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Abstract. In semi-arid regions, grasses and shrubs often
form spatially heterogeneous patterns interspersed with bare
soil as a strategy to optimize resource use and maximise pro-
ductivity. Accurately representing the matrix of vegetation
and bare soil in global land surface models is essential for ad-
vancing the understanding of the carbon, water, and dust cy-
cles. This study focuses on grasslands using the land surface
model ORCHIDEE (ORganizing Carbon and Hydrology In
Dynamic EcosystEms), which originally assumes a globally
fixed grassland density representing a fixed number of indi-
viduals per unit of land. This assumption, referred to as the
fixed density approach, limits the model’s ability to capture
grassland responses to environmental changes, resulting in
unsustainable productivity and unrealistically frequent mor-
tality events, particularly in resource-limited regions. To ad-
dress these limitations, we introduced a dynamic density ap-
proach that simulates grassland density based on indicators
of vegetation growth, such as reserve and labile carbon con-
tent in the grass. The simulated grassland density was consis-
tent with field-based estimates from five regional case studies
and showed a better representation of bare soil in grasslands
than the fixed density approach. The emerging positive cor-
relation between precipitation and simulated grassland den-
sity supported the validity of the approach. Compared to the
fixed density approach, the dynamic density approach sub-
stantially reduced simulated mortality events, raised the arid-
ity threshold for frequent mortality, improved the simulated
leaf area index (LAI) both globally and in key semi-arid re-

gions, and maintained realistic grassland productivity in re-
gions where the presence of grassland is confirmed by re-
motely sensed LAI. This study not only demonstrates that
simulating grassland density as a function of carbon avail-
ability improves ORCHIDEE’s capacity to capture grass-
land dynamics under environmental variability, but also pro-
vides a promising foundation for investigating dust dynamics
and subsequent land–atmosphere feedbacks in (semi-)arid
regions.

1 Introduction

Grasslands cover up to 40 % of the Earth’s land surface (Blair
et al., 2013) and provide habitats for wildlife and pasture for
grazing livestock (Allaby, 2006), through which they con-
tribute to the well-being of more than two billion people
(Squires et al., 2018). The vast distribution of grasslands
extends across all ice-free continents, encompassing diverse
climatic zones ranging from tropical and temperate to bo-
real. Major grassland types include prairies, steppes, pam-
pas, velds, and savannas (Allaby, 2006). Among the grass-
land regions, semi-arid areas are of particular importance due
to their role in the global carbon cycle and the turnover of
carbon pools (Poulter et al., 2014). In such regions, grass-
lands are the dominant vegetation, functioning as transitional
zones between forests and deserts. They often coexist with
shrublands (Smith et al., 2014), deserts (Cui et al., 2018),
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or sparsely distributed trees where precipitation is sufficient
(Blair et al., 2013; Erdős et al., 2022).

Vegetation structure and density can reveal how plants sus-
tain their communities under extreme environmental condi-
tions. Vegetation patterns in the forms of gaps, labyrinths,
strips, and “tiger bush” have been shown to depend on en-
vironmental conditions such as humidity, mean temperature,
temperature seasonality, and wilting point (Deblauwe et al.,
2008). These spatially patterned vegetation structures en-
hance resource retention and water redistribution, thereby
supporting vegetation survival in dry environments (Galle et
al., 1999). Although grasslands are resilient to climate ex-
tremes (Erdős et al., 2022; Dodd et al., 2023; Hossain et
al., 2023), environmental changes through drought (Ciais et
al., 2005), extreme precipitation (Knapp et al., 2008; Craine
et al., 2012; Petrie et al., 2018), elevated CO2 (Pan et al.,
2022) and heat waves (Karl and Quayle, 1981; Buhrmann et
al., 2016; Chang et al., 2020) can affect the growth and sur-
vival of grasslands (Toräng et al., 2010; Williams et al., 2007;
Prevéy and Seastedt, 2015). These impacts are often re-
flected in grassland density (Ehrlén, 2019), particularly under
resource-limited conditions such as water scarcity in (semi-
)arid regions (Dyer and Rice, 1999). For example, addi-
tional winter precipitation promotes grass population growth,
while summer drought leads to a decline, highlighting the
influence of seasonal precipitation variability on grassland
density (Prevéy and Seastedt, 2015). Warming was reported
to significantly reduce the density of specific plant species
in Australian temperate grasslands, indicating potential for
warming-driven decline in grassland density (Williams et al.,
2007).

In semi-arid regions, when water resources are scarce,
grassland density declines (Rietkerk et al., 2002), favour-
ing the appearance of bare soil. Compared to vegetated land,
bare soils have a higher susceptibility to erosion and espe-
cially wind erosion in semi-arid regions, which in turn leads
to an enhancement of atmospheric dust emissions (Tegen et
al., 2002; Vincenot et al., 2016). Increased dust enhances the
summer precipitation due to the absorption of radiation by
dust and has been shown to modify the west African Mon-
soon pattern (Miller et al., 2014; Balkanski et al., 2021).
In contrast, when precipitation is abundant, vegetation flour-
ishes and bare soil fraction decreases. The synergistic effects
of reduced bare soil exposure and increased soil moisture
enhance the cohesive forces between soil particles, thereby
reducing surface erodibility and suppressing dust emissions
(Gherboudj et al., 2015). Therefore, the inclusion of dynamic
grassland into the land surface models will help to represent
these land–atmosphere feedbacks, as conceptually illustrated
in Fig. 1.

Grassland dynamics can be expressed as the variation of
“grassland density” or “plant cover”. The term “density” in
an ecosystem can have multiple definitions, including pop-
ulation density, measured as the number of individuals per
area (Zhu et al., 2015), or mass density, expressed as mass

per unit area (Rietkerk et al., 2002). In this study, we fo-
cus on population density, defined as the number of individ-
uals per unit area. Here, each individual represents a con-
ceptual unit that occupies 1 m2 of land, rather than a physi-
cal plant. Accordingly, the unit of grassland density in this
study is expressed as m2 m−2. For instance, a hectare of
grassland with a density of 1 contains 10 000 individuals, oc-
cupying a total area of 10 000 m2 ha−1 (Fig. 1a). A density
of 0.25 therefore corresponds to 2500 individuals occupying
2500 m2 ha−1 (Fig. 1b). In this framework, grassland den-
sity thus relates to the geometrically fractional occupancy of
conceptual individuals, and differs from “plant cover” which
refers to the optically projected vegetation coverage in grass-
lands. Although regional estimates are available (Booth et
al., 2005; Dusseux et al., 2014; John et al., 2018; Melville et
al., 2019; Diatta et al., 2023), spatially explicit global esti-
mates of grassland density remain challenging, due to incon-
sistent definitions of grassland density (Rietkerk et al., 2002)
and the inherent difficulties of direct measurement (Vogel
and Masters, 2001; Hamada et al., 2021). Global spatially
explicit fractional vegetation cover data, on the other hand,
has been estimated through remote sensing FCOVER prod-
uct from Copernicus Land Monitoring Service (Copernicus
Land Monitoring Service, 2020).

In this study, we use the land surface model ORCHIDEE
(trunk version, r9010), which is part of the IPSL-CM
Earth System Model (Boucher et al., 2020). Currently, OR-
CHIDEE prescribes a globally fixed grassland density by
default, implying that all the global grasslands are stocked
with the maximum possible number of conceptual individ-
uals. Consequently, the model simulates frequent mortality
events driven by this density limit, particularly in (semi-)arid
grid cells. In addition, a fixed density does not respond to re-
source availability, which hinders the study of dust emission
responses in the presence of grassland when the land surface
model is coupled to an atmospheric model (Boucher et al.,
2020). Finally, the fixed density makes an evaluation of the
model using observed or remotely sensed vegetation density
and plant cover meaningless.

To address the limitations of the fixed grassland density in
ORCHIDEE, we revised the model to simulate a dynamic
grassland density, with the aims of: (a) simulating the re-
sponse of the bare soil fraction in grasslands to environmen-
tal changes, providing a foundation for predicting the long-
term spatiotemporal dynamics of dust emissions in future
work; (b) enhancing grassland survival, particularly in (semi-
)arid regions; and (c) better representing the grassland leaf
area index (LAI), which is a key variable in simulating land–
atmosphere processes such as photosynthesis, transpiration,
albedo and the energy budget. To these aims, we replaced
the fixed density approach with a physiology-based approach
to simulate grassland density in ORCHIDEE, and ran simu-
lations with both approaches to: (1) evaluate our simulated
grassland density against regional field-based data; (2) com-
pare the simulated fractional vegetation cover (FVC) with
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Figure 1. Conceptual framework of grassland density under varying resource availability and its link to dust emission. With high resource
availability, grassland density is able to reach the maximum density (a), while low resource availability dynamically results in lower grassland
density (b). The conceptual framework (c) illustrates the mechanism linking vegetation dynamics to dust emission. The schematic shows
how climatic drivers control dynamic grassland density, which in turn determines the bare soil fraction and surface erodibility. Dust emission
is triggered when the surface is exposed to sufficient wind erosivity, creating a potential feedback loop with the climate system.

satellite-based dataset; (3) assess whether dominant grass-
land types are consistent with their relative contributions to
grassland density, and analyse the emergent relationship be-
tween precipitation and grassland density; (4) compare the
frequency of mortality events between the fixed and dynamic
approach for grassland density; (5) quantify the responses of
mortality events in grasslands to aridity; and (6) evaluate the
simulated leaf area index (LAI) against remotely sensed ob-
servations.

2 Methods

2.1 The land surface model ORCHIDEE

ORCHIDEE is a process-based land surface model capable
of simulating the carbon, nitrogen, water, and energy cy-
cles, including vegetation dynamics, biogeochemical fluxes,
and plant competition (Krinner et al., 2005; Naudts et al.,
2015; Vuichard et al., 2019). In ORCHIDEE trunk version
r9010, each grid cell may contain up to 15 plant functional
types (PFTs), representing eight different types of forests,
four types of grasslands, two types of croplands, and bare
soil (defined as a separate PFT). Each PFT has a value for its
fraction (Vfra), and the sum of Vfra from all 15 PFTs is equal
to 1 within each grid cell. The value of Vfra is derived from a
land cover map that is in turn obtained from post-processing
of remote sensing observations (Poulter et al., 2015; ESA,
2017).

ORCHIDEE distinguishes four grassland types: temperate
C3 grassland, tropical C3 grassland, boreal C3 rassland, and
C4 grassland. C3 and C4 plants use the C3 or C4 photosynthe-
sis pathways, respectively (Taylor et al., 2010). In light of this
study’s emphasis on (semi-)arid grasslands, boreal C3 grass-
land was excluded from the analysis. For each PFT, OR-

CHIDEE simulates processes such as photosynthesis, phe-
nology, carbon and nitrogen allocation, senescence, turnover,
and mortality, based on PFT-specific parameter sets.

2.2 Grassland density

2.2.1 Fixed density approach

The grassland density in ORCHIDEE is calculated as:

D =Nmax (1)

where D refers to grassland density, defined as the fractional
area occupied by conceptual individuals (m2 m−2). By de-
fault, the number of conceptual individuals (Nmax) in grass-
land is set to be 10 000 per hectare, with each occupying
1 m2 of land. Consequently, the default vegetation density for
grasslands in the model is fixed at 1 m2 m−2.

2.2.2 Dynamic density approach

A grassland with the abundant resources (i.e., water, light, ni-
trogen, temperature, and CO2) is able to support high grass-
land density (Fig. 1a) with high biomasses per conceptual
individual. In contrast, for grasslands with limited resources,
both the density and the individual biomass might be low
(Fig. 1b). In the fixed density approach, for grasslands with
limited resources, the available resources per conceptual in-
dividual might be too limited to sustain sufficient reserve
and labile carbon, thereby limiting vegetation growth. In the
model, the carbon and nitrogen biomass of a conceptual in-
dividual are distributed among different pools (Fig. 2), in-
cluding leaf (Cleaf), stem (Cstem), root (Croot), fruit (Cfruit),
reserve (Creserve), and labile (Clabile). Carbon and nitrogen in
the leaf, stem, root, and fruit pools are allocated to specific
structural components, whereas carbon and nitrogen in the
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Figure 2. Schematic of the carbon (C) redistribution mechanism
during density adjustments. The model simulates the transition from
an initial state with densityD1 (top panel) to two possible scenarios
after adjustment to density D2 (bottom panels): a decrease in den-
sity (a) or an increase in density (b). Blue indicates an increase and
red indicates a decrease in values for both carbon pools (rectangles)
and grassland density (circles).

reserve and labile pools are non-structural and can be found
throughout the plant. Reserve carbon and nitrogen refer to a
more stable pool, whereas labile carbon and nitrogen repre-
sent a rapidly mobilized pool (Gupta and Kaur, 2000). Re-
serve and labile carbon and nitrogen are considered primary
sources for immediate regrowth following defoliation or the
alleviation of stress (Volaire, 1995). In this study, we con-
sidered the sum of reserve and labile carbon for subsequent
calculations.

The dynamic density approach simulates grassland den-
sity by adjusting the population to the maximum number of
conceptual individuals that can be sustained by the available
resources (Fig. 2). This adjustment is performed on a daily
basis, primarily in response to the total reserve and labile car-
bon levels.

When the reserve and labile carbon in the plant drop below
their respective target values and this condition persists over
a longer time period, a mortality risk ensues (Volaire, 1995).
The dynamic density approach in ORCHIDEE accounts for
this case by decreasing the number of conceptual individ-
uals when the total reserve and labile carbon falls below a
simulated target value. Therefore, the labile and reserve car-
bon are redistributed among the fewer conceptual individuals
(Fig. 2a), whose chances for future survival have increased.

The carbon in other compartments (leaf, stem, root and fruit)
in each conceptual individual remains constant when the
number of conceptual individuals is decreased (Fig. 2a). The
nitrogen content of each compartment in a conceptual indi-
vidual is updated by multiplying the previous nitrogen con-
tent by the ratio of the previous density to the current density.
A minimum density of 0.05 is set to avoid numerical errors
in the model.

The ORCHIDEE model distinguishes eight phenological
stages (PS): (1) Planting: emergence of new plant, (2) Buds:
appearance of buds, (3) Leaf: onset of leaf, (4) Growth: pres-
ence of canopy, (5) Pre-senescence: cessation of vegetation
growth, (6) Senescence: senescence of plant, (7) Dormancy:
dormancy of plant and (8) Death: death of plant. It has been
reported previously (e.g. Volaire, 1995; Sarath et al., 2014;
Keep et al., 2021) that during vegetation senescence, the
reserve or labile carbon experiences a peak influx of car-
bon reallocated from leaves, and during dormancy, reserves
are conserved for the upcoming growing season. Therefore,
grassland density is only decreased during the following phe-
nological stages: pre-senescence, senescence, and dormancy,
when the reserve and labile carbon should attain their annual
peak. A decrease in grassland density in one timestep of the
model is calculated as follows:{
Call×D1 =

(
Call−Cres,1−Clab,1

)
×D2+ Tres+ Tlab

D2 =
(Call×D1−Tres−Tlab)

(Call−Cres,1−Clab,1)
(2)

where Call, Cres, and Clab are the carbon biomasses of all
compartments, the reserve, and the labile pool of a concep-
tual individual, respectively, with units of grams of carbon
per individual (g C per individual); the indices 1 and 2 refer
to the value before and after the density adjustment; Tres and
Tlab are the targets for reserve carbon and labile carbon in
the PFT (g C m−2), respectively, which are calculated in OR-
CHIDEE as:

Tres =min
[
β ×

(
Broot+Bstem,above+Bstem,below

)
,

exp(LAI× k)− 1
k×SLAinit

×

(
1+

δ

λ

)]
(3)

Tlab =max
[
t × γ ×

(
Nleaf+Nroot+Nfruit+Nstem,above ,

+Nstem,below
)
,10×GPPweek] (4)

where β is the fraction of stem mass stored in the reserve
pool during the growing season (unitless); Broot, Bstem,above,
and Bstem,below are the carbon biomasses of the root, above-
ground stem, and belowground stem, respectively, for a
given PFT (g C m−2); k is the extinction coefficient of
the leaf nitrogen content profile within the canopy (unit-
less); SLAinit is the initial specific leaf area at the bot-
tom of the canopy (m2 g−1 C); δ is the fraction of maxi-
mum root biomass covered by reserve biomass (unitless);
λ is a scaling factor converting stem mass into root mass
(unitless); t is the turnover coefficient of the labile car-
bon pool (unitless); γ is the parameter used to calculate
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the labile pool (unitless); Nleaf, Nroot, Nfruit, Nstem,above and
Nstem,below are the nitrogen biomasses of the leaf, root, fruit,
aboveground stem, and belowground stem in the PFT, re-
spectively (g N m−2); and GPPweek is the weekly gross pri-
mary productivity (g C m−2 d−1).

When the carbon content in both reserve and labile pools
exceeds their respective targets, and carbon is present in the
fruit pool, the excessive carbon from the fruit, reserve, and
labile pools will be used to create new conceptual individ-
uals. After updating the number of conceptual individuals,
the carbon in labile and reserve pools is reset to their target
values, and the carbon in fruit pool becomes zero (Fig. 2b).
The density is only increased during the phenological stage
labelled as “Growth”. This approach for increasing grassland
density reflects asexual recruitment of perennial plants (Blair
et al., 2013), which is implemented in the model using con-
ceptual units rather than actual plants. The carbon in other
compartments (leaf, stem and root) in each conceptual indi-
vidual remains constant. Nitrogen is treated using the same
method as that applied to decreasing density. An increase in
grassland density is calculated as follows:{
Call×D1 =

(
Call−Cres,1−Clab,1−Cfruit,1

)
×D2+ Tres+ Tlab

D2 =
(Call×D1−Tres−Tlab)

(Call−Cres,1−Clab,1−Cfruit,1)
(5)

where Cfruit,1 refers to the carbon biomass from the fruit
pool at the conceptual individual level before density adjust-
ment (g C per individual).

2.3 Model evaluation against regional field
observations and global dataset

Two independent datasets were used for model evaluation.
First, we compared the simulated grassland density directly
against regional field-based observations. Second, we com-
pared the fractional vegetation cover (FVC) – derived from
the simulated grassland density in ORCHIDEE – against a
global satellite-based dataset.

In order to directly assess the ecological realism of the
simulated grassland density, we compared model outputs
with field-based estimates from five published regional case
studies. These studies span a range of grassland ecosystems:
a temperate European grassland in France (Dusseux et al.,
2014), the Eurasian steppe on the Mongolian Plateau (John
et al., 2018), a meadow in the USA (Booth et al., 2005), a
Sahelian rangeland in Senegal (Diatta et al., 2023), and a
grass-shrub community in Australia (Melville et al., 2019),
as listed in Table 1.

We acknowledge that the metrics from field-based obser-
vation are not identical to the grassland density defined in
our study. However, the five case studies provide metrics that
are thought to be sufficiently similar to be compared to the
metric in ORCHIDEE, i.e., the fractional area occupied by
conceptual individuals (Fig. 1a and b). The case-studies pro-
vide the area-based geometric estimates – either by counting
points classified as vegetation within quadrats (John et al.,

2018; Diatta et al., 2023), along transects (Booth et al., 2005;
Melville et al., 2019), or from downward-facing hemispheri-
cal photographs to estimate green vegetation cover (Dusseux
et al., 2014). Detailed descriptions of each dataset, including
observed and corresponding simulated values, measurement
methods, and caveats of the selected methods, are provided in
Table 1. The hemispherical photography method may be in-
fluenced by plant height and leaf area (Dusseux et al., 2014);
the effects of grazing were controlled by selecting fenced
sites (Diatta et al., 2023); and the observational sites included
not only grasses but also forbs and shrubs, although grasses
were dominant (Melville et al., 2019).

Furthermore, the simulated fractional vegetation cover
was compared against the Copernicus Land Monitoring Ser-
vice FCOVER product (Copernicus Land Monitoring Ser-
vice, 2020). We selected the year 2004 for this comparison,
as it matches the static global land cover map used through-
out this study. The FCOVER product (originally at ∼ 0.003°
resolution) was regridded to our model’s 2°× 2° resolution
using RemapCon (Jones, 1998; Goudiaby et al., 2024) in the
Climate Data Operators library for Linux. To ensure a fair
comparison, we calculated the corresponding fractional veg-
etation cover (FVC) specifically from the targeted grassland
PFTs within ORCHIDEE using the equation:

FVC=Dtemp C3 ×Vfra,temp C3 +DC4 ×Vfra,C4

+Dtrop C3 ×Vfra,trop C3 (6)

where Dtemp C3 , DC4 , and Dtrop C3 are the simulated grass-
land density (1.0 for the fixed density approach, 0.05–1.0 for
our new dynamic density approach) and Vfra,temp C3 , Vfra,C4 ,
and Vfra,trop C3 are the fractional area of each grassland PFT
(temperate C3, C4, tropical C3) within one grid cell.

Given that this study aims to improve grassland density
simulation, the comparison of FVC focused specifically on
grasslands. To isolate the target ecosystems where grasslands
dominate and exclude the canopy cover from other vegeta-
tion as much as possible, we applied a (semi-)arid region
mask based on the aridity index map by Zomer et al. (2022).

2.4 Determination of PFT dominance and co-existence

We used the fraction of vegetation type (Vfra), defined as the
ratio of the area covered by a given PFT to the total area of
the grid cell, as the basis for classification. In this study, we
defined a grassland PFT as “dominant” in a given grid cell if
two conditions were simultaneously met: (1) its Vfra was 0.5
or higher, and (2) the Vfra of other grassland PFTs was lower
than 0.1. When two or more grassland PFTs had Vfra values
above 0.1, they were considered to co-exist.

2.5 Mortality events in grasslands

In reality, under very arid conditions, plants may be unable
to grow during unfavourable years (Blair et al., 2013; Bodner
and Robles, 2017). However, seed banks or rhizomes in the
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Table 1. Evaluation of simulated grassland density from ORCHIDEE against field-based estimates from various grassland sites (all values
in m2 m−2).

Site/region Observed value Simulated value Observational method and caveats Model value extraction

Yar 0.91–0.99 0.95 Fraction of vegetation cover from Temperate C3 grassland density
Watershed, downward-facing hemispherical extracted at 3° W, 47° N.
France photographs taken approximately 1 m

above the canopy (Dusseux et al., 2014).
Caveat: the observed value is affected
by plant height and leaf area, which
might influence the consistency with
grassland density.

Mongolian 0.45–0.78 0.63± 0.35 Canopy cover from grid-square Temperate C3 grassland density
Plateau counting, measured by counting the extracted for each steppe type.
(meadow number of 10× 10 grid mesh filled with See Note ∗ for coordinates.
steppe) vegetation within a 0.5× 0.5 m quadrat

Mongolian 0.34–0.5 0.40± 0.24 (John et al., 2018).
Plateau
(typical
steppe)

Mongolian 0.1–0.26 0.27± 0.06
Plateau
(desert
steppe)

The Upper 0.68 (0.52–0.86) 0.63 Green cover from point-intercept Temperate C3 grassland density
Beaver transects, classifying a functional group extracted at 105° W, 39° N.
Meadows, (green vegetation or bare ground) at
USA points spaced every 30 cm along two

parallel 50 m transects (for a total of 166
points per transect) by a two-member
crew (Booth et al., 2005).

Ferlo, 0.06–0.79 0.18 Visual estimation of vegetation The C4 grassland density
Senegal coverage in 1 m2 quadrats. Selected the extracted at 15° W, 15° N.

ungrazed, fenced site (Diatta et al.,
2023).
Caveat: data is from a fenced, ungrazed
site to exclude grazing effects.

Fowlers 0.1–0.6 0.15 (C4); Photosynthetic vegetation fraction from The C4 and tropical C3 grassland
Gap, 0.50 (tropical C3) star transects, by recording every meter densities extracted at 141° E,
Australia along three 100 m tapes laid out in a star 31° S.

pattern (Melville et al., 2019).
Caveat: the field site is a mixed
community of grasses, forbs and shrubs,
not pure grassland.

∗ Note: according to Fig. 1 in John et al. (2018), we delineated three types of steppe on the Mongolian Plateau in ORCHIDEE: 97–103° E, 45–47° N in the meadow steppe,
excluding other steppe types within this rectangle; 111–117° E, 39–47° N in the typical steppe, excluding forest meadow and meadow steppe within this range; 89–111° E,
39–45° N in the desert steppe, excluding desert and typical steppe areas.

soil can enable regrowth when environmental conditions be-
come favourable again (Blair et al., 2013). In ORCHIDEE,
transferring carbon from reserve to leaves initiates the grow-
ing season for deciduous vegetation, but it does not account
for a long-term reserve pool that can retain reserves over sev-
eral years. Under unfavourable conditions, the reserves will

deplete, preventing vegetation from re-growing in the fol-
lowing years. In ORCHIDEE, this can be monitored through
phenological stage, which is set to one of the eight stages of
the plant (see above).

When, at the end of the growing season, the reserve and la-
bile carbon pools are empty, the grassland is considered dead
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in ORCHIDEE, and its phenological stage is set to “Death”.
At the start of the next growing season, a new grassland is
planted by the model, and its phenological stage is updated
to “Planting”. The initial biomass from the planted grassland
is taken directly from the atmosphere, thus bypassing germi-
nation and the early stages of plant development. The transi-
tion of the phenological stages from “Death” to “Planting” is
recorded and counted as a single mortality event. If the envi-
ronmental conditions become favourable again, the grassland
will continue to grow. If not, it will die again. Therefore, the
vegetation in each grid cell might experience repeated mor-
tality events over decades, as it is replanted following each
mortality event (Fig. S1 in the Supplement).

As long as these mortality events remain infrequent, they
have little impact on the simulated fluxes because the cu-
mulated photosynthesis by far exceeds the carbon used to
initialize the grassland biomass. If, however, the mortality
and replanting cycles become frequent, the repetitive addi-
tion of the initial carbon may become substantial compared
to carbon assimilation through photosynthesis. For example,
in tropical C3 grassland at grid cell (59° E, 39° N) using the
fixed density approach, frequent mortality events resulted
in unrealistic productivity patterns, characterized by abrupt
post-mortality spikes resulting from the addition of the ini-
tial biomass when replanting (Fig. S1).

Grasslands are modelled as perennial vegetation in OR-
CHIDEE; hence, a skilful model is expected to simulate in-
frequent mortality events in grasslands, reflecting the inher-
ent resilience and stability of grassland ecosystems. We de-
fined a threshold for such “infrequent mortality” as fewer
than five times over a 51-year simulation period. This bench-
mark was supported by ecological records of prolonged
droughts, such as the 1930s Dust Bowl in the Great Plains
(Blair et al., 2013) and a decade-long drought in south-
ern Arizona (Bodner and Robles, 2017). The events caused
widespread mortality in perennial grasslands, implying that
mortality on a decadal scale (i.e., approximately once per
decade) is realistic under extreme conditions. Consequently,
exceeding such a frequency might indicate unrealistic model
behaviour. Therefore, reducing the number of mortality
events is considered an indication of model improvement for
the representation of grasslands.

To quantify the impact of PFT mapping errors on sim-
ulated grassland mortality, we first identified all grassland
grid cells where mortality events occurred in the simula-
tion using the dynamic density approach (Fig. S2). Next, a
set of criteria was established to identify “constrained re-
gions” where the persistence of grassland vegetation is con-
sidered unlikely. A grid cell was classified as constrained if
it met at least one of the following three conditions: (1) lo-
cation within a hyper-arid zone: In these zones, little veg-
etation can survive, and vascular plants are often restricted
to ephemeral streams receiving runoff (Huang et al., 2016;
Groner et al., 2023). (2) Critically low LAI: the observed
LAI for viable grasslands is typically greater than 0.1 (Si et

al., 2012; Haynes et al., 2019), which suggests regions with
mean annual LAI< 0.1 are unsuitable for growth. (3) Risk
of ecosystem breakdown: Calculated aridity (Eq. 8) greater
than 0.83 is associated with ecosystem breakdown (Berdugo
et al., 2020). Finally, we quantified the proportion of grid
cells with simulated mortality (for all grass PFTs) that oc-
curred in these constrained regions.

2.6 Leaf area index (LAI) for grasslands

Remote sensing-based LAI observations (Myneni et al.,
2021; Wan et al., 2024) were used to evaluate model output of
LAI for grasslands. We utilized two observational (satellite-
based) datasets: MODIS LAI (2004–2020), originally at a
resolution of 1 km with a 4 d temporal frequency (Myneni et
al., 2021), and Sentinel-2 data for 2019 at a spatial resolution
of 10 m (Wan et al., 2024). In order to compare them with the
2°×2° global simulations in ORCHIDEE, both datasets were
aggregated to the spatial resolution of the simulations. In
both cases, LAI values were filtered based on land cover clas-
sification, to retain only grassland pixels. For MODIS, the
grassland classification was based on MCD12Q1 land cover
product (Myneni et al., 2021). The resulting grassland grid
cells were then spatially regridded using a first-order conser-
vative remapping for grid cells classified as grassland, which
preserves the total integrated quantity during spatial interpo-
lation, implemented via RemapCon (Jones, 1998; Goudiaby
et al., 2024) in the Climate Data Operators library (CDO) for
Linux. For Sentinel-2, grassland pixels were identified using
the GLC_FCS30D land cover dataset (Zhang et al., 2024).
The LAI values were aggregated by computing the arith-
metic mean of all high-resolution pixels classified as grass-
land (code 130) within each 2°× 2° grid cell, using Python
scripts.

Leaf area index is a central variable in climate models as it
is one of the functional links between the land surface and the
atmosphere. Thus, a skilful land surface model is expected to
simulate realistic spatial and temporal patterns in LAI. LAI is
the product of leaf carbon mass and specific leaf area (SLA).
In ORCHIDEE, SLA varies vertically through the canopy.
To account for this vertical variation, LAI is calculated using
a dynamic SLA formulation, as expressed in Eq. (7), where
the extinction coefficient k represents the vertical profile of
leaf nitrogen content within the canopy. This calculation is
performed at the PFT level as follows:

LAI=
log(1+ k×Bleaf×SLAinit)

k
(7)

where Bleaf refers to the leaf biomass (g C m−2) calculated
as the product of individual leaf biomass (g C per individual)
and grassland density.

The land cover map used in ORCHIDEE was derived from
the ESA CCI Land Cover dataset (ESA, 2017) and converted
into PFT fractional maps using a cross-walking table (Poulter
et al., 2015). However, neither observational dataset distin-
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guishes specific types of grasslands. To enable comparison,
all grassland PFTs in ORCHIDEE were merged into a single
grassland category by computing the weighted average LAI
across PFTs, using the fraction of vegetation type (Vfra) for
each grassland PFT as the weighting factor. Only grid cells
where the total Vfra of grassland PFTs exceeded 0.1 in OR-
CHIDEE were included for the LAI analysis.

2.7 Aridity

Aridity (A) serves as an important indicator of water scarcity
(Berdugo et al., 2020), and is calculated as:

A= 1−
P

EPET
(8)

where P is precipitation, taken from input forcing data, and
EPET refers to potential evapotranspiration simulated in OR-
CHIDEE. A high aridity value, e.g., 0.5 or more, indicates
that the region is limited in water resources.

2.8 Tuning of C4 grassland parameters

Field observations indicate that C4 grasslands are gener-
ally more drought-tolerant than C3 grasslands (Taylor et al.,
2010). However, in ORCHIDEE, the simulated density of
C4 grasslands was too high under strong water limitations
(Figs. S3, S4a and S5c). This suggested that the model un-
derestimated the sensitivity of C4 grasslands to water stress,
leading to an overestimation of grassland density in these ar-
eas. This issue was addressed by recalibrating PFT-specific
parameters for C4 grasslands, related to the targets for reserve
and labile carbon (see below) and the water stress function
(see below). The adjustments were tested in southern Africa
for C4 grasslands, and the recalibrated parameters were re-
tained as they improved the correlation between precipitation
and grassland density (Fig. S4).

The first parameter that was recalibrated controls the target
level for reserve and labile carbon, which is a critical driver
of grassland density in the dynamic density approach. The
adjustment consisted of applying a scaling factor to the tar-
get for reserve and labile carbon. A value of 1 (Fig. S5c)
indicates that targets remain at the default state, whereas val-
ues of 0.5 and 0.75 (Fig. S5a and b) represent lower carbon
targets, and values of 1.25 and 1.5 (Fig. S5d and e) repre-
sent higher carbon targets, corresponding to less and more
stringent growth requirements, respectively.

As shown in Fig. S5f, this analysis revealed that the av-
erage density (diamonds) over this region remained high
(greater than 0.9) and relatively insensitive across most fac-
tors, with only a slight drop for a scaling factor of 1.5.
In contrast, the spatial variability (represented by the 5th–
95th percentile range) was more sensitive to the scaling fac-
tor. This range was narrow for factors of 0.5 and 0.75 but
widened significantly for values greater than 1. This widen-
ing, particularly at 1.5, was driven by a significant drop in the

5th percentile, indicating much greater spatial heterogeneity
because a larger portion of grid cells was experiencing lower
density (as also seen in Fig. S5e). Although a scaling factor
of 1.5 slightly decreased the regional mean, it introduced a
spatial variability that better reflected real-world heterogene-
ity. Therefore, a value of 1.5 was applied to increase the tar-
get level for reserve and labile carbon in C4 grasslands.

The second parameter controls the water stress for transpi-
ration, which ranges from 1 (no stress) to 0 (severe stress). By
default, the function of water stress (Wstress) for transpiration
is formulated as follows:

Wstress =min
(

1,max
(

0,
θ − θwilt

θnostress− θwilt

))
×Rprofile (9)

where θ refers to soil moisture (kg m−2), θwilt refers to
soil moisture at the wilting point (kg m−2), θnostress is the
soil moisture when there is no water stress (kg m−2), and
Rprofile is the normalized root mass or length fraction (unit-
less).

This water stress function can be switched to an exponen-
tial formulation with a parameter α, written as below:

Wstress =min
(

1,exp
[
−α×

(
θfc− θwilt

θnostress− θwilt

)
×

(
θnostress− θ

θ − θwilt

)])
×Rprofile (10)

where θfc refers to soil moisture at field capacity (kg m−2),
and the value for parameter α can range from 0 to 10, with
higher values indicating the plant is more limited by water
stress (Raoult et al., 2021). In this study, values of α = 1, 2, 4,
and 8 were tested for southern Africa (Fig. S6).

As shown in Fig. S6f, the model was relatively insensitive
to the choice between the linear formulation and exponential
formulations for low α values (e.g., α = 1, 2). In these cases,
both the mean density and the 5th–95th percentile range re-
mained high and stable, indicating uniformly high grassland
density. The impact became pronounced at higher α values.
At α = 4, the percentile range began to widen (driven by a
drop in the 5th percentile), indicating an increase in spatial
heterogeneity. This effect was strongest at α = 8, where both
the mean density and the 5th percentile dropped significantly.
This latter setting resulted in the widest variability range,
reflecting the much lower densities seen in the correspond-
ing spatial map (Fig. S6e). Therefore, α = 8 was selected for
the global simulations to enhance water stress sensitivity of
C4 grasslands.

2.9 Simulations

All simulation experiments started with a 200-year spin-up
at a spatial resolution of 2°× 2° at a global scale while cy-
cling over the CRU-JRA climate forcing from 2004 to 2020
(Harris et al., 2020), which aligns with the period of MODIS
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LAI observations. In these simulations, the CO2 concentra-
tion was set to 350 ppm globally, and the land cover map
was for the year 2004, derived from ESA CCI Land Cover
dataset (Poulter et al., 2015; ESA, 2017). The year 2004 was
chosen as it corresponds to the starting year of the MODIS
data for LAI used in this study. Land cover change was not
accounted for and the fixed density approach was used for the
spin-up. During the spin-up, the soils are brought to equilib-
rium every 15 years with the 15-year average litter inputs.
The nitrogen cycle in the ORCHIDEE model requires that
the semi-analytical spin-up is repeated about 10 times be-
fore an equilibrium is reached (Vuichard et al., 2019). Af-
ter 150 years of simulation, we checked that the soil pas-
sive carbon pools had reached an equilibrium, with the values
fluctuating within a 20 % range over the remaining 51 sim-
ulation years (Lardy et al., 2011). Once the soil carbon and
nitrogen pools were in equilibrium, the simulation experi-
ment branched off with two configurations using the fixed
density approach (Sect. 2.2.1), and the dynamic density ap-
proach (Sect. 2.2.2).

The simulation results from the two configurations were
analysed by comparing the grassland density, mortality, the
response of mortality in grassland to aridity, and the mean an-
nual grassland LAI. To align with the 17-year period (2004–
2020) of the CRU-JRA forcing data, we present the aver-
aged values for grassland density and mean annual LAI over
the same period. The mortality events were accumulated and
analysed over 51 simulation years taken after the model had
reached equilibrium following the initial 150 years of the
spin-up.

3 Results

3.1 Spatial distribution of simulated grassland density

With the dynamic density approach, the globally simulated
grassland density varied between the minimum and maxi-
mum threshold values of 0.05 and 1, respectively (Fig. 3).
Throughout the 17-year period (2004–2020), 56 % of the
grid cells in temperate C3 grasslands, 66 % in the C4 grass-
lands, and 33 % in the tropical C3 grasslands maintained the
maximum density (Fig. 3a–c). In contrast, grassland density
reached the minimum value in fewer than 1 % of the grid
cells across all three grassland types. The majority of grass-
land grid cells had a density ranging between 0.9 and 1, i.e.,
75 % of temperate C3 grasslands, 79 % of C4 grasslands, and
59 % of tropical C3 grasslands (Fig. 3d–f).

Temperate C3 grasslands in eastern USA, Europe, eastern
China, and New Zealand were simulated at the maximum
density, in contrast to areas such as western USA, Middle
East and northern China where ORCHIDEE simulated lower
densities. The C4 grasslands were simulated at a lower than
maximum density in India, Sahel, southern Africa and mid-
dle Australia. By contrast, in tropical C3 grasslands, densities

between the minimum and the maximum were simulated in
regions such as the Middle East, northern Africa, southern
Australia, and southern Africa, whereas the maximum den-
sity was simulated in South America and southern east Asia.

3.2 Evaluation of simulated grassland density

The simulated grassland density was compared against di-
rect field-based estimates for five regional case studies (Ta-
ble 1). Over temperate grassland in France, the simulated
density of 0.95 was within the observed range of 0.91 to 0.99
(Dusseux et al., 2014). This consistency extended to the Up-
per Beaver Meadows site in North America, with a simulated
density of 0.63 that approached the observed mean of 0.68
(Booth et al., 2005). For the desert steppe (with the cold
desert climate) of the Mongolian Plateau, the simulated value
of 0.27 was just outside the observed range of 0.10–0.26
(John et al., 2018). Furthermore, simulated average densi-
ties for typical steppes characterized by the semi-arid cli-
mate (0.40) and meadow steppes characterized by the subarc-
tic climate (0.63) fell within their respective observed ranges
of 0.34–0.50 and 0.45–0.78 (John et al., 2018). In the Sa-
helian fenced rangeland of Senegal, the simulated density
of 0.18 was in the low range of the large observed range
of 0.06 to 0.79. Finally, for the mixed grass-shrub commu-
nity in Australia, both the simulated C4 (0.15) and tropi-
cal C3 (0.50) grass densities were consistent with the field-
based range of 0.1 to 0.6 (Melville et al., 2019).

The dynamic density approach was further evaluated
against a comparison of FVC with a global satellite-based
FCOVER product (Copernicus Land Monitoring Service,
2020) (Fig. S7). The spatial correlation (Pearson’s r) be-
tween the model and the FCOVER data increased from r =

0.11 with the fixed density approach to r = 0.24 with the dy-
namic density approach. The dynamic density approach also
exhibited a lower RMSE (0.22) compared to the fixed den-
sity approach (0.26). This improvement was particularly ev-
ident in western United States, Asia, southern Africa, and
Australia, where the dynamic scheme simulated a lower and
more realistic FVC (Fig. S7c), in better agreement with the
FCOVER dataset, compared to the fixed density approach
(Fig. S7b). Such regional-scale improvement is consistent
with the findings from the regional field-based comparisons.

As a reminder for the following results, the land cover
map represents the fractional area covered by each PFT (Vfra)
within one grid cell, whereas grassland density reflects the
fractional area occupied by conceptual individuals within the
grassland PFT. A high Vfra for a given PFT indicates that
the PFT is the dominant vegetation type in that area, but it
does not necessarily mean that the PFT has a high vegetation
density. However, under natural and undisturbed conditions,
our expectation is that when a PFT is dominant (explained in
Sect. 2.4), its vegetation density should be higher than that of
other PFTs with lower Vfra. Conversely, when multiple PFTs
coexist (Sect. 2.4), their densities should be similar. There-
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Figure 3. Global distribution (a–c) and frequency histograms (d–f) of simulated grassland density for three grassland types. Global maps
show the 17-year average (2004–2020) grassland density simulated with the dynamic density approach for (a) temperate C3, (b) C4, and
(c) tropical C3 grasslands. The corresponding histograms (d–f) show the relative frequency of simulated density values for each grassland
type.

fore, we calculated the relative contribution of each of the
three grassland types to the total grassland density (Fig. 4b),
allowing us to focus on their proportional importance rather
than their absolute values.

The land cover map for each grassland type (Fig. S8)
provides information on Vfra. Based on this, grassland cat-
egories (Fig. 4a) were classified using the Vfra thresholds in-
troduced in Sect. 2.4. Grid cells with a total Vfra ≥ 0.1 for
all grassland types are marked in light grey, representing re-
gions of significant grassland presence. Within these areas,
seven distinct grassland categories were identified. Specifi-
cally, among these grid cells with grassland presence, 3 %
of grid cells were dominated by temperate C3 grasses (red),
5 % by C4 grasses (green), and 0.4 % by tropical C3 grasses

(blue). Co-existence patterns included: temperate C3 and
C4 grasses (12 %, yellow), temperate and tropical C3 grasses
(1 %, purple), tropical C3 and C4 grasses (6 %, cyan), and all
three grassland types co-existing (0.7 %, dark grey).

Figure 4b shows ternary plots illustrating the grassland
density mixtures among the three grass PFTs. In these plots,
the position of each point indicates the relative proportion
of grassland density from the three grassland PFTs within
that grid cell: temperate C3 (top apex), C4 (bottom left), and
tropical C3 (bottom right). To achieve this, the densities of
the three PFTs in each grid cell were normalized such that
their sum equals 1, thereby highlighting their relative contri-
butions. Point size corresponds to the frequency of similar
PFT mixtures across grid cells, with larger points indicat-
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Figure 4. Global distribution of grassland categories and their relative grassland density mixtures. (a) Grassland classification based on
fraction of vegetation type (Vfra). Grey areas indicate where the total grassland Vfra is ≥ 0.1. These areas are further classified into seven cat-
egories: (1)t temperate C3-dominated (Vfra of temperate C3 grassland≥ 0.5 while Vfra in other grassland PFTs< 0.1, red); (2) C4-dominated
(Vfra of C4 grassland≥ 0.5 while Vfra in other grassland PFTs< 0.1, green); (3) tropical C3-dominated (Vfra of tropical C3 grassland≥ 0.5
while Vfra in other grassland PFTs< 0.1, blue); (4) temperate C3 and C4 co-existence (Vfra ≥ 0.1 for both types while Vfra in tropical
C3 grassland < 0.1, yellow); (5) temperate and tropical C3 co-existence (Vfra ≥ 0.1 for both types while Vfra in C4 grassland< 0.1, purple);
(6) tropical C3 and C4 co-existence (Vfra ≥ 0.1 for both types while Vfra in temperate C3 grassland< 0.1, cyan); (7) three grassland types
co-existence (Vfra ≥ 0.1 for all grassland types, dark grey). (b) Ternary plots showing the relative proportions of normalized grassland density
for the three grassland types (temperate C3, C4 and tropical C3) within each grid cell. Each subplot corresponds to one of the seven grassland
categories in (a). Point size represents the frequency of occurrence at a given PFT mixture.

ing higher occurrence. As expected, points tended to clus-
ter near the apex corresponding to the dominant PFT in grid
cells where a single grassland type prevailed, reflecting a
higher proportional contribution of that PFT to overall grass-
land density. Deviations occurred where non-dominant PFTs
contributed to grassland density but appeared with lower fre-
quency. In cases where two PFTs coexist, points were pre-
dominantly distributed along the edges between the respec-

tive apices, while for the coexistence of three-PFTs, points
shifted toward the centre of the triangle, indicating a more
balanced contribution of grassland density among the three
grassland types.

Two-dimensional kernel density estimation (2D KDE)
plots (Fig. 5) illustrated the distribution of grassland density
along the precipitation gradient for three grass PFTs. Grass-
land density exhibited a positive correlation with precipita-
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Figure 5. Relationship between precipitation and grassland density. The two-dimensional kernel density estimation (2D KDE) plots illustrate
the correlation between precipitation and grassland density for temperate C3 (a), C4 (b), and tropical C3 (c) grasslands. Lighter colours
indicate higher probability densities, while darker colours represent lower probability densities. Grassland density and precipitation values
were averaged over the period 2004–2020.

tion for all three grass PFTs, forming two distinct clusters
separated by a grassland density value of approximately 0.7.
Above this value, grassland density increased with precip-
itation. The peak probability density (indicated in yellow)
for all grass PFTs occurred at grassland density values be-
tween 0.9 and 1, and at precipitation rates ranging from 0.5 to
4 mm d−1. When grassland density was below 0.7, a posi-
tive trend with precipitation remained evident, particularly
for tropical C3 grasslands.

3.3 Mortality events simulated in grasslands

The fixed density approach, used in this study as the ref-
erence, prescribes the grassland density at unity, imply-
ing grasslands are fixed at their maximal density regard-
less of whether the environmental conditions are favourable.
The grassland survival in the model depends on productiv-
ity per conceptual individual, which is represented as the
gross primary productivity (GPP) per conceptual individ-
ual. When this value drops below an arbitrary threshold
of 10−4 g C m−2 d−1 per conceptual individual, ORCHIDEE
considers it insufficient for grassland survival and kills the
vegetation. Over the 17-year period (2004–2020), in the fixed
density approach, 40 %, 32 %, and 58 % of grid cells in tem-
perate C3, C4, and tropical C3 grasslands, respectively, fell
below this critical productivity threshold albeit with differ-
ent frequencies (Fig. S9a–c). By implementing the dynamic
density approach, these proportions decreased to 24 %, 26 %,
and 34 %, respectively (Fig. S9d–f).

Over 51 simulation years, the mortality of temperate
C3 grasslands with the dynamic density approach was re-

duced in 98 % (Fig. 6d) of the grid cells when compared to
the fixed density approach (Fig. 6a). Similarly, C4 grasslands
(Fig. 6e) and tropical C3 grasslands (Fig. 6f) showed a reduc-
tion in 97 % and 99 % of the grid cells, respectively. With the
dynamic density approach, 51 % of the grid cells in temper-
ate C3 grasslands experienced zero mortality events over the
51-year simulation period, compared to 55 % for C4 grass-
lands and 50 % for tropical C3 grasslands. The dynamic den-
sity approach helped address the high frequency of mortality
events simulated with the fixed density approach (Fig. 6a–
c), with paired t-tests showing a significant reduction in the
mortality for temperate C3 grasslands (n= 1526 grid cells,
p < 0.001), C4 grasslands (n= 1776 grid cells, p < 0.001),
and tropical C3 grasslands (n= 1001 grid cells, p < 0.001).

Despite applying the dynamic density approach, the mor-
tality events still remained (Fig. S2). Of these, 97 % of mor-
tality cells occurred in “constrained regions” which are in
reality not well suited for grassland survival (Sect. 2.5). This
result indicates that the simulated mortality is primarily at-
tributable to potential errors in the PFT maps, which incor-
rectly classified grasslands in regions which are in reality not
well suited for grasslands.

3.4 Relationship between aridity and mortality events
on grasslands

We examined the correlation between aridity and mortality
events for both density approaches over a 51-year simulation
driven by climate forcing data from the 2004–2020 period.
In the fixed density approach, in which grassland density
does not respond to resource availability, mortality events oc-
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Figure 6. Counts of mortality events using the fixed density approach (a–c) and the relative mortality reduction using the dynamic density
approach (d–f) for temperate C3 grasslands (a, d), C4 grasslands (b, e), and tropical C3 grasslands (c, f). The number of mortality events
was accumulated over a 51-year test simulation, driven by climate forcing data from 2004 to 2020 and conducted after a 150-year spin-up
period that allowed the model to reach equilibrium. The relative reduction was calculated by subtracting the number of mortality events in
the dynamic density approach from those in the fixed density approach, and then dividing the result by the number of events in the fixed
density approach. Positive values (in blue) signify that the dynamic density approach reduced mortality, while negative values (in red) signify
an increase.

curred within an aridity range of 0.3 to 1 (Fig. 7a–c) in tem-
perate C3 grasslands, C4 grasslands and tropical C3 grass-
lands. For the dynamic density approach (Fig. 7d–f), mortal-
ity occurred at a higher aridity compared to the fixed den-
sity approach (Fig. 7a–c). Specifically, to reach the frequent
mortality events (assumed to occur 5 times or more over
51 years, Sect. 2.5), the aridity threshold under the fixed den-
sity approach was 0.3 for all three grassland types (Fig. 7a–
c). In contrast, the dynamic density approach significantly
increased the aridity threshold for reaching frequent mortal-
ity events to 0.7 for C4 grasslands and 0.9 for both temperate
and tropical C3 grasslands (Fig. 7d–f).

The dynamic density approach effectively suppressed
mortality events, particularly under arid conditions. For in-
stance, when aridity exceeds 0.9, fewer than seven mortal-
ity events were simulated in the dynamic density approach
(Fig. 7d–f). To quantify the overall impact, we aggregated

mortality events for 51 simulation years across all grassland
PFTs and grid cells. When aridity was lower than 0.9, the to-
tal number of mortality events decreased by a factor of 6,
from 5872 (fixed density approach) to 999 (dynamic den-
sity approach). The reduction reached a factor of 4 under
higher aridity (aridity≥ 0.9), with the event count decreasing
from 6123 to 1467.

3.5 Comparison between simulated and observed LAI
in grasslands

In this section, we assessed the simulated grassland LAI
not merely as a value for direct comparison with observa-
tions, but more importantly, as a crucial indicator of im-
proved ecosystem function under the dynamic density ap-
proach – specifically, its ability to sustain productivity and
reduce mortality.
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Figure 7. Relationship between aridity and mortality events over three types of grassland. Panels (a)–(c) show the relationship using the fixed
density approach, while panels (d)–(f) show it using the dynamic density approach. The grassland types are temperate C3 (a, d), C4 (b, e),
and tropical C3 (c, f). The mortality events were accumulated over 51 simulation years, and the aridity was calculated for the same period.
The dashed line at five mortality events marks the threshold, separating “infrequent mortality” from more frequent events.

MODIS remote sensing observations were used to deter-
mine the presence of grasslands. Grasslands were considered
present in pixels where the MODIS vegetation mask indi-
cated that grassland should be present and where the ob-
served LAI was greater than 0.1 (Tian et al., 2004; Hajj et
al., 2014; Lawal et al., 2022). For 60% of the grid cells iden-
tified by MODIS as grasslands presence, ORCHIDEE simu-
lated grassland with a LAI> 0.1 in both approaches. Among
these grid cells, 64 % showed no mortality events with the
fixed density approach. This proportion increased to 86 %
with the dynamic density approach. Furthermore, among the
grid cells that exhibited mortality with the fixed density ap-
proach, 97 % showed a reduction in mortality in the dynamic
density approach.

In both approaches, simulated mean annual LAIs were
generally lower than observed LAIs in grasslands (Fig. 8a).
This underestimation was especially pronounced in South
Asia, South America, and Central Africa, with differences
ranging from −0.5 to −3 (Fig. 8b and c). Conversely,
simulated LAIs were higher than observations (differences
of +0.5 to +3) mainly in southwest China and Mongo-
lia. In Australia and southern Africa, the differences were
less pronounced. Furthermore, grassland LAI from Sentinel-
2 data (2019) was consistent with the LAI simulated by the
dynamic density approach in southern Africa and Australia
(Wan et al., 2024; Fig. S10). Compared to the fixed density

approach, the dynamic density approach resulted in a higher
mean annual LAI for 26 % of the grid cells and a lower LAI
for the remaining 74 % (Fig. 8d).

To refine the LAI analysis, a mask was applied to (semi-
)arid regions identified by Zomer et al. (2022), focusing on
water-stressed environments. Globally, compared with the
MODIS dataset (Fig. 8a), the Pearson correlation coeffi-
cient (r) increased from 0.51 to 0.56, and the RMSE de-
creased from 0.60 to 0.59 when transitioning from the fixed
density to the dynamic density approach. Spatially, statistical
analysis was conducted for the four representative semi-arid
regions: Australia, southern Africa, Central Asia, and South
America (Fig. S11a), which were chosen as they represent
the large contiguous grassland ecosystems within the semi-
arid domain on their respective continents. In all four regions,
the coefficient of determination (R2) improved or remained
unchanged under the dynamic density approach (Fig. S11b–
e, Table 2), while RMSE decreased in three regions (Aus-
tralia, Central Asia, and southern Africa). Moreover, the dy-
namic density approach enhanced the seasonal dynamics in
southern Africa (Fig. S12b, Table 2), successfully captur-
ing the dry-season LAI minimum (August–October) that the
fixed density approach failed to reproduce. The new dynamic
density approach increased the seasonal correlation (r) with
MODIS from 0.77 to 0.93, compared to the fixed density ap-
proach. In contrast, seasonality in Australia (Fig. S12a) and

Geosci. Model Dev., 19, 1–25, 2026 https://doi.org/10.5194/gmd-19-1-2026



S. Xu et al.: Representing dynamic grassland density in the land surface model ORCHIDEE r9010 15

Figure 8. Comparison of simulated and observed mean annual LAI for grasslands averaged from 2004 to 2020. (a) Observed mean annual
LAI from MODIS. Differences in mean annual LAI are shown as residual maps: (b) fixed density approach minus MODIS, (c) dynamic
density approach minus MODIS, and (d) dynamic density approach minus fixed density approach. The figure and analyses were limited to
grid cells where the sum of Vfra values from the three grassland types exceeds 0.1.

South America (Fig. S12d) did not show improvements (Ta-
ble 2).

The ratio of the relative difference in LAI to the relative
difference in mortality between the two approaches was com-
puted at the level of PFTs (Fig. 9). The analysis focused on
grid cells where: (1) the grassland density was less than unity
in the dynamic density approach, and (2) mortality occurred
with the fixed density approach. The first condition was cho-
sen because LAI is influenced by density only when it is be-
low unity (according to Eq. 7). The second condition was
applied to illustrate mortality reduction in the dynamic den-
sity approach and to prevent invalid ratio calculations. A ra-
tio lower than 1 indicates that LAI reduces very little while
mortality decreases significantly, suggesting that plant pro-
ductivity is allocated in a way that better supports vegetation
fitness. In contrast, a ratio greater than 1 reflects a substan-
tial decrease in LAI with only a small reduction in mortality.
The results showed that 84 %, 81 % and 75 % grid cells in
temperate C3, C4, and tropical C3 grasslands, respectively,
had ratios below 1 (Fig. 9).

4 Discussion

4.1 The implementation of dynamic grassland density

In ORCHIDEE, the recruitment scheme is represented as
asexual recruitment, based on the assumption that grass-
lands are dominated by perennial species. Most perennial
grasses primarily reproduce asexually through clonal stems

Table 2. Statistical comparison of simulated grassland LAI (from
this study) against MODIS LAI across four regions: Australia,
southern Africa, Central Asia, and South America. Statistics include
the coefficient of determination (R2) and RMSE for mean annual
LAI, and Pearson’s r and RMSE for LAI seasonality.

Regions Mean annual grassland LAI

R2 RMSE

Fixed Dynamic Fixed Dynamic
density density density density

approach approach approach approach

Australia 0.58 0.72 0.39 0.36
Southern Africa 0.13 0.21 0.58 0.55
Central Asia 0.38 0.40 0.28 0.27
South America 0.45 0.45 0.79 0.81

Regions LAI seasonality

r RMSE

Fixed Dynamic Fixed Dynamic
density density density density

approach approach approach approach

Australia −0.60 −0.67 0.47 0.54
Southern Africa 0.77 0.93 0.14 0.14
Central Asia 0.30 0.31 0.62 0.62
South America 0.62 0.60 0.63 0.67
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Figure 9. Ratio of the relative difference in LAI to the relative dif-
ference in mortality events between the fixed and dynamic density
approaches for temperate C3 grasslands (a), C4 grasslands (b), and
tropical C3 grasslands (c). The relative difference was calculated by
subtracting the value in the fixed density approach from that in the
dynamic density approach, then dividing by the value in the fixed
density approach. To ensure valid calculations, both LAI and mor-
tality values were required to be greater than zero in the fixed den-
sity approach. Mortality events were accumulated over a 17-year
period for this analysis, and LAI values were averaged over the
same time span.

derived from belowground tissues, while sexual reproduc-
tion via seeds plays a comparatively smaller role (Blair et al.,
2013). In contrast, annual plants rely exclusively on seeds
for yearly regeneration. While our model’s assumption cap-
tures the dominant strategy in perennial grasslands, we ac-
knowledge it as a limitation: the model may underperform
in ecosystems where sexual reproduction and persistent seed
banks are the primary drivers of recruitment.

Despite this simplification, this study introduces a novel
approach in ORCHIDEE r9010 to calculate grassland den-
sity as a trade-off between the carbon pools (e.g., reserve and
labile carbon) in conceptual individuals and the total num-
ber of conceptual individuals. This differs from other mod-
els that simulate a dynamic grassland density, such as the

spatial patch dynamics model PATCHMOD (Wu and Levin,
1994) and the individual and process-based grassland model
GRASSMIND (Wirth et al., 2021), which simulate more ex-
plicit demographic processes. By contrast, our simplified yet
effective approach (see results and discussion below) allows
dynamic grassland density to be simulated at the typical scale
of a grid cell in the land surface model ORCHIDEE, i.e.,
between 50 km× 50 km and 200 km× 200 km, enabling a
global and computationally efficient representation of grass-
land dynamics.

The evaluation against five case studies (Table 1) gives
confidence in the model’s ability to represent grassland den-
sity across different grass PFTs and locations. The close
agreement at all the five sites suggests our model accurately
captures the central tendency of grassland density. Despite
these encouraging results, this evaluation should be inter-
preted with caution due to several key uncertainties. The
primary challenge is the conceptual mismatch between our
simulated “density” and the observational metrics. The mis-
match was mitigated by selecting the closest available con-
ceptual analogues (Sect. 2.3). However, the discrepancies
cannot be fully eliminated. For example, in the Australian
grass-shrub community (Melville et al., 2019), the field-
based metric unavoidably includes shrubs, thus resulting in
higher values compared to a pure grassland ecosystem. While
the close agreement (Table 1) suggests the dynamic density
approach captured the dominant grass trend, the shrublands
in Australia might also be misclassified as grasslands in the
PFT maps in ORCHIDEE, which would lead to our model
simulating grasslands in the shrub-contaminated areas. This
alignment may therefore stem partly from this PFT misclas-
sification. In addition, the scale mismatch between plot-level
field data and the model’s coarse grid-cell resolution is an-
other source of uncertainty, particularly in heterogeneous
landscapes like the Mongolian Plateau. Despite this spatial
discrepancy, the result that our simulated value range aligned
with the observed range suggests the new approach cap-
tures the ecological gradient across different steppes: with
higher values in meadow steppe, medium values in typical
steppe, and lower values in desert steppe (Booth et al., 2005;
Dusseux et al., 2014; John et al., 2018; Melville et al., 2019;
Diatta et al., 2023).

As shown in the results (Sect. 3.2), the direct FVC com-
parison against the FCOVER satellite product (Copernicus
Land Monitoring Service, 2020) also supported the new dy-
namic density approach, which improved both spatial cor-
relation (r) and RMSE. There are two main caveats in this
comparison, which likely explain the deviation from obser-
vations: (1) in (semi-)arid regions, the FCOVER product in-
cludes all green vegetation (e.g., shrubs, crops), whereas our
calculation was focused only on the grassland PFTs we im-
proved. (2) The current model does not yet account for key
disturbances like grazing or fire, which are known to affect
FVC and are implicitly included in the satellite observations
(Chang et al., 2016, 2021). Nevertheless, the fact that our new
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scheme showed a clear improvement despite these known
mismatches underscores the robustness of the new dynamic
density approach.

Despite the evidence of model improvements, the global
observations of grassland density remain challenging due to
incomplete and inconsistent datasets. Grassland density is
known to be strongly influenced by resource availability, par-
ticularly water (Schneider et al., 2008; John et al., 2018).
Our results demonstrate that ORCHIDEE effectively cap-
tures a positive relationship between precipitation and sim-
ulated grassland density, with density declining notably un-
der low annual precipitation. For ORCHIDEE, this relation-
ship is an emerging property, as a relationship between pre-
cipitation and grassland density was not coded as such. It
can therefore be concluded that the proposed approach is
able to simulate grassland density as the outcome of essential
processes such as competition, survival, and mortality under
varying resource availability (Deblauwe et al., 2008).

Additionally, such a precipitation-density relationship is
also a valuable diagnostic indicator to identify and evalu-
ate potential biases in model behaviour. In some cases, the
model maintained maximum grassland density despite scarce
precipitation. For instance, while C4 grasses are known for
their resilience to extreme conditions (Taylor et al., 2010),
our model simulates their density at maximum levels even
when precipitation falls below 1 mm d−1 – an overly opti-
mistic outcome. As part of this study, we have already re-
calibrated the dynamic density approach – with a focus on
C4 grasslands in southern Africa (Figs. S5 and S6) – to in-
crease the model’s sensitivity to low precipitation. Applying
this recalibration globally leads to a generally improved per-
formance, with the model capturing a plausible emergent re-
lationship between precipitation and density in most grass-
lands. Despite this improvement, the aforementioned coun-
terintuitive result is not entirely eliminated. Therefore, future
model investigations should focus on understanding the con-
ditions that lead to this result, and on developing more adap-
tive parameterizations.

While the use of the fraction of vegetation type (Vfra) as
a proxy offers a method to evaluate grassland density, it also
introduces uncertainties. If the land cover map is accurate,
high Vfra could be interpreted as an indicator of favourable
climatic conditions for a given PFT. Low Vfra may reflect un-
favourable climatic conditions, but it may also be attributed
to non-climatic factors, which are not considered in this
study, such as fire, grazing, and human management (Chang
et al., 2016, 2021). In addition, the land cover map may over-
look subpixel vegetation structure of grasslands. For exam-
ple, an area with a homogeneous mixture of grass and bare
soil may be classified entirely as grassland with a high Vfra,
even though the actual grassland density might be lower due
to the sparse vegetation. Conversely, in locations where a re-
mote sensing product can resolve distinct patches of grass
and bare soil, only the grass-covered areas may be identified
as grassland, while adjacent bare soil is classified as sepa-

rate bare soil. In such cases, grassland density may be high,
but Vfra appears low. This could also account for the cases
where PFTs with negligible Vfra still exhibited substantial
grassland density. It highlights the importance of considering
bare soil distribution in the classification of grassland PFTs
from land cover maps, particularly when interpreting or val-
idating grassland density.

In this study, we introduced and evaluated a novel, compu-
tationally efficient approach to simulate dynamic grassland
density within ORCHIDEE. Our analysis highlights two pri-
mary avenues for future improvement: refining the model’s
internal process-based responses and better constraining un-
certainties arising from external drivers. Internally, the coun-
terintuitive persistence of grasses under extreme water stress
(e.g., C4 grasses) warrants refining water stress parameters
and reserve and labile carbon targets to better capture: (1) the
response of grasslands to climate and (2) the density of co-
existing grassland PFTs. Externally, acknowledging the lim-
itations of proxies like Vfra and the influence of non-climatic
factors underscores the importance of incorporating distur-
bances such as agricultural practices and grazing. Addressing
these internal and external factors will be crucial for advanc-
ing ORCHIDEE’s capability to accurately simulate the geo-
graphical distribution and dynamic density of global grass-
lands.

4.2 Reduced mortality events with the dynamic density
approach

The vegetation in semi-arid regions, where extreme condi-
tions are unfavourable for growth, tends to have low pro-
ductivity and is prone to mortality events (Fig. S9; Wang
et al., 2022). In ORCHIDEE, carbon starvation could result
in grassland mortality during lasting droughts. Following a
drought, the model establishes a new grassland, at the begin-
ning of the next growing season. However, if mortality events
are frequent (in this study assumed as five or more events
over 51 simulation years), it suggests that the grasslands are
not viable in ORCHIDEE, which contradicts the vegetation
map that indicates that grassland is present at that location.
Therefore, frequent mortality events of grassland might indi-
cate a shortcoming in either the model or the PFT map. In
the dynamic density approach, more grid cells with grass-
lands were able to maintain growth compared to the fixed
density approach (Fig. S9), resulting in a significant reduc-
tion in mortality events over grasslands.

To separate model limitations from shortcomings in the
PFT map, we therefore identified simulated mortality events
that occurred in constrained regions (see Sect. 2.5). Except
for these regions, grasslands are expected to survive in the
corresponding ORCHIDEE grid cell, and the mortality in
ORCHIDEE should occur infrequently and be mainly driven
by drought. The finding that 97 % of the grid cells with sim-
ulated mortality occurred within these constrained regions
suggests that these mortality events are less likely an arte-
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fact of the model’s new dynamic density approach, and more
likely a consequence of potential errors in the PFT map
(Poulter et al., 2011; Reinhart et al., 2022), where non-viable
land may be misclassified as grassland. Consequently, these
PFT maps derived from satellite-based products should be
used with caution, as such potential misclassifications could
be a primary driver of unrealistic mortality in the simulation.

The remaining occurrence of mortality events with the dy-
namic density approach suggests that in (semi-)arid regions,
simulated plant resistance to water stress might be underes-
timated during drought, leading to too early mortality once
soil moisture falls below the wilting point. In ORCHIDEE,
the wilting point is defined as a threshold in volumetric soil
water content, below which leaves reach irreversible wilting
(Wiecheteck et al., 2020). This threshold is not PFT-specific;
instead, it is determined solely by soil properties, with differ-
ent soil textures (e.g., loamy sand vs. loam) assigned differ-
ent wilting point values in the model. However, recent studies
indicate that the wilting point is more accurately character-
ized as a plant-specific hydraulic trait rather than a universal
soil property (Bartlett et al., 2016; Marchin et al., 2020). For
instance, some arid-adapted species can survive at soil water
potentials below the conventional soil-defined wilting point
(Bartlett et al., 2012; Bartlett et al., 2016). Consequently,
the model’s reliance on a conservative, soil-based threshold
– rather than PFT-specific hydraulic traits that reflect true
drought tolerance (Bartlett et al., 2016) – likely leads to mor-
tality events earlier than observed.

Furthermore, adjusting photosynthetic capacity, stomatal
conductance and the wilting point as a function of the en-
vironment (Chebbo et al., 2025) may better reflect plant re-
silience to prolonged water stress. Since ORCHIDEE model
uses fixed parameter values within a PFT, a potential im-
provement would be to introduce spatial variation in these
traits to reflect species variation across climate gradients.
One practical approach would be to compute these param-
eters as functions of long-term mean precipitation, thereby
distinguishing between dryer and wetter climatic regions.
This would be consistent with the evidence that perennial
grasses can modify their drought-tolerant traits to enhance
survival under extreme dry conditions (Norton et al., 2016;
Guo et al., 2017). For example, species like Danthonia
californica, Geranium dissectum and Alopecurus pratensis
dominate in wet regions, while Lupinus bicolor, Bromus
hordeaceus and Cenchrus ciliaris are common in dry re-
gions (Gubsch et al., 2011; Sandel et al., 2011; Kattge et
al., 2020). In addition to spatial differentiation, another im-
provement would be to allow temporal variation in these pa-
rameters so that they can adjust to changes in growing con-
ditions, capturing processes of acclimation or longer-term
adaptation. Implementing such temporal dynamics, however,
is more challenging – especially in already extremely dry
regions – because it remains uncertain whether species can
further adjust their physiology or whether they are able to
survive near fundamental physiological limits (Vandegeer et

al., 2020). Nonetheless, incorporating spatial (species varia-
tion) and temporal (acclimation and adaptation) adjustments
would provide a more realistic representation of plant re-
sponses to drought in ORCHIDEE.

4.3 The aridity threshold for frequent mortality events
in grasslands

To facilitate the analysis in this study, “frequent mortality” is
defined as occurring five times or more over a 51-year sim-
ulation period, based on ecological records of widespread,
drought-driven mortality in perennial grasslands (Blair et al.,
2013; Bodner and Robles, 2017). While this provides a rea-
sonable benchmark, we acknowledge that it is a simplified
assumption. Future research could further evaluate the ro-
bustness of our findings across a range of threshold values
and ecosystems.

Given the same high aridity, grasslands tend to die less
frequently in the dynamic density approach compared to the
fixed density approach. The sensitivity to drought was not
coded as such but emerged from the model’s dynamics, sug-
gesting that adjusting vegetation density is an effective strat-
egy for adapting to difficult growing conditions. This is con-
sistent with the observed spatial self-organisation in grass-
lands that has been explained as an adaptation to water avail-
ability (Rietkerk et al., 2002).

Aridities of 0.54, 0.69, and 0.83 have been found to re-
sult in vegetation decline, soil degradation, and systemic
breakdown respectively (Berdugo et al., 2020). With the dy-
namic density approach, frequent mortality events were trig-
gered only at the aridity thresholds: 0.7 for C4 grasslands,
and 0.9 for temperate and tropical C3 grasslands. This find-
ing aligns with the aridity threshold for systemic break-
downs (0.83) reported by Berdugo et al. (2020). The dy-
namic density approach thus reproduced a realistic response
of grasslands to aridity. Moreover, if the thresholds reported
by Berdugo et al. (2020) are globally valid, this could suggest
an inconsistency in the land cover maps used by ORCHIDEE
where 30 % of the grasslands are prescribed at locations with
an aridity exceeding 0.83. This threshold was also used to
judge the contribution of potential PFT map errors to the re-
maining mortality events (Sect. 2.5, Fig. S2). At these loca-
tions, the mortality of the grassland PFTs might be a realistic
representation of grassland ecology. In arid regions, drought-
adapted species such as succulents (Buckland et al., 2023),
halophytes (Hussain et al., 2023) and phreatophytes (Som-
mer and Froend, 2014) are expected instead of grasses. None
of these are explicitly accounted for in the PFT maps. If their
vegetation cover is sufficient to be seen from space, these
vegetation types might all be classified as grasslands in the
PFT map (Poulter et al., 2015).
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4.4 Implications of grassland LAI in ORCHIDEE

With the dynamic density approach, simulated mean annual
LAI is expected to be lower than that in the fixed density
approach. This is because, according to Eq. (7), LAI is a
function of both the leaf biomass of a conceptual individ-
ual and the number of conceptual individuals. Our study
demonstrated that 74 % of the grid cells had a lower mean
annual LAI when dynamic grassland density was accounted
for (Fig. 8d). A 26 % proportion of grid cells showed higher
simulated LAI values with the dynamic density approach,
which may be attributed to a trade-off effect (Jongejans et
al., 2006). On one hand, grassland density is reduced to al-
leviate growth stress caused by limited resource availabil-
ity (Harper, 1977). On the other hand, decreased plant den-
sity in resource-limited conditions (e.g., water, nutrients) al-
leviates competition among plants and improves individual
biomass growth (Springer, 2021). Although grassland den-
sity is lower, the individual leaf biomass increases due to im-
proved growing conditions. As a consequence, this trade-off
may explain the slightly higher LAI with the dynamic density
approach for these 26 % proportion of grid cells.

The global and regional quantitative assessment against
the MODIS dataset demonstrates that the dynamic density
approach yields consistent, albeit modest improvements in
grassland LAI (Figs. S11 and S12). However, this analysis
also reveals that the overall global improvement is minor, and
that the issue of LAI seasonality persists. It is important to
note that LAI seasonality is driven by the phenology subrou-
tine in ORCHIDEE, which was not modified by our new dy-
namic density approach. Improving this phenology remains
a separate, long-standing challenge in Earth System Models.
This underlying issue is relevant, though, as these persistent
phenological issues likely contribute to the remaining mor-
tality events in our simulations.

The underestimation of grassland LAI in ORCHIDEE
compared to MODIS was not fully resolved with the dy-
namic density approach. This remaining model-data discrep-
ancy likely stems from uncertainties in both the observational
data and the model structure. From the MODIS perspective,
the derivation of the LAI product using a global-scale pro-
cess model by MODIS may affect its accuracy and lead to
an overestimation of LAI by approximately 2 %–15 % (Fen-
sholt et al., 2004). On the ORCHIDEE side, hydrological
processes are the key factor (MacBean et al., 2020); the un-
derestimation might be partially explained by the runoff-to-
precipitation ratio (Critchley et al., 2013) and the represen-
tation of evapotranspiration (Burchard-Levine et al., 2022)
under water-limited conditions. Furthermore, uncertainties
in key biophysical parameters, such as the Specific Leaf
Area (SLA) used to convert leaf biomass to LAI, may also
constrain simulated leaf growth. Addressing this issue likely
requires a multi-faceted strategy; future work should there-
fore focus on improving surface hydrology representation,
refining plant functional parameters via data assimilation,

and expanding model evaluation using a broader set of re-
mote sensing products.

This study goes beyond a direct comparison of simulated
and observed LAI by exploring how observed LAI can in-
form on the likelihood that grassland is present at a given
location. While land cover maps may include classification
uncertainties, incorporating observational LAI – particularly
when LAI exceeds 0.1 – improves the reliability of mor-
tality event analyses. In the dynamic density approach, the
low frequency of mortality in regions with observed LAI
from MODIS> 0.1 suggests that grasslands can persist by
adjusting their density to current climatic conditions (Tian
et al., 2004; Hajj et al., 2014; Lawal et al., 2022). There-
fore, the need for re-establishing grasslands by the model
is greatly reduced. In contrast, the fixed density approach
leads to frequent mortality events in some regions, followed
by a substantial influx of carbon from the biomass of the re-
established grassland. As a result, model outputs may suggest
unrealistically high productivity solely due to the frequent
need to re-establish the vegetation. By comparison, the dy-
namic density approach ensures the survival of the grassland
community by allowing for density reduction, at the cost of
potentially lower productivity and LAI values compared to
the fixed density approach. However, the ratio between the
relative reductions in LAI and mortality (Fig. 9) indicates a
beneficial trade-off, where the reduction in LAI is less pro-
nounced than the reduction in mortality events for the major-
ity of grid cells.

4.5 Consequences for PFT maps

Poulter et al. (2015) provide a cross-walking table that helps
assign land cover classes from remote sensing products into
PFTs used in ORCHIDEE. However, such an approach may
introduce inconsistencies, as the dynamic density approach
in this study simulates a bare soil fraction within grasslands
based on grassland density. The areas classified as bare soil
may in reality contain sparse or seasonal vegetation that
should be represented by a grassland or shrubland PFT, es-
pecially in semi-arid systems. Future model implementations
could improve realism by replacing the fixed “bare soil” PFT
with a dynamic representation of bare ground. In addition,
the presence of mapped grasslands in regions that are classi-
fied as hyper-arid (Zomer et al., 2022), exhibit extremely low
observed LAI, or exceed the ecological threshold for “sys-
temic breakdown” (Berdugo et al., 2020) highlights a critical
uncertainty in these external PFT maps. This finding under-
scores the need to investigate whether grasslands can realis-
tically persist in these regions. Improving the realism of the
land cover maps would subsequently reduce potential biases
in vegetation dynamics and mortality events in ORCHIDEE,
especially in dryland ecosystems where vegetation is sparse
but not entirely absent.
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5 Conclusions and future perspectives

The default grassland representation in ORCHIDEE, which
applies a fixed density, does not adequately reflect the sparse
and low-density vegetation typically found in resource-
limited regions, such as semi-arid areas. This mismatch – be-
tween a static high density in the model and the limited eco-
logical capacity to sustain such density under low resource
availability – results in frequent and unrealistic mortality
events. Therefore, this study proposed a simple yet effective
approach to simulate a dynamic grassland density in the land
surface model ORCHIDEE. The core of this approach is to
link grassland density directly to the plant’s carbon status,
which serves as an integrated indicator of vegetation vitality.
Specifically, grassland density decreases when reserve and
labile carbon in the plant are insufficient, while it increases
when reserve, labile and fruit carbon are abundant (Fig. 2).

Compared to the fixed density approach, the implemen-
tation of dynamic grassland density in ORCHIDEE led to
several notable improvements: (1) grassland density is now
simulated within the range of 0.05–1 globally, aligning with
five regional case studies, leading to a better representation of
bare soil in grasslands, and positively correlating with annual
precipitation as an emerging property. (2) Mortality events
are substantially reduced over grasslands in ORCHIDEE.
(3) Incorporating dynamic grassland density raises the aridity
thresholds for frequent mortality events in grasslands, with
this behaviour emerging from the new approach rather than
being explicitly prescribed. (4) The lower mean annual LAI
values simulated by the dynamic density approach modestly
improve model agreement with observations both globally
and regionally, and maintain a realistic level of ecosystem
productivity, while the approach dramatically reduces grass-
land mortality, thereby enhancing the model’s ecological re-
alism. (5) The dynamic density approach eliminates the need
to assign arbitrary bare soil fractions when constructing PFT
maps, as the bare soil fraction emerges dynamically from the
simulation, thereby improving the realism and consistency of
land cover representation.

Furthermore, the improvements pave the way for esti-
mating the dust emission from bare soil in semi-arid grass-
lands. Integrating this capability will enhance dust emission
estimates and provide a more comprehensive understand-
ing of land–atmosphere feedbacks in Earth System Models
(Fig. 1c).

This study also suggests several areas where grassland
simulations in ORCHIDEE could be improved: (1) refining
the phenological processes and parameters for C4 grasslands,
including adjustments to reserve and labile carbon targets, as
well as optimization of parameters in the water stress func-
tion. (2) Developing a more robust mechanism for trigger-
ing mortality events in grasslands, especially under extreme
climate conditions. (3) Improving the parametrization of hy-
drology and phenology to enhance LAI simulation. (4) En-
hancing vegetation classification in ORCHIDEE by incorpo-

rating more accurate vegetation maps, and explicitly repre-
senting sparse grasslands or mixed bare soil and vegetation
areas in semi-arid regions, except in regions that are fully
bare such as deserts.

Code and data availability. The ORCHIDEE model is open
source and licensed under the CeCILL (CEA CNRS IN-
RIA Logiciel Libre). The specific ORCHIDEE r9010 code
used in this study is archived on Zenodo and accessible via:
https://doi.org/10.5281/zenodo.15723740 (Xu, 2025a). The code to
process data and generate the Figs. 3–9 in this study is archived on
Zenodo at: https://doi.org/10.5281/zenodo.15877635 (Xu, 2025b).

The MODIS grasslands LAI data can be obtained from
https://doi.org/10.5067/MODIS/MCD15A3H.061 (Myneni
et al., 2021), and Sentinel-2 grasslands LAI can be ob-
tained from https://www.environment.snu.ac.kr/s2lai (last
access: 18 December 2025) (Wan et al., 2024). CRUJRA
data are available from https://catalogue.ceda.ac.uk/uuid/
aed8e269513f446fb1b5d2512bb387ad/ (last access: 18 De-
cember 2025) (Harris et al., 2020). The PFT map in OR-
CHIDEE is based on the ESA CCI Land Cover database
(https://www.esa-landcover-cci.org/, last access: 18 Decem-
ber 2025), and the details of the initial data processing for
ORCHIDEE are available at https://orchidas.lsce.ipsl.fr/dev/lccci/
(last access: 18 December 2025). The global aridity index dataset
is available from https://doi.org/10.6084/m9.figshare.7504448.v5
(Zomer and Trabucco, 2022). Copernicus Land Monitoring Service
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