

Supplement of

A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models

Bo Dong et al.

Correspondence to: Bo Dong (dong12@llnl.gov)

The copyright of individual parts of the supplement might differ from the article licence.

supplementary material

Table S1. List of climate models used in this study and their horizontal resolution.

Table S2. Grids info for E3SM LR and HR model

Table S3 Lat-lon boundary for the geographic regions in Fig. 1

Table S4. Effective sample size (Ne) for the spatial pattern correlation of AR frequency for each ocean basin.

Fig. S1. AR frequency in the South Pacific for (a) BCC-CSM2-MR, (b) ERA5 and their difference (c) as (a) - (b). AR frequency in the North Atlantic for (d) CSIRO-MK3-6-0, (e) ERA5 and their difference (f) as (d) - (e)

Fig. S2. Time slice of AR tags detected using TE algorithm on (a) ERA5 and (b) BCC-CSM2-MR data on 1979-01-01T00

Fig. S3. Same as Fig. S2 but for AR tags detected by (a) ARCONNECT (Atmospheric River-CONNected objECT; Shearer et al. 2020), (b) TECA-BARD (Toolkit for Extreme Climate Analysis; O'Brien, Risser, et al., 2020), (c) Mundhenk and (d) Lora detection method.

Fig. S4. Time slice of AR tags detected using TE algorithm on (a) E3SM-LR and (b) E3SM-HR data on 1984-01-01T00

Fig. S5. AR frequency over global oceans for CMIP5 and CMIP6 models used in this study.

Institute	model name	horizontal resolution	
NCAR, United States	CCSM4	1.25° X 0.938°	
IPSL, France	IPSL-CM5A-LR	3.75° X 1.875°	
IPSL, France	IPSL-CM5B-LR	3.75° X 1.875°	
CCCma, Canada	CanESM2	2.8° X 2.9°	
CSIRO, Australia	CSIRO-MK3-6-0	1.9°X1. 9°	
BCCR, Norway	NorESM1-M	2° X 2°	
BCC, China	BCC-CSM2-MR	1.125° X 1.125°	
MRI, Japan	MRI-ESM2-0 1.125° X 1.125		

Table S1. List of climate models used in this study and their horizontal resolution.

Table S2. Grids info for E3SM LR and HR model

model	Spatial resolution	# of columns	Vertical levels
E3SM-LR	110km	48,602	72
E3SM-HR	25km	777,602	72

Region	S. Africa	Australia	New Zealand	S. America	Alaska	California	Baja	N. Europe	UK	Europe
Boundary	21-35.5°S 11-20°E	23-35.5°S 112.8-120°E	34-46.5°S 166-179°E	30-56°S 68-76°W	42-51°N 119-126°W	34-42°N 119-126°W	20-34°N 105-119°W	53-70°N 3.5-20°E	49.8-60°N 10°W - 2°E	35-49.8°N 10°W - 3.5°E
Region	W. Africa	Greenland	Antarctica	E. Asia	Pacific NW	N. Pacific	S. Pacific	N. Atlantic	S. Atlantic	Indian Ocean
Boundary	10-35°N 5-19°W	59.5- 67°N 40-52°W	60-76°S 57-95°W	31-43°N 125-142°E	42-51°N 119-126°W	0-67°N 99°E-98°W	0-70°S 142°E-70°W	0-75°N 80°W- 10°E	0-70°S 70°W-20°E	0-70°S 30-120°E

Table S3. Lat-lon boundaries for geographic regions in Fig. 1

Table S4. Effective sample size (Ne) for the spatial pattern correlation of AR frequency for each ocean basin

	N. Pacific	S. Pacific	N. Atlantic	S. Atlantic	Indian Ocean
Ne	16	27	14	15	19

Fig. S1. AR frequency in the South Pacific for (a) BCC-CSM2-MR, (b) ERA5 and their difference (c) as (a) - (b). AR frequency in the North Atlantic for (d) CSIRO-MK3-6-0, (e) ERA5 and their difference (f) as (d) - (e).

BCC 1979-01-01T00

Fig. S2. Time slice of AR tags detected using TE algorithm on (a) ERA5 and (b) BCC-CSM2 data on 1979-01-01T00

Fig. S3. Same as Fig. S2 but for AR tags detected by (a) ARCONNECT (Atmospheric River-CONNected objECT; Shearer et al. 2020), (b) TECA-BARD (Toolkit for Extreme Climate Analysis; O'Brien, Risser, et al., 2020), (c) Mundhenk and (d) Lora detection method.

Fig. S4. Time slice of AR tags detected using TE algorithm on (a) E3SM-LR and (b) E3SM-HR data on 1984-01-01T00

Fig. S5. AR frequency over global oceans for CMIP5 and CMIP6 models used in this study.