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Abstract. Conceptual hydrological models, traditionally re-
lying on simplified representations of physical processes
governed by conservation laws remain widely used in opera-
tional hydrology due to their explainability and practical ap-
plicability. However, these process-based models inherently
face structural uncertainties and a lack of scale-relevant the-
ories — challenges that emerging artificial intelligence (AI)
techniques may help address. In parallel, high-resolution
models are crucial for predicting extreme events character-
ized by strong variability and short duration, making spa-
tially distributed hybrid modeling critical in the current con-
text. We introduce a hybrid physics—Al framework that em-
beds neural networks (NNs) seamlessly into a spatialized,
regionalizable, and fully differentiable process-based model
via universal differential equations (UDEs). The model in-
tegrates a state-dependent NN to refine internal water fluxes
and an implicit resolution of the UDE system, followed by
kinematic wave routing on a flow direction grid. Spatially
distributed parameters are inferred through regionalization
mappings including convolutional NNs, and adjoint-based
gradients enable end-to-end training of the hybrid system.
We implement this framework into the latest release of the
smash platform, significantly extending its capabilities to
comprehensively evaluate hybrid models at kilometric spa-
tial and hourly temporal resolutions. The results show that
hybrid approaches demonstrate consistently strong and sta-
ble performance in calibration and various validation scenar-
ios. Additionally, the UDE structure exhibits a hybridization

effect that modifies state dynamics and runoff flow, achieving
more accurate streamflow simulations for flood modeling.

1 Introduction

1.1 Hydrological modeling and the rise of artificial
intelligence

With the explosion of big data and artificial intelligence (AI),
research on innovative approaches that leverage the power
of Al for flood forecasting and hydrological modeling has
demonstrated significant efficiency and advantages in terms
of accuracy and computational cost compared to traditional
rainfall-runoff models (Sit et al., 2020). Hydrological mod-
eling approaches have evolved from early rational methods
that use simple linear equations relating peak discharge to
rainfall intensity, through unit hydrograph theory, to complex
statistical models that rely on empirical relationships derived
from observed data. In parallel, physically-based modeling
approaches emerged based on the blueprint model (Freeze
and Harlan, 1969), which provides a complete theoretical
structure for watershed processes. However, the descriptive
equations used for each process require significant simpli-
fying assumptions in real-world applications (Beven, 2002).
In the pursuit of robust runoff simulation and/or of physi-
cal realism, the “resolution—complexity continuum” (Clark
et al., 2017) has been explored over the past five decades with
approaches of varied complexity, from black-box to fully
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physics-based. Conceptual models offer a middle ground,
representing watershed processes through simplified con-
ceptualizations that incorporate physical principles. While
conceptual models provide more practical implementations
than physically-based models and retain more physical inter-
pretability than empirical approaches, they often suffer from
several limitations: lack of scale-relevant laws, intrinsic un-
certainties in their structure and parameterization, no explicit
link between hydrological parameters and physical descrip-
tors, and equifinality in parameter estimation. These limita-
tions have motivated the integration of data-driven modeling
approaches, leading to increased interest in applying Al tech-
niques to hydrological modeling (e.g., reviews in Reichstein
etal., 2019).

In general, there are two main approaches for integration
of machine learning (ML) and deep learning (DL) techniques
in hydrological modeling. The first approach involves us-
ing a full black-box model that replaces traditional rainfall—
runoff models. These purely data-driven models have been
applied successfully to hydrological prediction, achieving
state-of-the-art performance in various applications using
long short-term memory (LSTM) network (Kratzert et al.,
2018; Feng et al., 2020; Cho and Kim, 2022) and their vari-
ants like LSTM-based Seq2Seq model (Xiang et al., 2020).
For example, Kratzert et al. (2018) reported that across 241
catchments in the US, their LSTM model achieved a mean
Nash-Sutcliffe efficiency (NSE) of 0.63 in temporal vali-
dation, with over 50% of catchments reaching NSE values
above 0.65.

A second approach is the hybrid method, which seam-
lessly integrates neural networks (NNs) into process-based
numerical models, adhering to the principle of “learning un-
der physical constraints.” The development of this approach
has followed two independent trajectories. The first builds
on recent efforts to make traditionally low-dimensional or
lumped conceptual models differentiable and trainable end-
to-end using modern automatic differentiation tools (e.g.,
Shen et al., 2023), enabling the integration of NN for tasks
such as lumped-parameter regionalization (Feng et al., 2022)
or improved estimates of potential evapotranspiration for dis-
tributed hydrological modeling (Wang et al., 2024). A sec-
ond trajectory stems from the long-standing use of adjoint
state methods to compute gradients in high-dimensional, spa-
tially distributed hydrological and hydraulic models, where
the foundations of differentiability and numerical approxi-
mation were established well before dynamic-graph autodiff.
Recent works have integrated NNs by coupling their Jaco-
bians with adjoint-based gradients for gridded-parameter re-
gionalization (Huynh et al., 2024), including improvements
via soil moisture assimilation (Ettalbi et al., 2025), and for re-
fining internal water fluxes (Huynh et al., 2025b). Addition-
ally, merging process-based differential equations with ML
can be highly advantageous. This has recently been demon-
strated with physics-informed NNs in Raissi et al. (2019),
where the process-based model serves as a weak constraint
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in the training cost function and is well-suited to assimilate
observations (e.g., He et al., 2020).

Despite the success of both pure and hybrid ML models,
each approach faces several limitations and challenges. First,
pure ML models are generally highly sensitive to large and
high-quality training datasets, making them less reliable than
process-based models in data-scarce regions (Shen, 2018;
Reichstein et al., 2019; Beven, 2020; Sit et al., 2020). Unlike
physics-based models, which rely on governing equations,
ML models do not inherently impose physical constraints,
resulting in reduced generalizability under extreme or un-
seen hydrological conditions (Beven, 2020). Hybrid model-
ing is a promising approach to address these limitations by
objectively integrating ML/DL components into physically
based models, rather than replacing them. However, hybrid
approaches also face their own set of challenges. A primary
limitation is maintaining physical consistency throughout the
hybrid framework while leveraging the flexibility of data-
driven approaches (Reichstein et al., 2019). Moreover, the in-
tegration of ML components with physical models may intro-
duce complexities in model coupling and error propagation
across different components (Frame et al., 2021). Current
hybrid approaches are predominantly employed for lumped
models, and hybrid modeling at high spatio-temporal reso-
lution has received little attention, likely due to model com-
plexity (with coupled processes) and the challenges of opti-
mizing high-dimensional parameters (with gridded concep-
tual parameters) over large domains at high-resolution.

1.2 Toward a distributed hybrid physics—AI approach
with implicit numerical solvers

High-resolution hydrological modeling incorporates spa-
tially distributed information at relatively fine temporal
scales, such as gridded radar rainfall, essential for represent-
ing extreme flood events characterized by strong variabil-
ity and short duration. However, such resolutions also in-
troduce challenges for model calibration due to the high di-
mensionality of optimization parameters. Although this high-
dimensional calibration problem can be tackled with a vari-
ational data assimilation (VDA) framework using numerical
adjoint models of spatially distributed differentiable hydro-
logical models (Castaings et al., 2009; Jay-Allemand et al.,
2020; Huynh et al., 2023; Garambois et al., 2025), one is
still facing overparameterization issues due to the sparsity
of constraining calibration data such as in situ discharge
timeseries, compared to large vectors of spatialized param-
eter. This problem can be addressed by introducing stronger
constraints into the forward model, such as learnable map-
pings between physical descriptors and conceptual parame-
ters (Huynh et al., 2024). In addition, challenges remain due
to both input data uncertainty and structural uncertainty in
the hydrological model.

Another important point is that the reservoir states in con-
ceptual hydrological models can be computed continuously
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and simultaneously by numerically solving a system of or-
dinary differential equations (ODEs) rather than sequentially
(e.g., Santos et al. (2018) with state-space GR4 model). Con-
tinuous state-space hydrological models (i.e., those formu-
lated within a dynamic system) typically employ implicit
numerical ODE solvers to integrate the system’s evolution
over time. Indeed, under the time-step and forcing condi-
tions tested by Clark and Kavetski (2010), fixed-step explicit
schemes produced unacceptably poor hydrological simula-
tions — even for parameter sets yielding good performance —
whereas implicit schemes maintained numerical stability and
physical consistency. An adjoint-based implicit scheme (de-
signed to simplify the Jacobian computations required for
implicit resolution) was proposed for a hybrid lumped model
by Song et al. (2024), in which NNs were employed solely
for parameter regionalization.

Recent studies indicate that embedding NNs into differen-
tial equation-based models, where the NN acts as a functional
approximator or correction for selected source terms within
a physically based differential equation offers a promising
direction for advancing process representation in complex
geophysical systems (Rackauckas et al., 2021; Yin et al.,
2021; Hoge et al., 2022) or biological systems (Philipps et al.,
2025). This generic framework, referred to in the scientific
ML community as universal differential equations (UDEs,
Rackauckas et al., 2021), provides a flexible approach for in-
tegrating prior mechanistic knowledge with data-driven com-
ponents in differential models. For instance, in hydrological
modeling, Hoge et al. (2022) implemented NN that correct
or replace precipitation-related source terms without depen-
dence on the model states in the ODE system, and solved the
system using an explicit numerical solver. However, to repre-
sent physical process memory, feedbacks, and nonlinear state
interactions, such NN components should ideally depend on
hydrological states, and the ODEs should be solved using
implicit numerical schemes as discussed above. Thus, a rig-
orous numerical approach for solving UDE system — includ-
ing NNs that depend on the hydrological model states — us-
ing implicit time integration schemes remains unexplored in
hydrological modeling. Key challenges include the efficient
computation of the Jacobian matrix for state-dependent NNs
within the UDE system for its resolution, and the derivation
of a numerical adjoint of the complete hydrological model
including UDE and gridded kinematic wave (partial differ-
ential equation, PDE) routing to enable high-dimensional pa-
rameter optimization.

1.3 Objectives and contributions of the proposed
framework

This study proposes a hybrid physics—Al approach that in-
tegrates state-dependent NNs within UDEs, into a differ-
entiable, regionalizable, and spatially distributed hydrolog-
ical model, where the UDE system is solved using an im-
plicit numerical scheme. With the term “hybrid physics—AlL”
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we refer to an approach that seamlessly integrates NNs di-
rectly into the physical differential model and its numeri-
cal solver. This differs from approaches that treat NNs sep-
arately, for example, as pre- or post-processing components.
The approach implements a mathematically rigorous method
for computing the Jacobian matrices required by the implicit
scheme when incorporating NN components. While we ini-
tially focus on simpler NN architectures to ensure numeri-
cal stability and physical interpretability, the hybrid numeri-
cal solver is designed to be compatible with PyTorch’s auto-
matic differentiation (Paszke et al., 2019) and could employ
more complex architectures or deeper networks for process-
parameterization.

The key novelty of this work lies in its capacity and gen-
eralizability to solve a spatialized UDE system with an im-
plicit numerical scheme. This UDE system includes a NN
that depends on the model states to refine internal water
fluxes (source terms in the right-hand side of the ODEs),
which leverages the dynamical system’s internal state vari-
ables to retain information about past forcings and responses,
thereby inducing temporal dependencies analogous to those
captured by recurrent NNs (RNNs). This design allows the
model to represent temporal memory effects and learn cor-
rections for structural errors in the conceptual hydrologi-
cal model. Additionally, the regionalization NN from Huynh
et al. (2024) is extended to explore alternative NN archi-
tectures, such as convolutional NNs (CNNs) in addition to
multilayer perceptrons (MLPs), to improve the adaptability
and scalability of parameter estimation. These developments
aim to bridge the gap between ML flexibility and physi-
cal model interpretability, uncovering hydrological behav-
iors and scale-relevant theories inferred with Al techniques.
It enables the addressing of several open research questions
by providing a robust and powerful tool for enhancing flood
modeling, mitigating structural uncertainty in modeling, op-
timizing data efficiency, and enabling more effective multi-
scale information extraction through hybrid flux correction.

This paper also introduces smash v1.1, an upgraded ver-
sion of the smash platform, following its initial release v1.0
in Colleoni et al. (2025). The new version includes various
hybrid physics—Al hydrological solvers and provides a more
comprehensive user guide, along with detailed mathematical
descriptions of the implemented models (see smash~1.1.0
Release  Notes (https://smash.recover.inrae.fr/release/1.1.
0-notes.html, last access: 5 November 2025) for details). As
the core solver for the French flash flood forecasting sys-
tem, smash is positioned to improve real-world flood sim-
ulation and hydrological forecasting, facilitating the integra-
tion of Al-enhanced physics-based modeling into operational
hydrology.

Geosci. Model Dev., 19, 1055-1074, 2026


https://smash.recover.inrae.fr/release/1.1.0-notes.html
https://smash.recover.inrae.fr/release/1.1.0-notes.html
https://smash.recover.inrae.fr/release/1.1.0-notes.html
https://smash.recover.inrae.fr/release/1.1.0-notes.html

1058 N. N. T. Huynh et al.: A hybrid physics—AI approach using UDEs with state-dependent NNs

2 Method

This study employs three key components. First, we imple-
ment the continuous state-space GR4 structure presented in
Santos et al. (2018) into smash, in addition to the classi-
cal GR4 model without an explicitly formulated water bal-
ance in Perrin et al. (2003). This state-space model solves
the water balance differential equations continuously us-
ing numerical schemes, instead of splitting the equations
to compute the solutions analytically. Second, the seamless
regionalization method using NNs, HDA-PR (Hybrid Data
Assimilation and Parameter Regionalization), proposed in
Huynh et al. (2024), enabling the estimation of conceptual
hydrological parameters from physical descriptors, is ex-
tended to incorporate CNNs in addition to MLPs. Finally, the
process-parameterization NN previously used for the analyt-
ical resolution of a discrete state-space model in Huynh et al.
(2025b) — which relied on an algebraic structure — is now
directly embedded into the ODEs. These ODEs are solved
using the Newton—Raphson method within an implicit Eu-
ler scheme, which mitigates numerical errors that arise when
using simple explicit schemes with sequential computations
and split operators.

2.1 Regionalizable gridded hydrological modeling with
UDE and routing PDE

Let us first define the domain, the main quantities of in-
terest, and the general formulation of the dynamic hy-
brid model along with its dependencies. Consider a two-
dimensional spatial domain Q2 C R2, with x € Q as the spa-
tial coordinate and ¢ €]0, T'] as the physical time. Here, a
regular grid is assumed, with an 8-direction (DS8) surface
flow path drainage network, Dg. The hybrid rainfall-runoff
model M (Eq. 1) dynamically maps atmospheric forcings
Z(x,t) =[P, E](x,t) onto state variables of surface dis-
charge Q(x,t), internal states h(x,t), and internal fluxes
q(x,t), depending on learnable spatio-temporal correction
f q (x,t) applied to internal fluxes ¢(x,t), on spatialized
physical parameters @ (x) and initial states ko (x) that can be
inferred through learnable regionalization mappings.

[0.1.4]) (x.1) = M (Do, Z(x,0); f,(x.0).10.hol (). (1)

The hybrid spatially distributed hydrological model M is
constructed by chaining differential equations and NNs, con-
sisting of: (i) a dynamic hydrological component M, op-
erating at the pixel scale, that simulates moisture states h,
internal fluxes ¢, and surface discharge Q. This component
is formulated as a UDE system, made learnable through a
set of NN operators ¢ that provide spatialized hydrologi-
cal parameters 6, and spatio-temporal flux-corrections f,;
and (ii) a dynamic and gridded hydraulic routing module
My that transports surface discharge @, whose parameters
Ony can also be inferred by a regionalization NN. Together,
these components, operating on the same spatial grid, define
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the forward model that is written, Vx € Q,¢ €]0, T], as in
Eq. (2).

M= Miny(50()) :
Hydrological operator M,; (steps (0)—(2)):

P
e ) = Fie(P.E.c;)

(1) UDE dynamics (GR4-like):
(1= (&)™) Pal+ fy.alhD

L (o —2 (2= 1) En(1+ £y 2lh))

a = <(§h} ) = 0.9(%’)a1 Py(1+ fy1lh]) 2)
Fhexe (1) (14 £,.31R])
— o (3) 2 (1 fy.alh))

(2) Flux closure law: @, = O.l(h—‘“)oll Po(1+ f4.1)

p
h
hexe (€)1 (14 fg3) + ——— () + fy.0)
t

ay —
(3) Hydraulic routing PDE My, :

ax Q + akwbkw Qbkw_l 0 Q =A Qlat

(0) Interception: (

C

Now, let us explain the above governing hydrological
equations. First, an interception reservoir JFj with a capac-
ity of c;, automatically computed using the flux matching
technique (Ficchi et al., 2019), allows for the computation
of the neutralized rainfall P, and neutralized evapotranspi-
ration E, (the neutralization of original rainfall and evapo-
transpiration by Fi).

Then, the NN-based estimator ¢ which hybridizes the
above differential equation system and consists of a pair
of NNs, which takes as input (i) neutralized atmospheric
Z,=[Pn, Eq](x,1), along with the hydrological model
states h(x,t), including production state s, and transfer
state h, to correct spatio-temporal internal fluxes q(x,?)
(process-parameterization pipeline); and (ii) physical de-
scriptors D(x) to estimate spatialized hydrological param-
eters @ (x) (regionalization pipeline), as shown in Eq. (3).

N fo ) = baux (Talx. ), h(x,1); pauy)

¢ 0(x) = Qregio (D(x); pregio)

3)

with o = (Pgyx; Pregio) the vector of trainable parame-
ters of the NN-based operator ¢. The vector of con-
ceptual parameters of the chained hydrological-hydraulic
model that we aim to regionalize is defined as 6(x) =
0 (x), 0hy(x))T» here 0 (x) = (Cp(x)s ct(x), kexc(x))T and
Ohy (x) = (akw(x), brw ()T, where ¢p [mm] is the capacity
of the production reservoir, ¢; [mm] is the capacity of the
transfer reservoir, kexc [mmdt—1] is the non-conservative wa-
ter exchange parameter, and ayxy, bxw [-] are the parameters
of the kinematic wave routing. In this study, the NNs consid-
ered include either two MLPs, or an MLP for water flux cor-
rection combined with a CNN for parameter regionalization.
Details on the NN architectures are provided in Appendix A.

Next, the hydrological states k& are computed by solving
the UDE system of Eq. (2), which can be generally expressed
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as:

dh
— =Fg(, b, ¢ (., h; p)) “

dr

where the left-hand side represents the dynamic evolution of
the system and the right-hand side is the source term that de-
fines the dynamic, here a GR4-like operator hybridized with
the following two key components:

1. The NN-based operator ¢g,x takes the hydrological
model states as part of its inputs (a so-called state-
dependent NN), thus affecting the model dynamics and
state gradient information. It is expected to learn the
model behavior by leveraging memory effects through
state updates.

2. The set of physical equations F with source terms in-
tegrated the NN ¢g,x as a complementary component,
which refines the internal water fluxes that describe the
state dynamics. The approach allows the UDE system
to preserve an original structure driven purely by phys-
ical equations, rather than directly relying on NN out-
puts, and enables learning under stronger physical con-
straints.

In this study, we consider Fg in Eq. (4) to be a set of GR
production and transfer operators (UDE system of Eq. 2),
where o] =2, oy =5, a3 = 3.5 are classical GR constants
(cf. Perrin et al., 2003; Santos et al., 2018); c¢p, ¢, and kexc
represent the conceptual parameters predicted by the NN
@regios fq,i=1.4 are the corrections applied to the internal
fluxes, predicted by the NN ¢qux. The bracket notation [/] in
the UDE system of Eq. (2) indicates that each flux correction
functionally depends on Ak, implicitly encoding the system’s
memory of past forcings and responses. The physical con-
straints are enforced by the UDE system that underlies the
hydrological state-space model and can be flexibly replaced
by alternative physical laws within the proposed framework.

Note that mass conservation and non-conservative ex-
change fluxes have been further investigated and analyzed
over a large sample using an algebraic resolution of the
ODE system in Huynh et al. (2025b). The closure relation in
Eq. (2) follows a simple flux summation under the GR-like
hypothesis at each pixel (for a detailed algebraic formulation,
see Colleoni et al., 2025 and Huynh et al., 2025b). The nu-
merical resolution of the hydrological UDE in Eq. (2), ensur-
ing both accurate resolution and numerical differentiability
with respect to model parameters for optimization, will be
explained in Section 2.2.

Finally, the routing module utilized here is based on a
conceptual 1D kinematic wave model, which is numeri-
cally solved using a linearized implicit numerical scheme
(Te Chow et al., 1988). Typically, the discharge routing
problem is simplified to a 1D problem by adopting a “D8”
drainage scheme Dg (x), derived from processing a digital el-
evation model (DEM) of the terrain, with the assumption that
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a single pixel exhibits the largest drained area. The kinematic
wave model is a PDE obtained by simplifying the 1D Saint-
Venant equations, assuming the momentum is reduced to the
flow friction slope, which equals the bottom slope. This is
done by employing a conceptual parameterization for the
momentum, A = dgw Qka, where A represents the flow’s
cross-sectional area, @ is the discharge, and ayy and by, are
parameters to be estimated by the NN ¢regjo. This expression
is inserted into the mass equation dy Q + 9; A = A Oy, With
0\, being the lateral discharge (total runoff generated at a
pixel from the GR operators described above), and A repre-
senting the conversion factor. The result is a single-equation
discharge propagation model as shown in the PDE of Eq. (2).
This kinematic wave model is numerically solved with a clas-
sical finite differences approach (cf. Te Chow et al., 1988).
The routing solver is implemented in a numerically differen-
tiable form after the hydrological module, allowing deriva-
tion of a numerical adjoint for the full hydrological-routing
chain and thereby enabling end-to-end gradient-based pa-
rameter optimization.

The following section will detail the numerical method
used to solve the UDEs (or the standard ODE system in the
absence of a state-dependent NN) in Eq. (4).

2.2 Resolution of UDEs or ODEs within an implicit
Euler scheme

To solve Eq. (4), we employ an implicit Euler scheme. For a

small time step d¢, by defining h= %, we have:

h(t +dr) = h(t) +dt - h(h(r + dr)) 5)
Now, define:
g (h(t +dr) = h(t +dt) — h(t) —dt - b (h(t + dr)) (6)

Approximating the sought state k(7 + dr) thus reduces to
numerically solving the equation:

g =y—c—dr-h(y)=0 7

where y = h(t +dt) and ¢ = h(t). Then, the solution of
Eq. (7) is approximated using the Newton—Raphson method
as follows:

Yo =2¢6,
Yn+1 =Yn+ Ay, where Ay is the solution of ®)

Vg(yn) Ay +gm) =0

The Jacobian matrix Vg is given by:

on, oh an,
V—drgpe gp —digg
Vg = p. t i
O qpdhe 1 _ gy
3, o A,
dhy dhy
~ 1— dtﬁ_hp —dt B_h[ ©)
—dr g
3hp 3]‘[1

Geosci. Model Dev., 19, 1055-1074, 2026



1060

This simplification holds because % =0 since produc-
tion does not depend on transfer. Additionally, we assume
that & depends on A, only through its time derivative rather
than instantaneously. Thus, /¢ evolves as an accumulated ef-
fect of hp, meaning its dependence on A, is indirect and

prlmarlly through its time derivative, justifying the approx-
ah, oh
imation W ~ 0. The remaining terms, which are 3 h" s d_hf

gﬁ‘ and SZ‘ , can be derived analytically with distinct formu-

latlons depending on whether the process-parameterization
NN ¢gux is included, as follows.

First, we introduce a variable change: h= (h~p; ﬂt)T =
h .
(ﬁ; }CL[‘)T. Since the conceptual parameters ¢, and ¢ re-

main constant over time, their derivatives vanish, leading to:

dhy _ 1 dhy dhl _ 1diy
@ =@ and G =
in Eq. (9) can be computed as follows in two different cases:

. Then, the Jacobian matrix Vg

1. For classical continuous state-space structure (ODE):
The process-parameterization NN is absent, we set
f4=0in Eq. (4). The resulting Jacobian components
are:
dhy
dhy
dhy
3
dhy
dhy

2 ke
o, A3Kexc/t a0 —1

= —a Py ' —2E,(1 - hp)
=0
=0.9a; Pyhp* ™!

cih2 ™! 10

2. For hybrid continuous state-space structure (UDE):
When incorporating the process-parameterization NN
dfux (., B), which depends on the ODE state and pre-
dicts the model flux correction f g» One obtains a set of
so-called UDEs (Eq. 4). The resulting Jacobian compo-
nents become:
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dhy < ~ o) 9q.1 ~ g —
L =P (1-hp") =L~ —ayhp,™ !
ohy " (1-7") ohy, 7

x (1 +fq,2)>

a—h;p —r, (1 —;;pal) 9 fq.1

8ht 8}-{t
~\ ~ 0f4.2
— Eq (2= i) iy o
al’it ~ o — fl
— =0.9P k! + fo1) b,
e —osri, ( (14 fo) 4y
_ 9 2
+kexchta3 fc{,3 _ Cihe fa{,4
dhy, a2—1 dh,
ah
— = 0.9P, " fq' + kexc 3!
hy
dfq. 3) cch !
a3(1+ + h—4 —
<3< fa) == ) = 2o
fq4
x (aa(1+ fy.4) + Iy (11)
Iy

where the NN Jacobian % is computed explicitly us-
ing the backpropagation method, which determines the
gradient of its outputs with respect to its inputs. We note
that all components of the Jacobian matrix, including
those from the NN, are computed directly from the an-
alytical mathematical formulations, which significantly
reduces the computational cost compared to calling a
numerical adjoint during the resolution of the ODEs
with an implicit scheme. Alternative methods, which
do not directly rely on mathematical formulations but
could be more computationally intensive, include using
linear tangents.

Finally, convergence is defined in terms of the relative
Newton update measured in the Euclidean (£2) norm:

Ah
h

with a maximum of 10 Newton—Raphson iterations per time
step.

The following section describes how the NNs — for both re-
gionalization and flux correction — are trained with gradients
propagated seamlessly through the entire modeling chain, in-
cluding the hybrid hydrological module and the simplified
hydraulic routing.

<107 (12)
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2.3 Model training

Considering the observed and simulated discharge time se-
ries Q% = (Q5_; y,) and Q = (Qg:L_Ng)T, where NG is
the number of gauges across the study domain €2, the discrep-
ancy between the model and multi-catchment observations is
evaluated using a cost function J as follows:

Ng
T(Q*. Q)= wgj(Q;. Q) (13)
g=1

Here, ZNgl wg =1 (with wg = 1/Ng in this study), and
j(Qg. Qp) =1 —NSE(Q5, Q,) for each gauge. Thus, J is
a convex and differentiable function that relies on the output
Q of the forward model M, and consequently depends on
the conceptual parameters 6 and the flux correction f,, and
therefore on the parameters p of the NNs (cf. Eq. 3). The
VDA optimization problem is defined as shown in Eq. (14),
which involves optimizing the weights and biases of the NN-
based operator ¢.

p=argmin/ (@ My (9 (.y: p))) (14)

Note that the entire forward modeling chain — including
runoff production (whether solved algebraically, with a clas-
sical ODE solver, or a UDE solver), the kinematic wave
routing module, and all NN components — is fully differen-
tiable, which enables seamless gradient backpropagation. To
address the inverse problem in Eq. (14), we use the Adam op-
timizer, a gradient-based algorithm with an adaptive learning
rate suitable for non-smooth objective functions. The opti-
mizer requires the gradient Vo J = (Vp, J, Vo .0 J )T to up-
date the weights of ¢. These gradients are obtained by solv-
ing the numerical adjoint model obtained by automatic dif-
ferentiation with the Tapenade engine (Hascoet and Pascual,
2013), which can also be combined by chain rule to the ja-
cobian of an external regionalization NN as introduced by
Huynh et al. (2024), enabling end-to-end training of the hy-
brid models. The NNs are trained as follows:

1. Pre-calibration of conceptual parameters: In the first
step, we pre-train only the regionalization NN @regio
to find a spatially distributed first guess for the
conceptual parameters. The weights of the process-
parameterization NN ¢q,x, which is embedded in the
ODE solver, are initialized using a normal distribution
centered at zero with a small variance. This ensures
that, while the non-zero initialization allows for proper
flow of gradients in the network, the outputs of ¢gux
being close to zero result in minimal corrections, thus
preserving the original hydrological model structure. In
other words, ¢qux has very limited impact during this
phase. The pre-training uses a relatively high learning
rate of 0.004 for faster gradient descent over 40 itera-
tions. In the case of lumped parameters (i.e., p = 6 and

https://doi.org/10.5194/gmd-19-1055-2026

Pregio = idg,.;,)» We simply use a heuristic optimization
algorithm to provide a spatially uniform first guess.

2. Main training: In this phase, both NNs are trained simul-
taneously (or ¢aux and the conceptual parameters in the
case of lumped parameters). The training uses a smaller
learning rate of 0.003 to ensure stability over 240 it-
erations. The gradients of @regjo are computed using a
chained gradient approach described in Huynh et al.
(2024), while the gradients of ¢qux, which is embedded
in the differentiable Fortran code, are computed using
the adjoint model.

It is worth noting that the embedded network ¢gn,x must
be twice differentiable mathematically (once for solving the
ODEs or UDEs, and once for the calibration process). While
many activation functions in NNs are not differentiable at
zero, such as ReLU (Rectified Linear Unit), stochastic op-
timization can often bypass this problem since the network
generally produces non-zero (or non-close-to-zero) values.
However, as we aim to preserve the original structure by
producing outputs close to zero during pre-calibration, nu-
merical errors can arise. To address this issue, we use the
SiL.U (Sigmoid Linear Unit) activation function in the hidden
layers, as it is twice differentiable everywhere and provides
smooth gradients.

3 Case study and results
3.1 Study area and experimental design

The models are run at a spatial resolution of 1km and an
hourly time step. The methods are evaluated using a national
database covering Metropolitan France with multi-source
data. The study area is the Aude River basin, located in south-
ern France, as in Colleoni et al. (2025), but with a coarser
spatial resolution of 1km instead of 500 m. This area cov-
ers approximately 10400 km? (corresponding to a 104 x 100
grid), with an active domain of 4902 km? (4902 active cells),
and comprises 25 catchments, including 12 upstream gauges
and 13 downstream gauges (Fig. 1). The study period spans
9 years, from August 2014 to July 2023, divided into two
sub-periods: P1 (2015-2019) and P2 (2019-2023). We use
additional one-year warm-up periods (2014-2015 for P1 and
2018-2019 for P2) to calibrate or validate the models. Pe-
riod P1 is used for calibration, while P2 is used for valida-
tion.

We perform calibration across multiple catchments using
upstream gauges and evaluate regionalization performance
by transferring parameters to downstream gauges, which rep-
resents a more challenging regionalization case compared
to transferring parameters from downstream to upstream
gauges. A set of seven descriptors with a spatial resolution
of 0.01° in the WGS 84 projection, similar to Huynh et al.
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Figure 1. The Aude River basin, located in southern France, consists of 25 sub-catchments, including 12 upstream catchments (red-shaded

regions) and 13 downstream catchments (gray-shaded regions).
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Figure 2. Maps of seven physical descriptors in the Aude River basin, where p and o represent the spatial average and standard deviation
for each descriptor. d: the local slope (in degrees); d»: the drainage density; d3: the percentage of basin area in karst zone; dj: the forest
cover rate; ds: the urban cover rate; dg: the potential available water reserve (in mm); and d7: the high storage capacity basin rate. Before the
optimization process, all descriptors are standardized between 0 and 1 using min-max scaling.

(2024), is used as inputs for the regionalization mapping
Pregio (Fig. 2).

We evaluate the models based on two criteria: model struc-
ture flexibility and regionalization ability. Model structure
flexibility is assessed by the model’s capacity to produce
interpretable water flux dynamics, both with and without
the process-parameterization network ¢gux. Regionalization
ability is evaluated based on the capability of the NNs ¢regio,
which can be either an MLP or a CNN, to regionalize the con-
ceptual parameters using physical descriptors. Table 1 sum-
marizes the evaluated models and indicates the version of
smash in which each was first introduced.

Figure 3 illustrates the forward hydrological model
through a schematic representation of the different evaluated
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models. The computational cost of these models is reported
in Appendix B.

3.2 Validation of the ODE solver

A major advantage of numerically solving ODEs, as opposed
to algebraic resolution methods, lies in their generalizabil-
ity. While an analytical solution derived through an algebraic
approach is exact, it can only be obtained under specific as-
sumptions about the ODE system (e.g., certain fixed values
of the coefficients (¢;);=1.3 in Eq. 2). In contrast, numeri-
cal methods can solve ODEs without requiring such assump-
tions, albeit with approximate solutions. It is thus necessary
to validate the ODE solver (ODE solutions obtained by nu-
merical scheme) against the algebraic approach before per-
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Table 1. Summary of evaluated models and their corresponding smash version. The notation consists of two parts, separated by a dot: the
first part describes the model structure, while the second part indicates the mapping used to constrain the conceptual parameters.

Notation Model Version  Description
GR.U Algebraic (lumped parameters) v1.0 GR4 model with lumped parameters
GR.MLP Algebraic + MLP v1.0 Grid-based GR4 model using an MLP for regionalization
GR.CNN Algebraic + CNN vl.l Grid-based GR4 model using a CNN for regionalization
ODE.U ODE (lumped parameters) vl.l Continuous state space GR4-like model with lumped parameters
ODE.MLP ODE+ MLP vl.l Continuous state-space GR4-like model with MLP-based regionalization
ODE.CNN ODE+ CNN vl.l Continuous state space GR4-like model with CNN-based regionalization
UDE.U UDE (lumped parameters) vl.1l UDE-integrated GR4-like model with lumped parameters
UDE.MLP UDE+ MLP vl.l UDE-integrated GR4-like model with MLP-based regionalization
UDE.CNN UDE+CNN vl.l UDE-integrated GR4-like model with CNN-based regionalization
Input data
2D mesh, flow directions, atmospheric forcings
= == Hydrological model structure
= = Parameter estimation method
Hydrological parameters Gridded hydrological model
EEEEEEEEEEE T | eemememm—-—-- | e
: U | I GR 1| ODE :
1 Lumped parameters : Classical : I Numerical !
B ! | algebraic GR | : resolution of :
_________ or - I operators ! | state-space ODEs 1
[ ML LT o : EEEE SEEREEEEEEE '
| Gridded ' | Grdded | | ________ o . Simulated
1 parameters L parameters 1 : UDE : discharge and
: estimated from : : estimated from : ! Numerical resolution UDEs ! states (surface)
1 descriptors using | | descriptors using | o _______l !
: MLP-based 1 : CNN-based 1 T
L 1:121_ppim_g_ _ _: L lzla_ppim_g_ _ _: Flux-correction neural network (MLP)
MLP CNN l
Gridded kinematic wave
‘ Regionalization neural networks routing

Figure 3. Schematic overview of the forward hydrological models. Blue blocks represent the model structures: GR denotes the GR4 struc-
ture, which uses an algebraic formulation for state updates; ODE denotes the continuous GR4-like state-space model; and UDE denotes the
UDE structure with state-dependent NN for flux correction. Green blocks indicate the mappings used to constrain conceptual hydrological
parameters: U represents the uniform mapping, which estimates lumped parameters without constraints; while MLP or CNN represent re-
gionalization mappings that estimate spatially distributed hydrological parameters from physical descriptors. All models include a kinematic

wave routing over a flow direction grid.

forming any numerical experiments based on this solver. This
is particularly important as this work presents the first im-
plementation of both classical and hybrid ODE solvers into
a fully distributed hydrological modeling and VDA frame-
work.

To carry out this validation, we compare the GR alge-
braic model with lumped parameters (GR.U), which solves
an analytical solution of the time-integrated ODEs, and the
continuous state-space model also with lumped parameters
(ODE.U), which solves the ODEs using an implicit numer-
ical scheme. For both models, we set identical conceptual
parameters and initial states, which are non-calibrated. Fig-
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ure 4 shows similar simulated hydrological responses for
GR.U and ODE.U obtained at the most downstream gauge.
Although slight differences are found in the production state
(often higher state for ODE.U) at certain periods, the trans-
fer state for both models remains nearly identical, while
streamflow simulation shows minor differences at several
peak flows.

In addition to similar temporal hydrological responses,
Fig. 5 demonstrates nearly identical spatial patterns and val-
ues of the final model states obtained for both methods.
The bias map between ODE.U and GR.U for the production
state shows small deviations centered around zero, while the
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Figure 4. Comparison of normalized production state (top), normalized transfer state (middle), and simulated streamflow (bottom) at the
most downstream gauge, obtained by algebraic resolution (GR.U) and numerical resolution (ODE.U) using the same lumped conceptual

parameters and initial states.
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Figure 5. Maps of the normalized production state (hp/cp, top) and transfer state (/¢/ct, bottom) at the final time step, as simulated by GR.U
(left), ODE.U (middle), and the corresponding bias (right) computed as the difference between the ODE.U and GR.U states. For each map,

1 and o denote the spatial average and standard deviation.

bias for the transfer state is nearly negligible, aligning with
the earlier temporal observations. These minor discrepancies
between the two approaches can be attributed primarily to
the fundamental difference in their solution methodology —
namely, the simultaneous numerical resolution of the ODEs
for both state variables (A}, and h¢) versus the exact analytical
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solution obtained through sequential algebraic resolution —
and approximation errors of the Newton—Raphson method.
While both methods initially produce similar hydrological
responses, it will be particularly interesting to observe in the
next section how the model dynamics evolve during calibra-
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tion, and whether differences in the numerical formulation
influence model behavior and performance.

3.3 Model performance and interpretation

Figure 6 provides a global view of model performance across
calibration and various validation scenarios. Results demon-
strate that model scores in calibration increase with the com-
plexity of regionalization mappings (from uniform to MLP
and CNN). For each regionalization approach, we observe
improved scores progressing from classical GR structure to
ODE and UDE structures, exemplified by a median NSE over
0.85 for UDE.CNN compared to 0.82 for ODE.CNN and 0.8
for GR.CNN. Moreover, models with ODE and UDE struc-
tures show improved interquartile ranges and whiskers when
using CNN or MLP regionalization compared to GR, while
UDE.U exhibits larger variance despite maintaining higher
median scores than GR.U.

For temporal validation, ODE.MLP and UDE.MLP yield
similar high median scores of 0.71 compared to 0.59 for
GR.MLP. Additionally, UDE.MLP demonstrates a superior
interquartile range, with a 0.25-quantile of 0.65 compared
to 0.57 for ODE.MLP and 0.42 for GR.MLP. Models with
the same regionalization approaches (uniform or CNN) show
similar performance across different structures (GR, ODE,
UDE), with only slight differences in median and distribu-
tion.

Spatial validation shows comparable performance across
structures for each mapping, except for ODE.CNN which
performs relatively worse than GR.CNN and UDE.CNN.
While all models struggle with spatial validation, spatio-
temporal validation yields generally good performance over-
all. Although ODE.CNN maintains lower performance com-
pared to GR.CNN and UDE.CNN, the MLP-based models
exhibit a more stable performance across validation scenar-
i0s. For instance, ODE.MLP achieves the best median scores
among the three MLP-based models for spatio-temporal val-
idation, while UDE.MLP yields the best interquartile range.
Interestingly, GR.CNN exhibits promising performance in
spatio-temporal validation with a median score of 0.71.

Overall, GR.CNN and UDE.MLP demonstrate consis-
tently strong and stable performance across all calibra-
tion and validation scenarios. While GR.CNN generally
outperforms its MLP counterpart in validation scenarios,
UDE.MLP shows stable performance with good scores and
favorable interquartile ranges across all validation scenarios.

To illustrate the models’ flood simulation capabilities,
Fig. 7 presents two representative flood events during the val-
idation period, as observed at an upstream and a downstream
gauge. At both locations, all models using uniform map-
ping significantly underestimate the flood magnitudes, result-
ing in the poorest simulation performance. This result high-
lights the importance of regionalization approaches in ac-
curately simulating floods, particularly in ungauged basins,
where traditional methods that use lumped parameters often
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fail to capture real hydrological dynamics. For the upstream
gauge example, regionalization approaches using MLP and
CNN produce relatively similar discharge simulations for
each model structure (GR, ODE, UDE). The ODE and UDE
structures with MLP show slightly better performance, with
RMSE values of 4.37 and 4.13, compared to 6.2 for GR.MLP.
Both CNN and MLP mappings applied to the GR struc-
ture accurately simulate the peak flow, whereas the region-
alization methods for the ODE and UDE structures tend to
slightly overestimate peak flow, particularly in the case of
ODE.CNN. Despite this, the timing of flood events remains
accurate across all regionalization methods, with the rising
limbs of the simulated hydrographs closely aligning with
observations. Note that in this upstream catchment charac-
terized by a quick hydrological response, the start of the
flood event occurs nearly at the same time as the moment
of heavy rainfall. In contrast, the downstream gauge event
shows an approximately 8 h delay between heavy rainfall and
flood response. Most models struggle to predict the lag time
correctly. This emphasizes the need to improve model real-
ism by accounting for rainfall intensity and studying its im-
pact in triggering non-linear flash flood responses, improv-
ing river network hydraulics, which presents a promising av-
enue for future research. Returning to flood simulation at
the downstream, while the majority of models yield poor
performance in predicting the event’s beginning, generat-
ing flood responses earlier than observed, GR.CNN demon-
strates impressive timing accuracy with simulations very
close to observations. However, GR structure models, includ-
ing GR.CNN, still underestimate flood magnitude, whereas
ODE.CNN, UDE.MLP, and UDE.CNN perform more accu-
rately.

Figure 8 shows the maps of spatially distributed con-
ceptual parameters calibrated using CNN and MLP region-
alization approaches. Overall, CNN-based models produce
smoother parameter maps compared to MLP-based mod-
els, as evidenced in the maps of ¢, and ¢; for GR.CNN
(compared to GR.MLP), kex for all CNN-based structures,
agw for all CNN-based structures, and bygy for GR.CNN.
This smoothing effect results from the convolution opera-
tions applied to physical descriptor maps. Furthermore, we
observe spatial patterns from physical descriptors (Fig. 2)
reflected in the parameter maps, such as the pattern at the
top of the forest cover map (ds) or the pattern at the bot-
tom left of the slope (d;). For each state-space structure,
different regionalization mappings produce distinct param-
eter distributions (e.g., different patterns of GR.MLP com-
pared to GR.CNN, ODE.MLP compared to ODE.CNN, and
UDE.MLP compared to UDE.CNN). Additionally, notable
differences in parameter patterns emerge across model struc-
tures, with major differences for GR-based models, while
ODE and UDE structures yield relatively similar parameter
maps (ODE.MLP compared to UDE.MLP, and ODE.CNN
compared to UDE.CNN). This pattern divergence is expected
since classical GR models have different state dynamics
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Figure 6. Comparison of model performance for different methods. The NSE scores are computed to evaluate: (i) calibration performance
(scores computed over P1 for the 12 upstream gauges), (ii) spatial validation (scores computed over P1 for 13 downstream gauges), (iii) tem-
poral validation (scores computed over P2 for 12 upstream gauges), and (iv) spatio-temporal validation (scores computed over P2 for

downstream gauges).

compared to continuous state-space models, even when em-
ploying the same regionalization mapping.

Figure 9 examines model dynamics through the spa-
tial average of normalized states (production state A, and
transfer state h;). The two continuous state-space models
(ODE.MLP and UDE.MLP) demonstrate similar behavior in
production state, showing higher values and lower variabil-
ity compared to GR.MLP. However, for the transfer state,
the UDE.MLP model produces higher values and greater
variability compared to the ODE.MLP and GR.MLP mod-
els. This likely results from the hybridization effect of the
process-parameterization NN ¢gyx, which incorporates neu-
tralized rainfall to refine the physical equations in the ODE
system. This creates a rainfall sensitivity in the transfer state,
which is not accounted for in the classical GR and ODE
structures.

Geosci. Model Dev., 19, 1055-1074, 2026

Nevertheless, Fig. 10 reveals that all three model structures
exhibit relatively similar patterns in time-averaged transfer
state maps, though with higher mean values (0.18 compared
to 0.16 for ODE.MLP and 0.17 for GR.MLP) in the case of
UDE.MLP. The maps of time-averaged production state for
UDE.MLP and ODE.MLP display different patterns from
those of GR.MLP. However, no evident differences emerge
between ODE.MLP and UDE.MLP for both &, and h. This
is unsurprising as spatial hybridization effects are not ex-
pected since the process-parameterization NN employs a
simple MLP (MLP of ¢g,x and not MLP of the regionaliza-
tion mapping @regio) that does not account for or accounts
less for spatial information. Future work could employ other
types of ¢aux to explore this aspect.

Finally, Fig. 11 illustrates the hybridization effect on
runoff flow (lateral discharge for routing operator) by ex-
amining high-pass filtered lateral discharge from the most
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Figure 7. Comparison of flood simulation performance across different methods for upstream (top) and downstream (bottom) gauges.

downstream gauge during the validation period. A 3d cut-
off frequency high-pass filter removes seasonal and long-
term patterns to focus on flood event behavior. During ma-
jor events, GR.MLP consistently produces lower lateral dis-
charge compared to ODE.MLP. In certain situations, this re-
sults in an overestimation of flood magnitude with the ODE
structure and an underestimation with the GR structure. The
UDE structure effectively addresses this issue by refining in-
ternal water fluxes in the ODE system, resulting in moderate
lateral discharge values that fall between those of ODE.MLP
and GR.MLP. This effect is consistent with previously ob-
served flood simulation results, demonstrating the improved
hydrological response representation achieved through UDE
integration.

4 General discussion on pure Al and hybrid modeling
approaches

It has been nearly 80 years since Alan Turing first introduced
the concept of a Turing machine, paving the way for the re-
alization of thinking machines (Turing, 1950). Since then,
scientists have made impressive efforts to simulate biolog-
ical brain functions based on mathematical principles and
the understanding of natural learning processes. Al mod-
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els, with their generalization ability to learn multi-level ab-
stractions from large datasets through backpropagation algo-
rithms, have dramatically helped automate various tasks in
scientific and engineering applications (LeCun et al., 2015).

By 2025, AI has become ubiquitous, often perceived as a
“magical” tool capable of addressing numerous challenges.
Although the results of its applications seem remarkable,
the evolution of Al is deeply rooted in the advancement of
computational power and the application of well-established
mathematical principles. The foundational concepts of mod-
ern Al are grounded in linear algebra, probability (e.g.,
Bayesian inference), and control theory (Lions, 1971) (see
Goodfellow et al. (2016) for fundamental concepts of mod-
ern Al). Many of the key algorithms and model architectures
that form the core of modern Al were developed much earlier
in the 20th century but did not achieve the widespread suc-
cess we see today. The primary reason for this was the lack
of high-quality, extensive data and sufficient computational
power to train these models effectively at that time (LeCun
et al., 2015).

The intelligence we commonly reference in modern
Al systems is, indeed, primarily the ability to learn pat-
terns provided by humans through data. In other words, cur-
rent Al models do not possess the capability to explore pat-
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Figure 8. Estimated conceptual parameters across different regionalization methods. The calibrated parameters are 6(x) =
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terns beyond the given data, or even when they do, such
explorations are not considered significant discoveries if re-
searchers cannot interpret them (LeCun, 2018). Physics, on
the other hand, focuses on decoding phenomena using sys-
tems of mathematical equations, discovered through human
intelligence and continually validated in pursuit of a unified
theory of the universe.

The question then arises: should we focus on employing
complex Al models to partially or fully replace process-
based models, or should we prioritize understanding the
physical interpretability of hybrid approaches, starting with
simpler Al architectures? There is no straightforward answer
to this question. However, based on our knowledge of both
disciplines, current Al models are not capable of fully re-
placing process-based models, given the inherent complexity
of hydrological processes and uncertainties in modeling from

Geosci. Model Dev., 19, 1055-1074, 2026

limited observations. Full replacement might become feasi-
ble if at least the following two conditions are met:

1. Al models become more intelligent, producing more in-
terpretable results and demonstrating a comprehensive
understanding of physics. However, this is not currently
the case, as highlighted by LeCun (2022);

2. We obtain nearly perfect and complete hydrological
data, accounting for all uncertainties. This requires sig-
nificant effort and remains a distant goal (Beven, 2019).

Given current advancements in both hydrological mod-
eling and Al, we believe that a comprehensive understand-
ing of complex hydrological processes through a stand-alone
Al model is not yet feasible. Even as datasets become more
extensive, they remain insufficient to fully capture all rel-
evant physical processes due to observational limitations,

https://doi.org/10.5194/gmd-19-1055-2026
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Figure 9. Comparison of the spatial average of the normalized production state hp(t) /cp(t)x and transfer state h¢(z) /ct(t)x during the
validation period P2, across the three model structures (GR, ODE, UDE), each employing an MLP-based regionalization mapping.
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Figure 10. Maps of the time-averaged normalized production state ip(x)/cp (x)t and transfer state h¢(x)/cy (x)t over the validation period P2,
for the three model structures (GR, ODE, UDE), each employing an MLP-based regionalization mapping. For each map, ¢ and o denote the

spatial average and standard deviation.
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Figure 11. High-pass filtered lateral discharge from the most downstream gauge, using a 3 d cutoff frequency, to emphasize flood events
during the validation period P2. The results are shown for 3 model structures (GR, ODE, UDE), each using MLP for regionalization.

biases, and the inherent complexity of hydrological sys-
tems (Beven, 2019). Researchers can easily fall into the trap
of optimizing for impressive performance metrics on local
datasets while failing to develop models that accurately rep-
resent underlying physical mechanisms (Reichstein et al.,
2019). Instead, we should focus on hybrid approaches that
seamlessly integrate Al models into hydrological processes
to leverage Al capabilities while maintaining physical con-
sistency and process understanding.

5 Conclusions

This study proposed a differentiable and learnable frame-
work for integrating UDEs into a process-based hydrological
model, followed by a kinematic wave routing. The UDE sys-
tem is solved by an implicit numerical scheme, incorporates
a state-dependent NN (here is an MLP) that refines internal
water fluxes and is governed by physical equations to de-
scribe the model’s state dynamics. This design introduces a
recurrent temporal dependency, analogous to that of RNNss,
and could be extended toward an explicit recurrent archi-
tecture (e.g., RNNs, LSTMs) in future work to further en-
hance the model’s ability to represent long-term dependen-
cies and complex temporal interactions through additional
trainable parameters. Furthermore, the regionalization map-
ping — used to learn the transfer function between physical
descriptors and spatially distributed conceptual parameters,
as introduced in Huynh et al. (2024) — is now enhanced by
employing a CNN in addition to an MLP. The use of the
CNN advantageously captures spatial dependencies among
descriptors across the catchment and preserves the spatial
structure of the parameter fields; in principle, padding strate-
gies could be employed to up- or down-scale hydrological
parameters (i.e., from coarse descriptor resolution to finer pa-
rameter resolution, or vice versa) for further study.

The proposed methods were tested on multiple catch-
ments in the Aude River basin, demonstrating that increased
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complexity in model structures (from classical GR to ODE
and UDE structures) and regionalization mapping (from uni-
form to MLP and CNN) leads to improved model calibra-
tion scores. Furthermore, models using CNN-based region-
alization mapping generally exhibited smoother estimated
parameter maps. This smoothness is a result of the convo-
Iution operation, which applies a relatively fine filter to the
input descriptors. Evaluation scores from various validation
scenarios suggest that the classical GR model using CNN
(GR.CNN) and the UDE structure using MLP (UDE.MLP)
demonstrated consistently strong and stable performance
compared to other models. Analysis of state dynamics and
runoff flow revealed the hybridization effect of the UDE
structure, which modifies internal water fluxes to achieve
more reliable streamflow simulations during flood events.
This preliminary analysis examines recently proposed hybrid
solvers for spatially distributed modeling, which could be
further explored under a broader range of hydrological con-
ditions, experimental hypotheses, and state-parameter anal-
yses. Furthermore, the proposed UDE framework is directly
applicable to other physical laws of the state-space model to
infer flux correction, particularly in cases where analytic so-
lutions of the ODEs are difficult to obtain.

Beyond the current evaluation, future work will include
explicit benchmarking of the proposed hybrid physics—
Al methods against classical conceptual hydrological models
as well as pure DL models, such as LSTM-based rainfall-
runoff models (e.g., Kratzert et al., 2018). Such comparisons
will help quantify the relative benefits of embedding physi-
cal constraints versus fully data-driven learning. In addition,
future analyses will explore water budget assessments us-
ing satellite-derived products to evaluate the realism of the
learned flux corrections. By leveraging Al capabilities within
physically-based frameworks, we aim to develop more ro-
bust, interpretable, and generalizable models for hydrolog-
ical processes. This approach not only enhances the accu-
racy of streamflow predictions but also provides deeper in-
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sights into the underlying physical mechanisms. Addition-
ally, it employs Al capabilities to handle massive data within
a fully distributed approach for flood modeling, thereby rep-
resenting a significant advancement toward a robust hybrid
Al approach that emphasizes physical understanding and in-
terpretability.

Appendix A: Neural network architectures

The hybrid hydrological model M (Eq. 2) embeds an NN-
based operator ¢ (Eq. 3) consisting of two components:
(i) a regionalization network ¢regio €stimating spatially dis-
tributed hydrological parameters @(x), and (ii) a process-
parameterization network ¢gux correcting internal fluxes
q(x,1).

Al Regionalization neural network ¢regio

Two alternative architectures were used for the parameter re-
gionalization pipeline. Both take as input a set of physical
descriptors D(x) (see Fig. 2) and return the hydrological
parameters 6 (x) = (Cp(x)s ct(x), kexc (x), akw (%), bkw(x))T-
The output layer is followed by a min-max scale layer, which
maps the TanH activations in ] — 1, 1] to the physically feasi-
ble ranges of the hydrological parameters, as defined in Ta-
ble Al.

Al.1 MLP architecture

The MLP receives the 7 physical descriptors for each indi-
vidual spatial location (pixel) as a flat vector. It consists of
two hidden dense layers (28 and 60 units) with ReLLU acti-
vations, followed by a final dense layer of size 5 with TanH
activation and scaling to parameter bounds. The architecture
is summarized in Table A2. All dense layers use Glorot uni-
form initialization.

A1.2 CNN architecture

The CNN uses as input a spatial grid of descriptors of shape
(104,100, 7) (i.e., 7 gridded physical descriptors defined on
a 104 x 100 spatial grid). The architecture consists of a sin-
gle 2D convolutional layer with 28 filters of size 4 x 4 and
ReLU activation, followed by flattening and two dense lay-
ers of sizes 60 and 5, respectively. The last layer uses a TanH

Table A1. Physical ranges and units of conceptual hydrological pa-
rameters.

Parameter  Description Range Units

p Production reservoir capacity  [1,2000] mm

Ct Transfer reservoir capacity [1,2000] mm

kexc Exchange parameter [—20,0] mmdt !
Aiew Kinematic wave parameter [0.001,50] -

byw Kinematic wave parameter [0.001, 1] -

https://doi.org/10.5194/gmd-19-1055-2026

Table A2. Architecture of the MLP for ¢yegjo-

Layer Input — Output Shape Activation Parameters
Dense 7 — 28 ReLU 224
Dense 28 — 60 ReLU 1740
Dense 60— 5 TanH 305
Scale 5—5 - 0
Total - - 2269
Table A3. Architecture of the CNN for @regijo-
Layer Input — Output Shape Activation ~ Parameters
Conv2D (104,100,7) — (104,100,28) ReLU 3164
Flatten (104,100, 28) — (10400, 28) - 0
Dense (10400, 28) — (10400, 60) RelLLU 1740
Dense (10400, 60) — (10400, 5) TanH 305
Scale and Reshape (10400, 5) — (104, 100, 5) — 0
Total - - 5209

activation followed by scaling. Details are given in Table A3.
All dense and convolutional layers use Glorot uniform ini-
tialization. The convolutional layer employs “same” padding
so that the output preserves the spatial resolution of the in-
put descriptors, allowing the network to produce hydrologi-
cal parameters at the same grid resolution. While alternative
padding strategies could be used to up- or down-scale hydro-
logical parameters, such extensions were not investigated in
this study.

A2 Process-parameterization neural network for flux
correction ¢gyx

The flux-correction network ¢gy,x 1s a compact
MLP that takes as input 4 variables: the neutral-
ized forcings P,(x,t),E,(x,t) and the two state
variables hp(x,t), he(x,t). It outputs four corrections
fq (x,1) = (fg.i(x, t))iTzl“4 for internal water fluxes ¢q(x, t).
The network consists of one hidden layer of 16 neurons with
SiLU activation and a final dense output layer with TanH
activation (Table A4).

The dense layers use He uniform initialization followed
by small random scaling to limit the impact of ¢gyx in the
pre-training phase.

It is important to note that the values of f ;—1.4 are con-
strained within the range of —1 to 1 due to the TanH (Hyper-
bolic Tangent) activation function in the output layer of ¢gyx.
Consequently, the transformation functions applied to these
internal flux corrections (e.g., 1+ f,1, 1+ f4,2, etc.) preserve
the structure of the original conceptual model when f, =0,
as all transformations result in a value of 1 in that case. These
terms were defined according to the specific fluxes being cor-
rected and relevant mathematical constraints.

Geosci. Model Dev., 19, 1055-1074, 2026
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Table A4. Architecture of the MLP for ¢gx.

Layer Input — Output Shape Activation Parameters
Dense 4 — 16 SiLU 80
Dense 16— 4 TanH 68
Total - - 148

Appendix B: Computational time

Table B1 compares the runtime performance for all model
variants. Note that the NNs and numerical schemes in the
ODE- and UDE-based GR4-like models are currently not
parallelized over the spatial grid due to technical difficul-
ties in combining OpenMP with Tapenade. This limitation
largely explains their substantially higher computational cost
compared to the classical GR structures and could be ad-
dressed in future developments.

N. N. T. Huynh et al.: A hybrid physics—AI approach using UDEs with state-dependent NNs

Table B1. Comparison of runtime performance for different model variants, reporting forward pass time, number of trainable parameters,
total optimization time, number of optimization iterations, and backward pass time for models trained using gradient-based optimization
methods. Experiments were performed on an AMD EPYC 7643 48-Core Processor using 6 CPUs in parallel.

GR.U GRMLP GR.CNN ODEU ODEMLP ODE.CNN UDEU UDEMLP UDE.CNN
Forward time 18.1s  18.3s 18.4s 36.7s 38.2s 39.6s 125s 129s 1355
Trainable parameters 5 2269 5209 5 2269 5209 153 2417 5357
Optimization time 2.5h 9.5h 10h 3.9h 30.1h 30.5h 87.9h 176.8h 178.1h
Total iterations 10 240 240 8 240 240 140 280 280
Backward time — 143s 150s - 451.5s 457.5s 2260s 2272s 2289 s

Code and data availability. The source code of smash, Ver-
sion 1.1, is available and preserved on multiple platforms: GitHub
at https://github.com/DassHydro/smash/tree/v1.1.0 (last access:
5 November 2025) (https://doi.org/10.5281/zenodo.15498851,
Huynh et al., 2025a), PyPI at https://pypi.org/project/hydro-smash/
1.1.0 (last access: 5 November 2025), and Zenodo with the DOI:
https://doi.org/10.5281/zenodo.15498851 (Huynh et al., 2025a).
smash is released under the GPL-3 license and developed openly
at https://github.com/DassHydro/smash (last access: 5 Novem-
ber 2025). The documentation is accessible at https://smash.
recover.inrae.fr (last access: 5 November 2025). The dataset sup-
porting this study comprises preprocessed data sourced from
SCHAPI-DGPR and Météo-France, and are available on Zenodo
with the DOI: https://doi.org/10.5281/zenodo.15315600 (Huynh,
2025a). The output result files and the scripts to perform nu-
merical experiments are available on Zenodo with the DOI:
https://doi.org/10.5281/zenodo.16419642 (Huynh, 2025b).
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