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Abstract. The equilibrium climate sensitivity (ECS) – the
equilibrium global mean temperature response to a doubling
of atmospheric CO2 – is a high-profile metric for quantify-
ing the Earth system’s response to human-induced climate
change. A widely applied approach to estimating the ECS is
the “Gregory method” (Gregory et al., 2004), which uses an
ordinary least squares (OLS) regression between the net ra-
diative flux, N , and surface air temperature anomalies, 1T ,
from a 150 year experiment in which atmospheric CO2 con-
centrations are quadrupled. The ECS is determined by ex-
trapolating the linear fit to N = 0, i.e. the 1T -intercept, in-
dicating the point at which the system is back in equilibrium.
This method has been used to compare ECS estimates across
the CMIP5 and CMIP6 ensembles and will likely be a key
diagnostic for CMIP7. Despite its widespread application,
there is little consistency or transparency between studies in
how the climate model data is processed prior to the regres-
sion, leading to potential discrepancies in ECS estimates. We
identify 32 alternative data processing pathways, varying by
differences in global mean weighting, net radiative flux vari-
able, anomaly calculation method, and linear regression fit.
Using 44 CMIP6 models, we systematically assess the im-
pact of these choices on ECS estimates and calculate un-
certainty ranges using two bootstrap approaches. While the
inter-model ECS range is insensitive to the data process-
ing pathway, individual outlier models exhibit notable dif-
ferences. Approximating a model’s native grid cell area (if
irregular) with cosine of the latitude can decrease the ECS
by 11 %, the choice of N -variable can change the ECS by

6 %, and some anomaly calculation methods can introduce
spurious temporal correlations in the processed data. Beyond
data processing choices, we also evaluate an alternative lin-
ear regression method – total least squares (TLS) – which has
a more statistically robust basis than OLS. However, for con-
sistency with previous literature, and given TLS may reduce
the ECS compared to OLS (by up to 24 %), thereby making
a known bias in the Gregory method worse, we do not feel
there is sufficient clarity to recommend a transition to TLS in
all cases. To improve reproducibility and comparability in fu-
ture studies, we recommend a standardised Gregory method:
weighting the global mean by cell area, using the top of the
atmosphere (as opposed to the top of model) N -variable,
and calculating anomalies by first applying a rolling aver-
age to the preindustrial control timeseries then subtracting
from the raw CO2 quadrupling experiment. This approach
accounts for model drift while reducing noise in the data to
best meet the pre-conditions of the linear regression. While
CMIP6 results of the multi-model mean ECS appear insen-
sitive to these processing choices, similar assumptions may
not hold for CMIP7, underscoring the need for standardised
data preparation in future climate sensitivity assessments.

1 Introduction

The equilibrium climate sensitivity (ECS) – the steady state
global mean surface temperature response to a doubling of
atmospheric CO2 relative to preindustrial levels – has long
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been a cornerstone metric for quantifying future climate
change (Sherwood et al., 2020). The ECS is commonly es-
timated using climate models, with Charney et al. (National
Research Council, 1979) first proposing a range of 1.5 to
4.5 K, based primarily on a three dimensional atmospheric
circulation model. The most recent climate model-based es-
timate uses the model range of the coupled model intercom-
parison project phase six (CMIP6), placing the ECS between
1.8 to 5.6 K (Zelinka et al., 2020). Meanwhile, the Intergov-
ernmental Panel on Climate Change (IPCC) Sixth Assess-
ment Report (AR6) uses multiple lines of evidence to arrive
at the conclusion the ECS is between 2 to 5 K with 95 % con-
fidence (Forster et al., 2021; Sherwood et al., 2020).

The most direct method for calculating the ECS involves
Earth system models (ESMs) simulating the climate until it
reaches thermal equilibrium following a doubling of atmo-
spheric CO2. However, such an experiment is computation-
ally expensive and it can take multiple millennia of simula-
tion years for a model to equilibrate (Rugenstein et al., 2020).
Previously, researchers often relied on the less computation-
ally expensive atmospheric general circulation models cou-
pled with a motionless upper ocean mixed layer, or “slab
ocean”. This approach, however, can affect the ECS esti-
mate because it excludes the effects of thermal inertia and the
dynamic and thermodynamic responses of the mixed layer
(Boer and Yu, 2003; Danabasoglu and Gent, 2009).

Since 2004, coupled atmosphere–ocean ESMs have been
used instead to estimate the ECS using the “Gregory
Method” (Gregory et al., 2004), hereafter GM, which al-
lows for an estimate of the ECS from abrupt CO2 pertur-
bation simulations that are centuries rather than millennia in
duration. Hereafter we use the term ECS, noting that many
researchers refer to the metric calculated using the GM as
the effective climate sensitivity (Caldwell et al., 2016; Dunne
et al., 2020; Rugenstein et al., 2020; Rugenstein and Armour,
2021; Sanderson and Rugenstein, 2022; Zelinka et al., 2020),
given that the model has not run to true equilibrium. How-
ever, we use the term ECS and leave it up to the reader to
decide whether this calculation results in the equilibrium or
effective climate sensitivity. Our conclusions are independent
of this choice.

The GM is based on the zero-dimensional energy bal-
ance model, which relates the global mean net radiative flux
anomaly at the top of the atmosphere, N , to the global mean
effective radiative forcing, F , and the global mean radiative
response, λ1T , where λ is the global mean feedback fac-
tor, and 1T is the global mean near surface air temperature
change relative to preindustrial levels:

N = F − λ1T (1)

To calculate the ECS using a coupled climate model, Gre-
gory et al. (2004) take the first 90 years – standard practice
has since become 150 years – of an abrupt CO2 quadrupling
experiment (abrupt-4xCO2) relative to the model’s preindus-
trial control experiment (piControl) and calculate an ordinary

least squares (OLS) linear regression of annual mean val-
ues of N against 1T . The steady state – equilibrium – is
estimated at N = 0, i.e. at the 1T -intercept. The radiative
forcing is, according to this model, the N -intercept, and the
feedback factor is the (negative) slope of the regression. To
express the ECS and radiative forcing relative to a doubling
of CO2 rather than a quadrupling, the 1T - and N -intercepts
are divided by two, as per the original study. Note that scal-
ing by a factor of two implicitly assumes the forcing due to
a quadrupling of CO2 is twice that of a CO2 doubling, which
does not exactly hold if the relationship between forcing and
CO2 concentrations is not logarithmic (Byrne and Goldblatt,
2014; Etminan et al., 2016; Meinshausen et al., 2020).

The popularity of the GM is likely due to its relative sim-
plicity, offering a linear relationship that allows for a single
calculation to estimate the ECS, radiative forcing, and feed-
back parameter. Moreover, the GM does not require highly
specific experiment configurations often needed for estimat-
ing the forcing term, such as those with fixed sea surface
temperatures (SSTs) or atmospheric model intercomparison
project (AMIP)-style setups (such as using SST or sea ice ob-
servations). The accuracy of the GM in estimating the three
variables of interest is subject to debate (e.g. Andrews et al.,
2012; Forster et al., 2016; Rugenstein et al., 2020; Rugen-
stein and Armour, 2021; Smith et al., 2020), particularly re-
garding the extent of the linear assumptions and the interpre-
tation of the forcing term. For example, in radiative forcing
specific studies, the forcing term is usually estimated from
the first 20 or 30 years of data (Forster et al., 2016), rather
than the full 150 years more commonly used in climate sen-
sitivity studies. These uncertainties are why we concentrate
here primarily on the ECS and feedback parameter. This
study focuses on the practical application of the GM, leav-
ing discussions about its widespread use in literature, as well
as its strengths and weaknesses, to other work.

The GM is extensively used and cited across literature.
It has been applied to assess CMIP5 and CMIP6 (Andrews
et al., 2012; Caldwell et al., 2016; Forster et al., 2013;
Zelinka et al., 2020), to investigate ECS state dependence,
e.g. (Andrews et al., 2015; Armour et al., 2013; Bloch-
Johnson et al., 2021; Dai et al., 2020; Dunne et al., 2020;
Mitevski et al., 2023), and as a reference method for com-
paring climate sensitivity estimates based on alternate lines
of evidence, such as observations, historical simulations, or
palaeoclimate data (Chao and Dessler, 2021; Sherwood et al.,
2020). While the GM calculation is relatively simple, several
choices must be made during data preparation. Here we de-
fine “data preparation” as the processing steps applied to the
data before performing the N–1T regression. Many studies
lack transparency regarding these preparatory steps, leading
to potential inconsistencies, amplified by the fact that Gre-
gory et al. (2004) included limited descriptions of data prepa-
ration steps in their study. To our knowledge, no study has to
date systematically assessed how different data preparation
methods may influence ECS results.
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Many researchers do not describe their data preparation
entirely, instead presenting the ECS estimate as a direct re-
sult of the N–1T regression over the 150 year timeseries
(Dessler and Forster, 2018; Geoffroy et al., 2013; Klocke
et al., 2013; Lutsko et al., 2022; Meehl et al., 2020; Mitevski
et al., 2021, 2023; Nijsse et al., 2020; Ringer et al., 2014;
Zhou et al., 2021). Others provide only limited details, such
as specifying the model ensemble member used (Wang et al.,
2025; Zelinka et al., 2013).

Among studies that address N and 1T data prepara-
tion, the focus typically centres on anomaly calculations and
methods to account for model drift. In its simplest form, the
term “anomaly” refers to the difference between the corre-
sponding abrupt-4xCO2 and piControl timeseries. However,
methods for calculating anomalies vary widely, including
applying a rolling mean (Caldwell et al., 2016; Eiselt and
Graversen, 2023; Po-Chedley et al., 2018; Qu et al., 2018;
Zelinka et al., 2020), linear trend (Andrews et al., 2012; Ar-
mour, 2017; Bloch-Johnson et al., 2021; Dong et al., 2020;
Flynn and Mauritsen, 2020; Forster et al., 2013), or long-
term average (Chao and Dessler, 2021; Jain et al., 2021; Ru-
genstein and Armour, 2021) to the piControl prior to sub-
tracting from the abrupt-4xCO2 experiment.

Given the lack of transparency and consistency across lit-
erature, we aim to investigate how different choices in data
preparation may influence the ECS, radiative forcing, and
feedback estimates across CMIP6 models – with a particu-
lar focus on the ECS values. We identify 32 paths, split into
16 data processing choices and two linear regression meth-
ods (Fig. 1): OLS, to be consistent with the literature and the
original study (Gregory et al., 2004), and total least squares
(TLS), given that it is not obvious that all the pre-conditions
for OLS are met within the GM. The key difference between
the two methods is that OLS requires the choice of an inde-
pendent variable, and TLS does not assume independence in
either variable.

Notwithstanding the linear fit method, we do not include
modifications to the regression itself. While we assess the ex-
clusion of early years of the experiment as a further analysis
in investigating ECS uncertainty (see Sect. 3.5), we do not in-
clude this as a formal data preparation step. Adjustments to
the GM regression, such as excluding the initial decades of
the timeseries to account for inconstant feedbacks (Andrews
et al., 2015; Dunne et al., 2020), including higher order terms
in the energy balance equation (Bloch-Johnson et al., 2015),
or applying a non-linear ECS scaling factor between abrupt-
4xCO2 and -2xCO2 experiments (Dai et al., 2020), are al-
ready well-documented and these studies are widely cited
across the literature.

This study does not aim to constrain the ECS ensem-
ble range. Instead, our focus is on comparing differences
in data preparation and linear regression methods, explor-
ing uncertainty, and establishing a standardised GM analy-
sis approach. This approach aims to promote transparency in
methods for future research. These objectives are particularly

relevant with the upcoming release of CMIP7 data (Dunne
et al., 2025), as ECS calculations will likely be among the
first steps taken to compare CMIP7 models and assess how
the ensemble aligns with previous CMIP generations.

2 Methods

For our analysis, we compare the effects of data prepara-
tion choices and linear regression methods across 44 CMIP6
models. The resolution and grids of the models vary (see de-
tailed descriptions in Table S1 in the Supplement). The grid
spacing is between 100 and 500 km, and the grids are either a
regular latitude and longitude or a more complicated irregu-
lar (native) grid. These differences between models motivates
the need to assess different global mean weighting methods.

To calculate the ECS based on the steps we investigate, the
GM requires six variables, the 2 m surface air temperature
(tas), top of model (TOM) net radiative flux (rtmt) and – for
comparison to rtmt – top of the atmosphere (TOA) reflected
shortwave radiation (rsut), TOA outgoing longwave radiation
(rlut), and TOA downward shortwave radiation (rsdt). Those
variables are at monthly timescales for both the abrupt-
4xCO2 and piControl experiments, and in addition, the at-
mospheric cell area spatial variable (areacella) is needed.

It is essential for studies using CMIP6 data to be explicit
about which variables are being used in their methods. This is
especially necessary for climate sensitivity research to clar-
ify whether the ECS is an estimate of the global mean sur-
face or global mean surface air temperature – GMST or
GSAT, respectively. GSAT refers to the global 2 m air tem-
perature, whereas GMST is a combination of 2 m air tem-
perature over land, and SSTs over the ocean (Forster et al.,
2021), which requires three variables in addition to tas to ac-
count for SSTs and sea ice concentrations (Cowtan et al.,
2015). Some climate sensitivity studies are explicit about
calculating the GSAT for ECS, e.g. (Andrews et al., 2015;
Dai et al., 2020; Eiselt and Graversen, 2023; Gregory et al.,
2004; Jain et al., 2021; Rugenstein et al., 2020; Zelinka et al.,
2020), while others make the distinction between GMST and
GSAT explicitly (Armour et al., 2013; Ceppi and Gregory,
2019; Geoffroy et al., 2013; Nijsse et al., 2020; Po-Chedley
et al., 2018; Zhou et al., 2021). However, many (Caldwell
et al., 2016; Flynn and Mauritsen, 2020; Forster et al., 2013;
Klocke et al., 2013; Mitevski et al., 2021; Ringer et al., 2014;
Rugenstein and Armour, 2021) refer to the ECS as a mea-
sure of GMST without describing the variables or methods
used to calculate the global mean. Different methods exist
to calculate the GMST from climate model data (Cowtan
et al., 2015), generally diverging in their treatment of sea ice,
with each method introducing potential biases (Richardson
et al., 2016, 2018). It would be a step forward if studies that
base their ECS derivations on GMST were explicit with their
methods of global mean calculation. Given that Gregory et al.
(2004) use GSAT and the IPCC recommends model-based
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Figure 1. Decision tree illustrating the four steps and possible choices that we compare in this study in addition to the ECS uncertainty
calculation. For simplicity, we have not shown all paths, although these are indicated by the dashed lines. The Baseline, Rolling, Linear and
Long-term paths form the basis for much of our comparison, although we investigate the differences between all paths.

estimates use GSAT (Forster et al., 2021), we recommend
calculating the ECS using GSAT rather than GMST.

For this study, we investigate 16 data preparation paths
based on choices of global mean weighting, net radiative flux
variable, and anomaly calculation method (Fig. 1). These
paths lead to two ECS estimates based on either OLS or TLS,
which we also use to assess uncertainty in ECS for individual
models. While we compare all 16 paths, for simplicity we la-
bel only four of them according to their anomaly calculation
methods (Fig. 1).

We acknowledge that the choices and order of steps we
identify in this study may not align with the steps taken by
other researchers. However, given the lack of methodolog-
ical details in some studies, and given the number of data
processing choices and different orders in the lead up to the
regression analysis, it is important to be clear about the exact
path taken in any study.

In the following, we describe the choices at each data pro-
cessing step. We include only one member for each model,
prioritising the first ensemble member where possible (Wang
et al., 2025; Zelinka et al., 2013). The model ensemble mem-
ber describes the attributes for each experiment’s specific
run. The attributes relate to the realisation (r), initialisation
(i), physics (p), and forcing (f) indices. Most models have
at least one ensemble member called “r1i1p1f1”, whereas a
model which runs two experiments of the same scenario with
the same initial conditions, physics, and forcing, would then
also have, in theory, an ensemble member called “r2i1p1f1”.
The attributes change depending on the indices of the specific
run.

To calculate the global mean, we compare two common
approaches, weighting by grid-cell area or by cosine of the
latitude, cos(lat). After this step we also calculate the an-
nual mean, although this is not included as a formal step in
our investigation. We choose to use an annual mean (rather
than the mean of a longer time period), which is consistent
with much of the literature including the original Gregory
et al. (2004) study. We analyse two annual mean weighting
choices: weighting each month equally or each month by the
number of days. However, we find the median multi-model
ECS difference between these two choices is 0.005 K, and the
maximum difference is 0.023 K for CESM2-FV2. Given the
ECS appears almost entirely insensitive to the annual mean
weighting across all models, we do not include this as a dis-
tinct comparison in our analysis.

For the N -variable, most studies lack detail on how they
calculate the net radiative flux. In our analysis, we explore
approaches which either define N as a measure of the TOA
rndt= rsdt− rsut− rlut (Lewis and Curry, 2018), or as the
explicit TOM radiative flux variable (rtmt). While we are
unfamiliar with the rtmt variable’s use in climate sensitivity
literature, it is worthwhile to investigate especially if there
are large differences between a model’s explicit top and the
TOA.

To calculate the anomalies, we compare four approaches
which reflect the methods used across the literature, which
we label as:

A. Baseline: Subtract each year of the piControl from
the contemporaneous abrupt-4xCO2 timeseries. Despite
this method not explicitly appearing in the literature,
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we include it here given the number of papers which
cite anomalies with no method described (Dessler and
Forster, 2018; Klocke et al., 2013; Lutsko et al., 2022;
Meehl et al., 2020; Mitevski et al., 2021, 2023; Nijsse
et al., 2020; Ringer et al., 2014; Zhou et al., 2021). In
these studies the piControl may not have been pre pro-
cessed before performing the anomaly calculation.

B. Rolling: Calculate a 21 year rolling average over the pi-
Control and subtract the resulting timeseries from the
contemporaneous abrupt-4xCO2 simulation (Caldwell
et al., 2016; Eiselt and Graversen, 2023; Po-Chedley et
al., 2018; Qu et al., 2018; Zelinka et al., 2020). Note that
the first use of this method by Caldwell et al. (2016)
compared a range of window sizes and found that it
made no difference to the ECS estimate for CMIP5
models. Window size has not been compared for CMIP6
models. We calculate the ECS using an OLS fit across a
range of window sizes – 3, 5, 11, 21, 31, 41, 71 years –
and find it makes no difference compared to the 21 year
rolling average (Fig. S1 in the Supplement). Thus, for
consistency with recent studies, we retain the 21 year
window size.

C. Linear: Calculate a linear regression over 150 years
of the piControl timeseries for each variable and sub-
tract this linear fit from the corresponding years of the
abrupt-4xCO2 timeseries (Andrews et al., 2012; Ar-
mour, 2017; Bloch-Johnson et al., 2021; Dong et al.,
2020; Flynn and Mauritsen, 2020; Forster et al., 2013;
Lewis and Curry, 2018).

D. Long-term: Calculate a climatological mean of the pi-
Control over a fixed period, such as the full simulation
or a specific subset of years prior to subtracting from
the corresponding abrupt-4xCO2 experiment (Chao and
Dessler, 2021; Jain et al., 2021; Rugenstein and Armour,
2021).

In addition to the steps described above, it is necessary
to manually align the abrupt-4xCO2 experiment with the pi-
Control at the prescribed branch time. The branch time is
the point at which an experiment – in this case the abrupt-
4xCO2 experiment – diverges from the piControl following
an initial piControl spin up (Eyring et al., 2016). Branch
alignment is important for the anomaly calculation, so that
the correct part of the piControl is being subtracted from
the abrupt-4xCO2 experiment (although we note that branch
alignment is redundant for the long-term average piControl
anomaly method). We perform branch alignment after calcu-
lating the global mean. While this is a necessary step in data
processing, we do not identify alternative choices and thus
do not analyse its impact on the ECS. Furthermore, we note
that the provided branch times in the model attributes are not
always reliable. Introducing validation of branching informa-
tion at the point of simulation submission for CMIP7 would

greatly reduce the total time spent on these corrections after
initial submission.

Following the data processing, we fit a linear regression
over the first 150 years of the N and 1T anomalies using
two methods. First, for consistency with previous literature,
we perform an OLS regression with 1T as the independent
variable. Additionally, we fit a TLS – alternatively called “or-
thogonal regression” – line to the data. The key differences
between these two methods are that OLS minimises the sum
of squared residuals in the y-variable, whereas TLS min-
imises the sum of squared perpendicular distances between
the data points and the regression line (Isobe et al., 1990),
thereby removing the need to choose an independent vari-
able. For both regression methods, we take the 1T -intercept
(divided by two) as the ECS, the N -intercept (divided by
two) as the radiative forcing due to doubling CO2, and the
slope as the feedback parameter.

To assess the uncertainty of each individual ECS calcu-
lation, we use two bootstrapping approaches. The first ap-
proach uses a standard bootstrap by sampling over theN and
1T anomaly timeseries 150 times with replacement, calcu-
lating the ECS and repeating 10 000 times. The second ap-
proach uses a moving block bootstrap (Gilda, 2024) to ac-
count for interannual dependence in the timeseries. This ap-
proach randomly samples blocks of consecutive data points
with replacement, calculating the ECS and repeating 10 000
times to obtain a 95 % confidence interval.

3 Comparing the Gregory method data processing
choices

We calculate 32 ECS estimates for each model using the data
processing choices described in the methods. An example
of the Gregory plot for each model (the scatterplot of the
150 year N–1T anomalies with an OLS and TLS regres-
sion fit), calculated using the Baseline pathway, is shown
below (Fig. 2). Using the Baseline pathway as our point of
comparison, we apply a Kolmolgorov-Smirnov test to com-
pare the inter-model ECS distributions between the remain-
ing paths. The test reveals no significant difference in inter-
model ECS range between paths, even when comparing paths
calculated using an OLS and TLS fit. We note here that our
significance testing does not consider the shared code bases
between some models (for a full model code genealogy see
Fig. 2 of Kuma et al., 2023).

Despite the lack of significance between paths for the en-
semble ECS range, we find that the preparation choices mat-
ter for a subset of individual models. In the following Sec-
tions we discuss the implications of the different choices for
each data processing step. This analysis leads to a recom-
mended path for a standardised GM. Note that in the follow-
ing we use an OLS fit for the ECS estimates unless other-
wise specified. For individual ECS estimates across different
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Figure 2. The Gregory plots calculated from the Baseline pathway for each model. The blue scatter plot represents the anomalies over time
in the surface air temperature and radiative flux anomaly timeseries. The orange and green lines show linear fits calculated using ordinary
and total least squares regression, respectively.
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paths (including a comparison to the Zelinka et al., 2020, cal-
culated values) see Table S2 in the Supplement.

3.1 Global mean weighting

We compare two global mean weighting methods: by grid
cell area and cosine of the latitude (Fig. 3a). To ensure a
valid comparison, we keep the other data preparation choices
constant by following the Baseline pathway: i.e. using rndt
as N and the raw piControl for anomalies. Between the
two global mean weighting methods, the median [min, max]
multi-model ECS range of 3.88 [1.84,5.67] does not change.
For most models, the method of global mean weighting has
little to no impact. However, we observe four outlier models
for which the global mean weighting makes a difference. For
AWI-1-1-MR, MPI-ESM-1-2-HAM, and MPI-ESM1-2-HR,
weighting the global mean by cos(lat) reduces the ECS es-
timate by 0.29 K (9 %), 0.36 K (11 %), and 0.21 K (7 %), re-
spectively. For HadGEM3-GC31-MM, weighting by cosine
of the latitude increases the ECS estimate by 0.16 K (4 %).

The differences in ECS for global mean weighting meth-
ods arise due to each model’s grid cell configuration (grid
information for each model can be found in Table S1). Each
outlier model uses native grid cells that are irregular in shape
or size and thus cannot be approximated by cos(lat). Our re-
sults suggest that, for these models, it would be an error to
use the cos(lat) approximation instead of the native grid cell
area variable to calculate the global mean.

In comparison to the two weighting methods we explore,
many researchers may use various regridding techniques to
calculate the global mean, which we do not consider in
this study. Although regridding may be necessary for certain
types of studies, we recommend weighting by the model’s
native grid and using the cell area when calculating the global
mean for ECS preparation. This approach eliminates the need
to verify if the model’s grid is regular and is simpler than
the cos(lat) approximation. In cases where cell area data is
unavailable, cos(lat) can serve as an approximation, but it
may introduce minor errors depending on the model’s grid
cell configuration. This is a clear demonstration of the im-
portance of the cell area variable in CMIP submissions.

3.2 Net radiative flux variable

To compare the two net radiative flux variables, we again
fix the remaining data processing choices as per the Base-
line pathway. Of the 44 models in this study, only 35 have
the rtmt variable available for both experiments, thus reduc-
ing the sample size for this comparison. We note, however,
that all 44 models have the required TOA radiation variables
meaning they are included for analysing the remaining data
processing steps.

Table 1. Global annual mean N averaged over 150 years of the pi-
Control for rndt, rtmt, and the difference between the two variables
(Wm−2). Only the models with a change in ECS between variables
are shown. For the rest of the models see Table S3.

Model rndt rtmt Absolute
difference

BCC-CMS2-MR −0.54 0.36 0.90
BCC-ESM1 −0.39 0.70 1.09
CESM2 0.70 0.09 0.61
CESM2-FV2 0.58 −0.03 0.61
FGOALS-g3 1.81 −0.12 1.93
INM-CM4-8 4.19 1.11 3.08

The median ECS for models using rndt and rtmt, respec-
tively, is 3.88 [1.84,5.67] and 3.96 [1.92,5.67] (Fig. 3b).
The choice ofN -variable makes no difference for most mod-
els, except for, most notably, BCC-CMS2-MR, CESM2, and
FGOALS-g3 with an ECS increase of 2 % when using rtmt
instead of rndt, BCC-ESM1 and CESM2-FV2 with an ECS
increase of 3 %, and INM-CM4-8 with an ECS increase of
6 %.

The differences in ECS between rndt and rtmt are unex-
pected. A similarity between each of the above models is that
they all have a low model top relative to the TOA, however
not all models with a low top have a difference in ECS be-
tweenN variables (for a list of all model tops see Table S3 in
the Supplement). From an energy balance perspective, cal-
culating the net radiative flux at different points in the at-
mosphere is unlikely to result in large changes in flux, given
most of the Earth’s energy imbalance is taken up by the ocean
and land surface, with a common approximation of radiative
flux being ocean heat uptake (Forster et al., 2021).

To investigate the differences in rndt and rtmt, we calculate
the global annual average over 150 years of the piControl for
both variables (see Table S3 for all models). The models with
differences in ECS between rndt and rtmt are the only mod-
els (apart from SAM0-UNICON) to have notable differences
between rndt and rtmt (Table 1), with the largest absolute
difference observed for INM-CM4-8 being 3.08 Wm−2. No-
tably, many models have non-zero differences between rndt
and rtmt values – even if these values are equivalent. In the-
ory the piControl should have zero net radiative flux because
it is at equilibrium, thus non-zero net radiative flux values are
likely a result/indicator of accounting for model drift.

While in theory the ECS should not change between the
rndt and rtmt variable, we show that the variables can differ
for some models. Given rtmt availability is limited depending
on the model, our default suggestion is to use rndt for N .

3.3 Anomaly calculation method

Of the data processing steps analysed in this study, the
anomaly calculation method is the most commonly described
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Figure 3. Each subplot shows the inter-model ECS range (upper) and differences between these ranges (lower) comparing the choices at
each of the data preparation steps. Boxplots show median first/third interquartile ranges (with ECS labelled in units of K), with whiskers
showing the min/max excluding outliers, which are shown as hollow circles. (a) Global mean weighting comparing cell area and cosine of the
latitude. (b)N -variable compares the ECS calculated using rndt or rtmt. (c) Anomaly calculation method, with uppercase letters denoting the
raw piControl, A, rolling mean, B, linear trend, C, and long-term average, D. (d–g) OLS compared to TLS regression for the four anomaly
methods. Note that the differences in range are always calculated as orange subtracted from blue (or green and dark orange subtracted from
blue, in the case of plot c). Additionally, note that the difference in ECS range for plots (d–g) share a y axis.

in the literature. We compare four methods that broadly re-
flect the different approaches between studies. These ap-
proaches form the basis for the labelled paths in Fig. 1: the
Baseline, Rolling, Linear, and Long-term paths, which all use
the cell area to calculate the global mean, rndt as the N vari-
able, and differ only in their treatment of the piControl for
the anomaly calculation.

The multi-model ECS ranges for the Baseline, Rolling,
Linear, and Long-term paths are, respectively, 3.88
[1.84,5.67], 3.84 [1.83,5.66], 3.83 [1.83,5.63], and 3.82
[1.83,5.63] (Fig. 3c). To evaluate the impact of the differ-
ent anomaly methods on individual models, we calculate the
differences between the ECS of each model using different
anomaly methods. We subtract from the Baseline path the
Rolling, Linear, and Long-term paths (Fig. 3c). We observe
a wider spread in the differences in ECS between the Base-
line and Long-term paths compared to the Rolling and Linear
paths. The largest percent difference for individual models is
for NorESM2-MM which reduces by 3.4 % (0.09 K) between
the Baseline and Long-term paths. In comparison, the largest
percent difference between both the Rolling and Linear paths

and the Baseline is 1.6 % (0.05 K for MPI-ESM1-2-HR for
Linear, and 0.04 K for NorESM2-MM for the Rolling path).

Studies which compute anomalies relative to a smoothed,
averaged, or linear piControl cite their methods as aiming
to reduce the effects of model drift (Andrews et al., 2012;
Armour, 2017; Caldwell et al., 2016; Flynn and Maurit-
sen, 2020), which refers to a long-term unforced trend in
state variables. Since these anomaly methods are replicated
and cited by more recent research, we assume that these re-
searchers also aim to reduce model drift (Dong et al., 2020;
Eiselt and Graversen, 2022; Po-Chedley et al., 2018; Zelinka
et al., 2020).

Unforced experiments, like the piControl, are typically
used to diagnose model drift (Gupta et al., 2012, 2013; Irv-
ing et al., 2021). However, Hobbs et al. (2016) find that en-
ergy biases in CMIP5 models are largely insensitive to the
forcing experiment, suggesting that the drift present in the
piControl is likely also observed in the abrupt-4xCO2 exper-
iment. While drift in forced experiments has not been explic-
itly examined for the CMIP6 ensemble, Irving et al. (2021)
assume it to be equivalent to that in the piControl, based on
the findings of Hobbs et al. (2016) for CMIP5. Thus, assum-
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ing an equivalent drift is present in both the abrupt-4xCO2
and piControl experiments, we would expect that the Base-
line, Rolling, and Linear paths implicitly removes model drift
following the subtraction. Calculating the anomaly relative to
the piControl long-term average, however, does not account
for biases that may be introduced by model drift.

In addition to model drift, the correlation between N and
1T is another approach of comparing the anomaly calcu-
lation methods. The median absolute correlations across all
models for the Baseline, Rolling, Linear, and Long-term
paths are respectively 0.88 [0.57,0.95], 0.93 [0.64,0.97],
0.93 [0.65,0.98], and 0.93 [0.65,0.98]. The differences in
correlation likely results from a reduction in variance for
the Rolling, Linear, and Long-term paths in comparison to
the Baseline. For 1T , the variance is less sensitive to the
anomaly calculation method, with median variances across
all models being 0.77, 0.76, and 0.73, and 0.70 for the
Baseline, Rolling, Linear, and Long-term paths, respectively.
However, for N , the median variances show a more substan-
tial difference: 0.81, 0.70, 0.71, and 0.70 for each respective
path.

While the differences in correlation and variance between
anomaly methods have minimal impact on the ECS esti-
mates for an OLS fit, we observe more notable differences
when comparing an OLS and TLS fit (Fig. 3d–g). The me-
dian differences between OLS and TLS for the Baseline,
Rolling, Linear, and Long-term paths are 0.13 K [0.03,0.79],
0.08 K [0.02,0.4], 0.08 [0.02,0.39], and 0.08 K [0.02,0.41],
respectively. Applying a trend or climatology to the piCon-
trol prior to the anomaly calculation reduces scatter between
variables, thus increasing the absolute correlation compared
to the Baseline pathway.

Based on our anomaly method analysis we recommend
that future climate sensitivity studies apply either a rolling
average or linear trend to the piControl. We favour these two
methods due to their implicit treatment of model drift (in
comparison to the long-term average method), and due to
their larger absolute correlation and avoided artificially in-
flated variance (in comparison to the raw piControl method)
which provides improved alignment with the assumptions
that underpin the linear regression. We note here that choices
in drift correction method may have a larger impact on
anomalies calculated over historical simulations relative
to abrupt-4xCO2 experiments, which may warrant further
study. When choosing more specifically between the rolling
average and the linear trend method, we recommend the
21 year rolling average. This method has been used to com-
pare both CMIP5 and CMIP6 model ensembles (Caldwell
et al., 2016; Zelinka et al., 2020), providing consistency with
existing literature.

3.4 Linear regression method

In this study, we consider two linear regression fits: ordinary
and total least squares regression. To the best of our knowl-

edge, most researchers use the OLS fit of N against 1T to
calculate the slope (λ) and ECS when using the Gregory
method, e.g. (Andrews et al., 2012, 2015; Armour, 2017;
Bloch-Johnson et al., 2021; Caldwell et al., 2016; Chao and
Dessler, 2021; Dai et al., 2020; Dong et al., 2020; Rugenstein
and Armour, 2021; Zelinka et al., 2020; Zhou et al., 2021).
This is consistent with the original approach of Gregory et al.
(2004), who treated temperature as the “arbitrary” choice of
independent variable. However, across CMIP6 models, this
choice is not arbitrary given the median slope (λ) across
models is affected by the choice of independent variable;
0.88 Wm−2 K−1 when using1T and 0.74 Wm−2 K−1 when
usingN (Fig. 4a). For individual models, the dependent vari-
able of choice may result in even more substantial variation
(Fig. 4b), notably impacting the derived climate sensitivity.

For OLS to provide a reasonable fit, the data must meet
two key conditions: there should be a clear dependent vari-
able, and the independent variable must be measured without
error (Isobe et al., 1990). In contrast, TLS accounts for errors
in both variables, treats them symmetrically, and is more ap-
propriate when seeking to determine a relationship between
variables rather than establishing a causal link. Here, errors
are not measurement errors, but instead are the random vari-
ations on top of the signal we are trying to fit. So, while it
is not strictly an error, natural variability plays basically the
same role as an error in this study.

Gregory et al. (2004) justify using OLS over alternate re-
gression methods on the basis of the minimal “scatter about
a straight line resulting from internally generated variabil-
ity”. They find that the minimal scatter in the data leads to
a negligible difference in slope regardless of the choice of
dependent variable. However, this rationale was based on
a single abrupt-4xCO2 experiment from the HadSM3 slab
ocean model. In comparison, we observe substantial scatter
across a range of CMIP6 models (Fig. 2), indicating that the
original assumption of minimal scatter does not hold for the
more complex fully coupled ESMs developed since 2004.
This suggests that the original justification of OLS is worth
reconsidering.

Previous research has justified using temperature as the in-
dependent variable. Murphy et al. (2009) found that, on short
timescales, temperature variations drive changes in outgo-
ing radiation. Similarly, Forster and Gregory (2006) observed
that temperature generally leads radiative flux, and Gregory
et al. (2020) followed the physical intuition that temperature
determines the magnitude of radiative flux. However, these
justifications are primarily grounded in observations. For ide-
alised model simulations, the leading relationship between
radiative flux and temperature is not always evident from the
timeseries alone. This is particularly true for the strongly per-
turbed abrupt-4xCO2 experiments, where the climate system
is responding to an imposed radiative forcing that is far more
extreme than anything observable in the real world, making
it difficult to identify a relationship with N lagging 1T .
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Figure 4. (a) The slope (λ) of each CMIP6 model calculated using ordinary least squares (OLS) regression with 1T as the independent
variable (x axis) and N as the independent variable (y axis). Blue line shows the linear relationship required for the choice of independent
variable to make no difference. (b) y axis showing the difference in slope for each CMIP6 model between the OLS regression based on 1T
or N as the independent variable. x axis is the same as (a). Dashed line at y = 0. (c) The slope of the linear regression fit for each model
calculated using total least squares (TLS) on the y axis and OLS on the x axis. Note that (a) and (b) follow the same form as Appendix C of
Gregory et al. (2020), but use abrupt-4xCO2 experiment here instead of the historical simulation. Each axis has units of Wm−2 K−1.

Given the absence of a clear causal direction from which
to define an independent variable, we turn to the second key
assumption of OLS: the identification of error. If one vari-
able exhibits errors that are uncorrelated with the other vari-
able, we typically assign the former as the dependent vari-
able, assuming the independent variable is perfectly known
(see Appendix B in Gregory et al., 2020). However, if both
variables contain uncorrelated errors, TLS provides a more
appropriate regression approach, as it accounts for errors in
both variables rather than treating one as exact.

Unlike in observational timeseries, where errors are often
well-characterised – such as instrumental uncertainty or ran-
dom measurement errors – errors in climate models primarily
arise from unforced variability (Gregory et al., 2020). This
variability functions similarly to noise in a statistical sense,
obscuring the signal we aim to extract. While it does not in-
troduce randomness in the same way as observational errors,
it complicates regression analysis by adding fluctuations that
are unrelated to the primary forcing-response relationship of
interest.

We can avoid inflating the variability in the 1T and
N timeseries through the anomaly calculation method. The
methods which apply a rolling mean or linear fit to the piCon-
trol experiment are suitable, for example. Otherwise, sub-
tracting raw piControl runs would inflate the variability and
decrease the absolute correlation between the two variables.
However, to our knowledge no method exists which removes
all natural variation from the model while leaving the pure
forced signal. Gregory et al. (2020) used the historical en-

semble mean (simulations of the recent past from approxi-
mately 1850 to 2014, Eyring et al., 2016) of multiple mem-
bers of MPI-ESM1.1 to argue that temperature exhibits min-
imal noise, supporting its use as the independent variable.
However, they also acknowledge that this assumption may
not hold for other ESMs. Given we cannot confidently justify
treating either N or 1T as the perfect independent variable,
OLS may not be the most robust regression method in this
context.

While we find that statistical arguments favour TLS, a
number of arguments exist for retaining OLS as the preferred
regression method. Firstly, retaining OLS is consistent with
the last two decades of ECS research, allowing for compar-
isons between and within CMIP generations (although re-
calculating using new methods is an option given the long-
term archive and access to data provided by the Earth Sys-
tem Grid Federation). Secondly, physical reasoning regard-
ing ECS bias supports OLS. The climate sensitivity esti-
mated as the 1T -intercept from the GM is biased relative to
the true ECS values obtained from fully coupled simulations
run for multiple millennia of simulation years (Rugenstein
et al., 2020). We find that TLS systematically yields lower
ECS values compared to OLS (Fig. 4c). Comparing an OLS
and TLS fit, the median ECS reduces from 3.9 to 3.7 K, with
the percentage difference for individual models ranging from
1.4 % (0.08 K) for HadGEM3-GC31-LL to 24 % (0.65 K) for
NorESM2-LM. The reduction between linear fits is consis-
tent with findings of Forster and Gregory (2006), who delib-
erately chose the regression method which gave the largest
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sensitivity estimate. The low bias of TLS likely arises given
TLS weights the earlier years of the regression more heav-
ily compared to OLS. While TLS may introduce a low bias
in ECS estimates, it is worth noting that this method could
potentially reduce the low bias in effective radiative forcing
(ERF) observed in studies that calculate ERF using OLS over
the full 150 year simulation period (Forster et al., 2016; He
et al., 2025; Lutsko et al., 2022; Smith et al., 2020).

Clearly, the choice of regression matters. While we anal-
yse and compare OLS and TLS fits, exploring additional re-
gression methods, such as the York method, or Deming re-
gression, may provide further insights (Him and Pendergrass,
2024; Lewis and Curry, 2018; Wu and Yu, 2018). We recom-
mend that future ECS studies clearly report the regression
method used and we encourage future research into more
robust regression methods. Despite this, in the absence of
clearer evidence, we believe that OLS should remain the ba-
sis of comparison to remain consistent with the majority of
the literature.

3.5 Uncertainty range for individual ECS estimates

Calculating uncertainty over ECS estimates is an impor-
tant step that is lacking from most of the climate sensitivity
studies we cite in this paper. In the original study, Gregory
et al. (2004) calculate uncertainty as the root mean square
deviation from the OLS regression fit. More recent studies
that calculate an uncertainty range typically use a standard
bootstrap approach, randomly sampling data points from the
time series (with replacement) to generate 10 000 subsets for
performing the Gregory regression (Andrews et al., 2012;
Bloch-Johnson et al., 2021; Rugenstein et al., 2020). This is
a common approach for constructing an uncertainty range;
however, it assumes annual independence of data, which
does not hold for some models (identified in the following
discussion).

To assess the level of inter-annual dependence across mod-
els, we calculate the autocorrelation function of the1T time-
series following the removal of a quadratic fit for the four
different anomaly method pathways (Fig. S2 in the Supple-
ment). The autocorrelation function plots the correlation be-
tween a time series and its lagged versions, with particular
focus on the correlation between adjacent timepoints. This
analysis reveals two common temporal relationships exhib-
ited by the models: an exponential decaying decorrelation,
where the relationship between years decreases as more time
passes, and an oscillating relationship, indicating that a peri-
odic cycle is influencing the climate system.

While most models exhibit the exponential decay-
ing decorrelation, the models which show an oscillat-
ing behaviour include CMCC-CM2-SR5, CMCC-ESM2,
EC-Earth3-AerChem, EC-Earth3-Veg, EC-Earth3-Veg-LR,
GISS-E2-1-G, GISS-E2-1-H, MIROC6, NorESM2-MM,
UKESM1-0-LL which have periods of between 3-6 years.
For some of these models the process displayed depends

on the anomaly calculation method, for example CMCC-
CM2-SR5 shows an oscillating process for anomaly methods
(B), (C) and (D), whereas when using the raw piControl for
anomalies it shows an exponentially decaying process.

The oscillating behaviour within these models is an un-
likely feature of independent samples, suggesting the pres-
ence of an inter-annual or -decadal mode of variability.
For example, a four-year period could be indicative of the
El Niño Southern Oscillation (ENSO), however in the real
world ENSO has an irregular period of between 2 to 7 years
(Tang et al., 2018). Thus, a model with such a consistent four
year ENSO – or other mode of variability – signal would be
an unrealistic representation of the real world and should be
considered when using the model for climate sensitivity anal-
ysis and calculating the uncertainty range. We note that this
is not necessarily a feature of the anomaly calculation, how-
ever, and instead is an underlying feature of the model given
the residuals of the raw abrupt-4xCO2 time series also ex-
hibit similar periodic behaviour for the same models (Fig. S3
in the Supplement).

It is important to consider how interannual dependence af-
fects the confidence of ECS estimates. Gregory et al. (2004)
acknowledge that interannual variability can have an impact
on calculating the uncertainty range, but argue that ignoring
the time dependence of the time series primarily results in a
narrower uncertainty range rather than introducing bias. Jain
et al. (2021) also highlight that 1T and N timeseries ex-
hibit temporal dependence, leading to an underestimation of
errors. They address this by either adjusting the number of
model years using an effective sample size based on time-lag
correlations or by applying a standard bootstrap resampling
approach, as done by Andrews et al. (2012). However, these
approaches may result in different uncertainty ranges, given
the standard bootstrap approach assumes independent data
points, which is not true for all models.

We find that the interannual time dependence of the data
varies by model and anomaly calculation method. To account
for this, we compare two bootstrap approaches: a standard
bootstrap, replicating previous studies, and a block bootstrap
with a block size of four years, which accounts for interan-
nual correlations. We calculate a 95 % confidence interval us-
ing the two bootstrap approaches around the ECS estimate
for individual models (Fig. 5a; see Table S4 in the Supple-
ment for the confidence intervals calculated for each model
using both bootstrap approaches). For simplicity, we use the
Baseline pathway and the OLS fit (although we also show
the same figure in supplementary, calculated using a TLS fit,
Fig. S4 in the Supplement).

For most models the median ECS calculated using both
the bootstrap approaches are larger than the original ECS
estimate – for 40 models using the standard bootstrap, and
37 models using the block bootstrap. Additionally, for 27
models the median ECS calculated using the block boot-
strap is larger than the median ECS calculated from the
standard bootstrap. Most notably, however, we find that
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Figure 5. ECS uncertainty using an ordinary least squares fit. (a) ECS estimates for each model using the Baseline Gregory Method, using
years 1–150. Bars represent 95 % confidence intervals, with medians calculated using a simple bootstrap (solid circle) and a moving block
bootstrap with a block size of 4 (cross). (b) The same as (a), but the ECS and bootstrap uncertainties are calculated using years 21–150 of
the N and 1T anomaly timeseries. See Methods for details on confidence interval calculations.

the uncertainty range for some models sits well above
the original ECS estimate (e.g. ACCESS-CM2, ACCESS-
ESM1-5, CESM2-FV2, and CESM2-WACCM, NorESM2-
LM, NorESM2-MM, TaiESM1).

Clearly, the uncertainty ranges for individual models have
a high bias, regardless of the bootstrap approach. This bias
arises from a sensitivity to the early years of the experi-
ment. The Gregory plots (Fig. 2) for these models show
data points with low temperature anomalies and high radia-
tive flux anomalies in the initial years. When bootstrapping
across all 150 years, these early data points are often un-
derrepresented in resampled datasets, leading to a systematic
overestimation of the ECS compared to the original calcula-
tion. However, this reasoning could support the previous re-
search which excludes early years from the data to calculate
the ECS (Andrews et al., 2015; Dunne et al., 2020). Rather
than overestimating the ECS, the uncertainty ranges may bet-
ter represent the “true” value for an equilibrium climate.

To eliminate the differences between the bootstrap uncer-
tainty and the original ECS estimate, we repeat the analysis
while restricting both the original ECS calculation and boot-
strap uncertainty estimation to years 21–150 (thus replicating
the method of Bloch-Johnson et al., 2021). This removes the
early-year influence, yielding more consistent confidence in-
tervals (Fig. 5b). We note that excluding the first 20 years
has implications for radiative forcing estimates, as it raises
the question of how long a model must run before the cli-
mate response stabilises. While this warrants further investi-
gation, we leave this for future research, as our study focuses
specifically on ECS estimation.

Despite the benefit of using years 21–150 on the confi-
dence interval calculations, additional factors must be con-
sidered. Excluding early years from the regression is a com-
mon alteration to the GM (Andrews et al., 2015; Armour,
2017; Bloch-Johnson et al., 2021; Dai et al., 2020; Dunne
et al., 2020; Lewis and Curry, 2018). However, the exclusion
of the first 20 years results in a reduced absolute correlation
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between N and 1T . For years 1–150 and 21–150, respec-
tively, the median absolute correlation is 0.85 [0.49,0.94]
and 0.63 [0.3,0.86]. The reduction in absolute correlation is
most important when considering the choice of linear regres-
sion fit, given the difference between the inter-model ECS
distribution using OLS and TLS is larger when using years
21–150 compared to years 1–150.

For future research, it is important for studies to include
an ECS uncertainty range around the estimate. Ideally, mod-
elling groups would provide multiple simulations of the
abrupt-4xCO2 timeseries to provide a more robust basis for
the uncertainty assessment, given this would allow for resam-
pling from independent experiments. However, given this is
unlikely across all modelling groups, we recommend plot-
ting the autocorrelations of the 1T and N anomaly time se-
ries to assess interannual dependence in the data to inform
the bootstrap resampling method. Additionally, alternative
uncertainty calculation methods could be investigated which
downweight the early years of the experiments, although this
may be less necessary if CMIP7 abrupt-4xCO2 experiments
are run to 300 simulation years instead of the previously re-
quired 150 years (Dunne et al., 2025).

4 Discussion and conclusions

For each of the 44 CMIP6 models in this study, we com-
pare 32 ECS estimates derived from alternative choices in
data preparation steps and linear regression methods. We find
no statistically significant difference between the inter-model
ECS ranges across the data preparation paths, or when com-
paring ordinary and total least squares regression fits. Lit-
erature which compares the ECS inter-model spread across
CMIP6 models, e.g. (Chao and Dessler, 2021; Dong et al.,
2020; Eiselt and Graversen, 2023; Flynn and Mauritsen,
2020; Meehl et al., 2020; Rugenstein et al., 2020; Zelinka et
al., 2020), are unlikely to see a meaningful difference in re-
sults by recalculating based on an alternate data preparation
pathway.

Differences in ECS estimates arise, however, when com-
paring a subset of CMIP6 models. At each step, the largest
individual model ECS differences are 11 % for global mean
weighting, 6 % for N -variable, 3 % for anomaly method, and
24 % for linear regression method. Additionally, whilst in-
dividual anomaly methods do not alter the ECS much for
just the OLS fit, the range is narrower for anomaly methods
which use a rolling climatology or linear trend applied to the
piControl, resolving some of the differences between OLS
and TLS, likely due to the increase in absolute correlation
compared to the raw piControl.

OLS has traditionally been the default linear regression
fit for the Gregory Method. However, we recommend fur-
ther exploration of alternative approaches – such as TLS – to
better balance physical understanding with statistical robust-
ness in ECS estimation. We find that, for most models, the

choice of dependent variable influences the slope of the re-
gression, contradicting previous assumptions that the choice
is arbitrary (Andrews et al., 2015; Gregory et al., 2004). Ad-
ditionally, given errors – or interannual variations on top of
the forced signal – are present in both variables, we do not
confidently identify one variable over the other as being sim-
ulated without error. For consistency with previous research
and given the physical reasoning of GM-calculated ECS low
bias, OLS should remain the standard, but with room for fur-
ther investigation.

Two additional aspects of ECS estimation which we do not
investigate in this study are: the choice of CO2 perturbation
experiment, and using different time periods for the regres-
sion. Despite the ECS metric being defined as the response
to CO2 doubling, research typically uses CO2 quadrupling
to maximise the signal-to-noise ratio (Bryan et al., 1988;
Dai et al., 2020; Washington and Meehl, 1983). However,
a large body of literature identifies a non-linear scaling for
each consecutive CO2 doubling (Bloch-Johnson et al., 2021;
Chalmers et al., 2022; Hansen et al., 2005; Li et al., 2013;
Meraner et al., 2013; Mitevski et al., 2021, 2022, 2023; Rus-
sell et al., 2013). This could overestimate the ECS relative to
an abrupt-2xCO2 experiment. However, research also shows
that the Gregory method can underestimate the true ECS by
17 % (Rugenstein et al., 2020), 14 % (Dunne et al., 2020), or
10 % (Li et al., 2013). Sherwood et al. (2020) propose that
this underestimation, combined with the overestimation due
to the nonlinear climate response to consecutive CO2 dou-
blings, could potentially “cancel out”, resulting in an accu-
rate sensitivity estimate using the Gregory method. However,
this hypothesis has not been systematically assessed in the
literature and warrants further investigation.

The landscape of ECS estimation is set to change for
CMIP7, following the recommendation for modelling groups
to extend the abrupt-4xCO2 experiment requirements from
150 to 300 simulation years (Dunne et al., 2025). This ex-
tended simulation is expected to narrow the gap between
GM-estimated ECS and the results from ESMs run to near-
equilibrium (Dunne et al., 2020; Rugenstein et al., 2020).
A longer simulation will likely increase the ECS when
calculated over the full 1–300 years, potentially affecting
comparability to previous CMIP generations. Given these
changes, we recommend that future studies applying the GM
to CMIP7 data calculate the ECS based on both 1–150 and
1–300 years. Computing these two values will allow com-
parison to CMIP5 and CMIP6, provide further evidence of
inconstant feedbacks (Rugenstein et al., 2020), and allow the
research community to evaluate more thoroughly the merits
and limitations of the linear relationship currently used for
ESC estimation.

Based on our findings, we provide recommendations for
standardising the GM (Table 2) and a checklist of what to
include in future climate sensitivity research. Our standard-
isation framework details the steps involved, the alternative
steps we investigate, our proposed recommendations, and as-
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Table 2. The steps, choices, recommendations, and caveats we investigate in this study. These recommendations should form the basis of a
standardised Gregory method for future research.

STEP CHOICES RECOMMENDATION NOTES

Model member
(variant)

Depends on the modelling
group

r1i1p1f1 Use the first by default, although ideally calculate the
ECS for all available ensemble members to quantify
the sensitivity to different realisations, initialisations,
forcing, and model physics.

Global mean
weighting

Cell area

Cosine of latitude

Cell area (areacella) This step is less of a “choice” and should instead be
informed by each model’s grid cell configuration.
Using a model’s native cell area variable is the simplest
method of avoiding potential errors due to incorrectly
approximating with cos(lat).

Net radiative
flux variable

rndt (= rsdt− rsut− rlut)

rtmt

rndt There should be little difference between these two
variables. Models with a difference between rndt and
rtmt could be investigated further or removed from the
ensemble.

Anomaly
calculation

Subtracting from the
abrupt-4xCO2:
(a) Raw piControl
(b) 21 year rolling average
(c) Linear trend
(d) Long-term average

21 year rolling average We recommend this choice, although the anomaly
method is not as clear cut as other steps. Other
anomaly methods are likely worth investigating if
sensitivity is of interest.

Linear
regression
method

Ordinary least squares

Total least squares

OLS, with N as the
dependent variable, for
consistency

This recommendation we make the least strongly,
given the arguments for OLS may not hold against
statistical scrutiny.
We therefore recommend also calculating the TLS for
comparison.

sociated caveats. We acknowledge that not all studies apply-
ing the Gregory method have the ECS as their primary focus,
and researchers may make alternative choices for their analy-
ses that we have not explored. We therefore include a check-
list to ensure that, at minimum, future studies clearly report
their methods, choices, and order of operations to support
transparency and reproducibility (with, in our opinion, the
simplest option being to simply publish code alongside stud-
ies, as this is the least ambiguous description of what was
actually done). With the upcoming release of CMIP7 mod-
els, data preparation choices may play a more critical role
than for CMIP6, underscoring the need for a standardised
Gregory method calculation.

Checklist:

� Provide public access to all code used in the analysis

� Clearly describe all data preparation steps in the methods
section, including:

– All variables used

– Any differences from the recommended standardi-
sation

– Order of operations

� Verify each model’s grid configuration (to inform global
mean weighting method)

� Calculate the ECS based on both an OLS and TLS regres-
sion

� For CMIP7, calculate the ECS based on both years 1–150
and 1–300

� Calculate uncertainty around individual ECS estimates

Code and data availability. Code required to conduct the analysis
is available at https://doi.org/10.5281/zenodo.15485520 (Zehrung
and Nicholls, 2025). All data used in this study are publicly avail-
able. The raw CMIP6 ESM data (Eyring et al., 2016) can be down-
loaded from the Earth System Grid Federation (https://aims2.llnl.
gov/search/cmip6, ESGF LLNL Metagrid, 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-9433-2025-supplement.
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