into its historical development.
For this reason, it is the version used for the model descrip-
tions offered below, with references to later enhancements
where relevant. Enhancements in MAGICC6 included the
introduction of time-dependent climate sensitivities, greater
flexibility in simulating CO2 fertilisation effects, inclusion
of the OML-IRM developed by Joos et al. (1996), and ad-
vanced ocean heat dynamics featuring depth-variable area
profile, entrainment, and warming-dependent thermal diffu-
sivity. Additionally, MAGICC6 offered increased flexibility
in radiative forcing efficacies, including the ability to account
for spatial patterns. It also upgraded the model’s implemen-
tation from Fortran 77 to Fortran 95.

Nearly forty years after its inception, the most recent
major iteration of this SCM is MAGICC7, with a detailed
discussion of the updated model provided by Meinshausen
et al. (2020). MAGICC7 introduced a permafrost mod-
ule based on the work of Schneider von Deimling et al.
(2012), and enhanced the representation of GHG cycles,
including improved modeling of the Brewer–Dobson cir-
culation (Butchart and Scaife, 2001), the evolution of hy-
droxyl (OH) concentrations, and an expansion in the num-
ber of included halogenated gases to 43 species. As of 2025,
MAGICCv7.5.3 is the version powering the online MAG-
ICC simulator available at https://live.magicc.org (last ac-
cess: 31 December 2025). From version 7.6 onwards, the
model code has been made open source, with previous ver-
sions available from the authors upon registration at https://
magicc.org/download (last access: 31 December 2025). Lim-
ited information on these later versions is available, with a
brief description of MAGICC v7.4.1 provided in the Supple-
ment of Nicholls et al. (2021). This material mentions the
inclusion of a new state-dependent climate feedback factor, a
nitrate aerosol forcing scheme, and parameterisations to sim-
ulate heat uptake by the land and cryosphere.

Among the latest enhancements we find MAGICC’s latest
sea level rise module, which was presented by Nauels et al.
(2017). It includes an emulation of all major contributions:
thermal expansion, glacier and ice sheets melting, and land
water storage change. Additionally, since Tang et al. (2025),

MAGICC has a nitrogen cycle, which it uses to limit terres-
trial carbon uptake.

4.9.1 GHG concentrations

MAGICC offers a comprehensive treatment of the various
agents currently believed to influence the climate. MAG-
ICC6 calculates concentrations for 30 species (expanded to
43 in MAGICC7) by simulating the gas cycles for CO2, CH4,
N2O, and other 28 halogenated gases (40 in MAGICC7).
Generally, the standard approach of combining emissions
with sinks and using decaying exponentials with characteris-
tic lifetimes is employed in this model to simulate gas cycles
(see Sect. 3.1.1). However, MAGICC’s treatment of gas cy-
cles has accrued modifications over the years, making it rela-
tively complex. Generally, these modifications involve addi-
tional parameterisations enabling the modification of species
lifetimes over time, to account for phenomena such as in-
teraction with OH radicals, increased Brewer-Dobson cir-
culation (Butchart and Scaife, 2001), and interactions be-
tween species. These representations were further refined in
MAGICC7. Another peculiarity of this model is that it re-
solves hemispheric emissions and concentrations for non-
well-mixed GHGs, a consequence of the hemispheric EBM
it possesses. Due to the complexity and number of enhance-
ments a full description is outside the scope of this review
and the reader is directed to Meinshausen et al. (2011a, 2020)
for full details.

The carbon cycle module consists of an ocean component
following the implementation of Joos et al. (1996) calibrated
to the Princeton 3D model results (see Sect. 4.8.1) and a
three-box terrestrial component as outlined in Wigley (1993)
and described in Meinshausen et al. (2011a). These boxes
represent global vegetation, litter and soil carbon reservoirs,
each exchanging carbon with the atmosphere. A diagram il-
lustrating the various carbon pools and associated fluxes is
provided in Fig. 7. These fluxes are:

– NPP flux: this flux transfers carbon from the atmosphere
to the vegetation (35 %), litter (60 %), and soil (5 %)
pools. This distribution of NPP across different pools,
along with the similar distribution of the litter flux be-
low, is atypical in SCM carbon cycles which usually im-
plement this flux taking carbon exclusively to the vege-
tation pool. The objective is to account for the long time
steps that SCM are usually run with (usually one year).
By including effects not only in the target pool (vegeta-
tion), but also in subsequent pools in the carbon cycle,
MAGICC aims to create a carbon cycle model that is
more sensitive to NPP and litter flux changes.

– Litter flux: this flux moves carbon from the vegetation
pool to the litter (98 %) and soil (2 %) pools.

– Decomposition: this process transfers carbon from the
litter pool to the soil pool.
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Figure 7. Diagram of the terrestrial carbon and nitrogen cycles in the MAGICC SCM. The limitation of carbon uptake by vegetation is
mainly a function of the nitrogen uptake flux. Image based on Tang et al. (2025, Fig. 1).

– Deforestation: this flux accounts for land-use change,
transferring carbon from all three land pools (vegeta-
tion, litter, soil) back to the atmosphere.

– Respiration: this flux represents carbon losses due to
plant respiration and the decomposition of organic mat-
ter in litter and soil, returning carbon from the vegeta-
tion, litter, and soil pools to the atmosphere.

The litter, deforestation and respiration flows in MAG-
ICC are proportional to the carbon content in their respective
source pools and are governed by associated turnover times.
These turnover times are constant, which implies that follow-
ing a land-use change event, the carbon in the various pools
will asymptotically return to their original levels, assuming
no further changes occur. This behaviour effectively simu-
lates a regrowth process after deforestation. To better approx-
imate real-world dynamics where land-use changes usually
result in persistent alterations to carbon stocks, the MAG-
ICC carbon cycle module uses a regrowth fraction parameter
to adjust the turnover time and thereby allow for partial re-
growth (Meinshausen et al., 2011a). The scheme was further
modified by Tang et al. (2025), where a direct impact on NPP
by the extent of the deforestation was implemented, thereby
impacting long-term equilibrium in carbon stocks.

The return to original carbon content in the carbon pools is
contingent on stable climatic conditions, as the model incor-
porates carbon- and climate-carbon feedbacks. Specifically,
the model resolves two key processes: CO2 fertilisation of
NPP and temperature-induced changes in NPP, respiration
and decomposition fluxes. CO2 fertilisation can be simulated
using the usual logarithmic formulation, a hyperbolic for-
mulation, a sigmodial formulation since Tang et al. (2025),
or a linear combination of the three. Temperature effects
are modelled as an exponential modulation in the aforemen-
tioned flows in response to the temperature anomaly, with
the added possibility of a sigmodial modulation since Tang
et al. (2025). For a more detailed explanation, refer to the

Appendix A1.1 in Meinshausen et al. (2011a) and Tang et al.
(2025).

The terrestrial carbon cycle described here was further en-
hanced by Tang et al. (2025) to include the limiting effects
of nitrogen that have been observed in more complex models
(Arora et al., 2020). MAGICC is, therefore, the first and only
SCM in this review to include a nitrogen cycle and emulate
its impact on the carbon cycle. This is a relatively complex
scheme, and only a brief summary is offered here. It mirrors
the structure of the MAGICC’s carbon cycle, comprising four
global nitrogen pools: vegetation, litter, soil, and mineral.
The flow of nitrogen through the different pools is depicted
in Fig. 7 and behaves as follows: similarly to the NPP flux
in the carbon cycle, two fluxes transport nitrogen from the
inorganic pools into the organic pools (vegetation, litter and
soil), plant uptake from the mineral pool and biological ni-
trogen fixation from the atmosphere. Then, vegetation loses
nitrogen to the litter and soil pools through a litter produc-
tion flux. Litter loses nitrogen to the soil and mineral pools
through litter decomposition. Soil loses carbon to the mineral
pool through soil respiration. Additionally, the organic pools
can lose carbon to the atmosphere through an anthropogenic
land use emission flux. Finally, the mineral pool can gain ni-
trogen through fertiliser application and through atmospheric
deposition (from the atmosphere pool), and lose it through a
mineral loss flux. Similarly to the carbon cycle, most of these
fluxes are governed by first order decay functions with char-
acteristic turnover times.

This nitrogen cycle is coupled to the carbon cycle mainly
through the NPP flux, which is modulated by the possi-
ble plant uptake of nitrogen. This uptake is computed as a
function of the size of NPP (to account for declining car-
bon : nitrogen ratios), nitrogen availability and temperature.
The nitrogen availability, in turn, is approximated using the
fluxes in the nitrogen cycle described above.

Since MAGICC7, Meinshausen et al. (2020), the carbon
cycle also possesses a permafrost module based on the work
of Schneider von Deimling et al. (2012). This module divides
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the permafrost stocks into a number of zonal (latitudinal)
bands – 50 by default – each with different carbon content
and thawing thresholds. When the local temperature excedes
the thawing threshold, CO2 (and potentially CH4) is released
into the atmosphere. The quantity of gases released depends
on the type of soil (mineral or peatland) and the temperature.
This is a relatively complex module, and readers are referred
to Schneider von Deimling et al. (2012) for further details.

4.9.2 Radiative forcing

For WMGHGs, MAGICC uses standard methods from the
literature. MAGICC6 employed the usual logarithmic rela-
tion to calculate CO2 forcing (Myhre et al., 1998), and fol-
lowed IPCC (2001) for the combined CH4 and N2O forcing.
These forcings were further refined in MAGICC7, adopting
the scheme from Etminan et al. (2016) to compute forcing
for these three species. For halogenated gases a radiative ef-
ficiency approach is taken, multiplying this factor by concen-
trations. MAGICC accounts for the direct and indirect contri-
butions of tropospheric aerosols on radiative forcing directly
from their emissions, given their short atmospheric lifetimes.
The direct contribution is estimated as a linear relationship
between concentrations and forcing, while the indirect ef-
fects are modelled by using optical thickness timeseries for
the relevant species: sulfates, nitrates, black carbon and or-
ganic carbon. In addition, the model includes the contribu-
tions of both tropospheric and stratospheric ozone, which
are simulated through simple relationships based on ozone
concentrations. Similarly, forcing from stratospheric water
vapour due to methane-induced enhancement is estimated
linearly (default 15 %) with the pure methane forcing (with-
out absorption band overlaps). Natural forcings (volcanic
aerosols and solar irradiance), as well as LULCC albedo
effects on forcing, can be added as prescribed time series.
Full details can be found in Meinshausen et al. (2011a) with
the MAGICC7 modifications described in Meinshausen et al.
(2020). Finally, MAGICC also includes a contrail scheme
that estimates forcing effects from aviation emissions sup-
plied by the user. However, this is seldom used and men-
tioned in the literature.

Each individual forcing contribution is assigned an effi-
cacy value to account for indirect effects, leading to an esti-
mation of ERF, which is subsequently used to estimate tem-
perature anomalies using the model’s EBM. These efficacies
are allowed to vary over time and space, with potential dif-
ferent values for each of the hemispheric ocean and land
boxes. The hemispheric partition is a consequence of the
EBM employed by the model, although only three species
have hemispheric differences in their forcing contributions:
tropospheric ozone, halogenated gases, and aerosols. Hemi-
spheric differences of tropospheric ozone and aerosols are a
consequence of the different hemispheric emissions and con-
centration for these species, while the difference for halo-

genated gases is dependent on the species lifetime, following
Hansen et al. (2005).

4.9.3 Temperature

MAGICC’s EBM traces back to the origins of the model,
with a hemispheric UD-EBM initially formulated by Wigley
and Raper (1987), based on the work of Hoffert et al. (1980).
This hemispheric separation can be useful for spatially in-
homogeneous forcings associated with human activities such
as aerosols and tropospheric ozone. A similar scheme would
be adopted by the CICERO-SCM years later, as described
in Sect. 4.8.3 where a summary on the basic principles on
how it works can be found. There are some differences how-
ever. Unlike CICERO-SCM, MAGICC considers heat ex-
change between land and ocean. In fact, since MAGICC6,
varying heat-exchange coefficients between land and ocean
have been employed as a mechanism to alter the temporal
profile of the model’s effective climate sensitivity. Addition-
ally, the model allows for time-dependent feedback parame-
ters to modify its climate sensitivity over time.

Originally, most of the parameters associated with this
scheme were fixed, but they were gradually relaxed overtime.
For instance, upwelling and downwelling rates were allowed
to evolve in time (Raper et al., 2001). Starting with MAG-
ICC6, a warming-dependent gradient of thermal diffusivity
was introduced to account for the increased stratification of
the ocean as temperatures rise. This version also saw the in-
clusion of the “entrainment” component of the module. This
entrainment mechanism became necessary with the introduc-
tion of a depth-dependent area profile in the ocean column,
as illustrated in Fig. 8b. To satisfy conservation of mass with
a vertically constant upwelling rate, water had to be added,
leading to the incorporation of water entrainment from the
sinking column into each of the ocean layers (the default be-
ing 50 layers).

4.10 SCM4OPT

The Simple Climate Model for Optimization (SCM4OPT)
is an IAM developed by Dr. Xuanming Su at Japan’s Na-
tional Institute for Environmental Studies and Agency for
Marine-Earth Science and Technology. Like other IAMs, the
model includes interactions between society and the envi-
ronment, but this review focuses exclusively on its climate
component. Further details on its socio-economic compo-
nents can be found in the referenced literature. SCM4OPT
has been applied in various contexts, including the explo-
ration of costs associated with climate mitigation and adap-
tation strategies (Su et al., 2017, 2018), the assessment of
anthropogenic and natural contributions to global warming
(Su et al., 2022, 2024), and an assessment of the likelihood
of triggering certain climate tipping points (Iseri et al., 2018).

SCM4OPT is a relatively recent model, first introduced by
Su et al. (2017) as a modification of the DICE-2013R IAM
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Figure 8. Diagrams for the hemispheric upwelling-diffusion-entrainment ocean heat transport module in MAGICC. Forcing is applied to
the surface ocean and land, modifying temperature and available heat. This heat is exported to the deep ocean through two mechanisms:
diffusion and advection. The model also includes a depth-dependent layer size, which requires water entrainment to maintain constant water
upwelling velocity. Diagrams based on Meinshausen et al. (2011a, Figs. A1 and A2).

(Nordhaus, 2014), incorporating process representations bor-
rowed from MAGICC6. The same SCM4OPT model was
also used by Fujimori et al. (2016), seemingly a year ear-
lier, due to a publication order issue. Version 2 (for which
no comprehensive source is available, but it was used by
Nicholls et al., 2021), introduced modifications to the ocean
carbon cycle, updating it to follow Hector v1.1 (Hartin et al.,
2016), and adopted a 0D climate and 1D ocean heat diffusion
EBM, DOECLIM (Kriegler, 2005), as implemented in Hec-
tor V2.0. This version also involved a reparametrisation and
recalibration of the model based on AR5 data (IPCC, 2013)
and OSCAR V2.2 parameterisations (Gasser et al., 2017).
Version 3 (Su, 2021; Su et al., 2022), brought further updates,
particularly to the carbon cycle, which was recalibrated using
CMIP6 model outputs. The latest published iteration, Ver-
sion 3.3 (Su et al., 2024), introduced a new parameterisation
of CH4 forcing based on the work of Etminan et al. (2016),
along with the use of an ENSO-associated index to account
for natural variability originating from the ocean in historical
simulations.

4.10.1 GHG concentrations

The carbon cycle in SCM4OPT integrates various compo-
nents that have been discussed elsewhere in this review. The
land component, for instance, employs the same three-box
model used in MAGICC6 (Meinshausen et al., 2011a), which
includes carbon pools for the vegetation, detritus and soil, as
described in Sect. 4.9.1. The key distinction in SCM4OPT
compared to MAGICC lies in its representation of forest re-

growth, which is modelled as a variable with a linear depen-
dence on the relaxation times of each carbon pool, rather than
through a parameterisation of permanent deforestation.

Similarly, the ocean carbon cycle in SCM4OPT initially
followed the approach of Meinshausen et al. (2011a), im-
plementing the OML-IRM of Joos et al. (1996). However,
in SCM4OPT version 2, this scheme was replaced with a
four-box ocean carbon cycle model, as implemented in Hec-
tor v1.1 (Hartin et al., 2016), and described in Sect. 4.7.1,
where more details can be found. A full description of both
the land and ocean carbon cycles in SCM4OPT is provided
in the Supplement of Su et al. (2017, 2022).

Over time, the number of species whose concentrations
are determined from emissions in this model has expanded.
The latest Version 3.3 (Su et al., 2024) included a repre-
sentation of CO2, CH4, N2O, 39 halogenated gases, tro-
pospheric and stratospheric ozone, and aerosols (compris-
ing SO4, black carbon, nitrates, and primary and secondary
organic aerosols). SCM4OPT adopts the conventional ap-
proach of defining mass balance models with emissions,
sinks, and lifetimes (see Sect. 3.1.1) for most species – CH4,
N2O and halogenated gases – with some ad-hoc expressions
for aerosols and ozone. The aerosol concentration scheme is
based on a different SCM, OSCAR (Gasser et al., 2017).

4.10.2 Radiative forcing

Similarly to the representation of WMGHGs, the number
of radiative forcing agents included in SCM4OPT has in-
creased over time. Version 3.3 (Su et al., 2024) included ra-
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diative forcing effects from CO2, CH4, N2O, 39 halogenated
gases, aerosols (direct) including mineral dust, clouds, strato-
spheric and tropospheric ozone, stratospheric water vapour,
land albedo, black carbon on snow, as well as natural forc-
ings (solar and volcanic). The forcing emulation generally
follows expressions from the literature. Contributions from
CO2, CH4 and N2O are calculated following the IPCC (2001)
formulation, although Etminan et al. (2016) was used in V3.3
alongside this formulation to estimate the CH4 contribu-
tion in a Monte Carlo simulation; direct effects of aerosols,
clouds, tropospheric ozone and land albedo effects calcula-
tion follows OSCAR’s (Gasser et al., 2017); the contribution
from stratospheric ozone is based on the equivalent effec-
tive stratospheric chlorine concentration, following Newman
et al. (2007); impacts from halogenated gases are estimated
through a radiative efficiency approach to species concentra-
tions, after MAGICC6; and the contribution from black car-
bon on snow is linearly scaled with black carbon emissions.
Natural forcings can be included through prescribed forcing
time series. The latest comprehensive reference for the forc-
ing calculation in SCM4OPT is provided in the Supplement
of Su et al. (2022), with a subsequent modification to account
for the effects of overlapping absorption bands of CO2, CH4
and N2O (Etminan et al., 2016).

4.10.3 Temperature

The conversion of total radiative forcing into a temperature
response was initially performed using a two-box EBM as
in the original DICE model. However, in SCM4OPT v2.0,
this component was replaced by the Diffusion Ocean Energy
balance CLIMate (DOECLIM) model (Kriegler, 2005). As
discussed previously in Sect. 4.7 on Hector, where more de-
tails can be found, DOECLIM couples a 0D energy balance
model with a 1D ocean heat diffusion scheme. In V3.3, an
observationally-constrained statistical model was introduced
to correct for temperature biases stemming from ocean vari-
ability using an ENSO index. This is similar to EM-GC’s use
of ocean indices to account for natural variability; however
SCM4OPT is restricted to ENSO alone. As a result, it faces
the same limitation: it can only be applied in historical sim-
ulations, where the ENSO index is available, since there is
currently no reliable method for projecting the index into the
future.

4.11 ACC2

The Aggregated Carbon Cycle, Atmospheric Chemistry, and
Climate model (ACC2) comprises three primary climate
modules: a box-based global carbon cycle module, an at-
mospheric chemistry module calculating concentrations for
other GHGs, and a climate module determining the total ra-
diative forcing from different sources and translating it into
temperature anomaly via the DOECLIM scheme (Kriegler,
2005). A diagram of these three modules is provided in

Fig. 9. A distinctive feature of ACC2 is its ability to run in
inverse mode, allowing it to produce best estimates for its
model parameters based on historical climate data. This ca-
pability has enabled the model to produce estimations for the
global warming potentials of CH4 and N2O (Tanaka et al.,
2009a) and for climate sensitivity (Tanaka et al., 2009b;
Tanaka and Raddatz, 2011), as well as to assess the be-
haviour of different emission metrics under various stabili-
sation scenarios (Tanaka et al., 2013; Tanaka and O’Neill,
2018; Tanaka et al., 2021; FAO, 2023; Mastropierro et al.,
2025). Additionally, ACC2 has been used to estimate trans-
fer payments to lower-income countries under a global car-
bon price scenario (Landis and Bernauer, 2012), quantify the
climate impact of permafrost thaw (Yokohata et al., 2020),
explore carbon cycle feedbacks (Melnikova et al., 2023), and
investigate the roles of atmospheric methane removals and
enhanced weathering on mitigation pathways (Gaucher et al.,
2025a, b).

ACC2 was born as a significant expansion of the Inte-
grated Assessment of Climate Protection Strategies (ICLIPS)
Climate Model (ICM, Bruckner et al., 2003), which in turn
evolved from the nonlinear impulse-response model of the
coupled carbon cycle-climate system (NICCS, Hooss et al.,
2001) and the structural integrated assessment model (SIAM,
Hasselmann et al., 1997). The original ACC2 publications
(Tanaka et al., 2007; Tanaka, 2008) provide a comprehensive
guide to the model, and remain a valuable resource for un-
derstanding its details, as no major changes have occurred to
the Earth system modules since then. Tanaka et al. (2013) in-
troduced a fourth module that estimates GHG emission costs
using marginal abatement cost (MAC) functions based on Jo-
hansson (2011). This addition transformed the coupled sys-
tem into an IAM, although the climate component has con-
tinued to be used independently. The latest version of ACC2,
V4.3 (Tanaka and O’Neill, 2018), further modified the CO2
MAC function to incorporate the effects of negative emis-
sions. Subsequently, the climate component has been cou-
pled to the GET model (Azar et al., 2013; Johansson et al.,
2020) to create an IAM that includes two-way interactions
between climate and economy (Gaucher et al., 2025b), and
to a more sophisticated mitigation module based on MAC
curves emulating ten different IAMs (Xiong et al., 2025).
These additions are not assessed, as only the climate com-
ponents are within scope of this review.

4.11.1 GHG concentrations

The carbon cycle in ACC2 consists of four-box representa-
tions for both the terrestrial and oceanic components, which
are coupled together through the OML-atmosphere box. De-
tails can be found in Tanaka et al. (2007) and Tanaka (2008),
both offering the same model description.

For the ocean component, the model simulates progressive
carbon uptake using a combined OML-atmosphere layer and
three deep ocean layers. The combination of atmosphere and
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Figure 9. Diagram of the three primary modules constituting the climate component of the ACC2 model. Image based on Tanaka (2008,
Fig. 1).

mixed-ocean layer is justified by the short time required for
these carbon reservoirs to reach equilibrium, which is signif-
icantly shorter than the one-year timestep used in the model.
Carbon emissions from fossil fuels and land-use change are
added to this layer. A relatively complex carbonate chem-
istry scheme then determines the amount of dissolved in-
organic carbon (DIC) in the OML, as well as its pH. The
model also accounts for the effects of rising OML tempera-
tures on carbonate uptake, with a recommended model emu-
lation range of up to four times the pre-industrial level of at-
mospheric concentrations. Carbon is subsequently exported
to the deeper ocean layers through diffusion. The model pa-
rameters were calibrated using the IRF for ocean carbon up-
take from Hooss (2001) (R01 experiment), which emulates
the response of the HAmburg Model of the Ocean Carbon

Cycle version 3i (HAMOCC 3i) to a small increase in atmo-
spheric carbon.

Similarly, the terrestrial carbon cycle is represented by
four boxes that roughly correspond to vegetation, detritus,
wood and soil organic carbon. These boxes interact exclu-
sively with the OML-atmosphere layer rather than with each
other. This atypical structure is a consequence of the IRM
used in the model for heterotrophic respiration, which is a
diagonalisation of the Bern-CC model (Joos et al., 1996).
The diagonalisation decouples the carbon reservoirs from
each other, allowing a single interaction with the OML-
atmosphere layer. The downside of this diagonalisation is
that the resulting boxes are no longer a representation of
physical biospheric reservoirs. This is similar to the relation-
ship between n-time-constant temperature IRMs and n-layer
temperature models discussed in Sect. 3.3.3. Each box has
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two processes: (i) a carbon gain term associated with NPP,
modulated by the standard logarithmic expression to account
for CO2 fertilisation effects; and (ii) a carbon loss term repre-
senting the turnover of carbon within the box, characterised
by a decay time that simulates the effects of respiration.
The carbon loss term also incorporates temperature effects
through an exponential factor based on the land surface tem-
perature anomaly.

For all other GHGs, ACC2 employs the standard mass bal-
ance treatment to simulate their life cycle (see Sect. 3.1.1).
This includes CH4 (with a characteristic lifetime accounting
for different sink times through Eq. 2), N2O, and 30 halo-
genated species. ACC2 also includes a representation of OH
and tropospheric ozone concentrations, which follow the Ox-
Comp Workshop results (Joos et al., 2001; IPCC, 2001), and
affect GHG concentrations. Table 2.1 in Tanaka et al. (2007)
presents a useful summary of GHG concentration calcula-
tions in this model.

4.11.2 Radiative forcing

ACC2 includes a comprehensive list of radiative forcing
agents: CO2, CH4, N2O, 30 species of halogenated gases (29
halocarbons and SF6), tropospheric and stratospheric ozone,
stratospheric water vapour and aerosols (sulfate and carbona-
ceous, plus indirect effects). The model generally adheres
to standard treatments for these species, primarily based on
IPCC (2001) and WMO (2003). For instance, it follows IPCC
(2001) to calculate the contribution from CH4 and N2O, ac-
counting for overlapping effects, as well as using its loga-
rithmic expression for the CO2 forcing. Contributions from
halogenated species are scaled based on their radiative ef-
ficiencies (IPCC, 2005; WMO, 2003). Aerosol forcing is
parametrised as a function of SO2, organic carbon and black
carbon, based on the work of Joos et al. (2001) and IPCC
(1997). Natural forcings, volcanic aerosols and solar irradi-
ance, are included as prescribed forcing time series, using
estimations from Ammann et al. (2003) and Krivova et al.
(2007), respectively. Since the model uses DOECLIM as its
EBM, the radiative forcing must be separated between its
land and ocean components. All forcing contributions are
roughly split in half, except the carbonaceous aerosol and the
tropospheric ozone contributions, which are divided follow-
ing Harvey (2000). A full description of non-CO2 and forc-
ing estimation is provided in Sect. 2.2 of Tanaka et al. (2007),
with a useful summary in Table 2.1 of the same publication.

4.11.3 Temperature

ACC2 supports two different EBMs to compute the tempera-
ture response to a given total radiative forcing. One option is
a box-based formulation of the forcing describing the tem-
perature response to forcing from Hooss (2001), which is
recommended only for inverse calculations aiming to esti-
mate the climate sensitivity. The default and recommended

EBM for general model use, particularly when a computa-
tionally lighter model is necessary, is the DOECLIM scheme
presented in Kriegler (2005) and discussed in Sect. 4.7. This
consists of a zero-dimensional EBM with a one-dimensional
diffusion scheme to represent the heat exchange with the
deep ocean. For more details about this scheme see, in in-
creasingly level of detail, Sect. 4.7.3 in this text, Sect. 2.3 in
Tanaka et al. (2007), and the original publication of Kriegler
(2005).

4.12 OSCAR

The “Occupation des Sols et cycle global du CARbone” (OS-
CAR) model is an SCM that primarily focuses on the carbon
cycle and the disturbances caused by LULCC. Over time,
the model has evolved well past the capabilities and role
suggested by its name. Indeed, OSCAR’s book-keeping ap-
proach to carbon tracking, which is applied across various
model regions and biomes, arguably places the SCM as the
most complex and flexible model for carbon cycle simula-
tion among those reviewed in this text. This intricacy aligns
with one the model’s core design principles (Gasser et al.,
2017): “adding as many modules and processes to the mod-
ule as possible, favouring number of processes over process
complexity”. Due to this complexity, only an overview of the
model is provided in this review. For detailed information,
readers are referred to Gasser et al. (2017) for developments
up to V2.2, which is the most up-to-date comprehensive de-
scription of the entire model, and Gasser et al. (2020) for the
latest details on its land carbon cycle.

OSCAR has been utilised in multiple high-impact studies,
including the attribution of emissions to emitting and absorb-
ing regions (Ciais et al., 2013), an analysis of China’s con-
tribution to global radiative forcing (Li et al., 2016), an in-
vestigation of the implications of permafrost thawing to the
global carbon budget (Gasser et al., 2018), and an evaluation
of the effects of climate change on future bioenergy produc-
tion (Xu et al., 2022). Its complexity and flexibility have also
made it a key tool in the production of the annual Global
Carbon Budget (GCB) reports (Friedlingstein et al., 2025).

This model was first introduced by Gitz and Ciais (2003)
as a carbon cycle model designed to simulate carbon stocks
and flows across regional biomes. Shortly after, Gitz (2004)
enhanced the model to include a simple climate response and
climate-carbon feedbacks, such as temperature impacts on
NPP and soil respiration. A decade later, OSCAR V2 was
presented by Gasser and Ciais (2013), with the main dif-
ference being the transition from Scilab to Python 2 as the
programming language. V2.1 followed shortly, incorporat-
ing representations for non-CO2 species and multiple climate
responses calibrated against CMIP5 models. This version
is comprehensively described by Gasser (2014), though in
French, with partial English descriptions provided by Cheru-
bini et al. (2014) and Li et al. (2016).
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The most significant increase in OSCAR’s complexity oc-
curred with V2.2 (Gasser et al., 2017), which introduced
numerous additions and modifications to OSCAR modules.
These included enhancements to both the ocean and land
carbon cycles, the development of ozone (both stratospheric
and tropospheric) and aerosol modules, and the creation of
albedo and wildfire modules. V2.3 (Gasser et al., 2018) in-
troduced a permafrost module. V3 completely rewrote the
model in Python 3, improving its code quality and solver
scheme while leaving all physical equations and parameters
unchanged. Since then, only minor changes have been imple-
mented. V3.1 included some small modifications to the car-
bon cycle representation, as described in Gasser et al. (2020),
where a description of the changes between versions 2.2
and 3.1 can be found (Appendix 3). A brief description of
subsequent changes is offered in the model’s CHANGELOG.
V3.2 implemented a new formulation of CO2 partial pressure
and modified the parameters controlling deep ocean carbon
transport following Strassmann and Joos (2018). V3.3 up-
dated long-lived GHG forcing expressions, as well as tem-
perature response parameters, to follow the IPCC AR6 Chap-
ter 7 (Forster et al., 2021b).

An unusual feature of OSCAR is its emulation of pre-
cipitation change. This process is not typically included in
SCMs, GREB being the only other SCM in this review to
include it. The global anomaly in precipitation is modelled
as a linear dependence on surface temperature and forcing.
For each model region, OSCAR then translates this global
anomaly into local values using a pattern-scaling approach
(Santer et al., 1990; Mitchell, 2003; Mathison et al., 2025)
with linear weights calibrated to the CMIP5 relationships be-
tween global and regional values. A similar approach is also
used to derive local temperature anomalies from the global
amount determined from the EBM.

4.12.1 GHG concentrations

Generally speaking, this model operates with anomalies with
respect to the pre-industrial state, rather than absolute quan-
tities. This is the case for OSCAR’s carbon cycle, which was
broadly established in its current form by V2.2 (Gasser et al.,
2017), with V3.1 (Gasser et al., 2020) adding a few minor
fluxes and recalibrating its pre-industrial steady state to out-
put from the GCB 2018 (Le Quéré et al., 2018). Its primary
strength resides in its land component, which includes a com-
plex representation of LULCC disturbances across model
boxes that represent different regions and “biomes” within
regions. The ocean component is based on the work of Joos
et al. (1996) with several modifications.

In OSCAR, land is divided into multiple boxes represent-
ing a number of regions, each containing several biomes.
These boxes provide an average characterisation for each
biome within each region. Users can choose the number
of biomes and, since V3, of regions; however, typical con-
figurations include around ten regions and five biomes.

For instance, Gasser et al. (2020) used ten regions fol-
lowing Houghton and Nassikas (2017), and five biomes:
forests, other natural lands (grasslands, shrublands, bare
soil), croplands, pastures and urban lands. This can vary,
however. For instance, the latest GCBs (Friedlingstein et al.,
2022, 2023, 2025) include 210 regions. Each biome in the
model contains three carbon pools: vegetation, litter and soil.
The flow of carbon through these boxes is governed by the
following fluxes:

– NPP: carbon flux from atmosphere to vegetation, modu-
lated by temperature (linear relationship), precipitation
(linear) and CO2 concentration (logarithmic or hyper-
bolic).

– Litterfall: carbon flux from vegetation to both litter and
soil (introduced in V3.1) pools, with a magnitude scal-
ing linearly with vegetation carbon stock.

– Litter respiration: carbon flux from the litter pool to the
atmosphere, dependent on temperature (exponential or
Gaussian relationship) and precipitation (linear).

– Decomposition: carbon flux from litter to soil, propor-
tional to litter respiration.

– Soil respiration: carbon flux from the soil pool to the at-
mosphere, with similar dependence on local properties
as the litter respiration flux.

– Fire: carbon flux from the vegetation pool to the atmo-
sphere, proportional to the vegetation carbon stock and
influenced by CO2 levels, local temperature and precip-
itation, following a linear relationship.

– Harvest (introduced in V3.1): carbon flux from the veg-
etation pool to the atmosphere, representing emissions
from harvested crop products. It only applies to the crop
biome.

– Grazing (introduced in V3.1): carbon flux from the veg-
etation pool to the atmosphere, representing emissions
from pasture grazing. It only applies to the pasture
biome.

Through an elaborate book-keeping approach, OSCAR
tracks carbon across each region-biome pair, and emulates
the movement of carbon associated with LULCC distur-
bances. These disturbances are currently limited to anthro-
pogenic activities (no dynamic vegetation). For each biome
and region, three wood product pools are defined that re-
ceive carbon after a LULCC disturbance. These pools are
characterised by distinct turnover times that determine the
rate at which carbon is subsequently released into the atmo-
sphere. Broadly speaking, these pools represent fuel wood (∼
1 year), pulp-based products (∼ a few years) and hardwood-
based products (∼ dozens of years). The allocation of carbon
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to each wood pool, as well as the disturbance-induced move-
ment of carbon between vegetation, litter and soil carbon
pools across different biomes, depend on the specific nature
of the LULCC disturbance. The model includes three types
of disturbances: land-cover change, wood harvest and shift-
ing cultivation. Given the large number of potential combina-
tions (five biomes, three carbon pools and three wood pools)
the detailed mechanics of these transitions can be complex,
and interested readers are referred to the Appendix of Gasser
et al. (2020) for further information.

OSCAR’s ocean component of the carbon cycle builds on
the mixed-layer pulse response function proposed by Joos
et al. (1996), discussed in Sect. 4.8.1. However, several mod-
ifications have been implemented to improve upon the origi-
nal Joos model:

– Following Harman et al. (2011), OSCAR replaced the
convolution of the atmosphere-ocean flux in Joos et al.
(1996) (Eq. 35), with an equivalent box model. These
boxes represent different turnover times of carbon mix-
ing between the mixed layer and the deep ocean, rather
than different ocean basins.

– The empirical carbonate chemistry equation used to cal-
culate ocean carbon partial pressure (Eq. 6b in Joos and
Bruno, 1996) was augmented with a dependency on sea
surface temperature, extending applicability of the orig-
inal formulation.

– The depth of the mixed layer (d in Eq. 35) was updated
with a dependence on sea surface temperature to simu-
late ocean stratification.

Since V2.3 (Gasser et al., 2018), OSCAR also includes
a representation of permafrost carbon stocks and potential
thawing. This addition introduced a frozen carbon pool for
two regions (Eurasia and North America). Thawing is driven
by local temperature, following an empirical S-shaped func-
tion. Similarly to the LULCC module, thawed carbon is
not immediately emitted to the atmosphere, but is instead
distributed among thawed carbon pools (default number is
three), each with its characteristic respiration turnover time.
Respiration from these thawed pools is influenced by local
temperatures, following the same relationships as standard
soil respiration functions, but with different parameter val-
ues.

Beyond CO2, OSCAR includes a comprehensive list of
GHGs: methane, nitrous oxide and 37 halogenated com-
pounds. It uses the usual one-box approach with emissions
and sinks (see Sect. 3.1.1), along with Eq. (2) to combine dif-
ferent sink contributions. Additionally, OSCAR implements
time-dependent lifetimes with relatively complex dependen-
cies on temperature and other atmospheric species. Due to
this complexity, only a brief summary is offered here, with
full details available in Gasser et al. (2017). A notable pe-
culiarity of OSCAR is its implementation of stratospheric

concentrations for methane, nitrous oxide and halogenated
compounds, which follows a time-lagged linearisation of the
corresponding tropospheric concentration based on Newman
et al. (2007).

The methane representation accounts for four sinks:
OH tropospheric oxidation, stratospheric loss, soil uptake
and OML uptake. These oxidation processes are modelled
through a complex scheme depending on several quantities:
temperature, atmospheric methane concentrations, strato-
spheric ozone concentrations (related to OH production), and
emission of three ozone precursors (NOx , CO, NMVOCs),
although not all quantities are relevant for all processes. It
also includes an estimate of wetland methane emissions, cal-
culating both changes in wetland area and in emissions per
unit of area. Wetland area depends on atmospheric CO2, lo-
cal temperature, and local precipitation, while emissions per
unit of area scale based on total heterotrophic respiration
since v3.1 (Gasser et al., 2020).

Similar schemes are used to emulate the concentrations
of N2O and halogenated species. For N2O, a single atmo-
spheric sink – the stratospheric sink – is considered. In con-
trast, halogenated species are subject to three atmospheric
sinks: tropospheric OH oxidation, stratospheric oxidation,
and surface oxidation comprising both land and ocean con-
tributions. The lifetimes associated with these sinks for both
N2O and halogens can vary based on several climate factors,
such as the stratospheric concentrations of the corresponding
species, the equivalent effective stratospheric chlorine and
global temperature, with the specific dependencies varying
based on the particular sink. For species where some of these
processes are negligible or irrelevant, an infinite lifetime is
defined.

4.12.2 Radiative forcing

OSCAR includes a comprehensive list of forcing agents: car-
bon dioxide, methane, nitrous oxide, 37 halogenated species,
tropospheric and stratospheric ozone, aerosols (direct and in-
direct), stratospheric water vapour, albedo change, aviation
contrails, volcanic emissions and solar irradiance. The last
three are included through prescribed forcing time series,
while the rest are computed prognostically by the model.

The calculation of radiative forcing in OSCAR is, gen-
erally, simpler than its treatments of gas cycles. In the lat-
est available version, V3.3, OSCAR was updated to use the
AR6 expressions (Smith et al., 2021a) to estimate the ERF
of long-lived GHGs. However, since this version has not yet
been described in the literature (aside from a brief mention
in the model’s CHANGELOG), and earlier versions remain
widely used, we provide a brief overview of the pre-V3.3
forcing calculations, with the caveat that post-V3.3 versions
will incorporate AR6 parameterisations.

In earlier versions, CO2 forcing is estimated via the stan-
dard logarithmic formula (Myhre et al., 1998), whereas CH4
and N2O forcings are derived from a modified square root
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expression accounting for absorption band overlaps, follow-
ing Myhre et al. (1998, 2013). This square root expression
(without overlap effects) is also used to estimate forcing re-
lated to water vapour in the stratosphere, based on lagged
stratospheric methane concentrations (changed to a simpler
linear scaling with methane concentrations in V3.3).

Contributions from halogenated compounds, tropospheric
ozone and stratospheric ozone are assumed to scale lin-
early with the relevant atmospheric species. Ozone contri-
butions are calculated directly from its atmospheric burden,
which is based on methane concentrations, ozone precur-
sors (NOx , CO, VOC), stratospheric concentrations of chlo-
rine, bromine, and nitrous oxide, as well as global temper-
ature. Ozone contributions, like aerosols’, are regionalised
with region-specific weights, although these are logically-
different regions from those in the biospheric module. In-
stead, OSCAR uses values from the four Hemispheric Trans-
port of Air Pollution (HTAP) regions (Fiore et al., 2009; Yu
et al., 2013) to derive the values for these weights. In terms
of aerosol forcing, OSCAR considers both direct and indi-
rect contributions. The direct contribution follows the lin-
ear radiative efficiency approach and considers five sources
of anthropogenic aerosols: sulfate aerosols, primary organic
aerosols, black carbon, nitrate aerosols, and secondary or-
ganic aerosols. Each of these contributions depends on two
precursors and global temperature. The indirect effects are
scaled linearly on black carbon emissions and logarithmi-
cally with the five sources mentioned earlier. Finally, the land
surface albedo is based on the LULCC module, which esti-
mates regional changes of land cover. OSCAR takes this es-
timations, as well as estimations of black carbon deposition
on snow and averaged yearly albedo, and calculates the forc-
ing contribution via the associated radiative efficiency. Three
forcing agents, aviation contrails, volcanic aerosols, and so-
lar irradiance, are taken directly as forcing time series from
IPCC (2013). For the last two, OSCAR uses forcing effica-
cies to compute the associated ERF.

4.12.3 Temperature

OSCAR employs a two-box formulation of an IRM as EBM
(see Sect. 3.3.1). The two constituent boxes are the global
surface and the deep ocean. An exchange coefficient governs
the heat exchange between the two, while the climate sen-
sitivity parameter translates the total radiative forcing into a
heat flux. This formulation also includes two inertia factors
to modulate the time lag in the temperature response of the
two layers. Thus, an estimation for the global temperature
anomaly is produced, which is then scaled linearly to the dif-
ferent regions in the model. Additionally, OSCAR also com-
putes an estimation for the ocean heat content, based on the
total forcing, the ocean temperature, and the climate sensitiv-
ity.

4.13 ESMICON

The Earth System Model Integrating Cycle of Nature (ESMI-
CON), originally named Earth System Climate Interpretable
Model (ESCIMO), is a model designed to simulate the mul-
tiple feedback processes present in the climate system under
a system dynamics framework. This framework focuses on
stocks, flows and feedback loops to represent the behaviour
of complex systems (Naugle et al., 2024; Sterman, 2018).
ESMICON stands out as the only SCM designed using this
framework, making it a unique contribution to the field. A
consequence of this choice is the fact that ESMICON is one
of only two models in this review (along with EM-GC) that
does not employ an explicit EBM to estimate global sur-
face temperature increases. First introduced by Randers et al.
(2016), ESMICON covers three broad areas: global carbon
flows, global energy flows and global albedo change. The
model simulates a relatively extensive list of processes, with
a total of 50 non-linear differential equations.

ESMICON has been used to analyse the effects of various
policy interventions (Randers et al., 2016), such as strato-
spheric aerosol injection and tropical deforestation cessation.
It has also been used to explore the potential for permafrost
thawing to continue warming the planet after net zero is
achieved (Randers and Goluke, 2020). Additionally, ESMI-
CON serves as the climate submodule in the Earth3 model, a
socioeconomic-biophysical model developed to analyse the
challenges of achieving the three environmental global Sus-
tainable Development Goals (SDG) while simultaneously
pursuing the remaining 14 SDGs (Randers et al., 2019).

4.13.1 GHG concentrations

ESMICON possesses a variable called “concentration of
greenhouse gases in the atmosphere” which is made up
of two contributions: carbon and methane. Furthermore,
methane is only contemplated as a product of permafrost
thawing, and it is expressed in CO2 equivalent units, like
the GHG concentration variable. Therefore, ESMICON only
resolves the ecosytem cycle of CO2. Its system dynamics
framework is similar to a box-based model (see Sect. 3.1.2),
being based on inventories and fluxes.

The carbon cycle in ESMICON consists of seven pools:
fossil reserves, atmosphere, biomass, permafrost, surface
ocean, deep ocean and sediments. Figure 10 shows a dia-
gram of these pools in its right side. As a module following
system dynamics principles, the carbon cycle in ESMICON
is governed by a series of feedback processes (Randers et al.,
2016):

– Anthropogenic emissions: carbon is emitted into the at-
mosphere as a result of fossil fuel combustion. This is
required input by the model.

– Ocean surface layer diffusion: carbon is transferred
from the atmosphere to the ocean’s surface layer via a
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Figure 10. Main feedback loops in the ESMICON SCM. Numbers identify the eight main loops, along with the feedback polarity: negative
(blue colour and minus sign), positive (red colour and plus sign) or mixed (red-blue gradient and plus-minus sign). Image based on Randers
et al. (2016, Fig. 2). Single arrows denote information flows, while double arrows denote material flows of carbon and heat. Two parallel
lines crossing the arrow represent a long delay.

chemical diffusion, modulated by the concentration dif-
ference between these two carbon pools.

– Deep ocean transfer: carbon is transferred from the
ocean’s surface layer to the deep ocean, influenced
by the long-term mean speed of downwelling and up-
welling waters.

– Sedimentation: carbon is deposited at the ocean floor,
transferring from the deep ocean pool to the sediments
pool. This flow is proportional to the carbon content in
the deep ocean.

– NPP: the net gain of carbon in the biomass pool, drawn
from the atmospheric pool. It increases with higher
atmospheric CO2 concentrations and decreases with
higher temperatures.

– Ocean biomass gain: carbon is absorbed by the biomass
pool from the ocean pool. This gain increases with
higher CO2 concentration and decreases with higher
ocean temperatures.

– Fire: carbon is released from the biomass pool into
the atmosphere due to fire. It is proportional to GMST
anomaly.

– Permafrost thawing: carbon is released from the per-
mafrost pool as it thaws, with the release rate being pro-
portional to the GMST anomaly.

4.13.2 Temperature

While not using explicitly an EBM framework to determine
temperature anomalies, ESMICON uses instead an analo-
gous system dynamics framework to determine those anoma-
lies based on the distribution of heat across the system. In
particular, it uses the heat inventories from the atmosphere
and surface, along with the associated heat capacities, to esti-
mate GMST. The key distinction between the more common
EBM and ESMICON’s temperature module is the absence of
an explicit radiative forcing concept and the parametrisation
of feedbacks through a λ parameter, as in Eq. (8). Instead,
state variables in the system, such as CO2 concentrations and
ice volume, impact directly various feedback loops driving
the model’s dynamics, and, ultimately, the heat distribution.
The eight primary feedback loops, as identified in Fig. 10,
are:

– Higher GMST leads to increased outgoing radiation to
space (negative feedback).
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– Higher GMST leads to higher atmospheric water vapour
concentrations, which increases radiation retention by
the atmosphere (positive feedback).

– Higher GMST leads to increased low-cloud coverage,
increasing Earth’s albedo (negative feedback).

– Higher GMST leads to increasing ice and snow melt,
reducing Earth’s albedo (positive feedback).

– Higher GMST leads to higher biomass growth, reducing
atmospheric CO2 concentration. This balancing feed-
back results from the opposing concomitant effects of
CO2 fertilization, which promotes growth, and deser-
tification and ocean acidification, which hinder it. This
loop can turn into a positive feedback if the latter effects
dominate.

– Higher CO2 concentrations lead to increased CO2 ab-
sorption by terrestrial and maritime components. This
is mainly a negative feedback loop, as CO2 absorp-
tion by vegetation and ocean increases with higher at-
mospheric CO2 concentrations. However, these effects
can be counteracted by reduced increase in plant up-
take when carbon ceases to be a limiting factor in plant
growth and by reduced carbon uptake in a more acidic
ocean surface layer.

– Higher GMST leads to permafrost thawing, releasing
more carbon into the atmosphere (positive feedback).

– Higher GMST leads to increases in the sea level, pro-
moting a reduction in anthropogenic emissions (nega-
tive feedback). This loop is often not activated. Randers
et al. (2016), for instance, disabled it for their model
analysis.

Figure 10 provides a diagram of these eight primary feed-
backs loops, which explain most of the dynamics in the
ESMICON SCM. More processes are included in the model
(e.g., low and high cloud reflection and radiation, convec-
tion, evaporation, volcanic aerosols, sunspots, desertifica-
tion), with a comprehensive list available in the original pub-
lication. Notably, these feedback loops are often non-linear,
with many processes in ESMICON exhibiting time delays
and saturation or depletion effects.

5 Discussion

The aim of this review was to provide clarity on the current
SCM landscape by identifying the processes represented by
each model, their respective implementations, and the com-
monalities shared across different models. This was achieved
by reviewing the suite of SCMs participating in RCMIP,
detailing their components and development history. Ulti-
mately, we hope this texts serves as a valuable guide for

the difficult task of SCM selection. While other considera-
tions such as accuracy, calibration or usability are important
when selecting a model, clarifying which processes a model
resolves is a critical first step to assess model suitability for a
particular use. Consequently, we offer here a brief summary
of the model descriptions presented in Sect. 4, first classify-
ing SCMs in two broad families based on design philosophy,
and then summarising the commonalities and differences of
the models included in this review. Finally, we conclude with
a brief discussion of the limitations of our review.

When selecting an SCM, it is important to recognise that
different models were developed with different intended ap-
plications and design philosophies. Broadly, SCMs can be
grouped into what might be termed “specialist” and “gener-
alist” models. Specialist models are developed around clearly
defined objectives or processes. Examples include AR5-IR,
which provides a minimal framework to estimate warming
from CO2 concentrations; EMGC, which explicitly repre-
sents natural variability; ESMICON, designed within a sys-
tem dynamics framework; GREB, whose spatio-temporal
resolution and process representation are designed to sup-
port a physical understanding of climate and its teaching;
OSCAR, which focuses on the carbon cycle and LULCC dis-
turbances; and WASP, with an emphasis on ocean dynamics.
In contrast, generalist SCMs can be viewed as models devel-
oped without prioritising any particular component or objec-
tive beyond providing climate simulations. Note, however,
that the design philosophy should be evaluated across the
whole model lifetime, as this distinction is likely violated in
the short-term (e.g., FaIR was initially developed as an exten-
sion of AR5-IR consisting of a small set of equations to pro-
duce warming estimates, arguably qualifying as an “special-
ist” SCM, but has evolved considerably since then). The most
representative example of a generalist SCM is MAGICC, as
the oldest SCM in this review with an extended history of us-
age to generate climate projections. Other models in this cat-
egory arguably include ACC2, CICERO-SCM, Hector, FaIR,
MCE, and SCM4OPT. Reflecting their broad scope, several
generalist models (ACC2, Hector, MAGICC, SCM4OPT)
have been coupled as climate modules within IAMs, while
others (FaIR, MAGICC) have been widely used across mul-
tiple IPCC assessment reports. This specialist-generalist split
can be a useful first step to evaluate which SCM to use, par-
ticularly if a given specialist design philosophy aligns with
the requirements of the user. However, a more detailed un-
derstanding of the processes and methods used by different
SCMs is likely still required after this first step, which we
offer below.

Given that atmospheric concentration of carbon dioxide
is the primary driver of climate change, nearly all reviewed
models internally simulate CO2 dynamics, barring EM-GC
and GREB. Two different approaches are typically employed
for this representation: box models and IRMs, with some
models using both – applying one to the land component and
the other to the ocean component (see Table 1). A particu-
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larly noteworthy scheme in this area is the OML-IRM de-
vised by Joos et al. (1996), which couples a parameterisation
of carbon uptake by the OML with an IRM emulating car-
bon export to the deep ocean. This scheme is shared by three
widely used SCMs: MAGICC, OSCAR and CICERO-SCM.
Following developments in more complex ESMs, SCMs
have increasingly integrated representations of additional cli-
mate processes. Notably, several models (ESMICON, Hec-
tor, MAGICC and OSCAR) now include permafrost thaw dy-
namics, typically modelled by introducing additional carbon
reservoirs that activate under elevated temperatures, releas-
ing carbon (and, in some cases, methane). Similarly, SCMs
have begun incorporating processes previously exclusive to
ESMs, such as wildfire (ESMICON, OSCAR), precipita-
tion variability (GREB, OSCAR), and nitrogen cycle inter-
actions (MAGICC). However, given the inherent simplicity
of SCMs, these representations rely on substantial simpli-
fications and parameterisations compared to ESMs. Addi-
tionally, some models go beyond the standard global repre-
sentation of carbon stocks, incorporating spatially resolved
elements such as biome-specific (Hector and OSCAR) or
region-specific (OSCAR) carbon pools, which evolve inde-
pendently with distinct fluxes and parameters.

Beyond carbon dioxide, the representation of gas cycles
for other GHG species varies across models. Several mod-
els (AR5-IR, EM-GC, ESMICON, GREB, MCE, WASP) do
not resolve any non-CO2 gas cycles, although EM-GC and
MCE allow for the inclusion of prescribed concentrations
time series for some of these species. In contrast, the remain-
ing models (ACC2, CICERO-SCM, FaIR, Hector, MAGICC,
OSCAR, and SCM4OPT) all include a mass balance repre-
sentation of gas cycles for the other two major GHGs, CH4
and N2O, accounting for global sources and sinks. This treat-
ment is also extended to halogenated species, although the
number of included gases varies across models. Methane
lifetime is typically computed by considering multiple at-
mospheric sinks via Eq. (2). Furthermore, more complex
models (ACC2, MAGICC, OSCAR) incorporate additional
parameterisations for key atmospheric processes, including
species interactions with hydroxyl (OH) radicals and Brewer-
Dobson circulation effects (MAGICC).

The calculation of radiative forcing varies across models in
both number of included forcing agents and the parameteri-
sations used for their estimations. AR5-IR exclusively calcu-
lates forcing from carbon dioxide, whereas pre-V3 WASP
only distinguishes between non-CO2 Kyoto protocol and
non-Kyoto protocol agents, which must be provided as ex-
ternal forcing time series. All other models, except ESMI-
CON, GREB, and WASP V3, estimate forcing contributions
from methane, nitrous oxide, and a varying number of halo-
genated compounds based on their internally simulated con-
centrations and emissions. Beyond these core GHG contribu-
tions, models typically include a subset of additional forcing
agents, either parametrising their effects or directly ingest-
ing prescribed forcing time series, as summarised in Table 2.

Parameterisations generally follow analytical expressions es-
tablished in the literature, with the formulations of Myhre
et al. (1998) and Etminan et al. (2016) being particularly
widely adopted for CO2, CH4 and N2O estimates. Minor
GHG forcing contributions are often computed using linear
scaling based on radiative efficiencies, typically following
the latest IPCC assessment data. ESMICON and GREB di-
verge from conventional approaches due to their distinct de-
sign philosophies, with GREB being the only gridded model
in the review, and ESMICON following a system dynam-
ics philosophy. This leads to the inclusion of non-standard
forcing contributions such as latent heat cooling, turbulent
heat exchange, and albedo changes driven by cloud and land-
cover changes.

The conversion of total radiative forcing to temperature
anomaly is typically accomplished through EBMs. With the
exception of two models – EMGC, which relies on a linear
regression model, and ESMICON, which employs an EBM-
equivalent stocks and fluxes framework to simulate heat in-
ventories – all reviewed SCMs use an EBM framework.
These are implemented in one of two equivalent formula-
tions (see Sect. 3.3.3): layer models (ACC2, CICERO-SCM,
GREB, Hector, MAGICC, OSCAR, SCM4OPT, WASP) or
IRMs (AR5-IR, FaIR, MCE). Two notable schemes are
shared by multiple SCMs: DOECLIM (Kriegler, 2005) and
UD-EBMs (Hoffert et al., 1980; Wigley and Raper, 1987).
DOECLIM, used by ACC2, Hector and SCM4OPT, com-
bines a zero-dimensional EBM with a one-dimensional
ocean heat diffusion model. Meanwhile, UD-EBMs, shared
by CICERO-SCM and MAGICC, simulate ocean heat trans-
port through both diffusion and advection, emulating the ef-
fects of ocean circulation. Most of these EBMs lack any rep-
resentation of internal variability, with the exception of EM-
GC, FaIR, SCM4OPT, and WASP. EM-GC and SCM4OPT
employ parameterisations for ocean-driven variability, but
rely on historical time series data, limiting their applicabil-
ity to future projections. In contrast, FaIR and WASP intro-
duce stochastic noise terms in their expressions estimating
forcing (FaIR) and temperature anomaly (FaIR and WASP),
allowing variability to influence both historical simulations
and future projections.

5.1 Limitations

This study has focused on reviewing model structure and
process representation, assuming that model calibration is
performed employing appropriate data sets at the time of
calibration. While differences in calibration methodologies
and data can introduce significant variations in model out-
put – particularly since models can and often are calibrated
at different times using different datasets – a comprehensive
review of model calibration was deemed out of scope for
this study. This decision was based on two main considera-
tions: (i) a comprehensive calibration review would substan-
tially increase the length and complexity of this analysis, and
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(ii) calibration approaches are subject to frequent revisions,
making any such review likely to soon become obsolete.
Nevertheless, some details on model calibration have been
included when relevant, with additional information avail-
able in the comprehensive list of model references cited in
this text.

Similarly, this study does not address technical implemen-
tation details beyond what is offered in Table 4. While such
details can be important for SCM developers, they are often
inadequately documented in model publications and may be
of limited relevance to most users. Consequently, a decision
was made to exclude technical implementations aspects from
this review.

The discussion of model differences in this review has fo-
cused on the processes represented in each SCM and the ad-
vantages those representations provide, rather than on poten-
tial disadvantages. This was a deliberate choice: we found
no consistent or objective method for assessing model draw-
backs solely from their technical specifications. Different
methodological approaches, most notably RCMIP efforts
(Nicholls et al., 2020, 2021; Romero-Prieto et al., 2025) with
their systemic evaluation and benchmarking of model out-
puts, are better suited to address questions of model disad-
vantages.

Finally, we reiterate that this review does not provide an
exhaustive account of every SCM in the literature. While am-
bitious in scope, a limit on the number of models included
was necessary to maintain focus and conciseness. As a re-
sult, only participating models in RCMIP phases 1 (Nicholls
et al., 2020) and 2 (Nicholls et al., 2021) were reviewed.
This selection was intended as a reasonable proxy for the
most widely used and actively developed models, aiming to
meet the needs of most users and developers. Future RCMIP
phases may include a different set of models, creating oppor-
tunities for further reviews that cover additional models and
updates.

6 Conclusions

This study provides a review of the fundamental principles
underlying SCMs and the mechanisms by which they gen-
erate climate projections. A detailed description of all mod-
els participating in the RCMIP exercise has been presented,
structured around the three key stages of the emissions-
climate change cause-effect chain – GHG concentrations, ra-
diative forcing and temperature anomaly – where relevant.
By providing clarity on how these models represent various
climate processes and identifying their key differences, we
aim to enhance understanding among both developers and
users while also informing about the implications of select-
ing one model over another.

Code and data availability. This review paper does not present
new data or model code. However, it discusses several existing cli-
mate models, many of which have publicly available code. Links to
the open-source versions of these models are provided in Table 4.
Archived copies in persistent repositories, where code availability
and licensing allows, are detailed below.

The ACC2 model code is available upon request from the original
authors.

The AR5-IR model code is available upon request from the
original authors, although a copy of the version used in RCMIP is
available in the OpenSCM repository: https://github.com/openscm/
openscm/blob/ar5ir-notebooks/notebooks/ar5ir_rcmip.ipynb (last
access: 5 June 2025, Nicholls, 2025). A copy of this repos-
itory is archived at https://doi.org/10.5281/zenodo.15600556
(Romero-Prieto, 2025).

CICERO-SCM’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.10548720 (Sandstad et al.,
2024b).

The EM-GC model code is available upon request from the orig-
inal authors.

The ESMICON model along with its documentation can
be downloaded from http://www.2052.info/escimo/ (last access:
5 June 2025).

FaIR’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.10566813 (Smith, 2024)

GREB’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.2232282 (christianstassen, 2018).

Hector’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.10698028 (Dorheim et al., 2024a).

The Held et al. two layer model implementation used
in the RCMIP study is available in the OpenSCM reposi-
tory at https://github.com/openscm/openscm/blob/ar5ir-notebooks/
notebooks/held_two_layer_rcmip.ipynb (last access: 5 June 2025,
Nicholls, 2025). A copy of this repository is archived at
https://doi.org/10.5281/zenodo.15600556 (Romero-Prieto, 2025).

MAGICC’s latest reviewed code is available at https://zenodo.
org/records/15600556 (Romero-Prieto, 2025).

MCE’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.5574895 (tsutsui1872, 2021).

OSCAR’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.15600556 (Romero-Prieto, 2025).

SCM4OPT’s latest reviewed code (part of the CB-IAM model)
is available at https://doi.org/10.5281/zenodo.11928479 (Su, 2024).

WASP’s latest reviewed code is available at
https://doi.org/10.5281/zenodo.4639491 (WASP Earth System
Model, 2021).
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