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Abstract. We present a new atmospheric river (AR) analy-
sis and benchmarking tool, namely Atmospheric River Met-
rics Package (ARMP). It includes a suite of new AR metrics
that are designed for quick analysis of AR characteristics via
statistics in gridded climate datasets such as model output
and reanalysis. This package can be used for climate model
evaluation in comparison with reanalysis and observational
products. Integrated metrics such as mean bias and spatial
pattern correlation are efficient for diagnosing systematic AR
biases in climate models. For example, the package identifies
the fact that, in CMIP5 and CMIP6 (Coupled Model Inter-
comparison Project Phases 5 and 6) models, AR tracks in the
South Atlantic are positioned farther poleward compared to
ERA5 reanalysis, while in the South Pacific, tracks are gener-
ally biased towards the Equator. For the landfalling AR peak
season, we find that most climate models simulate a com-
pletely opposite seasonal cycle over western Africa. This tool
can also be used for identifying and characterizing structural
differences among different AR detectors (ARDTs). For ex-
ample, ARs detected with the Mundhenk algorithm exhibit
systematically larger size, width, and length compared to the
TempestExtremes (TE) method. The AR metrics developed
from this work can be routinely applied for model bench-
marking and during the development cycle to trace perfor-
mance evolution across model versions or generations and
set objective targets for the improvement of models. They
can also be used by operational centers to perform near-real-
time climate and extreme event impact assessments as part
of their forecast cycle.

Key points.

1. A metrics package designed for easy analysis of AR character-
istics and statistics is presented.

2. The tool is efficient for diagnosing systematic AR bias in cli-
mate models and useful for evaluating new AR characteristics
in model simulations.

3. In climate models, landfalling AR precipitation shows dry bi-
ases globally, and AR tracks are farther poleward (equator-
ward) in the North and South Atlantic (South Pacific and In-
dian Ocean).

1 Introduction

Atmospheric rivers (ARs) are dynamically driven synoptic-
scale filamentary structures of water vapor jets that play im-
portant roles in the global water cycle and regional weather
and hydrology (Ralph et al., 2013; Gimeno et al., 2014;
Shields et al. 2019; Payne et al. 2020; O’Brien et al., 2022).
These narrow, concentrated corridors of moisture in the at-
mosphere can carry an immense amount of water, often com-
pared to the flow of multiple major rivers combined (Ralph
and Dettinger, 2011), and account for more than 90 % of ex-
tratropical poleward water vapor transport (Zhu and Newell,
1998; Newman et al., 2012; Ullrich et al., 2021). When mak-
ing landfall or interacting with topography, ARs can produce
extreme weather, including heavy rainfall and strong winds,
in turn leading to severe flooding and landslides. These ef-
fects can devastate natural landscapes, agricultural fields, and
human infrastructure and disrupt businesses and services,
leading to significant economic losses (Ralph et al., 2006;
Leung and Qian, 2009; Neiman et al., 2011; Neiman et al.,
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2013; Gershunov et al., 2019). However, ARs are also es-
sential for delivering water for agriculture, ecosystems, and
human consumption; in the western United States alone they
are responsible for one-third to one-half of total annual pre-
cipitation (Ralph and Dettinger, 2011).

Because ARs can be responsible for both beneficial and
detrimental impacts, understanding and modeling of these
features, particularly in light of climate change, constitute
an important topic. To date, however, proposed definitions
of ARs have yet to be widely adopted (Ralph et al., 2018),
which has in turn made it difficult to draw conclusions
about how these features may be changing. Numerical al-
gorithms for objective identification of ARs, namely AR de-
tectors (ARDTs) (e.g., Neiman et al., 2009; Dettinger et al.,
2011; Ralph et al., 2013; Mundhenk et al., 2016; Ullrich and
Zarzycki, 2017; Ullrich et al., 2021), have widely facilitated
broader studies of AR characteristics and impacts (Shields
et al., 2019b; Rutz et al., 2019; O’Brien et al., 2022). How-
ever, as ARDTs are usually designed with particular research
questions in mind, the lack of a unified framework that is
applicable to different ARDTs in a collective way has chal-
lenged the benchmarking and intercomparison of the mod-
els’ representation of ARs. The analysis workflow and code
in one study cannot be easily applied in another study using
a different ARDT. Consequently, studies like intercompari-
son of ARDTs or analysis based on an ensemble of ARDTs
cannot be readily executed without extensive collaboration
or community efforts. In addition, research of this kind can-
not be easily repeated or updated when newer versions of
ARDTs have been developed or newer observational data
products have become available. As such, a universal anal-
ysis framework that is independent of ARDT is in demand in
our AR research community.

Within AR research, one major branch focuses on evalu-
ating the performance of forecast or climate models in sim-
ulating ARs. Since the number of climate models under ac-
tive development and used in the research community has
increased substantially in recent decades, with many support-
ing multiple configurations and parameterization choices,
routine evaluation of ARs during model development life
cycles requires a quantitative climate data assessment eval-
uation workflow that allows comparing AR characteristics
from different ARDTs. We believe progress in improving our
understanding of ARs and their impacts could be acceler-
ated with a dedicated tool for calculating AR statistics and
evaluation metrics in climate models and gridded data prod-
ucts. Preferably, such an analysis tool should be seamlessly
applicable to multiple data sources (including observations,
forecast, reanalysis, and different models) with simply a few
commands, minimizing user effort to manage inconsistencies
in the data format, coordinate system, and spatial coverage of
different data.

In this paper, we propose a new AR analysis framework
that includes a diverse suite of metrics that is designed for
easy quantification of AR characteristics and statistics in all

types of gridded climate data, with the expectation that such
a metric suite would be efficient for ARDT intercomparison
and climate model evaluation. Following the Introduction,
Sect. 2 describes the general design and workflow of the AR
metrics tool. Section 3 presents several model evaluation and
ARDT intercomparison application examples using the met-
rics evaluation package. Discussion and future development
plans are in Sect. 4.

2 AR metrics package design and workflow

2.1 Metrics workflow

Figure 1 shows the general design and workflow of the AR
Metrics Package (ARMP). The input data include AR ob-
jects and optional climate variables of relevance to ARs,
such as precipitation, winds, and temperature. The AR tags
can be produced by any regional or global ARDT, including
those based on relative (e.g., TempestExtremes or TE; Ull-
rich and Zarzycki, 2017; Ullrich et al., 2021), fixed relative
(e.g., Mundhenk_v3; Mundhenk et al., 2016), and absolute
(e.g., Lora_v2; Skinner et al., 2020, 2023) thresholds on the
moisture field.

AR metrics are calculated in user-defined geographic do-
mains. The upper right panel in Fig. 1 shows examples of re-
gions that were selected for landfalling AR diagnostics (red
boxes in the panel; lat–long boundaries are listed in Table S3
in the Supplement). These regions, mostly located along the
west coast of continents, are known to have frequently ob-
served AR landfalls (Guan and Waliser, 2017; Algarra et al.,
2020). We purposely use rectangular region boundaries for
simplicity and to avoid masking files; numerous tools are
already available for sub-selection of data using latitude–
longitude boundaries.

Apart from metrics for AR landfall regions, rectangular
region subsetting is also useful for analyzing AR geometric
features over global oceans. Currently there are five ocean
basins pre-defined in the framework – the North Pacific,
South Pacific, North Atlantic, South Atlantic, and southern
Indian Ocean (blue boxes in Fig. 1, upper right panel; lat–
long coordinates in Table S3). The analysis domains are fully
customizable with specified latitude and longitude bound-
aries from local (depending on spatial data resolution) to
global scales.

The regional segments of AR tags can then be used stand-
alone as regionally cropped AR objects for feature metrics
calculation. In this paper we provide five metrics application
examples in Sect. 3, such as AR geometry, frequency, and
landfall seasonality. Alternatively, the regional tags can be
used as masks for AR-associated weather as well as dynami-
cal and thermodynamical processes. An example of evaluat-
ing AR precipitation in climate models is given Sect. 3.

For AR geometrical metrics, statistics gauging the con-
sistency of latitude, longitude, width, length, and size are
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Figure 1. AR metric tool workflow. Input data include time slices of AR tags from ARDTs of user choice and optional climate data associated
with ARs. The data are then subset into user-defined rectangular domains (blue boxes for ocean basins, red boxes for landfall regions)
for regional tags and masks. User-preferred statistical tools are applied to the regional AR tags to obtain AR characteristics. Finally, AR
characteristics and AR masked climate data are presented as metric results.

required as intermediate input data to the workflow. In the
examples presented in this paper, we use the BlobStats tool
(Ullrich et al., 2021) to calculate these statistics, where lati-
tude and longitude are weighted by the moisture field, width,
and length are based on principal component analysis (PCA;
Inda-Díaz et al., 2021), and size is based on a count of the
number of contiguous grid cells in the feature. This tool can
be called and run within the AR metrics framework, although
it requires an additional installation. Users can also option-
ally use their preferred statistical tool for AR geometry cal-
culation and then feed the data back to the metrics workflow.

The metrics and diagnostics are integrated into the frame-
work, which can be customized and expanded subject to the
objective of research. Table 1 lists all the AR metrics and di-
agnostics used in this study. The AR metrics are composed
of AR properties (as shown in the top row) and evaluation
metrics. Similarly, the AR diagnostics are composed of AR
properties and statistical diagnostics. The regions that these
metrics are applied to are indicated by the numbers in the
table.

2.2 Software structure, coding environment, and data
format

The metrics code is open-source and Python-based, and it
handles gridded AR tag and climate data using Xarray (https:
//xarray.pydata.org, last access: 31 December 2023, Hoyer
and Hamman, 2017) and its extension xCDAT package (Xar-

ray Climate Data Analysis Tools, https://xcdat.readthedocs.
io, last access: 31 December 2023, Vo et al., 2024). It also
leverages several utility functions in the PCMDI Metrics
Package (PMP; Lee et al., 2024), such as the regional re-
gridding tool, land–sea mask, and portrait plot. These pack-
ages are compatible with one another, readily available,
and easy to install. The code repository can be accessed at
https://github.com/PCMDI/ARMP (last access: 31 Decem-
ber 2023), and relevant wiki documents including a demo
Jupyter notebook are provided with installation instructions
and application examples.

The code consists of seven major components: work-
flow controller, I/O, data QAQC, functional utilities, regional
statistics, benchmarking metrics, and graphics. It accepts AR
masks and climate data files in NetCDF format as input data.
Input file names are listed in a pointer file as a configuration
parameter to the metrics package. Output files are in NetCDF
format for intermediate and diagnostic outputs and JSON for-
mat for computed metrics. The regional statistics module in-
tegrates a few commonly used statistics for AR properties
(e.g., AR frequency and AR precipitation) and newly devel-
oped statistics (e.g., AR landfall peak day). External statis-
tical tools, e.g., BlobStats for calculating AR geometry, can
also be called from this package. These statistics are then fed
into the metrics module. AR metrics included in this frame-
work are described in Sect. 2.3.
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Table 1. List of AR metrics and diagnostics in this study. Numbers in the table indicate the numbers of regions where the metrics are applied.
Each column is one AR property. Bolded items are model evaluation metrics, and items in italic form are diagnostics of AR properties.

AR over ocean basins Landfalling ARs

Metrics/ Frequency Central Central Size Width Length Counts Peak Precipitation
diagnostics latitude longitude (frequency) day

Mean bias 5 5 5 5 5 5 16 16 16
Spatial correlation 5
IoU 16
Spatial distribution 5 16
Sampling histogram 5 5 5 5 5
Monthly climatology histogram 16

The metrics tool can be applied to data with different res-
olution, domain (e.g., a list of data files with mixed global
and regional spatial extent), and coordinate system (e.g., 180
or 360° longitude coordinates; monotonically decreasing lat-
itude coordinates), minimizing the effort required to pre-
pare the input data files. It is compatible with CF-compliant
NetCDF files as well as some non-compliant data structures.
It also aims to intelligently flag imperfect data, including files
with corrupted data values or with an incorrect date/time cal-
endar.

2.3 AR benchmarking metrics

Metrics have been widely used to quantify climate model
performance (Taylor, 2001; Gleckler et al., 2008; Wilks,
2011; Zarzycki et al., 2021). In the AR community, a set of
common metrics has also been increasingly employed over
the past few years, such as mean bias (Guan and Waliser,
2017; Chapman et al., 2019), weighted ensemble mean bias
(Massoud et al., 2019), RMSE and relative RMSE (Guan and
Waliser 2017), spatial pattern correlation (Chapman et al.,
2019; Huang et al., 2020), ratio of spatial standard devia-
tion (O’Brien et al., 2022), and skill scores for assessing AR
predictions (Wick et al., 2013; DeFlorio et al., 2018; Nardi
et al., 2018) and model performance (Zhang et al., 2024).
While these quantitative measures are case-specific and de-
pend on the aim of these studies, there is value in synthesiz-
ing commonly used metrics into one comprehensive analysis
tool. Here we describe a suite of diverse metrics used in this
study, including both commonly used and newly proposed
metrics.

2.3.1 Mean bias

We use mean bias to measure how close a climate data prod-
uct is to an appropriately chosen reference dataset. The sta-
tistical significance of the mean bias is measured using the Z
test. For the sake of completeness, the mathematical formu-
las for the mean bias and z score are given in the Appendix.
Under this test, the difference between the means of two sam-
ples is considered to be statistically significant at the 95 %

confidence level if the magnitude of the z score is greater
than 1.96. When comparing across different variables, a com-
monly used measure is the normalized bias, with the data
normalized by the standard deviation of the reference field.
In this study, we simply use the z score as the normalized
bias, as it incorporates both bias and statistical significance
in one succinct formula.

2.3.2 Spatial pattern similarity

The spatial pattern correlation is a measure used to quantify
the similarity between two spatial fields without reflecting
the magnitude of the difference. Here we compute the spatial
pattern correlation using the Pearson correlation coefficient.
The statistical significance of correlation is determined by
the two-tailed p value of the cumulative distribution func-
tion (CDF) of the t statistic. The mathematical formula for
the Pearson correlation coefficient and its corresponding sig-
nificance test is given in the Appendix. Given that ARs have
notable seasonal and interannual latitudinal shifts, we pro-
pose a new method to estimate the effective sample size ne
as the number of principal component analysis (PCA) modes
required to explain more than 95 % of the total variance in
the AR tag data. The cumulative variance explained by the
principal components is expressed as

ne =min

{
ne |

∑ne
i=1λi∑p

i=1λi
> 0.95

}
, (1)

where λi represents the eigenvalues of the spatial correlation
matrix of the data, and p is the total number of principal com-
ponents. Estimating ne based on ERA5 reanalysis data, we
find that the effective sample sizes for spatial pattern correla-
tion are generally small, ranging from 14–27 PCs necessary
to explain more than 95 % of total variance for the five ocean
basins (Table S4 in the Supplement).

2.3.3 Temporal detection similarity

The AR binary occurrence time series is a time series vari-
able equal to 1 when an AR is present in a given region
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and zero otherwise. The overlap between two AR occurrence
time series is measured by the intersection over union (IoU)
metric. The metric is written as

IoU(A,B)=
6|A∩B|

6|A∪B|
, (2)

where A and B are binary AR occurrence time series. The
IoU is useful for gauging the degree of temporal similarity of
ARs detected in different ARDTs.

3 Metrics applications

In this section, we present five example applications using the
metrics tool for assessing ARs in climate models, including
evaluation of AR frequency and characteristics, comparison
of ARs in high- and low-resolution simulations, sensitivity
of ARs to the choice of ARDT, precipitation bias associated
with ARs, and landfalling AR seasonality.

3.1 AR tag and climate data

We compare the TE ARDT for the 6-hourly integrated wa-
ter vapor transport (IVT) data from three reanalysis products
– ERA5 (Hersbach et al., 2020), MERRA-2 (Gelaro et al.,
2017), and JRA-55C (Kobayashi et al., 2015) to obtain AR
tags for reanalyses. Given its longer data record and finer
model resolution, we use ERA5 as the default reference in
this study. To demonstrate how results are sensitive to the
choice of ARDTs, we then use the fixed relative (Mund-
henk_v3) tags from ERA5 data.

To evaluate ARs in climate models, we use the archived
AR tags from the Atmospheric River Tracking Method In-
tercomparison Project (ARTMIP) Tier 2 experiment, which
is based on the coupled CMIP (Coupled Model Intercompar-
ison Project) model simulations for the historical and 21st
century projection periods (Shield et al., 2019a; Rutz et al.,
2019; O’Brien et al., 2022). The tag data include six of the
CMIP5 models (CCSM4, CSIRO-Mk3-6, CanESM2, IPSL-
CM5A-LR, IPSL-CM5B-L, and NorESM1-M) and three
of the CMIP6 models (BCC-CSM2-MR, IPSL-CM6A-LR,
MRI-ESM2-0). Grid information for these models is listed in
Table S1. All the tag data are at 6-hourly temporal frequency.
For model evaluation purposes in our application examples,
only TE tags from the archive are selected.

We further use simulations from the Energy Exascale
Earth System Model (E3SM; Golaz et al., 2019; Caldwell
et al., 2019) high-resolution (HR, 0.25°, ∼ 28 km grid) and
low-resolution (LR, 1°, ∼ 111 km grid) experiments to ex-
amine the sensitivity of ARs to model resolution. Compari-
son of the grid parameters of the two models is also shown in
Table S2. Except for their different horizontal grid spacing,
both E3SM-HR and E3SM-LR use an identical set of phys-
ical parameters, and the simulations follow a similar proto-
col of the Coupled Model Intercomparison Project Phase 6
(CMIP6; Eyring et al., 2016).

Figure 2. Spatial pattern correlation of AR frequency for the pe-
riod 1979–1989 between ERA5 and climate models for major ocean
basins.

3.2 Basic AR characteristics in CMIP5 and CMIP6
models

3.2.1 AR frequency

We first analyze the pattern of AR occurrence frequency over
a 10-year period (1979–1988) for the five major ocean basins
from Sect. 2.2. From the spatial distribution of the AR fre-
quency, we calculate the pattern correlation between selected
climate models and ERA5. The spatial pattern correlation
coefficient is shown in Fig. 2. Notably the correlations are
statistically significant for all models and regions. This sug-
gests that climatologically, all climate models simulate AR
density and spatial distribution that broadly resemble reanal-
ysis on the planetary scale. This is evidenced in the spatial
AR occurrence density maps in Fig. 3a–b and d–e.

The high spatial correlation (e.g., in Fig. 3, r = 0.88 in the
South Pacific and r = 0.98 in the North Atlantic) is mainly
a result of the similar spatial gradient (as in Fig. 3a–b and
d–e) of the AR frequencies rather than a similar magnitude
of frequency at each grid point in the two datasets. For in-
stance, if the AR frequency values on one map are doubled
compared to those on the other map, the spatial patterns, or
spatial structures of the two, can still be perfectly correlated.
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Since climatologically ARs are largely clustered along the
storm track, with nearly no occurrence over a large portion of
the basin domain, it is natural that the pattern correlations are
significant in most cases. Similar high pattern correlations of
AR frequencies are also noted in other studies (e.g., Huang et
al., 2020; Guan et al., 2023). In other words, the spatial cor-
relation coefficient is not that indicative for the magnitude
resemblance of the AR spatial frequency. Therefore, these
metric results can be better interpreted together with AR fre-
quency maps with spatial gradient.

While the spatial correlation coefficient synthesizes the
level of pattern consistency, difference maps further reveal
spatial discrepancies. For example, Fig. 3c shows that South
Pacific AR tracks shift farther towards the Equator in the
CSIRO model than in ERA5, while in the North Atlantic
basin (Fig. 3f), AR tracks are displaced more poleward in
the BCC model. The further north AR location is likely as-
sociated with the poleward jet stream bias in CMIP6 mod-
els (Bracegirdle et al., 2020; Harvey et al., 2020). Another
example is the AR frequency distribution over the Indian
Ocean for BCC-CSM-MR (Fig. 3g–i) and IPSL-CM5A-LR
(Fig. 3j–l). Even though, compared to ERA5, both mod-
els show significant spatial correlation in Fig. 2 (r = 0.99
and r = 0.82 respectively), the spatial bias pattern in IPSL-
CM5A-LR exhibits a more apparent latitudinal shift than in
BCC-CSM-MR.

3.2.2 AR geometric features in major ocean basins

The portrait plots in Fig. 4 show normalized biases (as a z
score) of AR characteristics in climate models for the five
major ocean basins. Several striking results emerge. For in-
stance, in the North Pacific, the CMIP5 and CMIP6 AR
geometries, in terms of width and length, are significantly
smaller than the ERA5 reanalysis. One possible cause of such
biases is that the AR blobs detected with TE in the relatively
lower-resolution climate models are geometrically less curvy
and less pointy at the ends; for example, Fig. S2 shows an ex-
ample time slice of AR blobs in the ERA5 and BCC model.
It is clear that the highlighted AR blob in the BCC model
exhibits a “cut-off” feature at both ends and is thus shorter
in length than the ERA5 reanalysis. And although visually
the blob is wider, the PCA-based width is actually narrower
due to its less curvy blob geometry. In contrast, for all other
ocean basins, the AR sizes (area) are generally bigger in cli-
mate models. The figures also show notable latitudinal model
AR biases such that, compared to the reanalysis, ARs tend to
shift towards higher latitudes in the North and South Atlantic
and are biased towards the Equator in the South Pacific and
Indian Ocean. To assist in understanding these geographical
biases, a set of AR frequency maps over global ocean basins
for each climate model is provided in the Supplement.

Figure 4 also helps identify outliers of a specific model
or variable. For example, although most climate models tend
to simulate larger ARs than observed (indicated by the pos-

itive values in the area columns), one notable exception is
the CanESM2 model, which has significantly smaller AR
width, length, and area than other models and ERA5 re-
analysis. Taking a closer look at the AR width and length
in the North Pacific in Fig. 5, we see that CanESM2 simu-
lates more smaller (< 1.8× 106 km2) ARs and fewer larger
(> 1.8× 106 km2) ARs than the reanalysis, resulting in neg-
ative mean biases. This type of histogram helps us better un-
derstand the AR distribution discrepancies.

Another example is from the CCSM4 model simulations.
The higher bounds of the model histogram in nearly all fields
indicate that the CCSM4 model simulates more ARs than
the reanalysis, with bigger size indicated as taller area bars
in Fig. 5c. The higher AR counts (∼ 500 more counts than
ERA5) in the model are mostly located in the high latitudes
and the tropics south of 20° N (Fig. 5a), spreading across
all longitudes (Fig. 5b). Figure 5d and e show that the ad-
ditional ARs in CCSM4 are narrower and/or longer in shape.
These differences may arise from various characteristics of
the models, such as the dynamical core (e.g., finite volume
in CCSM4, T63 triangular spectral truncation in CanESM2,
spectral transform in ERA5), grid resolution (see Table S1),
and effect of data assimilation (Buizza et al., 2018) in the
ERA5 system.

3.3 ARs in high- and low-resolution E3SM simulations

We now apply the metrics and diagnostics identified in
Sect. 2.3 to E3SM HR and LR simulations. ARs in both
HR and LR exhibit similar structural differences compared
to ERA5 (Fig. 6a, b). They are bigger in terms of area, width,
and length and biased towards higher latitudes in the North
Pacific and South Atlantic, as indicated by the positive num-
bers. Zonally, ARs in E3SM are more westward distributed
in the North Pacific (positive biases) and more eastward dis-
tributed in the North Atlantic and South Pacific (negative bi-
ases). One difference we see between the two experiments
is that in the North Atlantic basin, AR tracks in the HR are
shifted more northward than in the LR simulation.

Figure 6c shows AR differences between the E3SM HR
and LR models. The most noticeable difference is that the
HR simulates wider and longer ARs than the LR model over
all ocean basins. The AR size, in the area column, however,
shows mixed results which are not consistent with systematic
biases in width and length. This is probably because of differ-
ent AR geometric properties in the HR and LR simulations.
For example, in Fig. S4 in the Supplement, the highlighted
AR blob in the North Atlantic is longer but smaller in the
LR compared to the one in the HR simulation. Latitudinally,
AR distributions a show hemispheric contrast; compared to
the LR, ARs in HR are located more southward in the Pacific
sector but more northward in the Atlantic sector.

Figure 7 shows the AR characteristic distribution in the
North Pacific for E3SM HR, LR, and ERA5. Apparently,
E3SM produces more AR events than the reanalysis in nearly
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Figure 3. AR frequency in the South Pacific for (a) CSIRO-MK3-6-0, (b) ERA5, and their difference (c) as in panels (a)–(b). Panels (d)–(f),
(g)–(i), and (j)–(l) are the same as (a)–(c) but for AR frequency in the North Atlantic for BCC-CM2-MR, Indian Ocean for BCC-CM2-MR,
and Indian Ocean for IPSL-CM5A-LR, respectively.

Figure 4. AR characteristic bias (normalized as a Z score) in climate models for major ocean basins. Hatching indicates that the differences
are statistically insignificant.

all fields and across all scales. We also evaluated the pre-
cipitation associated with landfalling ARs in California in
both HR and LR simulations, as in Fig. 8. It is notable
that both models simulate systematically higher precipitation
than ERA5 for all rainfall intensity categories. It is also clear
that the precipitation bias in HR simulation is larger than
LR simulation, except in the light rainfall (<∼ 6 mm d−1)

category. Similarly, a better topographic representation in
the high-resolution version of the model does not improve
precipitation simulation, as is also reported in Harrop et
al. (2023), especially when the bias in the low-resolution
model is substantially high.
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Figure 5. North Pacific AR characteristic distribution for (a) central latitude, (b) central longitude, (c) area, (d) width, and (e) length in the
ERA5 reanalysis, CanESM2, and the CCSM4 model.

Figure 6. AR characteristic bias in E3SM (a) HR and (b) LR simulations. Panel (c) shows the difference between HR and LR. Hatching
indicates that the differences are statistically insignificant.

3.4 Sensitivity of AR characteristics to ARDT

ARDTs are generally threshold-based, mostly using the in-
tensity of moisture transport with some geographical con-
straints that limit the AR spatial extent and some geometrical
constraints that preserve their nature as “long and narrow”
filaments of moisture. The different choices made by ARDT
developers essentially amount to different definitions of ARs
(O’Brien et al., 2022), all of which are qualitatively consis-
tent with the definition in the AMS glossary (Ralph et al.,

2018). For example, the Mundhenk algorithm (Mundhenk et
al., 2016) calculates integrated water vapor transport (IVT)
anomalies relative to the historical period and uses a fixed
relative threshold to identify ARs that are above a certain
percentile of the historical simulation. The TempestExtremes
(TE; Ullrich et al., 2021) method, as another example, uses
a relative threshold on the Laplacian of the IVT field rather
than the IVT field itself.

In this application of the metrics package, we examine
how ARs in ERA5 are sensitive to the choice of ARDT.
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Figure 7. AR characteristic distribution of (a) width (° great circle), (b) area (km2), (c) length (° great circle), (d) central latitude (° N), and
(e) central longitude (° E) in the North Pacific for ERA5, E3SM HR, and LR simulations.

In addition to TE-based AR tags, we use AR tags detected
using the Mundhenk_v3 algorithm for comparison. Despite
significant differences in their associated algorithms, results
from ARTMIP showed that their performance was similar
and close to the mean among all ARDTs (Shields et al.,
2019b). Table 2 shows agreement of landfalling ARs de-
tected using these two ARDTs as percent values of IoU (AR
concurrence normalized by total occurrence of the ARs in
both methods). The level of consistency ranges from 56 %
to 83 %, which suggests that TE and Mundhenk detect ARs
concurrently most of the time, but with asynchronous dis-
crepancies, possibly regarding the timing of landfall and the
end of the AR life cycle.

For AR characteristics over the oceans, the Mundhenk
method detects larger ARs in area, width, and length com-
pared to TE (Fig. 9). Such differences are attributable to the
different thresholds for tagging the moisture field in the two
ARDTs. The results presented here are obtained from the de-
fault criteria; i.e., in TE, ARs are tagged when the Lapla-
cian of the IVT 5−20 000, while Mundhenk uses a static
250 kg m−1 s−1 threshold on the IVT field. We might expect
different results by altering these threshold numbers. ARs are
also present at more northward latitudes with Mundhenk than
TE as indicated by positive biases. Zonally, AR distributions
exhibit more hemispherical contrast, with Mundhenk show-
ing more westward-located (positive biases) ARs in the Pa-
cific sector but more eastward-located (negative biases) ARs
in the Atlantic sector. Apart from TE and Mundhenk, exam-

Figure 8. Landfalling AR precipitation histogram in California
from 1990–1999 in the ERA5 reanalysis, E3SM HR, and LR simu-
lations.

ples of AR geometry patterns from a few other ARDTs are
shown in Fig. S3, all showing the results from different cri-
teria for moisture tagging.

3.5 Landfalling AR precipitation in CMIP5/6 models

Apart from comparing AR properties, one useful capability
of the ARMP is for analyzing and quantifying any climate

https://doi.org/10.5194/gmd-18-961-2025 Geosci. Model Dev., 18, 961–976, 2025



970 B. Dong et al.: Atmospheric River Metrics Package

Table 2. AR landfall concurrence in Mundhenk and TE, normalized by total counts of AR landfall detected in both ARDTs for different
regions. Values are shown in percentage.

Region California S America N Europe Australia S Africa Baja Pacific Northwest New Zealand

Concurrence (%) 56 68 82 62 51 30 72 77
Region Alaska UK W Europe Iceland Greenland E Asia Antarctica New England
Concurrence (%) 81 84 74 77 72 56 69 83

Figure 9. AR characteristic difference between Mundhenk and TE
in ERA5.

fields that are associated with ARs, e.g., precipitation, which
is an important indicator of the intensity of a landfalling AR.
Here we evaluate landfalling AR precipitation in the CMIP5
and CMIP6 models, with the ERA5 reanalysis and MSWEP
(Beck et al., 2017) gridded product as a reference. Figure 10
shows that compared to the observations, landfalling precip-
itation differences in the models are generally much larger
than in reanalysis. The models show dry biases in most re-
gions that are particularly large (up to −7.7 mm d−1) in Cal-
ifornia, the Pacific Northwest, Iceland, and Greenland.

As it is unclear if these biases are mainly due to general
precipitation biases or AR activity bias, we further examine
model precipitation bias diagnostics regardless of AR activ-
ity (Fig. 11a) and AR frequency bias metrics (Fig. 11b) sepa-
rately. For total precipitation in the models, structural biases
as in Fig. 10 are absent, but AR landfall is less frequent in
the Pacific Northwest, Iceland, and Greenland. This suggests
that the systematic dry AR precipitation biases over these re-
gions are primarily due to the insufficient number of land-
falling ARs in the models. For California, similar results do
not hold for all the models; for example, total precipitation
in CCSM4 is 3.4 mm d−1 higher than the reanalysis, and AR
landfall is 6 % more frequent, but the AR-related rainfall has
a dry bias of −0.5 mm d−1. This suggests that landfalling
ARs in CCSM4 are less intense, suggesting a potential di-
rection for model improvement.

Figure 10. Landfalling AR precipitation bias in climate models rel-
ative to ERA5 (the first column). The MSWEP data are also in-
cluded in the second column as additional reference data, shown as
the difference from ERA5.

3.6 Landfalling AR peak day

3.6.1 Comparison among reanalyses

The seasonality of AR landfall is one of the important met-
rics for understanding AR variability and impacts. Here we
analyze landfalling AR seasonality over various regions of
the globe among three reanalysis products. We perform a
Fourier transform on the 10-year long-term daily mean AR
histogram to find its peak date based on the phase of the first
Fourier mode. Results indicate that the AR peak days agree
well among reanalyses for most regions, with small differ-
ences of only a few days. Large discrepancies are noted for
Australia and western Africa: in Australia, AR landfall peaks
nearly a month behind in JRA-55C compared to MERRA-2,
while in western Africa, AR landfall in MERRA-2 peaks 46 d
behind ERA5.
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Figure 11. (a) Total precipitation bias and (b) landfalling AR frequency bias.

Details of these differences are depicted in the histogram
plots. For West Africa, AR landfall has two peaks in ERA5
and MERRA-2, one being in September, followed by another
peak in November. In ERA5, the peak in November is the
main peak, while in MERRA-2, the September peak is com-
parable to the November peak, resulting in an earlier peak
day from the Fourier phase spectrum. JRA-55C, in contrast,
has only one peak in November, and the AR landfall event
counts are fewer than the other two products over the entire
year, indicative of smaller year-to-year variability.

The seasonal distribution of AR landfall in Australia in
the three reanalyses exhibits similar differences to those in
western Africa. In ERA5 and MERRA-2, there are two peaks
in February and June, but only one peak is present in JRA-
55C in June. This explains the relative late peak day in JRA-
55C. While the main peak in ERA5 is in June, in MERRA-2,
the main peak is in February, which is consistent with the
result from the metrics that MERRA-2 has the earliest peak
day. Similarly, JRA-55C has a smaller number of landfalling
ARs, although the interannual variability is comparable to
the other two reanalyses.

3.6.2 AR seasonality in climate models

Figure 13 shows CMIP5 and CMIP6 model performance in
simulating the AR peak season compared to ERA5 reanaly-
sis. To explore how model biases compare to the discrepan-
cies among reanalyses, we also include AR peak day bias for

MERRA-2 and JRA-55C reanalysis in the two left columns
of the metrics plot. Perhaps unsurprisingly, the model spread
is much larger than the spread among reanalysis products,
which are tightly constrained by data assimilation.

In regions like South America, Baja, the UK, and west-
ern Europe, the models show systematic late peak biases,
and in South Africa, AR peaks earlier than the reanalyses.
The exact cause of these structural biases in the models is
likely indicative of persistent and ubiquitous timing issues in
the shift of the storm track that is common among models.
It is worth noting that the model biases in the West Africa
region are significantly larger than other regions, with peak
day difference up to 6 months compared to the reanalysis.
Looking at the AR count histograms over the course of the
year in this region in the CCSM3 and MRI-ESM2-0 models
(Fig. 14), it is clear that AR landfall seasonality in both mod-
els is completely out of phase with ERA5. This is especially
true for the MRI-ESM2-0 model, where AR landfall peaks
in June, which is in opposition to the climatology in ERA5.
The large discrepancy is probably because of the large spread
in the atmospheric circulations in climate models over the
West Africa region, as a large spread among CMIP5/6 mod-
els in capturing atmospheric dynamic responses (Monerie
et al., 2020), the lack of jet–rainfall coupling (Whittleson
et al., 2017), and bias in simulating mesoscale convective
systems (Jenkins et al., 2002) in climate models are noted.
Although high-resolution regional modeling may be capable
of improving rainfall in this region (Sylla et al., 2012), the
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Figure 12. Landfalling AR peak day in ERA5, MERRA-2, and JRA55C reanalysis. Panels (a)–(f) show examples of probability distribution.
The height of the blue bars indicates the time mean counts. Black dots represent the peak day for each individual year, and vertical bars are
the standard deviation range in the 10-year data from 1979–1988.

dynamics–rainfall coupling does not appear to be improved
in high-resolution global models such as E3SM (Caldwell et
al., 2019; Golaz et al., 2019). Therefore, challenges remain
in modeling the AR water cycle in western Africa.

4 Summary and discussion

In this study we have introduced a metrics framework,
namely ARMP, for the objective evaluation of ARs in climate
models and reanalysis, and illustrated the potential for its use
with five example case studies to illustrate the scope of po-
tential applications. The metrics-based analyses are designed
for systematic diagnosis of AR biases in climate models.
In our example application applying the package to CMIP5
and CMIP6 models, we have shown that AR tracks in the
South Atlantic are positioned farther poleward compared to
the ERA5 reanalysis, while in the South Pacific, tracks are

biased towards the Equator. Over western Africa, we found
that most climate models do a poor job at capturing the AR
peak season, while it is generally consistent among reanaly-
ses.

In the application of comparing AR characteristics repre-
sented in high- and low-resolution model simulation, while
biases are not generally reduced in high-resolution configura-
tions, substantial differences are noted between the two sim-
ulations. For example, in the North Atlantic basin, AR tracks
in the E3SM-HR are shifted more northward than in the
E3SM-LR simulation. In addition to model evaluation and
model and reanalysis intercomparison, we have shown how
our metrics package can be used to identify structural dif-
ferences resulting from the choice of AR detector (ARDT).
For instance, we demonstrated that ARs detected with the
Mundhenk method are systematically larger in size, width,
and length compared to TE.
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Figure 13. Landfalling AR peak day bias in reanalyses and models
compared with ERA5.

Figure 14. Landfalling AR counts in (a) CCSM4 and (b) MRI-
ESM2-0 for the western Africa region. The height of the blue bars
indicates the time mean counts. Vertical lines represent the standard
deviations. Black dots represent counts for each individual year.
Red bars show ERA5 values as the reference.

The workflow and metrics presented in this study can be
used for a variety of other applications, e.g., to contrast the
differences between AR features in historical and future sce-
narios as simulated by climate models. Objectively quanti-
fying projected changes in landfall frequency, duration, and
intervals between landfall events is of particular interest. Fur-
ther confidence in this and other model evaluation applica-
tions can be gained by assessing what impact the choice of
the ARDT can have on any conclusions concerning model
quality. Our tool makes this and other sensitivity tests more
tractable.

Our metrics package assembles a suite of established and
newly introduced AR metrics into one framework, facilitat-
ing objective evaluation of ARs with a diverse suite of input
data, as well as intercomparison of ARs as simulated by mul-
tiple climate models. These metrics can be routinely applied
for model benchmarking and during development cycles to

monitor changes in AR characteristics across model versions
or generations and be used to set objective targets for the im-
provement of models. One expected application is the rou-
tine benchmarking of AR in simulations with increasingly
higher-resolution models. More frequent metrics evaluation
of simulated ARs such as this could further our understand-
ing of model bias and error characteristics and potentially as-
sist developers in making choices associated with new model
versions. Furthermore, it can provide a quantitative measure
for operational centers to perform near-real-time climate and
extreme event impact assessments along with their forecast
cycles, which can facilitate the decision-making process.

The collection of metrics included in our metrics package
will be augmented to gauge additional AR characteristics. At
the time of the submission of this paper, it is being config-
ured to be a part of the PMP. Looking forward, we welcome
community contributions to successive development of the
package. Inspired by Zarzycki et al. (2021), there is also a
potential that these metrics can be applied for research be-
yond ARs, such as mesoscale meteorological features, re-
gional hydrological extremes such as floods and droughts,
and large-scale climate modes.

Appendix A

This section includes mathematical expressions of com-
monly used model evaluation metrics.

A1 Mean bias

The mean bias is mathematically expressed as

b̄ = x̄− ȳ, (A1)

where x̄ is the arithmetic mean of the test variable x with
sample size n, given by

x̄ =
1
n

∑n

i=1
xi . (A2)

Similarly, ȳ is the arithmetic mean of the reference variable.
The statistical significance of the mean bias is measured

using the Z test, with the test statistics (z score) formulated
as

z=
(x̄1− x̄2)− (µ̄1− µ̄2)√

s2
1

n1−1 +
s2
2

n2−1

, (A3)

where x̄i is the sample arithmetic mean, µi is the population
mean, si is sample variance, and ni is sample size. A posi-
tive z score indicates that the value is above the mean. The
higher the z score, the further above the mean the value is,
and vice versa. A result is considered statistically significant
at the 95 % confidence level if the magnitude of the z score
is greater than 1.96.
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When comparing across different variables, a commonly
used measure is the normalized bias, with the data normal-
ized by the standard deviation of the reference field. In this
study, we simply use z score as the normalized bias, as it
incorporates both bias and statistical significance in one suc-
cinct formula.

A2 Spatial pattern similarity

The spatial pattern correlation is a measure used to quantify
the similarity between two spatial fields without reflecting
the magnitude of the difference. Here we compute the spatial
pattern correlation using the Pearson correlation coefficient:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)
2
√∑n

i=1(yi − ȳ)
2
, (A4)

where xi and yi are the values of the two spatial patterns at
location i (or grid point i in gridded data product), x̄ and ȳ
are the means of the values of the two patterns, and n is the
total number of locations. This equation essentially measures
the degree to which the values of the two spatial patterns vary
together. If they vary together perfectly, r will be 1. If they
vary together inversely, r will be −1. If there’s no linear re-
lationship between the patterns, r will be 0.

The statistical significance of correlation is determined by
the two-tailed p value of the cumulative distribution function
(CDF) of the t statistic as

p = 2× (1−CDF(t)). (A5)

The the t statistic t is given by

t = r ×

√
ne

√
1− r2

, (A6)

where r is the correlation coefficient, and ne is the effec-
tive sample size, although there are a number of methods to
estimate the effective geographic sample size (e.g., Griffith,
2013).

Code and data availability. The ARMP code is hosted on GitHub
at https://github.com/PCMDI/ARMP (last access: 31 Decem-
ber 2023, Dong et al., 2024). The initial release is also available
on Zenodo with the DOI https://doi.org/10.5281/zenodo.14188789
(Dong et al., 2024). Users are strongly recommended to download
the source code from GitHub to ensure access to the latest changes,
updates, and improvements of the package.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-961-2025-supplement.
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