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Abstract. Large-eddy simulations (LES) are essential tools
for studies on atmospheric turbulence and clouds and play
critical roles in the development of turbulence and convec-
tion parameterizations. Current numerical weather models
have approached kilometer-scale resolution as supercomput-
ing facilities advance. However, this resolution range is in the
so-called gray zone, where subgrid-scale (SGS) turbulence
actively interacts with resolved motion and significantly in-
fluences the large-scale characteristics of simulated weather
systems. Thus, a novel LES framework is required to enable
the development of new SGS approaches for the gray zone.
Here we used the Python library JAX to develop a new LES
model. It is based on the generalized pseudo-incompressible
equations formulated by Durran (2008). For a classic warm
bubble case, the traditional Smagorinsky model fails to re-
produce the correct structure evolution of the warm bubble,
though it can modestly correct the rising speed in gray-zone
resolution simulations. Utilizing the capability of JAX for
automatic differentiation, we trained a deep learning-based
SGS turbulence model for the same case. The trained deep
learning SGS model, based on a simple autoencoder (AE),
enables this physics-deep learning hybrid model to accu-
rately simulate the expansion of the thermal bubble and the
development of rotors surrounding the center of the bubble at
a gray-zone resolution. The gray-zone simulation results are
comparable to those of the benchmark LES resolution.

1 Introduction

Large-eddy simulation (LES) has been widely used in the at-
mospheric science community as a benchmark for the devel-
opment of subgrid-scale (SGS) turbulence parameterizations
in numerical weather prediction (NWP) and climate models
(Teixeira and Cheinet, 2004; Sullivan and Patton, 2011; Ver-
relle et al., 2017; Wu et al., 2020; Jadhav and Chandy, 2021).
LES has also helped the community to achieve a better un-
derstanding of cloud feedback, which interacts with bound-
ary layer turbulence and contributes to climate sensitivity
(Bretherton, 2015; Blossey et al., 2016; Tan et al., 2017; Shen
et al., 2022). The capability of LES to resolve large, energy-
containing turbulent eddies and model effects of SGS pro-
cesses on these resolved scales, as well as their interactions
with other processes such as clouds and radiation, makes it a
unique and valuable tool in atmospheric science.

Although supercomputing platforms continue to advance,
LES on a large domain for operational NWP is still not reach-
able. Current-generation regional NWP models and some re-
gional climate simulations are often run at kilometer-scale
resolution (Prein et al., 2017; Schir et al., 2020). Global sim-
ulations with kilometer-scale resolution have also been re-
cently demonstrated for a four-month-long integration (Wedi
et al., 2020).

The new challenge in kilometer-scale resolution resides in
the gray zone for turbulence and convection. Gray zone (or
terra incognita) is defined when the filter length scale has the
same order as the dominant turbulence length scale (Wyn-
gaard, 2004). In the gray zone, turbulence and convection can
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only be partially resolved and thus SGS motions interact ac-
tively with resolved motions in all three spatial dimensions
and are not in statistical equilibrium, which contrasts with
the assumptions used in the conventional planetary bound-
ary layer (PBL) turbulence and cumulus convection schemes,
such as horizontal homogeneity and quasi-equilibrium. As
a result, the conventional parameterization schemes cannot
be directly applied with such grid spacings (Chow et al.,
2019; Honnert et al., 2020). Meanwhile, LES-type turbu-
lence schemes cannot be applied to the gray zone either
because they often assume isotropic turbulence and down-
scale energy transfer. In contrast, gray-zone turbulence is
anisotropic and allows energy backscatter (Shi et al., 2019).

Therefore, LES is becoming an increasingly valuable tool
for further advancement of SGS turbulence representation in
gray-zone simulations and new LES codes which can run
faster than before are needed to enable simulations cover-
ing large domains to capture the potential influence of SGS
turbulence on the organization of convection and clouds (Shi
and Fan, 2021).

For computationally intensive, highly parallelizable ap-
plications like atmospheric models, GPU-accelerated codes
have been demonstrated to run much faster than conventional
CPU-based implementations in Fortran or C (Demeshko
et al., 2013; Price et al., 2014; Schalkwijk et al., 2015;
van Heerwaarden et al., 2017; Sun et al., 2018, 2023). Re-
cent years have seen many research efforts focused on GPU
model development. Donahue et al. (2024) rewrote a GPU
architecture for the Simple Cloud-Resolving Energy Ex-
ascale Earth System Atmosphere Model (SCREAM) with
C(+ +) and found an averaged 6x acceleration compared
to the CPU codes. Sridhar et al. (2022) developed Climate
Machine (CliMA) with Julia and provided an architecture-
portable framework for heterogeneous CPU/GPU comput-
ing for atmospheric modeling. An ocean dynamical core
that can be operated on GPUs was also implemented with
Julia in the newly developed ocean model, Oceananigans,
and made significant achievements in model efficiency (Sil-
vestri et al., 2024, 2025). For LES, Sauer and Mufioz-Esparza
(2020) developed FastEddy, a CUDA C(+4+) based model,
and achieved a 6x acceleration on one GPU over state-of-
the-art LES using 64 CPUs.

Meanwhile, except for GPU acceleration, differentiabil-
ity of LES codes is crucial for advancing next-generation
deep learning (DL) based SGS parameterizations, but till
now few GPU-based LES have mentioned differentiabil-
ity. Differentiable LES exposes every step of the dynamical
core as differentiable operations, enabling end-to-end gradi-
ent propagation through the simulation. This capability sup-
ports a more powerful training paradigm for DL parameter-
izations: the neural SGS module is optimized via differen-
tiable roll-outs, adjusting its parameters based on how er-
rors accumulate through the evolving flow dynamics. Recent
years have seen a surge in the application of such coupled
frameworks to physical parameterization problems (Kochkov
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et al., 2021; Qu and Shi, 2023; Watt-Meyer et al., 2024; Qu
et al., 2024). Models trained in this way demonstrate supe-
rior forecast stability compared to both traditional schemes
and offline-trained neural parameterizations. By integrating
the physics-based core directly into the training loop, these
hybrid approaches tend to yield more reliable and inter-
pretable weather and climate predictions than purely data-
driven DL models. Commonly, hybrid models rely on high-
fidelity numerical simulation data for training, but recent
study also shows that they are available to include observa-
tional knowledge into the training process, further indicating
the great potential of hybrid models to be applied for real-
istic simulations. For example, Neural GCM (Kochkov et al.,
2024) matches or outperforms state-of-the-art DL forecast-
ing models across both short and long lead times, while also
reducing computational cost relative to conventional gen-
eral circulation models. It further improves the model perfor-
mance and gives more accurate forecasts for precipitation by
jointly using ERA-5 and satellite observational data (Yuval
et al., 2024). These results underscore the promising applica-
tion of differentiable LES for next-generation SGS parame-
terizations.

In this paper, a new fast and differentiable LES code
that runs on GPUs is implemented with a newly devel-
oped Python library, JAX (Bradbury et al., 2018). Differ-
ent from Fortran or C, numerical models written in Python
codes are easier to be coupled with DL models for training.
Existing work includes JAX-Fluids, a Python-based end-to-
end differentiable CFD framework which is designed with
JAX for compressible single and two-phase flows (Bezgin
et al., 2023, 2025a), and enables end-to-end training of DL-
based implicit LES models (Bezgin et al., 2025b). The new
LES code is named LEX. LEX has the following distinct
advantages: (1) it is numerically stable with its acoustic-
wave-filtered governing equations and advanced integration
schemes, (2) it computes quite fast by using XLA (acceler-
ated linear algebra), a domain-specific compiler that accel-
erates code via many techniques and enables the compiled
codes to run on TPUs or GPUs, (3) it is platform-agnostic,
where the same code can be compiled and run on CPUs,
GPUs, or TPUs, (4) it is auto-differentiable so that it enables
DL-base parameterization to be trained with a coupled on-
line training strategy (Rasp, 2020) in a physics-DL hybrid
structure (von Rueden et al., 2020).

The structure of this paper is mainly organized as follows.
Section 2 introduces the setup of LEX and the thermal test-
ing case, and also the training flow of the hybrid ML-based
SGS model. Validation results for LEX are shown in Sect. 3.
Testing results for the ML model are presented in Sect. 4.
In Sect. 5, the computational costs are compared to investi-
gate to what extent LEX is faster than the conventional LES
model and also the feasibility of the DL-based SGS model.
Section 6 contains the summary and discussions.
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2 Method and Experiment Design
2.1 LEX
2.1.1 Governing Equations

To develop LEX, the acoustic-wave-filtered equations for
compressible stratified flow developed by Durran (2008)
are adopted as the governing equations, where a pseudo-
density p* is defined to eliminate sound waves and enforce
the mass conservation equation:

1 Dp*
p* Dt
and the pseudo-density is defined as:

+V-u=0, ey

p* _ Ib'(xiy7z’t)é‘p(x1yvzvt)
0, ’

where ~ denotes a spatially varying reference state. The po-
tential temperature is used in the definition of Durran (2008)
for the dry air. Here the density potential temperature 6, is
used as a replacement to include the effect of water variables
for a moist situation. It is defined and approximated as:

1
0, :9(+—QV/8>
I1+gv+aq+gi
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where € = Ry/Ry, Rq and R, are gas constants for dry air
and water vapor, respectively. gy, g, gi are mixing ratios
of water vapor, liquid water, and cloud ice. In the reference
state, ¢ and g; can be assumed to be zero, thus ép i8 the ref-
erence state virtual potential temperature.

With this definition, and further with some approximation,
the mass (pseudo-density) conservation equation becomes:
350,

ot

@
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where Hy is the heating rate per unit mass, u is velocity, ¢, is
the specific heat of air at constant pressure, and 7 is the Exner
function. Perturbations with respect to the reference state are
defined such that &’ =6 — 6 and =’ = = — 7. Durran (2008)
further separated 77 into a large horizontally uniform compo-
nent 77, (z, t) and a remainder 77, (x, v, z, ¢) for computational
accuracy and notational convenience. Then the momentum
and thermodynamics equations are the following,

Duh

o SR+, Vi (i + ) = 0 )
Dw+ P o’ B ©)
_ C _ =

Dt P7P 47
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Dt ¢,

where uy, is the horizontal velocity vector, w is the vertical
velocity, Vj, is the horizontal gradient operator, and f is the

https://doi.org/10.5194/gmd-19-1103-2026

Coriolis parameter. B is the linearized buoyancy,
0’ 1 -
B=g 5+ cHav—a-a—-a|, ®)

in which, gy is the reference state mixing ratio of water va-
por, and g is the gravitational acceleration. The reference
state satisfies the equation of state and the hydrostatic bal-
ance equation:

R . R/cy
7o (_,sep> ©)
Ps
~ 0T
ey = —g. (10)
0z

where R is the gas constant for dry air, ¢y is the specific heat
of air at constant volume, and pj is the pressure at the refer-
enced level.

The last unknown variable needed for integration is the
pressure perturbation 7', which needs to be solved diag-
nostically to enforce Eq. (4). The diagnostic relationship is
obtained by multiplying the momentum equation by ﬁép,
taking the divergence of the result and subtracting d/9¢ of
Eq. (4). The resulting diagnostic equation is provided by Dur-
ran (2008) as his Eq. (5.2):

pV- (ﬁépepv:r’) = -vV. (ﬁépu : v)u
— fVh- (k X ﬁépuh)
3p60,B
9z
—CpVh- (ﬁépepvhﬁh>

0 (pHpy
ot \ cpm

350, 3256,
V. ) 11
+ < u) + o2 (11)
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Assuming the tendency in the reference state is small, the
last few terms involving time derivative can be ignored in the
equation above, then the diagnostic relation for 7’ is:

pV- (ﬁépepv:r’) —-V. (ﬁépu : v) u
— fVh- (k X ﬁépuh)
3p60,B
0z
—epVi- (66,0, Vnin) =R.  (12)

The model has no microphysics scheme yet, so water va-
por is included just like a tracer, though it affects buoyancy.
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2.1.2 Numerical Techniques

For time integration, the four-stage third-order Strong-
stability-preserving Runge—Kutta (SSPRK3) scheme (Dur-
ran, 2010) is used to ensure better numerical stability. To
keep numerical robustness and stability, especially for long-
time integration of turbulent flows in the atmospheric bound-
ary layer, which can develop sharp gradients and discon-
tinuities, the weighted essentially non-oscillatory (WENO)
schemes (Jiang and Shu, 1996; Shu, 1998) are employed
to solve the advection tendencies for the momentum equa-
tions, with a fifth-order scheme for the horizontal direc-
tion and a third-order scheme for the vertical direction. The
WENO scheme provides a proven and computationally ef-
ficient mechanism to eliminate spurious numerical oscilla-
tions. Three layers of ghost points are used in each side of
x and y directions to employ the fifth-order WENO scheme
for the horizontal fluxes. The discretization adopts the stag-
gered Arakawa C-grid. The pressure Eq. (12) is solved with
the biconjugate gradient stabilized method (BiCGSTAB).

2.1.3 Testing Simulation Configurations

The three-dimensional numerical simulation of a rising ther-
mal (Wicker and Skamarock, 1998; Bryan and Fritsch, 2002)
is applied to validate the accuracy of LEX. The employed
grid spacing is 100 m in both x, y, and z directions. The en-
tire domain is 24 km by 24 km horizontally and 12 km verti-
cally. The initial reference state has a constant potential tem-
perature of 300K, and features motionless air, hydrostatic
equilibrium, and lapse rates corresponding to neutral stabil-
ity. Periodic boundary conditions are applied to the four sides
and rigid, free-slip wall boundary conditions are specified at
the top and bottom of the domain. Water vapor is included
for moist cases with a constant relative humidity of 10 % ev-
erywhere in the initial condition. The thermal is set at the
central part of the domain at the bottom, with the initial po-
tential temperature perturbation being:

o .cos? (”TL'J) if L, <1,
0 otherwise,

where 6 is used to adjust the maximum value of the poten-
tial temperature perturbation at the centre of the thermal to
simulate different thermal rising speeds, and Ly, is the radial
normalized distance between any point in the domain and the
centre of the thermal, which is defined as:

\/ X — Xc 2 Y=Y 2 Z—Zc 2
we((50) () () @
Xr Yr Ir

where X is the coordinates of the thermal centre, with
Xec =Y. =12km, z. =2km, and X; is the initial radius of
the thermal, with x; = y, = z =2 km.

The initial potential temperature perturbation will induce
an upward buoyancy force and initiate the vertical accelera-
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tion of the bubble in the very beginning. The buoyancy will
then cause the thermal to rise and evolve. During rising, the
upper part of the thermal will elongate. Two rotors will also
be developed on each side of the bubble in this process. The
structure of the thermal maintains strictly symmetric as it
evolves.

2.2 Deep Learning SGS Model
2.2.1 SGS Correction

Written with JAX, DL models can be coupled with the LES
model for training. This paper tested the hybrid model’s ca-
pability to use a DL-based SGS parameterization.

The SGS process refers to the unresolved part of the nu-
merical simulations due to the relatively coarse grid size.
Taking the potential temperature equation (7) for example,
it can be written as the following on a numerical grid:

20 _ Hn o (14)
Dt cpm

where 6 is the LES grid filtered potential temperature and
T is the SGS tendency.

To improve the stability of the numerical integration, in
this paper, the DL model is used to represent an SGS cor-

rection term instead of the tendency term (Um et al., 2021;
Kochkov et al., 2021; Qu and Shi, 2023), which is defined as:

to+At
Ty = f tdr, (15)
fo

where T is the SGS correction term and the integration is for
one time step of the dynamical core. T can be obtained from
the DL model, which is:

2 2y 2 2~ o
Ty =M (9 to+ A1 G v tg+Ars Hig+ALs Vtg+ Ars Wig+ At
=
Firar). (16)

M is the DL model, 1y + At denotes that those are the
variables after one time step integration of the dynamical
core, and ~ denotes that those have not been corrected by the
DL model. Thus for each DL model correcting step, the fore-
cast status of the potential temperature (6) is updated as:

510+At = §t0+At + Ty, 17)

and similarly, such SGS correction terms are applied to the
mixing ratio of water vapor (gy), the horizontal and vertical
velocity (u = u, v, w):

wy+ar = Upar + Tu, (18)

‘_]v,t0+At = av,to+Al + Tqv- (19)
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Figure 1. Model Architecture for the three-dimensional autoencoder neural network, where a xbxcxd means
width x length x height x channel. The inputs include the density potential temperature perturbation ('), pressure perturbation ('),
mixing ratio of water vapor perturbation (gJ,), horizontal and vertical velocity (u, v, w), and the outputs are SGS corrections for the density
potential temperature (¢), mixing ratio of water vapor (gy), horizontal and vertical velocity (u, v, w).

2.2.2 Data, Model Structure and Training ture employs 3D convolutional filters with a kernel size of

Configurations 3 x 3 x 3 and “same” padding throughout its encoder and de-

coder hidden layers, utilizing the GELU activation function

The training dataset is based on high-resolution “truth” sim- (Hendrycks and Gimpel, 2023). The model contains approx-
ulations (HighRes), which have a grid spacing of 100m in  imately 7.09 million trainable parameters.

both horizontal and vertical directions. Six distinct warm A moist warm bubble case is trained in this paper. The

bubble cases are included in the dataset. Each is initialized density potential temperature perturbation (9’), pressure per-

with different potential temperature perturbations prescribed turbation (), mixing ratio of water vapor perturbation (g.),

with 6 at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 K. The dataset only horizontal and vertical velocity (u, v, w) are used as inputs
contains data before the warm bubble’s complete interaction for the AE model, with ghost points reserved to preserve the

with the upper boundary. Accordingly, simulation durations  physical information at the boundaries. The outputs are SGS
are set to 30, 25, and 20 min for Case pairs 0.5-1.0, 1.5-2.0,  corrections for the density potential temperature (), mix-
and 2.5-3.0K, respectively. A time step of 5 is used for all ing ratio of water vapor (gy), horizontal and vertical veloc-

simulations. Then by spatially coarse-graining the HighRes ity (u, v, w). It should be noticed here that the outputs with
data, the training dataset is generated, with a grid spacing of ghost points are then stripped of their boundary extensions
600 m in the horizontal and 300 m in the vertical. 90 % of the and repadded with new ghost points to maintain numeri-

generated dataset is used for training, and 10 % is used for cal stability. Moreover, all the physical quantities are min—

testing. Temporal coarse-graining is employed in the training max normalized, with min-max values of each height level

and testing processes, with a 15 s time step for the numerical throughout the training dataset, to a unified range of [0, 1]

simulation. before being input to the AE model to avoid unit-induced dis-
To validate the trained model, two additional cases with  parities in data distribution. The height-dependent min-max

6. =2.6 and 5.0K are chosen to generate initial conditions normalization for model inputs can be written as:

for validation simulations. These two initial conditions are .

chosen to be within the training dataset potential tempera- o= — [min(®)] (20)

ture perturbation range as well as outside that range to evalu- [max(®)] — [min(P)]
ate the capability and generalizability of the trained DL SGS where & is the tensor of the general physical state consisting

model. of density potential temperature perturbation (9), mixing ra-
A three-dimensional autoencoder (3-D AE) is designed as tio of water vapor Rerturbation (¢4, horizontal and vertical
the structure of the DL SGS, shown in Fig. 1. The architec- velocity (u,v,w). ® means the normalized physical state.
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The max and min functions find the extreme at each grid
point in the entire training dataset, and the square brackets
indicate further taking the min and max values of each height
level. The motivation of the height-dependent min-max nor-
malization is to ensure the trained model has optimized per-
formance at all levels, as the atmosphere is a stratified fluid
and different height levels tend to have different amplitudes
of variability, especially for thermodynamic variables.

The outputs of the DL model are multiplied by max—
min values of each grid point throughout the training dataset
before they are added back to the direct integration results,
which is:

To, = Ta, x (max(®) —min(P)), 2n

where T‘ka is the correction term of each variable, ]N}p[k is the
scaled correction term, and the max and min functions are the
extremes at each grid point in the entire training dataset. This
is designed to make all the DL model’s outputs suitable with
the order of the direct integration results for each variable,
and can also help avoid adding unnecessary corrections to
points that have no variations in the training dataset.

The overall training flow can be summarized as follows.
At the beginning of each training step, a numerical integra-
tion step is performed for the dynamical core from given ini-
tial states, which are coarse-grained from the high-resolution
benchmark simulations. Then the integration results are used
as inputs to the DL model to yield the SGS correction terms,
which are applied to the direct integration results to get the
new physical states. Such new physics states serve as the ini-
tial states for the next numerical integration step. This loop
is iterated for N look-ahead steps.

At each step, the L, loss, Laplacian loss, as well as an
extra loss term which is used to penalize unreasonable model
outputs, are employed and accumulated to be the total loss
of the current training step, with which we use the Adam
(Kingma and Ba, 2017) optimizer to adjust the DL model
parameters. In this study N = 12. To mitigate the influence
of the potential rounding errors, double-precision (float64) is
employed throughout the training process.

The L, loss is written as:

ck (@, ® )—1"Mk<13 —o, | (22)
(53 100 Xtk _2 1o 7% 2,

where M represents the hybrid model (dynamical core and
the SGS model), ®;, is the initial state of ®, and ®,, is the
truth state of @ at the kth look-ahead step during training.

When training, it is found that the DL model can not dis-
tinguish the physical meaning of the input variables and will
generate unreasonable outputs in the very beginning, such as
negative values for water vapor, and meaningless background
noise, which are against the laws of physics and will strongly
impact the integrated results of the numerical simulation in
the next time step during the training loop.

Thus, firstly, to penalize such unreasonable negative values
that may be caused by the DL model, an extra loss term is

Geosci. Model Dev., 19, 1103-1120, 2026

added, which is:

k —Qv,y» gy, <0,

To mitigate background noise, a Laplacian loss as well
as scaling parameters are further employed. Laplacian loss,
which utilizes a Laplacian operator or Laplacian pyramid, is
known to effectively improve image qualities by enhancing
details and reducing noise (Li et al., 2017; Didwania et al.,
2025). In this case, the Laplacian of the density potential
temperature and mixing ratio of water vapor perturbations
are added to loss terms, which can be written as:

Lk (@, ) = HVZM"(D,O ~ V2o,

2
Lap ) (24)

A scaling parameter is also applied to each loss term,
which is:
max(®P) — min(d)

scale @ = i .
Joete(®) = ax ()] — [min(®)])?

(25)

The design of this custom scaling factor is intended to
introduce spatially varying normalization. Firstly, the loss
terms are also height-dependently normalized, so the squared
error should be divided by ([max] —min)2. Secondly, as hor-
izontal variability is non-uniform for all variables, and near-
zero perturbations occur in regions far from the thermal bub-
ble, it does not make sense to require the deep learning SGS
model to emphasize these regions — an aspect we have ac-
counted for by scaling the SGS correction terms derived from
the DL model. This scaling approach is also meaningful for
real atmospheric modeling. For small simulation domains,
the horizontal heterogeneity may be caused by complex ter-
rain or land-sea contrast.

Thus to summarize, the loss function employed in this pa-
per is written as:

1 N
Lot = ﬁ ]; (fscale(q)) : L:Z (<Dtoa q)tk) + fscale (qv)

X ‘Cf)enal-neg (qv,n) + fscale (VZ D)

X Efap(q>t() ) q)l‘k )) ) (26)

where N is the number of the look-ahead steps, and @, is

5;,( + ﬁp,k . It should be mentioned here that the training pro-
cess is quite sensitive to the initialization of the DL model
parameters. Thus it begins with three look-ahead steps as a
pre-training strategy, and gradually adds up to six and twelve
look-ahead steps to keep the model’s numerical stability.

In this paper, the AE model is trained for 88 epochs, with
the training process being manually fine-tuned based on the
observed loss trajectory. The learning rate is decayed from an
initial value of 1 x 1073 to a final value of 1 x 10~°, which
can be seen in Fig. S1 in the Supplement.
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Figure 2. Snapshots of simulated potential temperature perturbations (") in CM1 and LEX under different initial central perturbations: 1 K
att =0, 10, 15, 20, and 28 min (the first and second columns) and 5K at ¢t =0, 5, 7, 10, and 14 min (the third and fourth columns).

3 LEX Validation

The accuracy of LEX is validated against high-fidelity sim-
ulation results obtained from the fully compressible Cloud
Model 1 (CM1) (Bryan and Fritsch, 2002). Two moist cases
with different initial central potential temperature perturba-
tions are tested. The first and second columns of Fig. 2 show
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the snapshots of the simulated potential temperature pertur-
bations in CM1 and LEX with . =1K at t =0, 10, 15 and
20 min. The third and fourth columns of Fig. 2 show the sim-
ulated results with 6. =5K at r =0, 5, 7, 10 and 14 min.
Comparing the two pairs in Fig. 2, it is evident that the sim-
ulation results of LEX demonstrate excellent agreement with
those of CM1, regardless of the initial potential temperature
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Figure 3. The correlation coefficient (R), mean squared error (MSE), and multi-scale structural similarity (MS-SSIM) for CM1 and LEX
simulation results of density potential temperature (a, ¢, e), and water vapor mixing ratio (b, d, f).

perturbations, indicating the reliability and accuracy of the
LEX’s code in JAX. Also, the results shown in Fig. 3 demon-
strate excellent performance metrics of LEX. The correla-
tion coefficient (R) and the multi-scale structural similarity
(MS-SSIM) maintain high values, and the mean squared er-
ror (MSE) maintains low levels throughout the simulation pe-
riod for two tested cases. Figures S2 and S3 further confirm
the robustness of LEX by presenting the simulated results for
the mixing ratio of water vapor and pressure perturbations
with 6. =1K and 6. =5 K. However, because LEX calcu-
lates pressure based on the pseudo-compressible approxima-
tion, subtle differences appear after the thermal reaches the
upper boundary of the domain in pressure simulations.
Furthermore, the figure shows that different initial poten-
tial temperature perturbations make the thermal rise at dif-
ferent speeds. A higher temperature brings the thermal a
faster rising speed. The bubble with 6. =5K takes around
half of the simulated time to rise to a similar height as the
bubble with 6. =1K. The acceleration of the rising speed
due to a warmer initial potential temperature perturbation
makes an evident difference for the simulated physical states
of the numerical model in each integration time step. There-
fore, though the evolution patterns are quite similar in the
five training cases, they still provide rich and complex vari-
ation in the training dataset, sufficient for the training and
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testing of the DL SGS model below. The additional valida-
tion case initiated with 6. =5 K is far outside of the train-
ing dataset range, further proving the generalizability of the
trained DL model.

4 Preliminary Testing for Deep Learning-based
Parameterizations

4.1 Conventional SGS Model

This section first tests the reliability of the classic Smagorin-
sky scheme in the gray zone. The following testing simula-
tions are run with LEX for comparisons: (1) a “Truth” sim-
ulation with a high resolution of 100 x 100 x 100 m as the
referenced ground truth; (2) the “Coarsened Truth”, which
is coarse-grained from the “Truth” simulations, to serve as
the baseline on the coarse grids; (3) a “LowRes” simula-
tion which is run on the coarse grids with the resolution of
600 x 600 x 300 m; and (4) the “LowRes-Smag” simulation
in which the conventional Smagorinsky scheme (Smagorin-
sky, 1963; Shi et al., 2018) is used to solve the SGS turbu-
lence on the coarse grids.

Figures 4 and S4 clearly illustrate that the LowRes sim-
ulation tends to have a faster rising speed than the baseline
simulation and it fails to resolve the correct symmetric ro-
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Figure 4. Snapshots of simulated potential temperature perturbations (6') at ¢t =0, 5, 7, 10, and 14 min, with 6; =2.6 K, where the first
column is the “Truth” simulation with a high resolution of 100 x 100 x 100 m, the second column is coarse-grained from the Truth simulation
with a coarse resolution of 600 x 600 x 300 m, the third column is the numerical simulation results with the coarse grids, and the forth column
is the LowRes simulation with the Smagorinsky scheme to deal with the SGS turbulence.

tor structure at the warm bubble edges due to the relatively
large grid spacing. Using the Smagorinsky scheme to solve
the SGS motions can slightly help correct the rising speed
of the LowRes simulation. The rising speed of the thermal is
lowered and is adjusted to be similar to the referenced truth
state with the Smagorinsky scheme. However, the expected
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symmetric rotor structure cannot be simulated properly, and
the intensity of the large-scale motion is also wrongly esti-
mated, underestimation in this case. This shows that the con-
ventional parameterization schemes still have limitations in
approximating the appropriate physical dynamics and pro-
viding reliable numerical predictions in the gray zone. There-
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Figure 5. Snapshots of simulated potential temperature perturbations (8”) at t = 0, 5, 10, 15, and 20 min, with 6. = 2.6 K (the first to the third
columns), and 6. = 5.0 K (the fourth to the sixth columns), where the first and fourth columns are the “Coarsened Truth” simulations with
a coarse resolution of 600 x 600 x 300 m, the second and fifth columns are the “LowRes-Smag” simulations with the Smagorinsky scheme
to deal with the SGS turbulence, and the third and sixth columns are “LowRes-DL” simulations with the trained AE model to serve as the

turbulence parameterization scheme.

fore, improved parameterization schemes need to be devel-
oped to handle the SGS motions more precisely in such grid
spacings.

4.2 Deep Learning-based SGS Model

The training for the DL-based SGS model is conducted with
a moist warm bubble case. The online testing results are
shown in Figs. 5 and S5. The LowRes-DL is the result of the
coarse simulation with the trained AE model’s correction for
SGS tendencies. Compared to the conventional Smagorinsky
scheme, the trained DL model is able to simulate the right
rising speed, and can further develop the proper symmet-
ric structure of the thermal, showing its superiority for tur-
bulence predictions in the gray zone. Moreover, results are
similar no matter whether the initial potential temperature is
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within the range of the training dataset or out of that, indicat-
ing the good generalization capability of this AE model.

The quantitative assessments of the DL model’s forecast
performance are also conducted with the correlation coeffi-
cient (R) and the kinetic energy (KE) profile, which are de-
fined as:

ZiZjZk (Xijk _Y) (Yi.ik _?)

k= 1))
J(Zizjzk(xijk —7)2) <ZiZjZk(Yijk —7)2)
KE = %(l%u?)ﬂ 28)

where X represents the simulated results, Y represents the
truth states, and the overline denotes the spatial average over
all grid points for different variables. (-), represents the time
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Figure 6. The correlation coefficient (R) and energy profile of the Coarsened Truth, LowRes, LowRes-Smag and LowRes-DL simulations,

with 6. =2.6K (a), and 6. =5.0K (b).

average, and u:u; follows the Einstein summation conven-
tion, which equals w? 0+ w'

As is seen in Fig. 6, the numerical simulation with the
DL-based SGS model can maintain a high level of correla-
tion with the baseline (Coarsened Truth) during the appli-
cable testing period. What’s more, compared to the LowRes
and LowRes-Smag prediction results, LowRes-DL can better
forecast the small-scale turbulence motions, which is proved
by the highly aligned maximum peak height of the kinetic
energy and the corresponding magnitude with those of the
baseline.

In this section, the experiment of the moist warm bubble
case proved the capability of LEX to be used for training
a DL SGS model in a physics-DL hybrid framework. The
newly developed DL model can well represent SGS motions
in the gray zone, offering a promising alternative to conven-
tional parameterization schemes.

4.3 Comparisons and Potential Physical Insights

In this section, the predictions using the Smagorinsky
scheme and those using the AE model against the same
benchmark: the coarse-grained, high-fidelity simulation,
which is the non-parameterized reference, are compared.
Also the SGS tendency due to the Smagorinsky model and
SGS corrections generated by the AE model are analyzed,
aiming to find the potential reasons that the conventional
Smagorinsky scheme fails to develop the correct rotor struc-
ture, and the difference that the hybrid model has brought.
Through this way, we hope to give some physical insights
from the DL-based SGS model and make some contributions
to the development of the interpretable DL.

The warm bubble case is set with an initial temperature
perturbation, which causes an upward buoyancy and thus
gives the bubble a vertical acceleration. When the bubble
rises, the cold air on each side needs to descend for compen-
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sation, which will then cause vertical velocity gradients and
further form strong velocity shear layers at the bubble bound-
aries. In the shear layers, according to the vorticity equation,
vorticity will thus be generated due to the spatial gradients of
potential temperature, which is V6. But when the resolution
becomes coarse, small-scale processes and some key physics
information, such as temperature gradients, cannot be appro-
priately resolved, and this causes the LowRes simulations to
be unable to generate the rotor structure.

Figures 7 and 8 present the forecasted potential tempera-
ture perturbation and vertical velocity from the conventional
Smagorinsky scheme and the AE model, respectively. The
forecast differences induced by each scheme, and the corre-
sponding SGS tendency generated by the calssic Smagorin-
sky and SGS corrections generated by the AE model are also
shown. Results for the additional physical quantities (u, v,
and gy) are provided in the Supplement (Figs. S6-S8).

As evidenced by Figs. 7 and 8, the Smagorinsky scheme
and the AE model exhibit obviously different impacts on the
development of the warm bubble at the very beginning. Com-
pared with the coarse-grained high fidelity simulations (the
third and fourth column in Figs. 7 and 8), the Smagorin-
sky mainly imposes a cooling effect on the warm bubble,
and weakens its upward motion. But the AE model sustains
warming and the upward motion in regions that are to further
develop the rotor structure. This significant difference is key
to the later development of the warm bubble.

A comparative analysis of the SGS tendency due to the
Smagorinsky model and the corrections due to the AE model
provides further explanations (see the fifth and sixth columns
in Fig. 7). As the conventional Smagorinsky is a diffusion
model, it naturally diffuses warm temperature anomaly to
surrounding regions. Accordingly, it produces a warming
tendency near the top of the rising thermal, a cooling ten-
dency below, but almost no extra effect at the rising centre,
which leads to the dissipation of the thermal’s original energy

Geosci. Model Dev., 19, 1103-1120, 2026
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Figure 7. The simulated potential temperature perturbation (9’) at t =35, 10, and 15 min, with . =2.6 K. The first and second columns
are the forecasts of the conventional Smagorinsky and DL-based SGS model. The third and fourth columns are the differences between
parameterized and non-parameterized simulation results of the conventional Smagorinsky and the DL-based SGS model. The fifth column is
the SGS tendency due to the Smagorinsky model, and the sixth column is the SGS correction due to the DL model.

without any replenishment. However, the trained AE model
can accurately produce a warming correction at the thermal
centre, and thus help maintain the buoyancy force that drives
the bubble’s sustaining development.

The above findings can explain Fig. 4, where the classic
Smagorinsky helps correct the warm bubble’s rising speed
compared to the LowRes results, as the Smagorinsky scheme
greatly lowers down the temperature at the top with its en-
ergy diffused at the thermal centre. Furthermore, they align
with Fig. 6, where the Smagorinsky forecast has the same
energy and vertical velocity peak with the hybrid model,
but it presents smaller values, even smaller energy than the
LowRes simulation.

The classic Smagorinsky tends to produce overly diffusive
corrections, which limits it to resolve fine-scale structures
and maintain the necessary energy for the warm bubble to
develop the rotor structure. The corrections generated by the
AE model are much more detailed and accurate. As is illus-
trated in Fig. 7, SGS corrections of the AE model always
help maintain the strength of the potential temperature at the
critical part of the warm bubble in a very fine way, such as
the rising centre at the key beginning, and the rotors on the
sides after they have been maturely developed. This makes
the hybrid model keep the energy for rising and developing
the rotors. These detailed structures are probably essential
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to enable the model to model the small-scale physics infor-
mation which is unresolvable by the coarse grid. Similarly,
Fig. 8 shows that the AE model’s corrections exhibit detailed
structures and help keep the upward motion.

5 Computing Time Comparisons
5.1 LEX Compared to CM1

The computational costs are compared in this section. As
mentioned in Sect. 1, LEX has better numerical stability and
is expected to show faster computing speed with JAX accel-
eration techniques. Using the conventional CM 1 model as the
benchmark model, Table 1 shows that employing the same
time step of two seconds to run a 20 min simulation, the total
computing time for CM1 is 789 s using 64 cores, while the
LEX run takes 548 s on one GPU. Furthermore, at the resolu-
tion of 100 x 100 x 100 m, the longest time step for CM1 to
maintain numerical stability is two seconds, but for LEX, it
can be up to 12s, thanks to its acoustic-wave-filtering equa-
tions and the strong stability integration scheme SSPRK3. As
aresult, LEX’s running time can be further reduced by a fac-
tor of 1/6. Meanwhile, according to the strong scaling test
shown in Fig. 9, the speed-up factor for the 20 min simula-
tion of CM1 reaches the maximum with 64 processors. That
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Figure 8. The simulated vertical velocity (w) at t =5, 10, and 15 min, with 6, =2.6 K. The first and second columns are the forecasts of
the conventional Smagorinsky and DL-based SGS model. The third and fourth columns are the differences between parameterized and non-
parameterized simulation results of the conventional Smagorinsky and the DL-based SGS model. The fifth column is the SGS tendency due
to the Smagorinsky model, and the sixth column is the SGS correction due to the DL model.

Table 1. Computational performance comparison of CM1 and LEX. The CM1 was run using 64 cores of an AMD Ryzen Threadripper
3990X. The LEX was run on NVIDIA RTX A6000 GPU. No SGS models were used in CM1 or LEX simulations.

Model Resolution Time Step  Hardware Integration 10/Setup and  Execution
(m) (s) (CPU/GPU) Time (min) Compilation Time (s) Time (s)
CM1 100 x 100 x 100 2 CPU (64 cores) 20 40.00 789.00
LEX 100 x 100 x 100 2 GPU 20 171.97 548.01
100 x 100 x 100 12 GPU 20 171.97 84.75

means in this 20 min simulation for the warm bubble case,
compared to the optimal speed-up performance of CM1 with
64 CPU cores, LEX on a single GPU is around nine times
faster.

Because the 20 min simulation is a relatively short integra-
tion period, leading to the LEX setup and just-in-time com-
pilation time accounting for a significant fraction of the total
running time. However, if we run the LEX for a substantially
longer time, the compilation and setup time probably can be
ignored. This demonstrates the great application potential of
LEX to run for long simulations.

The effectiveness of GPU acceleration is also shown in
Table 2. Calculating with the same resolution and a 15 s time
step for a 20 min integration time, LEX with the Smagorin-
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sky scheme runs around 21 times faster on the GPU than on
the CPU, excluding the just-in-time compilation time.

5.2 DL-based SGS Model Compared to Conventional
Smagorinsky Scheme

LEX can be trained with a DL-based SGS model and succeed
in numerical predictions in the gray zone, but whether such
physics-DL hybrid models can be applied in real weather
forecasts also relies on their computational costs. The param-
eterizations for SGS processes are only one part of the entire
numerical weather predictions, thus, they are expected to run
at a fast speed. Since the DL model is trained with the double-
precision float64, its computing time is first evaluated with
the same precision to run the hybrid model. Table 2 shows
that when running with float64, the LEX-DL model with
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Figure 9. Strong scaling performance of CM1 on the AMD Ryzen Threadripper 3990X.

Table 2. Computational speed comparison of DL-based SGS model and conventional Smagorinsky Scheme,

with the resolution being

600 x 600 x 300 m, and the 15 s time step for a 20 min simulation test for each.

Model Hardware Precision Parameterization I0/Setup and  Execution  Model Inference

Scheme Compilation Time (s) Time (s) Time (s)
LEX GPU fp32 n/a ~36 0.89 n/a
LEX+Smag CPU fp32 Smagorinsky ~33 43.28 n/a
LEX+Smag GPU fp32 Smagorinsky ~33 1.91 1.02
LEX+DL GPU fp32 DL ~ 65 1.48 0.59
LEX+DL GPU fp64 DL ~ 65 6.18 n/a

n/a: not applicable.

a 15 time step takes around three times of the computing
time of the LEX-Smag model using float32 with a same time
step after compilation, and meanwhile its compilation time is
two times slower, which is not satisfying performance. One
reason for this is that float64 needs more computational re-
sources than float32, and the other is the hardware limitation
that further increases the computational costs, as float64 con-
volutions are not supported by XLA on the NVIDIA RTX
A6000 GPU now, which is used in the model evaluations for
this paper.

However, though the double precision is necessary for the
training of the LEX-DL model, a single-precision of float32
is found to be applicable for the evaluations, as the model
parameters have already been sufficiently trained and the
DL model will not cause any tiny noise towards the stable
thermal structure. Thus, the computing efficiency of the DL-
based SGS model is further enhanced. As shown in Table 2,
using the same time step of 15s, the LEX-DL model with a
single precision can achieve 76 % computing time reduction
than that with the double precision, which only needs 1.48 s
to complete the integration task after the compilation.

We also test the Smagorinsky model and the AE model
on CPUs and it turns out that the Smagorinsky model will
be around 30 % faster. But if we conduct the test on GPUs,
it is found that though the compilation time is two times
slower, the fastest speed the hybrid model can achieve us-
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ing GPUs now after compilation is comparable to that of the
LEX-Smag model with the single precision, which means the
DL model can enable a lower computational expense for pro-
longed forecasts.

6 Conclusions

As the model resolutions are entering the kilometer-scale
range, parameterizations for SGS motions in the gray zone
remain key obstacles in today’s numerical weather forecasts,
because turbulence and convection can only be partially re-
solved and conventional parameterization schemes are no
longer applicable in the gray zone. LES models are always
valuable and important tools for studying small-scale turbu-
lence motions in the field of atmospheric science. They are
used to compare the different SGS parameterization schemes
and help develop improved SGS models for different flows
(Remmler and Hickel, 2013; Khani and Waite, 2015). How-
ever, LES that is available for large domains is still lacking
to date. In this background, the new LES model written with
JAX, LEX, is developed in this paper. By validating its sim-
ulation results with those of the traditional CM1 model using
different initial conditions for a simple thermal case, LEX is
proven to be a reliable and robust LES model.

Moreover, LEX can be applied for simulations on large
domains with its fast computation speed. With GPU acceler-
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ation, the acceleration tools from JAX, and good numerical
stability that allows larger time steps, running LEX on one
GPU is as fast as running CM1 on 600 CPU cores. One dis-
advantage of LEX is that the just-in-time compilation takes
much time. Therefore, LEX is better used for long-period
simulations. As the integration time increases, the advantage
of LEX’s fast computational speed will become increasingly
apparent, compared to the other traditional LES models.

The newly developed LEX code is also auto-differentiable.
To report its differentiability, based on LEX, a DL-based
SGS model is further trained for SGS parameterization in the
gray zone for the thermal bubble case. A simple AE model is
applied to produce correction terms for the prognostic vari-
ables. The coupled online training of the physics-DL hy-
brid model integrates the dynamics in the loops every epoch.
The trained model exhibits excellent capability to correct
the dynamical core integration and simulate the symmetric
rotor structure of the rising thermal in the gray zone. The
traditional Smagorinsky scheme is also tested and exhibits
poorer performance, with the thermal perturbation wrongly
estimated and failing to produce the rotor structure.

The DL model is not only more reliable in representing the
SGS turbulence in the gray zone, but its inference time can
also be comparable to that of the conventional parameteriza-
tion scheme. The preliminary results show that although the
training process requires double precision which will lead to
great computational costs, the trained model is able to be run
with single precision, enabling even faster computing speed
than the classic Smagorinsky after compilation. However, the
hybrid model needs longer compilation time, and makes its
total computing time twice that of the classic Smagorinsky
for the 20 min simulation in this case. These indicate that hy-
brid models are promising tools to be applied for SGS repre-
sentations for real atmospheric forecasts, especially for pro-
longed simulations which can significantly reduce the pro-
portion of compilation time.

LEX v1.6.0 is the initial model that has completed the ini-
tial accuracy tests and been validated for the hybrid model
training. However, now it is still an idealized model which
does not contain the microphysics and radiation scheme. This
LEX version has already included a surface flux scheme fol-
lowing Neale et al. (2010), though it was not tested in this
study. The implementation of P3 microphysics (Milbrandt
etal., 2021) is ongoing and will be tested in cloudy boundary
layer cases. We will also add the Rapid Radiative Transfer
Model (RRTMG) (Iacono et al., 2008) to LEX in the future.

Moreover, LEX is designed with inherent support for par-
allelism thanks to its implementation using the JAX frame-
work, which provides automatic parallelization capabilities
with the Single-Program Multi-Data (SPMD) codes (Brad-
bury et al., 2018), as well as mpidjax (Hafner et al., 2021).
However, LEX v1.6.0 applies the BICGSTAB algorithm as
the pressure solver, which introduces per-iteration global
synchronization points that are conflict with the subdomain-
level synchronization needed for ghost-point exchanges.

https://doi.org/10.5194/gmd-19-1103-2026

Considering the problem scale and hardware setup, the
SPMD parallelism across the spatial domain is considered
not plausible now, and mpi4jax is the appropriate tool for
domain decomposition and parallel computing. Now the par-
allelism of LEX v1.6.0 can only be performed at the batch
level. Related codes are provided on GitHub.

Overall, LEX v1.6.0 can now be utilized with accuracy and
fast-computing speed. It is auto-differentiable so that corre-
sponding DL-based SGS models can be trained to provide
high-fidelity parameterizations for SGS motions in the gray
zone. The development of LEX is expected to help deepen
knowledge of the small-scale turbulence processes and en-
able the future development of more reliable parameteriza-
tion schemes in the gray zone.

Code and data availability. The current version of LEX is publicly
available on Github at https://github.com/MetLab-HKUST/LEX
(last access: 30 January 2026) under the MIT license. LEX codes,
and scripts for producing figures are archived on Zenodo under
https://doi.org/10.5281/zenodo.15486687 (Zhu et al., 2025a). Re-
lated data used in this study to produce the figures can be accessed
from Zenodo under https://doi.org/10.5281/zenodo.15730773
(Zhu et al., 2025b). The data and scaling parameters
used for model training are provided on Zenodo under
https://doi.org/10.5281/zenodo.18411485 (Zhu et al., 2026).
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