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Abstract. Numerous studies have highlighted the critical
role of soil organic matter (SOM) physical properties in sim-
ulating hydrological and energy exchanges within Earth sys-
tem models. However, current approaches in their land sur-
face model (LSM) components typically rely on empirically
derived parameterizations that lack physical consistency and
often fail to distinguish between soil organic carbon (SOC)
and total SOM. This conceptual simplification leads to inac-
curate estimates of the volumetric organic fraction of soils
and, consequently, of their physical properties as highlighted
in this study. A process-based framework grounded in soil
mixture theory is thus proposed to provide a physically con-
sistent representation of the effects of SOM on soil behav-
ior. The volumetric fraction of SOM is derived using mass-
volume relationships, combined with an SOC-to-SOM con-
version based on recent pedotransfer functions. For LSMs
using the Brooks and Corey model to simulate soil water
retention and hydraulic conductivity, new parameterizations
are proposed for SOM hydrodynamic properties as func-
tions of bulk density and depth, informed by recent observa-
tional datasets. Validation against experimental binary mix-
tures and large in situ datasets shows significant improve-
ments over conventional methods. Designed for compatibil-
ity with global soil databases, the framework enables more
physically consistent SOM representation in LSMs without
requiring additional inputs or calibration.

1 Introduction

Soil is a fundamental component of the land surface. It con-
sists of solid particles surrounding pore spaces that con-
tain water, ice, and usually air. It forms gradually over time
through the physical, chemical, and biological weathering of
parent rock material located beneath the surface. This pro-
cess results from the combined influence of climate (no-
tably temperature fluctuations, precipitation, and freeze-thaw
cycles), living organisms (such as roots, microorganisms,
and earthworms), chemical weathering, and the passage of
time. Weathering breaks down the rock, releases minerals,
and allows the accumulation of organic matter derived from
decomposing plant material, giving rise to a complex and
evolving medium (Buol et al., 2011). The soil then consists
of a fine fraction, composed of particles smaller than 2 mm in
diameter, and a coarse fraction, made up of rock fragments or
gravel larger than 2 mm (Blair and McPherson, 1999). This
heterogeneous system plays an important role in the func-
tioning of the Earth’s climate system, particularly by regulat-
ing the exchange of water, energy, and gases with the atmo-
sphere. Soil acts as a temporary reservoir for rainfall: it can
retain water, redistribute it to plants via capillarity, or allow
it to infiltrate into groundwater systems. Once its retention
capacity is exceeded, excess water may flow over the surface
into rivers. This hydrological dynamic, in interaction with the
soil’s thermal and structural properties, directly influences
plant growth, local climate, and energy fluxes between the
biosphere and the atmosphere.

The majority of soils contain in its fine fraction both
mineral and organic components in the different horizons
that constitute it, although one of these components typi-
cally predominates. The organic component of soil, known
as soil organic matter (SOM), is a complex mixture of
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microbial biomass, partially decomposed plant and animal
residues, and stable organic compounds resulting from ad-
vanced stages of decomposition. Soil horizons with a SOM
content of less than about 20 % to 35 % by weight exhibit
characteristics that are more akin to those of mineral soil
(USDA, 1999). Despite this separation, the volume of SOM
often exceeds that of the mineral material in the fine-earth
fraction, primarily due to its lower bulk density. A key con-
stituent of SOM is soil organic carbon (SOC), which refers
specifically to the carbon elements present in organic com-
pounds within the soil. SOM typically contains more or less
50 % by mass of SOC, although this proportion varies de-
pending on the degree of decomposition and organic mat-
ter composition. Other elements are oxygen, hydrogen and
small quantities of sulfur, nitrogen, phosphorus, potassium,
calcium and magnesium. As such, SOC represents only the
carbonaceous fraction of total SOM, and although often used
as a proxy in soil databases, it does not fully capture the
physical and chemical contributions of organic matter. For
instance, according to the United States Department of Agri-
culture (USDA), a soil material is classified as mineral when
it exhibits a SOC content less than 12 % by weight for soils
devoid of clay and less than 18 % by weight for soils con-
taining 60 % by weight or more clay. If SOC content exceeds
this threshold, the material is classified as organic and is des-
ignated as peat. Importantly, mineral soils often have a su-
perficial organic horizon formed by the gradual accumula-
tion of partially decomposed organic matter derived from the
decomposition of fallen leaves and other plant residues.

SOM alters soil structure by reducing the bulk density of
the fine fraction and increasing the porosity compared to pure
mineral materials. This facilitates air and water movement,
increases the soil’s water-holding capacity and facilitates
plant growth (Boggie, 1970; Walczak et al., 2002; Deeb et al.,
2016; Willaredt et al., 2023). When SOM is only slightly de-
composed, typically near the surface, it tends to increase the
hydraulic conductivity of the soil compared to purely mineral
soils. Conversely, at greater depths, where SOM is more de-
composed, it tends to reduce hydraulic conductivity, thereby
contributing to greater moisture retention in the soil (Boelter,
1968, 1969; Letts et al., 2000; Liu and Lennartz, 2019; Liu
et al., 2020, 2022; Morris et al., 2022). SOM has also a low
thermal conductivity and a relatively high specific heat ca-
pacity compared to mineral soil (Farouki, 1981; Zhu et al.,
2019; Arkhangelskaya and Gvozdkova, 2019; Arkhangel-
skaya and Telyatnikova, 2023). It therefore moderates the
transfer of energy into the soil and acts as an insulator, pre-
venting the soil from becoming too warm in summer and too
cold in winter (Lawrence and Slater, 2008; Decharme et al.,
2016; Gaillard et al., 2025). In addition to this direct effect,
SOM also mainly influences soil thermal behavior indirectly
through its impact on soil structure and porosity.

This brief overview underlines why a better modeling of
the physical processes governing the influence of SOM on
soil properties is essential for improving the representation

of soils in Land Surface Models (LSMs), and thus in Earth
system models. More than 50 years ago, LSMs were intro-
duced into atmospheric general circulation models and then
climate models to provide realistic lower boundary condi-
tions for temperature and moisture. From the simple bucket
models of Manabe (1969) or Noilhan and Planton (1989),
their complexity has progressively increased to include so-
phisticated multilayer representations of soil and snow, with
multiple parameterizations describing the physical processes
associated with vegetation, soil, and snow, as well as the bio-
geochemical processes linked to the carbon cycle (Bonan and
Doney, 2018; Blyth et al., 2021). Originally, soils were repre-
sented solely based on mineral materials using pedotransfer
functions (PTFs) to derive physical properties from soil tex-
ture (e.g. Van Looy et al., 2017). Since the late 2010s, build-
ing on pioneering works of Letts et al. (2000) and especially
Lawrence and Slater (2008), land surface modellers have de-
veloped empirical approaches to account for the influence of
organic matter on soil physical properties (Dankers et al.,
2011; Chen et al., 2012; Chadburn et al., 2015; Decharme
et al., 2016; Chen et al., 2016; Guimberteau et al., 2018; Sun
et al., 2021). While PTFs including organic matter have long
existed in soil science for hydrodynamic properties (Rawls
et al., 2004; Weynants et al., 2009; Wösten et al., 1999;
Tóth et al., 2015; Van Looy et al., 2017), their use in LSMs
has generally remained limited. For thermal properties, such
PTFs are nearly absent, with models usually relying on fixed
values or simple mixing rules.

The primary challenges faced by LSMs in accounting for
the physical effects of SOM lies in the need to determine its
volumetric fraction. It is indeed the volumetric proportions
of the various soil components (mineral particles, organic
matter, water, and air) that govern its key physical properties
(Farouki, 1981). For instance, soil porosity is defined as the
ratio of pore volume to total soil volume, while volumetric
heat capacity, i.e. the ability of soil to store heat, is calcu-
lated based on the heat required to increase the temperature
by 1 K of 1 m3 of soil. Accurate estimation of the volumetric
contribution of each component is also critical for deriving
soil thermal conductivity (Farouki, 1981; Peters-Lidard et al.,
1998; Balland and Arp, 2005; He et al., 2020). However, cur-
rent LSMs typically rely on global or regional soil databases,
which often do not provide direct information on volumet-
ric composition. Instead, databases such as the Harmonized
World Soil Database (HWSD; FAO, 2012; FAO and IIASA,
2023) and SoilGrids (Poggio et al., 2021) commonly report
soil textures (sand, clay, loam) content by weight, soil dry
bulk density and SOC content by weight, but not the actual
volumetric content of organic matter, which must be inferred
indirectly. To estimate this volumetric fraction of SOM, all
the previously mentioned parameterizations compute it as the
ratio of the SOC density in each soil layers (possibly inferred
from the product of SOC content by weight and the soil dry
bulk density) to a fixed maximum soil carbon density, typ-
ically set to 130 kg m−3 (Lawrence and Slater, 2008), with
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the questionable assumption that this value is equivalent to a
standard bulk density of peat based on Farouki (1981).

This assumption is problematic for two main reasons.
First, it overlooks the substantial variability in peat bulk den-
sity, which can range from as low as 10 to 400 kg m−3, and
even up to 800 kg m−3, depending on peat type, total SOM
content, degree of decomposition, and compaction (Boelter,
1968; Letts et al., 2000; Schwärzel et al., 2002; Liu and
Lennartz, 2019). Second, Farouki (1981) does not explic-
itly relate a standard bulk density of peat to SOC density,
but instead provides an approximate average particle den-
sity of SOM of 1300 kg m−3. When combined with a plau-
sible peat porosity of 90 %, this yields a bulk density of
around 130 kg m−3 for pure SOM material. However, since
this value refers to total organic matter and not specifically
to SOC, using it as a direct threshold for SOC is incon-
sistent and potentially misleading. For instance, Decharme
et al. (2016) fell into the same conceptual trap. They com-
bined the approximate average particle density of SOM of
Farouki (1981) with an idealized peat porosity profile based
on Boelter (1968) and Letts et al. (2000) to derive this thresh-
old value. However, this method is theoretically flawed, as it
conflates SOM-based bulk density with a threshold intended
for SOC, leading to a potentially incorrect representation of
the SOM volumetric fraction. To summarize, existing param-
eterizations in LSMs that account for the influence of organic
matter on soil physical properties, and are based on the pio-
neering work of Lawrence and Slater (2008), exhibit concep-
tual inconsistencies that warrant reconsideration in light of
recent understanding.

This last inconsistency highlights the second challenge
faced by LSMs in accounting for the physical effects of
SOM, which arises from the often-overlooked distinction be-
tween SOC and total SOM. While SOC is often used as a
proxy in LSMs due to data availability, SOM includes not
only carbon-based compounds but also a variety of other or-
ganic constituents. Therefore, misinterpretation of SOC as a
direct measure of SOM can lead to significant errors. This
discrepancy is not only an additional source of uncertainty,
but also a potential source of systematic bias in the parame-
terization of soil physical processes. Recent studies estimate
the carbon fraction in SOM, historically based on van Be-
mmelen’s factor of 58 %, to be closer to a median value of
50 %, but with significant variation (13 % to 74 %) depend-
ing on soil type and degree of organic matter decomposition
(Pribyl, 2010; Ruehlmann, 2020). Improving the accuracy of
this estimate in LSMs is therefore essential for more reli-
able representations of the physical effects of SOM. A fi-
nal limitation lies in the uncertainty surrounding the hydro-
dynamic parameters used in LSMs to represent organic-rich
soils. Many models rely on the Brooks and Corey (1964) wa-
ter retention and hydraulic conductivity relationships to solve
the Richards equation for soil water flow (e.g. Vereecken
et al., 2019). These closed-form equations, which link soil
moisture, water potential and hydraulic conductivity, how-

ever often lack well-constrained parameter values for organic
soils. In contrast, LSMs that use the van Genuchten (1980)
closed-form equations could benefit from more recent pe-
dotransfer functions that explicitly incorporate SOM content
and soil dry bulk density (e.g. Vereecken et al., 2010) or that
are directly calibrated for organic soils and peatlands (Liu
and Lennartz, 2019). Theses pedotransfer functions are how-
ever rarely used by regional or global LSMs.

The aim of the present study is therefore to propose a ro-
bust, process-based framework for accurately representing
the physical properties of SOM in LSMs. As is common
practice in current LSMs, we focus exclusively on the fine
earth fraction of the soil, neglecting the coarse fragment con-
tent (stones, gravels, etc.). First, we apply the theory of soil
mixture (Stewart et al., 1970; Adams, 1973; Raats, 1987;
Rühlmann et al., 2006; Reynolds et al., 2020) to estimate the
“true” volumetric fraction of SOM. This soil mixture the-
ory is a mathematical framework that seeks to explain the
composition and structure of soil. Second, in order to de-
rive SOM content from SOC measurements, we use the re-
cent pedotransfer function developed by Ruehlmann (2020)
to provide a refined estimate of the van Bemmelen factor.
Finally, for LSMs that use the Brooks and Corey (1964) re-
lationships, we propose accurate parameter values for SOM
hydraulic properties, informed by recent observational stud-
ies (Liu and Lennartz, 2019; Lennartz and Liu, 2019; Liu
et al., 2022; Morris et al., 2022). The new modeling strategy
is presented in Sect. 2, along with a brief review of existing
parameterizations. Section 3 details the data used for valida-
tion. The main results are presented in Sect. 4 and discussed
in Sect. 5. While the study primarily focuses on LSMs that
use the Brooks and Corey (1964) model, Sect. 5 also dis-
cusses the viability of the proposed approach for LSMs that
rely on the closed-form equations of van Genuchten (1980).
Finally, the main conclusions of the study are provided in
Sect. 6.

2 Modeling the physical influence of soil organic
matter

2.1 Previous parameterization in LSMs

2.1.1 Soil organic volumetric fraction from SOC
content

As previously mentioned, most parameterizations of the
physical effects of SOM in LSMs rely on the formulation
proposed by Lawrence and Slater (2008) for estimating the
soil organic matter volumetric fraction, fvom (m3 m−3), de-
fined as:

fvom =
ρsc

ρsc,max
with ρsc = fmoc ρb (1)

Here, ρsc (kg m−3) is the soil carbon density, which can be
estimated from fmoc (kg kg−1), the SOC mass fraction (i.e.
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the ratio of SOC mass to the total soil mass commonly ex-
pressed as a percentage or in g cg−1) and ρb (kg m−3), the
soil dry bulk density. The parameter ρsc,max = 130 kg m−3

represents the maximum soil carbon density, assumed equiv-
alent to a standard bulk density of peat. A similar formulation
is provided by Decharme et al. (2016), but propose an expres-
sion for ρsc,max based on the relationship between SOM par-
ticle density and peat porosity that varies with depth. Specif-
ically, they write:

ρsc,max(z)= [1.0−wsatom(z)] ρsom (2)

where ρsom = 1300 kg m−3 is an estimates of the SOM par-
ticle density (the mass of SOM per unit volume of organic
matter within the soil, i.e., the density of the organic phase it-
self), andwsatom (m3 m−3) is the porosity of the organic mate-
rial, which varies between 0.93 and 0.845 m3 m−3 depending
on a depth idealised profile, z (m), typically assumed to ex-
tend over a 1 m soil depth. When wsatom reaches 0.9 m3 m−3,
which corresponds to a few centimeters below the soil sur-
face within this idealised profile, this expression effectively
becomes equivalent to the formulation used by Lawrence and
Slater (2008). Finally, Chen et al. (2012) proposed the fol-
lowing equation to estimate the volumetric fraction of SOM
from the SOC content by weight, the density of the mineral
component, and the maximum soil carbon density intended
to be typical of organic-rich peat:

fvom =
fmoc ρbms

ρsc,max (1− fmoc)+ fmoc ρbms

with ρbms = ρsms(1−wsatms) (3)

Here, ρbms (kg m−3) is the bulk density of the mineral compo-
nent, defined as the mass of mineral matter per unit total soil
volume. It is derived from the porosity of the mineral phase,
wsatms (m3 m−3), and the standard value for the particle den-
sity of mineral matter, ρsms = 2700 kg m−3, which represents
the mass per unit volume of mineral solids. The parameter
ρsc,max = 130 kg m−3 is adopted from Lawrence and Slater
(2008).

However, as previously discussed, these formulation are
conceptually problematic. If ρsc,max is interpreted as the mass
of organic carbon per unit soil volume (i.e., SOC density),
these equations are formally valid but represent the SOC vol-
umetric fraction and thus could systematically introduce bi-
ases in the actual volumetric fraction of organic matter, as it
neglects the SOC-to-SOM conversion. Conversely, if ρsc,max
truly refers to the bulk density of peat, a material largely
composed of SOM, then the denominator should physically
represent the density of total organic matter, not just its car-
bon content. In this case, these equation become inconsistent
with physical definitions, as it compares quantities of differ-
ent nature.

2.1.2 Soil mineral and organic properties, and applied
mixing rules

In most existing parameterizations, LSMs estimate the ther-
mal and hydraulic properties of soils by mixing the contri-
butions of mineral and organic components. For the mineral
material, thermal properties are generally estimated based on
the formulations of Johansen (1977) and Farouki (1981), as
adapted for LSMs by Peters-Lidard et al. (1998). The volu-
metric heat capacity of the mineral solid phase is typically
computed as the product of the specific heat capacity of
quartz (733 J kg−1 K−1) and the standard value for ρsms . The
dry and solid thermal conductivities are generally derived
from non-linear formulations that depend on the same parti-
cle density, the mineral porosity (or saturated water content),
the thermal conductivity of quartz, and the soil’s quartz con-
tent. Hydraulic properties of the mineral material associated
with the Brooks and Corey (1964) model, such as the poros-
ity, the air entry pressure head (or saturated matric potential),
the pore-size distribution index (or the shape of the soil water
retention curve), and the saturated hydraulic conductivity, are
usually derived from Clapp and Hornberger (1978) or Cosby
et al. (1984) PTFs.

The physical properties of organic materials are generally
empirically derived from meta-analyses and literature val-
ues, with thermal properties often taken from Farouki (1981),
and hydraulic properties from studies such as Boelter (1969)
and Letts et al. (2000). For instance, Table S1 in the Sup-
plement summaries the values used for organic soil physi-
cal properties by Lawrence and Slater (2008) and Decharme
et al. (2016). As previously discussed, these include pre-
scribed thermal and hydraulic properties from peat literature.
Lawrence and Slater (2008) apply uniform values represen-
tative of fibric peat, while Decharme et al. (2016) introduce
depth-dependent profiles to reflect the transition from fibric
to sapric material. Although these values are broadly consis-
tent with observed ranges reported in the literature, they re-
main empirical and do not account for the structural variabil-
ity or compositional differences of organic matter. This limi-
tation motivates the physically based approach developed in
this study.

These mineral and organic properties are then combined
in LSMs to estimate the thermal and hydraulic properties of
soils, denoted Xs in the following paragraph. Specifically,
these properties are represented as a weighted average be-
tween those of pure mineral material (Xms) and pure organic
matter (Xom). Lawrence and Slater (2008) adopt a simple
arithmetic mixing formulation for all parameters, given by:

Xs = fvom Xom+ (1− fvom) Xms (4)

This simple formalism is adopted by the majority of LSMs.
The parameterization proposed by Decharme et al. (2016)
adopts the same arithmetic mixing approach for most soil
parameters but applies a geometric mixing rule to compute
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both thermal and hydraulic conductivities:

Xs =X
fvom
om X

(1−fvom )
ms (5)

The rationale behind this geometric averaging is that it
is more consistent with standard formulations for estimat-
ing effective conductivities in heterogeneous porous media
(Farouki, 1981; Nielson and Rogers, 1982; Prudic, 1991;
Peters-Lidard et al., 1998; Stepanyants and Teodorovich,
2003). Other non-linear mixing rules can also be used,
both in existing models and in this study. For example, the
weighted harmonic mean is often applied to average thermal
conductivities in vertically heterogeneous soils:

Xs =

[
fvom

Xom
+
(1− fvom)

Xms

]−1

(6)

The geo-harmonic average, originally introduced by Nielson
and Rogers (1982) in the context of radon diffusion through
heterogeneous porous media, may also provide a suitable al-
ternative. This formulation was designed to better account
for the tortuous flow paths and variable phase continuity that
arise in granular mixtures. It combines features of both geo-
metric and harmonic means, making it particularly suited for
estimating effective transport properties, such as thermal or
gas diffusivities, in partially connected or stratified systems.
The geo-harmonic mean is defined as:

Xs =

[ √
Xom Xms

(1− fvom)
√
Xom+ fvom

√
Xms

]2

(7)

This approach captures the non-linear blending behavior of-
ten observed in porous materials with strong contrasts be-
tween constituents. It has proven useful in soil biophysics
applications where both phase connectivity and interfacial
resistance are key factors (Nielson and Rogers, 1982; Morel
et al., 2019).

However, none of these mixing approaches (linear or non-
linear) have been formally or empirically demonstrated to be
physically justified for soils composed of both mineral and
organic materials, at least not in the context of their applica-
tion in LSMs.

2.2 A new process-based framework

To address these limitations and the conceptual inconsisten-
cies identified in the previous section, a physically-based
framework grounded in soil mixture theory is introduced.
This framework aims to compute the “true” volumetric frac-
tion of SOM and derive consistent thermal and hydrody-
namic soil properties using only standard inputs available in
global soil databases.

2.2.1 Theoretical background

Before deriving the entire framework, it is useful to recall
the fundamental physical relationships linking volume, mass,

density, and porosity. A soil can be described by the mass
and volume of its solid matrix, along with the volume of
voids within it. The total or bulk dry soil volume, vb (m3),
is defined as the sum of the volume occupied by solid com-
ponents, vs (m3), and the pore volume, vp (m3), which cor-
responds to voids that could then be filled with air, water, or
ice:

vb = vs+ vp (8)

Since the mass of the voids is null, the total dry soil mass,ms
(kg), is equal to the mass of the solid matrix alone. From this,
we define the particle (or solid) density, ρs (kg m−3), and the
dry bulk density, ρb (kg m−3), of the soil as follows:

ρs =
ms

vs
(9a)

ρb =
ms

vb
(9b)

Equation (9a) shows that the particle density ρs character-
izes the density of the solid phase alone, considering only the
volume actually occupied by the solid material and exclud-
ing any pore space. In contrast, the bulk density ρb, given by
Eq. (9b), uses the same solid mass but relates it to the to-
tal bulk volume of the soil, which includes both solids and
voids. As a result, ρb is always lower than ρs, reflecting not
only the composition of the soil solids, but also the internal
void structure and the degree of compaction.

The internal void structure of the soil is commonly re-
ferred to as porosity, which is defined as the ratio of pore
volume to total soil volume, wsat = vp/vb (m3 m−3). By sub-
stituting Eq. (9) into Eq. (8), porosity can be expressed in
terms of either the solid volume fraction or the ratio of bulk
to particle densities, as follows:

wsat = 1−
vs

vb
(10a)

= 1−
ρb

ρs
(10b)

Equation (10b) also shows that the dry bulk density of the
soil can be determined from the total soil porosity and the
soil solid density, as follows:

ρb = (1−wsat) ρs (11)

These two expressions (Eqs. 10b and 11) highlight the funda-
mental interdependence between porosity, bulk density, and
solid density. The knowledge of any two allows the calcula-
tion of the third.

2.2.2 Soil mixture theory

However, soil is not a homogeneous medium, and its fine
solid fraction is composed of both mineral matter and SOM.
As comprehensively reviewed by Reynolds et al. (2020), the
mixture theory provides a consistent framework to describe
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the mass-volume-density-porosity relationships among bulk
soil, mineral components, and organic matter (Stewart et al.,
1970; Adams, 1973; Raats, 1987; Rühlmann et al., 2006).
In this conceptualization, soil is treated as a composite of
two domains, a mineral matter domain and an organic matter
domain, each with distinct mass and volume, as follow:

ms =mom+mms (12a)
vs = vsom + vsms (12b)
vb = vbom + vbms (12c)

wheremms andmom (kg) are the masses of mineral substance
and organic matter, respectively, vsms and vsom (m3) the par-
ticle (or specific solid) volumes of the mineral and organic
matter materials, respectively, and vbms and vbom (m3) the
bulk volumes occupied by the mineral and organic matter
components with their own porosities, respectively.

Next, each domain is characterised by distinct mass frac-
tions (i.e., the ratio of each component’s mass to the total
soil mass defined by Eq. 12a), particle densities, and appar-
ent bulk volumes, as follows:

fmom =
mom

ms
& fmms =

mms

ms
(13a)

ρsom =
mom

vsom

& ρsms =
mms

vsms

(13b)

ρbom =
mom

vbom

& ρbms =
mms

vbms

(13c)

where fmom and fmms (kg kg−1) are the soil organic and min-
eral mass fractions, respectively. It is then interesting to note
that fmms = (1− fmom) using the transposition of Eq. (12a)
for mms into Eq. (13a). ρsom and ρsms (kg m−3) are the par-
ticle densities of organic matter and mineral matter, respec-
tively, and ρbom and ρbms (kg m−3) the apparent bulk densities
of each component. Substituting Eqs. (13b) and (13c) into
Eqs. (12b) and (12c), and using Eq. (9), yields:

ρs =ms

(
mom

ρsom

+
mms

ρsms

)−1

(14a)

ρb =ms

(
mom

ρbom

+
mms

ρbms

)−1

(14b)

Inserting the definitions of the mass fractions from Eq. (13a)
into Eq. (14), and using fmms = (1− fmom), leads to expres-
sions for both soil bulk and particle densities as functions of
fmom and the densities of the individual soil components:

ρs =

(
fmom

ρsom

+
(1− fmom)

ρsms

)−1

(15a)

ρb =

(
fmom

ρbom

+
(1− fmom)

ρbms

)−1

(15b)

This formulation shows that both ρs and ρb are inversely re-
lated to the organic matter mass fraction fmom . Within this

framework, the solid and bulk densities of the soil can be
interpreted as harmonic means (cf. Eq. 6) of the densities
of the organic and mineral components, weighted by their
respective mass fractions. In other words, the overall den-
sity reflects not just how dense each component is, but also
how much of each is present in the mixture. Because organic
matter is much less dense than mineral matter, even a small
proportion of organic material can significantly reduce the
effective density of the soil.

Finally, Eq. (10) states that the ratio between bulk density
ρb and particle density ρs is equal to 1 minus the soil porosity
wsat. Substituting the expressions from Eq. (14) into Eq. (10)
thus yields:

wsat = 1−

(
mom
ρsom
+

mms
ρsms

)
(
mom
ρbom
+

mms
ρbms

) (16)

Using volume mixing from Eq. (12c) and the mass-volume
relationships from Eq. (13c), we can demonstrate that (see
Sect. S1):

wsat =

(
1−

ρbom

ρsom

)
vbom

vb
+

(
1−

ρbms

ρsms

)
vbms

vb
(17)

This expression reveals the contribution of the volumetric
fractions of each soil component, organic and mineral, to the
total porosity. Setting the volumetric fraction of organic mat-
ter in the soil as fvom =

vbom
vb

(m3 m−3), Eq. (17) can thus be
rewritten as:

wsat =

(
1−

ρbom

ρsom

)
fvom +

(
1−

ρbms

ρsms

)
(1− fvom) (18)

In full consistency with Eq. (10) and the soil mixture theory,
the total soil porosity emerges as the volumetric-weighted
arithmetic mean of the porosities of the individual domains,
defined as:

wsatom = 1−
ρbom

ρsom

and wsatms = 1−
ρbms

ρsms

(19)

with wsatom being the porosity of the organic matter do-
main and wsatms that of the mineral matter domain. This
Eq. (18) validates the arithmetic mixing formulation adopted
by Lawrence and Slater (2008) and by most LSMs, at least
in the case of soil porosity.

2.2.3 “True” soil organic volumetric fraction

As expressed above, to pass from Eq. (17) to Eq. (18), the
soil organic volumetric fraction is defined as the volumetric
fraction of organic matter in the soil. It can be rearranged
using Eq. (13c) as follow:

fvom =
mom

ρbom

1
vb

(20)
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Recasting Eq. (20) in terms of mass fractions yields:

fvom =
mom

ms

ms

vb

1
ρbom

(21)

Then, substituting Eq. (9b) and the mass fraction definitions
from Eq. (13a) into Eq. (21) leads to the “true” soil organic
volumetric fraction :

fvom =
fmom ρb

ρbom

(22)

Although Eq. (22) is mathematically similar in form to com-
monly used SOC-based formulations in LSMs, it provides
a physically consistent estimate of fvom (unlike these earlier
approaches). Specifically, it avoids conflating SOC with to-
tal SOM and ensures dimensional and physical consistency
between the two terms in the equation: the numerator, repre-
senting the mass of SOM per unit volume of bulk soil (i.e.,
how much organic matter is present per cubic meter of soil),
and the denominator, representing the mass of SOM per unit
volume of the SOM domain (i.e., how much organic matter
would fill one cubic meter entirely composed of organic ma-
terial).

2.2.4 SOM apparent bulk density

An essential requirement for deriving the “true” soil organic
volumetric fraction from Eq. (22) is the knowledge of the
apparent bulk density of SOM. Although this is not com-
monly measured, it can be inferred from the principle of
mass-volume relationships inherent to soil mixture theory,
starting from Eq. (15b) as follows:

ρbom = fmom

(
1
ρb
−

1− fmom

ρbms

)−1

(23)

ρbom can therefore be inferred from commonly available
database, as many soil datasets provide observations or es-
timates of both ρb and fmom , or more commonly fmoc . In the
latter case, the SOC content must be accurately converted
to SOM content, for instance as proposed in Sect. 2.2.5. In
contrast, the apparent bulk density of the mineral substance
(ρbms ) is generally not directly available, but it can be de-
rived from Eq. (19) using the porosity of the mineral matter
domain, estimated through standard PTFs (Clapp and Horn-
berger, 1978; Cosby et al., 1984), in combination with the
particle density of mineral matter following Eq. (19):

ρbms = (1−wsatms) ρsms (24)

In LSMs, ρsms is typically prescribed using a fixed value, of-
ten 2650 or 2700 kg m−3 (Peters-Lidard et al., 1998; Chen
et al., 2012). However, observational studies report a wider
range of values, from 2400 to 2900 kg m−3 (Schjønning
et al., 2017; Ruehlmann and Körschens, 2020). To account

for this inherent variability of ρsms , this study adopts an ap-
proach proposed by Ruehlmann (2020), which estimates ρsms

as a function of the mass fractions of sand, silt, and clay:

ρsms =

(
fmclay

ρclay
+
fmsand

ρsand
+
fmsilt

ρsilt

)−1

(25)

where fmclay , fmsand , and fmsilt (kg kg−1) are the mass frac-
tions of clay, sand, and silt, respectively. The correspond-
ing particle densities are taken from the PTF H-model of
Ruehlmann (2020), with ρclay = 2761, ρsand = 2656, and
ρsilt = 2692 kg m−3.

2.2.5 SOC-to-SOM conversion factor

Quantifying SOM content from SOC estimates is generally
done using the van Bemmelen SOC-to-SOM conversion fac-
tor, κvb (kg kg−1), which translates SOC into SOM as follow:

fmom = κvb fmoc (26)

However, this conversion remains problematic due to the un-
certainty surrounding the appropriate value of κvb. Pribyl
(2010) demonstrated that κvb can vary substantially, from
1.35 kg kg−1 to as high as 7.5 kg kg−1, depending on the
composition of organic matter, although a median value of
2 kg kg−1 is recommended.

To address the limitations of using a fixed κvb, we adopt
the approach developed by Ruehlmann (2020). This method
introduces a mechanistic framework that accounts for the
compositional variability of organic matter as a function of
SOC content. Rather than applying a single, static conver-
sion factor, the H-model proposed by Ruehlmann (2020) dif-
ferentiates between two conceptual fractions of SOM: a low-
density component (fmomld

), associated with fresh organic
inputs or microbial biomass, and a high-density component
(fmomhd

), representing more decomposed and stabilized ma-
terial. The relative contribution of these two fractions varies
with SOC, following a logarithmic mixing model. Each frac-
tion is assigned a specific SOC-to-SOM conversion factor:
2.37 kg kg−1 for fmomld

and 1.89 kg kg−1 for fmomhd
, reflect-

ing their differing carbon concentrations. The overall con-
version factor κvb is then calculated as a weighted harmonic
mean of the two fractions, making it dynamic and SOC-
dependent:

fmomhd
=


0 ∀ fmoc ≤ 0.001
log10(fmoc/0.001)
log10(0.50/0.001) ∀ 0.001< fmoc < 0.5

1 ∀ fmoc ≥ 0.5

(27a)

fmomld
= 1− fmomhd

(27b)

κvb =

(
fmomhd

1.89
+
fmomld

2.37

)−1

(27c)

This H-model was calibrated using a comprehensive dataset
from locations worldwide, covering the full range of ob-
served soil organic matter contents, diverse soil textures, and
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parent materials. As illustrated in Fig. 1a, the conversion
factor κvb derived from the H-model approaches a value of
2 kg kg−1 for SOC contents around 10 %, and gradually de-
creases at higher SOC levels, reaching 1.89 kg kg−1 at a SOC
content of 50 %. At lower SOC contents, however, κvb in-
creases sharply, reaching 2.37 kg kg−1 for SOC≤ 0.1 %.

Substituting Eq. (27) into Eq. (26) yields an analytical
function to directly estimate SOM content from SOC. Fitting
this function for the range 0.001≤ fmoc ≤ 0.5 results in the
following formulation, which we used to convert SOC into
SOM:

fmom =min
[
1.0,1.848 f 0.967

moc

]
(r2
= 0.99) (28)

This empirical expression (Fig. 1a) provides an accurate and
practical alternative to the piecewise formulation of the H-
model. It effectively captures the nonlinear relationship be-
tween SOC and SOM across the full range of typical SOC
values in mineral soils and peats, under the assumption that
the H-model remains valid. The function is particularly well
suited for large-scale modeling applications, where compu-
tational efficiency and continuity are preferred over the use
of more complex, condition-based formulations.

2.2.6 SOM water-retention properties

To solve the Richards equation for soil water flow, the hy-
drodynamic properties of soils are often parameterized using
the relationships of Campbell (1974), a simplified variant of
Brooks and Corey (1964) model, which relate matric poten-
tial to soil water content as follow :

w(ψ)=

wsat

(
ψ
ψsat

)− 1
b
∀ψ > ψsat

wsat ∀ψ ≤ ψsat

(29)

wherew(ψ) (m3 m−3) is the volumetric water content at ma-
tric potential ψ (m), ψsat the air-entry pressure head, and b
(–) the pore-size distribution index. This Eq. (29) is widely
adopted in LSMs due to its simplicity and physical inter-
pretability (e.g. Vereecken et al., 2019).

To account for the effect of SOM on soil water retention,
these parameters (wsat, ψsat, b) are typically estimated by
combining mineral soil and organic matter properties using
arithmetic mixing (Eq. 4), as reported in Sect. 2.1.2. Equa-
tion (18) supports the validity of this assumption, at least in
the case ofwsat. While hydraulic parameters for mineral soils
can be readily estimated using standard PTFs (Clapp and
Hornberger, 1978; Cosby et al., 1984), those for highly or-
ganic soils (e.g., peat) remain poorly constrained, at least for
the Brooks and Corey (1964) model. Aside from the meta-
analysis by Letts et al. (2000), which proposed values for
organic horizons based on a synthesis of field and labora-
tory observations, few efforts have been made to define these
parameters specifically for SOM-rich soils. Given the high
porosity, unique pore structure, and often hydrophobic na-

ture of organic matter, extrapolating parameters from mineral
soils is inherently challenging.

Recent research conducted at the University of Rostock
has significantly advanced our understanding of the hydro-
dynamic properties of peat soils, helping to address a long-
standing gap in the modeling of organic-rich soils (Liu
and Lennartz, 2019; Lennartz and Liu, 2019; Liu et al.,
2019, 2020, 2022). These studies demonstrated that the hy-
draulic parameters of peatlands can be reliably predicted
from their bulk density, which is largely governed by the
organic matter content. Building on this work, and assum-
ing that the apparent bulk density of SOM, ρbom (as defined
in Eq. 23), mainly dominates peat bulk density, we estimate
the porosity of the organic matter domain, wsatom , using the
PTF proposed by Liu and Lennartz (2019), which relates to-
tal porosity to dry bulk density in peats:

wsatom = 0.95− 0.437 rbom ∀ rbom ≤ 1 g cm−3 (30)

where rbom = ρbom/1000, i.e. ρbom exprimed in g cm−3. Ac-
cording to this relationship (Fig. 1b), porosity remains above
0.9 m3 m−3 for bulk densities below 110 kg m−3, reflecting
the highly porous structure of undecomposed peat. It de-
clines to around 0.8 m3 m−3 at a bulk density of approxi-
mately 340 kg m−3, and reaches 0.51 m3 m−3 for a density
of 1000 kg m−3, a value approaching those of mineral soils.

To determine the parameters ψsatom and bom, we rely on
the study by Liu et al. (2022), which investigates the varia-
tion of soil available water capacity (AWC) in peat soils. Soil
AWC refers to the amount of water available to plants, de-
fined as the difference between the volumetric water content
at field capacity, wfcom (m3 m−3), and at the wilting point,
wwiltom (m3 m−3). This study relates AWC to peat dry bulk
density through the following pedotransfer functions (PTFs),
providing a practical basis for parameterizing the hydraulic
properties of the organic matter domain:

wfcom = 3.1486
(

0.12rbom r0.70
bom

)
∀ rbom ≤ 1 g cm−3 (31a)

wwiltom = 0.9355
(

0.20rbom r0.71
bom

)
∀ rbom ≤ 1 g cm−3 (31b)

These relationships are illustrated in Fig. 1b. By definition,
wfcom corresponds to the volumetric water content at a ma-
tric potential of ψfc =−10 kPa, and wwiltom to the content
at ψwilt =−1500 kPa. Combined with the Brooks and Corey
(1964) model (Eq. 29), this leads to the following system of
equations with two unknowns, ψsatom and bom:
wsatom

(
ψfc

ψsatom

)− 1
bom
= wfcom

wsatom

(
ψwilt

ψsatom

)− 1
bom
= wwiltom

(32)

Taking the logarithm of both equations and eliminating
wsatom , the system can be solved analytically, yielding sim-
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Figure 1. Derived hydrodynamic properties for SOM domain as a function of its apparent bulk density (ρbom ) for the Brooks and Corey (1964)
model. (a) Conversion function from organic carbon fraction (fmoc ) to organic matter fraction (fmom ), shown in both analytic (blue) and
fitted (red dashed) forms, using the Van Bemmelen factor (κvb) as described by the PTF of Ruehlmann (2020). (b) Volumetric water contents
at saturation (wsat), field capacity (wfc), and wilting point (wwilt) estimated with the PTFs of Liu et al. (2022). (c–d) Derived pore-size
distribution index (bom) and air-entry potential (ψsatom ) from analytical and fitted solutions. (e) Evaluation of the predicted saturated hydraulic
conductivity (ksatom ) against observed data from Morris et al. (2022), with points colored by depth. The coefficient of determination (r2) is
shown for the current model, with the value obtained using the PTF of Lennartz and Liu (2019) indicated in parentheses for comparison.
Black and red dashed lines are the 1 : 1 line and the best fit, respectively. (f) Predicted ksatom as a function of ρbom and depth (shaded
contours). The red line corresponds to the mean observed depth z. Results are compared with the depth-independent PTF from Lennartz and
Liu (2019). Observations are shown as points, colored by sampling depth.
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ple explicit expressions for bom and ψsatom :

bom =
ln(ψwilt)− ln(ψfc)

ln(wfcom)− ln(wwiltom)
(33a)

ψsatom = ψfc

(
wfcom

wsatom

)bom

(33b)

where ψfc =−1.01972 and ψwilt =−152.958 m, while the
remaining parameters are derived from ρbom using Eqs. (30)
and (31). For more simplicity, these analytical form can be
fitted according to rbom as follow:

bom = 2.933+ 0.442 r0.463
bom
+ e(1.321 rbom )

∀ rbom ≤ 1 g cm−3 (r2
= 0.99) (34a)

ψsatom =

(
101.663 r4

bom
− 46.913 r5

bom
− 61.625 r2.635

bom

)
× 0.0168rbom ∀ rbom ≤ 1 g cm−3 (r2

= 0.99) (34b)

The resulting analytical and fitted bom and ψsatom values are
presented in Fig. 1c and d, respectively.

2.2.7 SOM hydraulic conductivity

In addition to the water retention relationship (Eq. 29), solv-
ing Richards’ equation requires an accurate description of
soil hydraulic conductivity. Campbell (1974), building on the
Brooks and Corey (1964) model, proposed the following re-
lationship linking the soil matric potential to the hydraulic
conductivity:

k(ψ)=

ksat

(
ψ
ψsat

)− 2b+3
b

∀ ψ > ψsat

ksat ∀ ψ ≤ ψsat

(35)

where k(ψ) (m s−1) is the unsaturated hydraulic conduc-
tivity, and ksat (m s−1) the saturated hydraulic conductivity.
This formulation, like the water retention curve, is widely
used in LSMs due to its simplicity and physical basis. The
key unknown is thus ksat, which must be estimated by com-
bining mineral soil (ksatms ) and organic matter (ksatom ) sat-
urated hydraulic conductivities. Some LSMs use arithmetic
mixing (Eq. 4), as proposed by Lawrence and Slater (2008),
while others prefer geometric mixing (Eq. 5), as introduced
by Decharme et al. (2016). The latter approach is supported
by earlier studies suggesting that the effective combination
of saturated hydraulic conductivities is generally better cap-
tured using nonlinear mixing formulations (Prudic, 1991;
Stepanyants and Teodorovich, 2003).

While ksatms for mineral soils can be readily estimated
using standard PTFs (Clapp and Hornberger, 1978; Cosby
et al., 1984), these functions are not applicable to organic
soils due to their poorly defined grain-size distribution and
high organic matter content (Morris et al., 2022). To ad-
dress this limitation, Lennartz and Liu (2019) proposed a

peat-specific PTF, derived from a reanalysis of the large sec-
ondary database compiled by Liu and Lennartz (2019), us-
ing dry bulk density as the primary predictor (Sect. S2). This
PTF captures the steep decline in ksatom with increasing dry
bulk density from 0.01 to 0.2 g cm−3 (Fig. 1f), reflecting the
substantial reduction in macroporosity associated with peat
degradation. Beyond 0.2 g cm−3, ksatom tends to level off, al-
though the data from Liu and Lennartz (2019) exhibit con-
siderable variability across the 0.2–1.0 g cm−3 range, which
remains difficult to explain.

Building on a large meta-analysis of northern peat sam-
ples, Morris et al. (2022) developed log-linear models to pre-
dict ksatom based on variables such as depth, dry bulk density,
von Post humification score, and categorical descriptors in-
cluding surface microform and peatland trophic type. Their
results showed that incorporating multiple predictors, espe-
cially dry bulk density, von Post score, and to a lesser ex-
tent depth, significantly improves ksatom predictions. How-
ever, von Post score and fine-scale descriptors such as mi-
croform type or trophic classification are not available at the
global scale and are therefore unsuitable for application in
LSMs. Following the approach suggested by Morris et al.
(2022), we selected dry bulk density and soil depth as the
only feasible predictors of ksatom for large-scale modeling. To
this end, we used their dataset and retained the 883 samples
that included both dry bulk density and depth information.

This dataset also reveals that, in addition to the de-
crease in ksatom with increasing bulk density, ksatom tends
to decline with depth in organic soils (Figure S1b in the
Supplement). To model this behavior through a PTF, we
developed a formulation relating ksatom to both bulk or-
ganic matter density (ρbom ) and depth (z in m). This was
achieved through a multi-step approach combining data fil-
tering, non-linear regression, and performance evaluation.
First, we retained 98 % of the dataset by filtering out out-
liers based on a two-dimensional kernel density estimate in
the [ρbom , log10(ksatom)] space. The threshold was set to the
2nd percentile of the estimated density values, ensuring that
only the densest regions of the data cloud were preserved
(Fig. S1a). From the filtered dataset, 80 % of the observations
(approximately 706 data points) were randomly selected for
model training, and the remaining 20 % (about 177 points)
were reserved for validation. We proposed a semi-empirical
model designed to reflect the asymptotic saturation behavior
observed at higher densities and deeper horizons. The func-
tional form that was selected is quasi similar to that of Morris
et al. (2022):

log10(ksatom)=−7.955− 1.89 log10(z
∗
+ 0.068)

− 2.96 log10(r
∗

bom
+ 0.045) (r2

= 0.42) (36)

where z∗ =min(3,z) and z (m) is the depth at the center
of each soil horizon, and r∗bom

=min(0.25, rbom) (g cm−3)
is the capped bulk density of the organic matter domain.
These constraints reflect the upper bounds of the observa-
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tional dataset, which includes maximum values of approxi-
mately 2.92 m for depth and 0.25 g cm−3 for bulk density. To
avoid extrapolation beyond the empirical range, both vari-
ables are accordingly limited in the proposed framework. On
the training dataset, this model yielded a coefficient of de-
termination r2

= 0.41, and on the validation set, R2
= 0.46

(Fig. S1c). When applied to the entire filtered dataset (98 %
of the total), the model explained 42 % of the variance in ob-
servations, i.e. r2

= 0.42 (Fig. 1e).
These results indicate that, although the model explains a

moderate share of the variance in ksat, its performance re-
mains comparable to, or even exceeds, that of existing PTFs
applied to similar datasets. For example, the original formu-
lation by Lennartz and Liu (2019) yields a much lower r2

of 0.11 when applied to the same data subset (Fig. 1e). Sim-
ilarly, Liu and Lennartz (2019) report values up to r2

= 0.4
using alternative models and datasets. Even the most compre-
hensive model from Morris et al. (2022), which incorporates
additional predictors such as the Kerner Oceanity Index and
the distinction between treed and open peatlands, achieves
a maximum r2 of 0.48. Reaching higher predictive power,
such as the r2

= 0.76 reported for their full model, requires
a much larger set of variables, including in addition von Post
humification score, and multiple categorical indicators repre-
senting peatland trophic status as well as local climatic con-
ditions. However, these predictors are not available for global
LSMs, which limits the applicability of such complex models
at large scales.

Figure 1f illustrates the behavior of the derived PTF for
ksatom as a function of ρbom and depth z, based on the log-
linear formulation in Eq. (36). Colored curves represent
model predictions across a range of depths (0.025 to 3 m),
with shading indicating increasing depth. The red solid line
corresponds to the mean depth of the dataset (z̄= 0.37 m),
while the dashed blue line shows the depth-independent pre-
dictions from Lennartz and Liu (2019). Observed ksatom val-
ues from the Morris et al. (2022) dataset (filtered 98 % sub-
set, n= 866) are overlaid, colored by sample depth. The fig-
ure illustrates the main structural differences between the two
models. Both predict a strong decrease in ksatom at low bulk
densities, and flattens beyond 0.2 or 0.25 gcm−3. The inclu-
sion of depth dependence in the proposed PTF aims however
to better reflect the vertical variation observed in the dataset
(Fig. S1d). This added flexibility results in a better fit to the
data (r2

= 0.42 for this study compared to only r2
= 0.11

for the Lennartz PTF on the same dataset). Although the ob-
servational scatter remains substantial, the proposed function
reproduces the general trend in the data and accounts for the
combined influence of bulk density and depth on ksatom .

2.2.8 SOM thermal properties

Although the impact of soil organic matter on thermal pro-
cesses is not the primary focus of this study, we briefly review
a physically consistent approach to represent it within LSMs,

as it complements the broader treatment of SOM hydrody-
namics presented here. In LSMs, soil heat transport is typi-
cally described by the one-dimensional heat diffusion equa-
tion, derived from Fourier’s law:

Csoil
∂T

∂t
=
∂

∂z

(
λsoil

∂T

∂z

)
(37)

where Csoil is the volumetric heat capacity of the
soil (J m−3 K−1), λsoil the soil thermal conductivity
(W m−1 K−1), T the soil temperature (K), t the time (s), and
z the soil depth (m).

In many LSMs, the thermal conductivity λsoil is computed
using a combination of dry and saturated soil conductivities,
weighted by the Kersten number, which reflects the degree
of saturation of each soil layer (Johansen, 1977; Farouki,
1981; Peters-Lidard et al., 1998). Within this framework, the
saturated thermal conductivity is calculated as a volumetric-
weighted geometric mean of the thermal conductivities of the
solid phase, liquid water, and ice. Lawrence and Slater (2008)
or Decharme et al. (2016) proposed that the dry conductiv-
ity (λdry) and the solid-phase conductivity (λs) be calculated
using arithmetic or geometric mixing, respectively, based on
the volumetric fractions of the organic and mineral compo-
nents. The corresponding conductivity values for the organic
domain can be taken from Table S1, while mineral values
can be taken from Peters-Lidard et al. (1998) as mentioned
in Sect. 2.1.2. In the present study, we focus exclusively on
λdry and show that the geo-harmonic mean also provides a
suitable alternative, while the computation of λs is addressed
in the companion paper to this work.

The total volumetric heat capacity of soil, Csoil, can be
derived from its fundamental physical definition, expressed
as the heat capacity per unit volume of bulk soil:

Csoil =
1
vb

∑
k

mkck (38)

where vb is the total soil volume, and mk (kg) and ck
(J kg−1 K−1) denote the mass and specific heat capacity of
each soil constituent k, including the solid matrix, liquid wa-
ter, ice, and air. Assuming that air has negligible heat capac-
ity compared to other phases, its contribution can be ignored.
Grounding into the soil mixture theory and substituting the
contributions of each relevant phase (organic matter, mineral
matter, liquid water, and ice) into Eq. (38), the total volumet-
ric heat capacity becomes:

Csoil =
1
vb
(mom com+mms cms+mw cw+mi ci) (39)

where mom and mms (kg) are the masses of organic and min-
eral solids, mw and mi (kg) the masses of liquid water and
ice, com, cms, cw, and ci (J kg−1 K−1) their respective specific
heat capacities. Each term in the summation of Eq. (39) can
be decomposed as the product of a mass concentration (mass
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per unit volume of the constituent’s domain) and the corre-
sponding volume fraction within the bulk soil. This leads to
the following equivalent formulation:

Csoil = com
mom

vom

vom

vb
+ cms

mms

vms

vms

vb
+ cw

mw

vw

vw

vb

+ ci
mi

vi

vi

vb
(40)

where vk (m3) denotes the volume of each soil constituent,
with liquid water and ice occupying the pore space, and or-
ganic matter and mineral substrate forming the soil solid. For
liquid water and ice, the ratios mw/vw and mi/vi are simply
their specific densities, ρw and ρi (kg m−3), and the ratios
vw/vb and vi/vb correspond to their volumetric contents, ww
andwi (m3 m−3), respectively. For the solid constituents, vom
and vms correspond to the volumes of organic matter and
mineral substrate within the soil solid, i.e. vom = vsom and
vms = vsms . Consequently, in Eq. (40),mom/vom =mom/vsom

and mms/vms =mms/vsms are simply their solid densities,
ρsom and ρsms , as defined by Eq. (13b). The computation of
the ratios vsom/vb and vsms/vb is less trivial, but they can be
expressed as the product of their respective solid-phase volu-
metric fractions, vsom/vs = f

s
vom

and vsms/vs = (1−f s
vom
) (in-

fered via Eq. 12b), and the fraction of solids in the bulk soil,
vs/vb = (1−wsat) (infered via Eq. 10). Substituting these re-
lationships into Eq. (40) leads to the following formulation
for the total volumetric heat capacity Csoil expressed as an
arithmetic mean of the product of density and specific heat
capacity of each soil constituent:

Csoil = Csv +Cw+Ci with
Csv =

[
com ρsom f

s
vom
+ cms ρsms (1− f

s
vom
)
]
(1−wsat)

Cw = cw ρw wl
Ci = ci ρi wi

(41)

Here, Csv (J m−3 K−1) is the volumetric heat capacity of the
dry solid matrix, while Cw and Ci represent the contribu-
tions of the liquid water and ice phases, respectively. As with
porosity, Eq. (41) supports the use of an arithmetic mixing
formulation, as adopted by Lawrence and Slater (2008) and
most LSMs, to compute the volumetric heat capacity of the
dry soil matrix.

In Eq. (41), the appropriate quantity to use is the volumet-
ric fraction of SOM within the soil solid phase (f s

vom
), consis-

tent with previous findings (Balland and Arp, 2005; Cuynet
et al., 2025), rather than the volumetric fraction of SOM in
the bulk soil (fvom ) as commonly assumed in earlier LSM pa-
rameterizations. Consistently with Eq. (22), f s

vom
(m3 m−3)

is defined as the ratio between the SOM density in the soil
solid, expressed as the SOM mass fraction (fmom ) relative to
the soil particle density (ρs), and the SOM particle density
(ρsom ):

f s
vom
=
fmom ρs

ρsom

(42)

ρsom can be related to its bulk density ρbom and porositywsatom

via Eq. (19):

ρsom =
ρbom

1−wsatom

(43)

As ρs is related to ρb through the soil porosity (wsat), replac-
ing ρs and ρsom using Eqs. (11) and (43) in Eq. (42) leads to
the following relationship between f s

vom
and fvom :

f s
vom
= fvom

1−wsatom

1−wsat
(44)

This relationship shows that f s
vom

can be readily obtained
from fvom . Furthermore, substituting Eqs. (42) and (44) into
Eq. (41) and applying the complement of Eq. (18) with re-
spect to unity (i.e. 1−wsat = fvom(1−wsatom)+(1−fvom)(1−
wsatms), the volumetric heat capacity of the dry soil matrix
can be expressed directly in terms of the bulk densities and
volumetric fractions of the organic and mineral domains:

Csv = com ρbom fvom + cms ρbms (1− fvom) (45)

Equation (45) may, in some cases, be more straightforward to
apply than Eq. (41), provided that the bulk densities of each
constituent are known.

A more usual form of Csv currently used in LSMs can be
derived from Eq. (41) using solid heat capacities for each soil
component :

Csv =
[
Csom f

s
vom
+Csms (1− f

s
vom
)
]
(1−wsat) with{

Csom = com ρsom

Csms = cms ρsms

(46)

where Csom and Csms (J m−3 K−1) are the soil solid heat ca-
pacity for organic matter and mineral substance, which can
be specified as in Lawrence and Slater (2008) from a lookup
table (see Table S1) or as in the proposed framework from
their specific heat capacities and particle densities. Following
Peters-Lidard et al. (1998), and based on the average values
reported in Farouki (1981), we adopt cms = 733 J kg−1 K−1

for mineral matter and com = 1972 J kg−1 K−1 for organic
matter. The particle density of mineral solids (ρsms ) can be
estimated using the PTF from Ruehlmann (2020) (Eq. 25).
For organic matter, the particle density ρsom can be com-
puted using Eq. (43). Finally, the total soil porosity, wsat, can
be computed via arithmetic mixing using the PTF from Liu
and Lennartz (2019) for the organic matter domain (Eq. 30),
and, for instance, the PTF from Cosby et al. (1984) for the
mineral soil. This approach ensures physical consistency be-
tween the volumetric heat capacity of the dry soil matrix,
total soil porosity, and the particle densities of each solid soil
component.
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Table 1. Summary of the proposed framework, including the steps to derive the “true” soil organic volumetric fraction, the PTFs used to
compute SOM hydraulic properties for the Brooks and Corey (1964) model, and the mixing rules applied to combine organic and mineral
contributions into bulk soil properties. The framework relies on a limited set of input data commonly available in all current regional and
global soil databases: the soil organic carbon mass fraction (fmoc ), the dry bulk density of the fine earth, and the mass fractions of clay
(fmclay ), sand (fmsand ), and silt (fmsilt ). In this study, the hydraulic properties of the mineral domain (wsatms , bms, ψsatms , ksatms ) are taken
from the texture-based pedotransfer functions of Cosby et al. (1984). The dry thermal conductivity of the mineral domain can be estimated
using the approach proposed by Peters-Lidard et al. (1998).

Process Compute Formula/Method Ref.

Soil (1) SOM mass fraction from SOC fmom =min[1,1.848 f 0.967
moc ] Eq. (28)

organic (2) Particle density of mineral domain ρsms =

(
fmclay
ρa

clay
+
fmsilt
ρb

silt
+
fmsand
ρc

sand

)−1
Eq. (25)

volumetric (3) Bulk density of mineral domain ρbms = (1−wsatms) ρsms Eq. (24)

fraction (4) Bulk density of organic domain ρbom = fmom

(
1
ρb
−

1−fmom
ρbms

)−1
Eq. (23)

(5) Bulk SOM volumetric fraction fvom = fmom ρb/ρbom Eq. (22)
(6) Specific SOM volumetric fraction f s

vom = fmom ρs/ρsom = fvom (1−wsatom)/(1−wsat) Eq. (44)

Soil (7) SOM porosity wsatom = 0.95− 0.437 rd
bom

Eq. (30)
hydrology (8) SOM particle density ρsom = ρbom/(1−wsatom) Eq. (43)
of SOM (9) SOM pore-size index bom = 2.933+ 0.442 r0.463

bom
+ e(1.321 rbom ) Eq. (34a)

domain (10) SOM air-entry potential ψsatom = (101.663 r4
bom
− 46.913 r5

bom
− 61.625 r2.635

bom
) 0.0168rbom Eq. (34b)

(11) SOM saturated conductivity log10(ksatom)=−7.955− 1.89log10(z
∗
+ 0.068)− 2.96log10(r

∗
bom
+ 0.045) Eq. (36)

Total (12) Soil porosity wsat = fvom wsatom + (1− fvom) wsatms Eq. (18)
soil (13) Soil pore-size index b = fvom bom+ (1− fvom) bms Eq. (4)

(14) Soil air-entry potential ψsat = fvom ψsatom + (1− fvom) ψsatms Eq. (4)
(15) Soil saturated conductivity ksat = (ksatom)

fvom (ksatms)
1−fvom Eq. (5)

(16) Soil volumetric heat capacity Csv = [c
e
om ρsom f

s
vom + c

f
ms ρsms (1− f

s
vom)] (1−wsat) Eq. (41)

(17) Dry thermal conductivity λdry =

[ √
λ

g
dryom

λdryms

(1−fvom )
√
λdryom+fvom

√
λdryms

]2

Eq. (7)

a ρclay = 2761 kg m−3, b ρsand = 2656 kg m−3, c ρsilt = 2692 kg m−3, d rbom = ρbom /1000 , e com = 1972 J kg−1 K−1, f cms = 733 J kg−1 K−1, g λdryom = 0.05 W m−1 K−1

3 Materials and methods

3.1 Experimental datasets of soil binary mixtures

Before validating the full proposed framework summarized
in Table 1, we first aim to evaluate the applicability of soil
mixture theory to soils composed of both organic and mineral
materials. To this end, we used three experimental datasets
based on binary soil mixtures, each consisting of one organic
and one mineral component. These controlled mixtures in-
clude direct measurements of soil porosity (Walczak et al.,
2002; Willaredt and Nehls, 2021) or dry thermal diffusiv-
ity (Arkhangelskaya and Telyatnikova, 2023). These datasets
serve two main purposes. First, to test the “true” formula-
tion of the soil organic volumetric fraction, computed solely
from soil organic mass content and bulk density (Eq. 22).
Second, to evaluate the performance of arithmetic mixing for
estimating soil porosity, and nonlinear mixing for estimating
dry thermal conductivity. All three datasets were available in
raw numerical form, making them easy to use.

The dataset from Walczak et al. (2002) consists of seven
laboratory-prepared binary mixtures of peat and quartz sand,
designed to represent a gradient of organic matter content

from 5 % to 57.4 % by dry weight. The peat used originated
from a sedge peat soil of moderate decomposition, while the
mineral component consisted of a clean quartz sand with
negligible organic content (0.1 %). The samples were pre-
pared by hand mixing fixed proportions of dry peat and sand.
The reported dry bulk densities of the peat and sand are 330
and 1860 kg m−3, respectively, values that are relatively high
for these materials. In the case of the peat, this elevated den-
sity likely results from its moderate degree of decomposition
(35 %–40 %) and its high ash content (42.6 %), both of which
indicate a more compact and mineral-rich organic material
than typical fibric peat. For the sand, the high bulk density
can be attributed to the use of a medium-grained quartz sand
with low porosity and the absence of organic content. For
each mixture, key physical properties were measured, includ-
ing dry bulk density and total porosity (Table 2). This dataset
is particularly interesting for evaluating both the volumetric
fraction formulation of organic matter and the performance
of mixing model used to estimate bulk properties such as
porosity.

The dataset from Willaredt and Nehls (2021) consists of
laboratory-prepared binary mixtures of compost and crushed
brick, representative of Technosols used in urban green in-
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Table 2. Observed and estimated properties of peat-sand binary mixtures from Walczak et al. (2002). Observations include the organic
matter mass fraction (fmom ), dry bulk density (ρb), and total porosity (wsat). Estimations include the organic carbon mass fraction (fmoc ),
the organic volume fraction (fvom ), and the bulk density of the organic phase (ρbom ), computed using the referenced equations with fixed
end-member densities for the pure organic and mineral components.

Composition Observations Estimations
of samples fmom ρb wsat f a

moc f b
vom ρc

bom

(% dry mass) kg kg−1 kg m−3 m3 m−3 kg kg−1 m3 m−3 kg m−3

100 % peat 0.574 330 0.90 0.298 0.924 205
80 % peat+ 20 % sand 0.459 410 0.88 0.237 0.918 213
60 % peat+ 40 % sand 0.345 510 0.87 0.176 0.859 214
40 % peat+ 60 % sand 0.230 680 0.84 0.116 0.763 218
20 % peat+ 80 % sand 0.116 1050 0.75 0.057 0.594 243
5 % peat+ 95 % sand 0.030 1570 0.55 0.014 0.230 260
100 % sand 0.001 1860 0.38 0.000 0.0 –

a Inversion of Eq. (28), b Eq. (22) with ρbom fixed to 205 kg m−3, c Eq. (23) with ρbms fixed to 1860 kg m−3

frastructure such as green roofs or roadside plantings. Com-
post serves as the organic component and crushed brick as
the mineral one, reflecting typical materials used in engi-
neered soils for urban applications. The crushed brick mate-
rial was classified as a loamy sand, but with a non-negligible
organic matter content (2.4 %). For each mixture, both the
dry bulk density and the particle density were reported, al-
lowing total soil porosity to be derived. Organic matter con-
tent was estimated by loss on ignition (LOI), and values are
summarized in Table 3. Compared to the peat-sand mixtures
of Walczak et al. (2002), which represent highly organic
substances, the compost-brick mixtures from Willaredt and
Nehls (2021) span a lower range of organic matter contents
(from 2 % to 27 %) and result in bulk densities ranging from
640 to 1350 kg m−3. This dataset therefore provides a com-
plementary case study for assessing the formulation of or-
ganic volumetric fractions and the applicability of arithmetic
mixing for porosity in more mineral-dominated substances.

Finally, the dataset from Arkhangelskaya and Telyat-
nikova (2023) was developed to investigate how thermal dif-
fusivity varies with moisture content across a wide range
of organic matter contents in peat-sand mixtures. The study
used laboratory-prepared combinations of lowland peat and
sieved quarry sand, both previously employed in the con-
struction of Technosols. Eight mixtures were prepared with
peat mass fractions ranging from 1 % to 80 %. Particular at-
tention was given to low peat contents (1%, 3 %, and 10 %)
to capture the non-linear sensitivity of thermal properties
at modest SOC levels. Each sample was packed into metal
cylinders, and bulk density was determined gravimetrically.
Thermal diffusivity was measured repeatedly under vary-
ing moisture conditions, from full saturation to air-dry, us-
ing an unsteady-state method and a thermostated water bath.
This dataset complements those of Walczak et al. (2002)
and Willaredt and Nehls (2021) by extending the analysis to
soil thermal behavior with a broad spectrum of SOC con-

tents, with particular resolution in the low-to-intermediate
range typical of mineral-organic transitional soils. For our
purposes, the key information provided by this dataset is
the air-dry thermal diffusivity, αdry (m2 s−1), from which the
air-dry thermal conductivity, λdry (W m−1 K−1), can be esti-
mated using the relationship:

λdry = αdry Csv (47)

Assuming Csv (J m−3 K−1) can be independently estimated
from Eq. (45) and the mixture composition (Table 4), this
formulation allows us to test whether an arithmetic, geomet-
ric or another mixing rule more accurately represents the dry
thermal conductivity of mineral-organic soils. The dataset
thus provides a valuable benchmark for evaluating mixing
models under dry conditions. Note that the air-dry thermal
diffusivity values reported in Table (4) are extracted from
their graphs using the open-access WebPlotDigitizer soft-
ware (Rohatgi, 2020).

3.2 Natural soils data Collection

After evaluating the internal consistency of the soil mixture
theory using controlled binary mixture experiments, we turn
to natural soil datasets based on in situ or laboratory measure-
ments to assess the performance of the proposed framework
under realistic conditions. To this end, we use four indepen-
dent datasets spanning a wide range of soil textures, organic
matter contents, and climatic contexts (Fig. 2): (1) Keller and
Håkansson (2010), which provides soil observations across
Nordic agricultural ; (2) Arkhangel’skaya (2009), based on
field observations of thermal and structural properties in Rus-
sian soils; (3) Kristensen et al. (2019), which compiles har-
monized European in situ measurements of bulk density,
porosity, and organic carbon across multiple land uses and
depths; and (4) Gupta et al. (2021), who assembled SoilK-
satDB, a global database of saturated hydraulic conductivity
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Table 3. Observed and estimated properties of compost-brick binary mixtures from Willaredt and Nehls (2021). Observations include the
organic matter mass fraction (fmom ), dry bulk density (ρb), and particle density (ρs), total porosity (wsat). Estimations include organic carbon
mass fraction (fmoc ), organic bulk density (ρbom ), and the organic volume fraction (fvom ), calculated using the equations referenced below.

Composition of samples Observations Estimations

fmom ρb ρs wsat f a
moc ρb

bom
f c
vom

(% dry mass) kg kg−1 kg m−3 kg m−3 m3 m−3 kg kg−1 kg m−3 m3 m−3

100 % compost 0.268 640 2060 0.689 0.136 248 0.691
67 % compost+ 33 % bricks 0.151 830 2032 0.642 0.075 234 0.505
47 % compost+ 53 % bricks 0.100 1000 2410 0.585 0.049 246 0.403
37 % compost+ 63 % bricks 0.079 1080 2460 0.561 0.038 248 0.344
27 % compost+ 73 % bricks 0.061 1160 2500 0.536 0.029 252 0.285
18 % compost+ 82 % bricks 0.043 1240 2560 0.516 0.020 246 0.215
100 % bricks 0.024 1350 2630 0.487 0.011 248 0.131

a Inversion of Eq. (28), b Eq. (23) with ρbms fixed to 1515 kg m−3, c Eq. (22) with ρbom fixed to 248 kg m−3. See Sect. S3 for the derivation of
these fixed values for the pure mineral and organic domains.

Table 4. Observed and estimated properties of the peat-sand binary mixtures from Arkhangelskaya and Telyatnikova (2023). The table
includes measured organic carbon fractions (fmoc ), dry bulk density (ρb), and air-dry thermal diffusivity (αdry), along with derived values:
estimated organic matter mass and volume fractions (fmom , fvom ), bulk density of the organic phase (ρbom ), volumetric heat capacity of
the dry matrix (Csv ), and dry thermal conductivity (λdry). Estimations are based on referenced equations, using fixed assumptions for pure
component densities.

Composition of Observations Estimations

samples fmoc ρb αdry f a
mom f b

vom ρc
bom

Cd
sv λe

dry

(% dry mass) kg kg−1 kg m−3 10−7 m2 s−1 kg kg−1 m3 m−3 kg m−3 103 J m−3 K−1 W m−1 K−1

100 % peat 0.385 310 0.996 0.734 0.949 240 499 0.050
80 % peat+ 20 % sand 0.308 370 0.936 0.592 0.913 241 525 0.049
60 % peat+ 40 % sand 0.232 460 0.752 0.450 0.864 245 562 0.042
40 % peat+ 60 % sand 0.155 460 1.235 0.305 0.585 174 766 0.095
20 % peat+ 80 % sand 0.079 870 1.400 0.159 0.577 251 772 0.108
10 % peat+ 90 % sand 0.040 930 1.577 0.082 0.320 161 960 0.151
5 % peat+ 95 % sand 0.021 1130 1.976 0.044 0.208 148 1042 0.206
3 % peat+ 97 % sand 0.013 1340 2.159 0.028 0.155 186 1080 0.233
1 % peat+ 99 % sand 0.006 1400 4.897 0.013 0.077 121 1138 0.557
100 % sand 0.002 1630 5.371 0.0045 0.00 – 1172 0.630

a Eq. (28), b Eq. (22) with ρbom fixed to 240 kg m−3, c Eq. (23) with ρbms fixed to 1630 kg m−3, d Eq. (41), e Eq. (47)

with associated data on soil texture, bulk density, water re-
tention, and organic carbon across diverse climates and land
uses.

The dataset from Keller and Håkansson (2010) consists of
in situ measurements of reference bulk density (ρref), particle
density, particle-size distribution (clay, silt, and sand frac-
tions), and SOM content for 171 experimental sites across
Sweden, with additional data from Poland and Finland. For
this study, we retained the subset of 123 samples for which
complete measurements of texture, organic matter, particle
density, and bulk density were available. Figure 2 (top left)
shows that these samples span a relatively balanced range
of textures, with a prevalence of loams, sandy loams, and

silty loams, and SOM content ranging from less than 1 %
to over 12%, as indicated by the color scale. The proba-
bility density functions (PDFs in bottom panels) show that
this dataset has bulk densities primarily between 1.0 and
1.5 g cm−3, and SOM contents generally above 1 %, with a
significant portion ranging from 2 % to 8 %. While textures
are consistent with cultivated mineral soils (Fig. 2), the rel-
atively low bulk densities and elevated SOM levels likely
reflect the cold and humid climatic conditions prevailing in
northern Europe, which limit organic matter mineralization
and promote its accumulation even under agricultural use.
Following the authors’ recommendation, we computed bulk
density as ρb = 0.83 ρref and used it together with the mea-
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Figure 2. Overview of the four in situ datasets used to evaluate the proposed framework. Ternary diagrams show the distribution of soil
texture (clay, silt, sand) for the selected horizons in: (top left) Keller and Håkansson (2010), (top right) Arkhangel’skaya (2009), (bottom left)
Kristensen et al. (2019), and (bottom right) Gupta et al. (2021). Points are colored by soil organic matter (SOM) content, and the number
of observations retained in each dataset (nobs) is indicated. The bottom panels display the probability density functions (PDF in %) of bulk
density (ρb) and SOM mass fraction (fmom ) across the four datasets, highlighting their diversity in terms of organic matter content and soil
density.

sured particle density to estimate porosity via Eq. (10b). In-
deed, ρref defined by Keller and Håkansson (2010) is not a
conventional soil bulk density but the value obtained from
uniaxial compression at 200 kPa. Following their recommen-
dations (Eq. 17 in their manuscript), we consistently used the
so-called normal bulk density (ρn = 0.83 ρref), which corre-
sponds to our definition of soil bulk density.

The dataset from Arkhangel’skaya (2009) consists of mea-
surements from 33 soil horizons sampled in the Vladimir
Opolie region of Russia. For each horizon, bulk density, par-
ticle density, SOC content, and detailed particle-size distribu-
tions were reported and are available in raw form. SOM mass

fraction was derived from SOC using Eq. (28), and poros-
ity was computed from measured bulk and particle densities
using Eq. (10b). As shown in Fig. 2 (top right), the textu-
ral diversity in this dataset is more limited, with most points
falling within the sandy loam to clay loam region. It thus
complements the Keller dataset by covering a different part
of the texture triangle. The SOM content ranges from 0.9 %
to 9.5 %, and bulk density spans from 1.0 to 1.6 g cm−3. The
PDFs (bottom panels) show a balanced spread, with bulk
densities mostly below 1.5 g cm−3 and a substantial num-
ber of horizons exceeding 2 % SOM. This dataset thus pro-
vides a complementary set of structured mineral to moder-
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ately organic soils under cold-temperate continental condi-
tions, bridging the gap between the more SOM-rich dataset
from Keller and Håkansson (2010) and the following more
mineral-dominated datasets used in this study.

Indeed, the third dataset is based on the harmonised Eu-
ropean soil profile database compiled by Kristensen et al.
(2019), commonly referred to as SPADE14. It includes over
4500 soil horizon records across Europe, linked to the Soil
Geographical Database of Europe. For our analysis, we re-
tained the 4170 horizons with complete records of depth,
bulk density, soil texture, and SOM content. Figure 2 (bot-
tom left) shows that this dataset spans a broad range of soil
textures, from sand-dominated to fine-textured clay soils,
with SOM content varying from near-zero to over 60 %. The
PDFs (bottom panels) show that bulk density is broadly dis-
tributed, with roughly equal representation of low-density (<
1.5 g cm−3) and high-density (> 1.5 g cm−3) soils. In con-
trast, SOM content is predominantly below 2 %, although
a notable number of horizons exceed this threshold, includ-
ing a few highly organic profiles (up to 66 %). This dataset
is therefore representative of mineral-dominated soils, while
still encompassing a range of organic matter contents, par-
ticularly in northern Europe, making it well suited to test the
general applicability of our framework across both low- and
high-SOM conditions. From this dataset, we also used esti-
mated volumetric water contents at four standard matric po-
tentials (−1, −10, −100, and −1500 kPa), allowing assess-
ment of our framework’s predictions not only for porosity
and SOM volumetric fraction but also for water retention be-
havior. These volumetric water contents were not measured
directly but estimated using linear regression models based
on bulk density, particle-size distribution, and organic matter
content, calibrated on a subset of national observations.

Finally, the fourth dataset, compiled by Gupta et al.
(2021), is derived from version 3 of the SoilKsatDB
database (Gupta et al., 2020), and specifically from the
“sol_hydro.pnts” file, which contains a global compilation of
over 150 000 laboratory and field measurements of soil hy-
draulic properties collected from all continents. These data
include saturated hydraulic conductivity as well as water re-
tention values at standard matric potentials (−6, −10, −33,
and −1500 kPa), along with a range of supporting soil phys-
ical properties. For this study, we retained the subset of ap-
proximately 68 000 samples for which bulk density, texture,
and organic carbon content were available, making it highly
suitable for evaluating the framework’s ability to predict both
water retention parameters and Ksat under a wide range of
environmental and methodological conditions. As shown in
Fig. 2 (bottom right), the dataset spans the entire soil texture
triangle, with substantial representation across all textural
classes. The PDF of bulk density shows a pronounced peak
around 1.6 g cm−3 and a consequent number of larger val-
ues, indicating that soils in this dataset are generally denser
than in the other collections. The SOM content distribution
is quasi similar in shape to that of the Kristensen dataset,

although with slightly lower organic matter contents on av-
erage. This combination makes the dataset highly comple-
mentary to the others, particularly for assessing the gener-
ality of the proposed framework under mineral-dominated
conditions worldwide, while still capturing a non-negligible
gradient in organic matter content.

4 Results

The evaluation of the proposed framework (Table 1) is struc-
tured in two main stages. First, we assess its internal con-
sistency using experimental datasets of binary soil mixtures.
Second, we test the framework’s predictive performance on
in situ soil data from diverse field conditions, focusing in par-
ticular on porosity, water retention properties as described
by the Brooks and Corey (1964) model, and saturated hy-
draulic conductivity. The proposed framework outputs are
compared against the PTF of Cosby et al. (1984) for min-
eral soils, and the SOC-based parameterization of Lawrence
and Slater (2008) representative of current LSM implemen-
tations. These comparisons are used to benchmark the added
value of our process-based formulation across a wide range
of soil textures and organic matter contents.

4.1 Evaluation Using Binary Mixture Datasets

The first stage of validation focuses on the three experimen-
tal binary mixture datasets previously described, composed
of controlled combinations of organic and mineral materials
(Walczak et al., 2002; Willaredt and Nehls, 2021; Arkhangel-
skaya and Telyatnikova, 2023). These mixtures emulate soils
with varying SOM contents and allow us to assess several
core components of our framework. Specifically, we use
them to evaluate: (i) the theoretical formulation of the vol-
umetric organic matter fraction (Eq. 22); (ii) the soil mixture
theory introduced in Sect. 2.2.2, which leads to the arithmetic
mixing of porosity as formalized in Eq. (18); and (iii) the per-
formance of different mixing rules for estimating dry thermal
conductivity.

Figure 3a (left) shows the estimation of the volumetric or-
ganic matter fraction fvom as a function of the organic matter
mass fraction fmom using the binary mixture data from Wal-
czak et al. (2002). The round markers represent the values
of fvom derived by applying Eq. (22) to each sample, using
the observed bulk density and fixing the organic matter bulk
density (ρbom ) to 205 kg m−3. This fixed value corresponds
to the pure peat sample in the dataset (100 % peat), and is
consistent with the bulk density computed from Eq. (23) as-
suming a mineral bulk density (ρbms ) of 1860 kg m−3 (given
by the pure sand sample). This approach assumes that the
bulk density of the organic material remains constant across
the mixture series. In other words, it considers that the peat
component used by Walczak et al. (2002) retains a consis-
tent internal structure regardless of its proportion in the mix.
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We then compare these data-derived estimates with the pre-
dictions of fvom from our framework (Eqs. 22 to 25) and
from earlier parameterizations. Our theoretical relationship
closely follows the derived values, supporting the internal
consistency of the proposed formulation. In contrast, pre-
vious approaches (Lawrence and Slater, 2008; Chen et al.,
2012) show larger discrepancies, especially at higher SOM
contents. The formulation of Decharme et al. (2016) is not
shown here, as it depends on a depth-varying peat porosity
prescribed from an idealized vertical profile, which is not ap-
plicable to binary mixture data. Assuming a typical value of
0.9 for the peat porosity, their formulation becomes equiv-
alent to that of Lawrence and Slater (2008), which is thus
more generally applicable in this context.

Previous approaches estimate the SOM volumetric frac-
tion from SOC using a fixed bulk density, typically
130 kg m−3. This value does not reflect the wide variability
in SOM compaction and structure. Additionally, using SOC
rather than total SOM introduces another approximation, as
SOC typically represents only about half of SOM. These two
simplifications, namely relying on SOC and assuming a low
fixed SOM bulk density, introduce opposing biases that tend
to partially offset one another. In practice, combining a SOC-
to-SOM factor close to 2 (Eq. 28) with a fixed bulk density of
organic carbon of 130 kg m−3 fixed in previous approaches is
equivalent to a bulk density of organic matter of 260 kg m−3,
which can be directly compared to the values of 205, 248,
and 240 kg m−3 obtained for the three laboratory datasets us-
ing the present framework. As a result, the predicted fvom

may appear reasonable in some cases, but this is due to com-
pensating errors rather than a physically sound model. Here,
this method tends to systematically underestimate the volu-
metric contribution of organic matter, especially in SOM-rich
samples. As shown on Fig. 3a, the discrepancy between these
predictions and the data-derived estimates increases with ris-
ing SOM content. By contrast, our framework directly links
SOM mass content and bulk density through a consistent for-
mulation, incorporating an empirically derived organic mat-
ter bulk density ρbom that remains close to the observed value
of 205 kg m−3 (see Table 2). This approach better captures
the structural properties of SOM and aligns more closely
with the observed values across the full mixture range.

These results are further supported by Fig. 3a (right),
which compares the observed wsat of the binary mixtures
with predictions from various approaches as a function of
fmom . In our framework, soil mixing theory directly leads
to an arithmetic mixing rule for porosity (Eq. 18), where
wsat is computed as a volumetric-weighted average of wsatms

and wsatom , based on their respective contributions. To ap-
ply this equation, we estimated these pure component poros-
ity by using the measured properties of 100 % sand and the
100 % peat samples in the dataset of Walczak et al. (2002).
We first derived the particle density of the mineral phase
(ρsms ) from the pure sand sample using Eq. (11). Follow-
ing the same principle, we then estimated the particle density

of the organic matter phase (ρsom ) from the pure peat sam-
ple, using inversion of Eq. (15a). Given the previously cal-
culated bulk density of the organic component (205 kg m−3),
and using Eq. (11), which defines porosity as the comple-
ment of the bulk-to-particle density ratio, we obtained a re-
constructed wsatom of 0.94 m3 m−3. This value was then used
as a fixed reference in our arithmetic mixing rule to pre-
dict wsat of all intermediate mixtures. As shown in the fig-
ure, older approaches systematically underestimatewsat, par-
ticularly in SOM-rich mixtures. This bias is primarily due
to their underestimated fvom and the simplistic assumptions
about the structure and density of organic matter. In contrast,
our framework provides predictions that better match the ob-
served wsat across the full composition range, reinforcing
both the validity of the volumetric fraction formulation and
the soil mixture theory. While some discrepancies remain,
the overall agreement confirms that our approach is able to
more accurately represent the bulk structural properties of
mixed soils.

We now turn to the dataset from Willaredt and Nehls
(2021), which provides a complementary case to the Walczak
mixtures by focusing on substances with lower SOM content
(Table 3). These mixtures allow us to test the robustness of
the soil mixture theory under more mineral-dominated condi-
tions (Fig. 3b). To determine the pure component properties
(organic and mineral) from the Willaredt and Nehls (2021)
dataset, we used the two most compositionally distinct sam-
ples: the one with the highest organic matter content (100 %
compost) and the one with the lowest (100 % crushed brick).
These two endmembers form the basis of a two-equation sys-
tem with two unknowns, derived from the porosity relation-
ship (Eq. 10b) and the general mixing formulation (Eq. 15a).
We first solved this system to estimate the properties of the
mineral component, assuming the crushed brick sample rep-
resents the pure mineral phase. Using the measured bulk and
particle densities of the two selected samples, we derived
a ρbms of 1515 kg m−3 and a ρsms of 2715 kg m−3 for the
mineral phase, yielding a wsatms of 0.44 m3 m−3. We then
used the inverse of the mixing formulation (Eq. 15a) to in-
fer the organic component properties from the pure com-
post sample. This yielded a ρbom of 248 kg m−3 and a ρsom

of 1230 kg m−3, corresponding to a wsatom of 0.80 m3 m−3.
These reconstructed pure component properties lie within the
typical ranges reported for mineral and organic soils (Boel-
ter, 1968; Clapp and Hornberger, 1978; Cosby et al., 1984;
Letts et al., 2000; Rühlmann et al., 2006; Hossain et al., 2015;
Liu and Lennartz, 2019; Ruehlmann, 2020; Ruehlmann and
Körschens, 2020; Robinson et al., 2022). These values served
as fixed references to estimate fvom using Eq. (22), and were
subsequently used in the arithmetic mixing rule (Eq. 18) to
predict wsat of each mixture in the Willaredt dataset. In both
cases, our framework predictions align well with the obser-
vations across the full range of mixtures, confirming its ro-
bustness even in soils where SOM is less dominant. In con-
trast, previous approaches (Lawrence and Slater, 2008; Chen
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Figure 3. Evaluation of the proposed framework against experimental binary mixture datasets. Each panel compares observed or estimated
values (open circles) with predictions from this study (red), and approaches of Lawrence and Slater (2008) (blue) and Chen et al. (2012)
(green). Panels (a) and (b) show the volumetric organic matter fraction (fvom ) and porosity (wsat) as functions of the organic matter mass
fraction (fmom ), based on data from Walczak et al. (2002) and Willaredt and Nehls (2021), respectively. Panel (c) shows results based
on the dataset from Arkhangelskaya and Telyatnikova (2023), comparing the volumetric organic matter fraction fvom (left) and the dry
thermal conductivity kdry (right). For kdry, various mixing rules are compared to same estimates (open circles) in the inset: arithmetic (dash-
dotted line), geometric (solid line), harmonic (dashed line), and geo-harmonic mean (dotted line), each computed using the fvom values
estimated directly from the data (open circles in the right panel). In the main right panel, the tested parameterizations are shown with their
corresponding averaging schemes, using the same line styles as in the inset: Lawrence and Slater (2008) (blue) and Chen et al. (2012) (green)
rely on arithmetic means (dash-dotted), while the presented framework (red) relies on either a geometric mean (solid) or a geo-harmonic
mean (dotted).
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et al., 2012) systematically slightly underestimate both fvom

and porosity. As discussed earlier, the relatively low discrep-
ancy observed for previous approaches stems from compen-
sating biases in their assumptions, i.e. the use of SOC instead
of SOM and the application of fixed, underestimated SOM
bulk density values.

We finally turn to the dataset of Arkhangelskaya and Tely-
atnikova (2023), which offers a well-balanced set of sam-
ples across a wide SOM gradient, including both mineral-
dominated and organic-rich compositions. This dataset of-
fers a valuable opportunity to evaluate the thermal compo-
nent of our framework, especially under contrasting SOM
conditions. The left panel of Fig. 3c compares the estimate
of fvom with the predictions from our framework and pre-
vious approaches. To estimate and predict fvom , the SOM
content was converted from SOC using Eq. (28). We then
derived the pure component densities from Table 4: the min-
eral component was taken from the 100 % sand sample, pro-
viding a ρbms of 1630 kg m−3. ρbom was reconstructed from
the peat-rich sample using Eq. (23), resulting in a value of
240 kg m−3. As in the other binary mixture datasets, our pre-
dictions align relatively well with the empirical estimates
across the full range of SOM content. In contrast, older for-
mulations tend to underestimate fvom , particularly in samples
with higher organic content. However, the data point cor-
responding to the “40 % peat+ 60 % sand” sample (fmoc =

0.155 in Table 4) stands out as showing a substantial devia-
tion between our framework prediction and estimate. While
the estimate of fvom gives a value near 0.5, our prediction ap-
proach 0.8, producing an apparent overestimation. This dis-
crepancy can be traced to the reported bulk density of this
sample, which is 460 kg m−3, and suspiciously identical to
that of a sample with higher SOC content (fmoc = 0.232).
Given the lower organic content, a higher bulk density would
be expected for this sample. Using Eq. (22) and assum-
ing ρbom = 240 kg m−3 and fmom = 0.305, we estimate that
a more physically consistent bulk density for this sample
would be around 600 kg m−3. This value falls well within the
observed range for the dataset (460–870 kg m−3) and sug-
gests that the deviation is likely due to an experimental un-
derestimation of bulk density. This misestimation propagates
into the fvom estimate, artificially inflating its value and ex-
plaining the bias observed in the figure. Interestingly, the ap-
proach of Lawrence and Slater (2008) does not show this
deviation, though for fundamentally different reasons. Their
method estimates fvom from fmoc using a fixed carbon-to-
organic matter conversion factor and a constant low SOM
bulk density (typically 130 kg m−3), without relying on the
observed bulk density of the soil. As a result, it is not af-
fected by potential measurement errors in ρb. However, once
again, the apparent agreement with observations is likely due
to a compensation of biases: the use of SOC instead of total
SOM tends to underestimate organic content, while assum-
ing a low fixed SOM bulk density tends to overestimate the
associated volume. These two opposing errors can partially

cancel each other, producing seemingly reasonable values.
While this makes the method somewhat robust to data un-
certainties in some cases, it comes at the cost of physical
realism. In contrast, our framework uses observed bulk den-
sity to reconstruct fvom , providing a more mechanistic and
composition-specific estimate. However, this method is in-
herently more sensitive to measurement uncertainties.

This dataset from Arkhangelskaya and Telyatnikova
(2023) also provides direct measurements of dry thermal dif-
fusivity, from which dry thermal conductivity (λdry) can be
inferred. We reconstructed λdry for each binary mixture by
applying Eq. (47), using air-dry diffusivity values and es-
timating the volumetric heat capacity (Csv ) with Eq. (41).
The latter was computed based on the predicted or esti-
mated fvom and the specific heat capacities (com and cms)
and bulk densities of the organic and mineral components,
as detailed in Sect. 2.2.8. From this, we derived λdry values
of approximately 0.63 W m−1 K−1 for the mineral phase and
0.05 W m−1 K−1 for the organic matter component. Notably,
the latter value matches the organic λdry commonly used in
LSMs following Farouki (1981). Using these pure compo-
nent values, we evaluated several mixing rules to model λdry
across the full SOM gradient. Specifically, we tested arith-
metic mixing (Eq. 4) as in Lawrence and Slater, 2008), geo-
metric mixing (Eq. 5) as in Decharme et al. (2016), harmonic
mixing (Eq. 6), and the hybrid geo-harmonic mixing (Eq. 7).

The right panel of Fig. 3c presents the relationship be-
tween kdry and fmom . The circular markers represent the es-
timated values of kdry for each binary mixture. These esti-
mates were obtained by combining observed dry thermal dif-
fusivity with calculated volumetric heat capacity as described
above. In the inset, the same estimated kdry are plotted (white
markers), but here compared against predicted kdry values
obtained by applying different mixing rules. These predic-
tions are computed using the estimated fvom values from the
left panel and the reconstructed pure component dry thermal
conductivities. This comparison enables a direct assessment
of which average formulation best captures the effective ther-
mal conductivity behavior across the SOM gradient. Among
the different mixing rules, only the non-linear formulations
are able to capture the observed decline in kdry with increas-
ing SOM content, in line with the hypothesis of Decharme
et al. (2016). While the geometric mean tends to slightly
overestimate and the harmonic mean to slightly underesti-
mate kdry, the geo-harmonic mean offers an interesting com-
promise between the two, providing a balanced representa-
tion across the full SOM gradient. The figure also shows the
kdry predicted using our framework (red curves), combined
with either a geometric (solid) or geo-harmonic (dotted) mix-
ing rule. Both approaches capture the overall trend of the
observations. However, the geo-harmonic formulation pro-
vides a closer match to the data and further supports the va-
lidity of our framework, not only for predicting kdry but also
for estimating the underlying volumetric heat capacity. Log-
ically, earlier parameterizations, which rely on simple arith-
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metic mixing (Lawrence and Slater, 2008; Chen et al., 2012),
substantially overestimate kdry, particularly at higher SOM
contents.

4.2 Porosity of natural soils

We now assess the ability of the proposed framework to re-
produce wsat of natural soils across a wide range of condi-
tions. Once again, the accurate simulation of wsat directly
validates the soil mixture theory introduced in Sect. 2.2.2.
In our approach, wsat is computed as a volumetric weighted
average (Eq. 18) betweenwsatms andwsatom , based on the pre-
dicted fvom . The accuracy of this prediction depends not only
on the quality of the pure component porosity estimates, but
also on the internal consistency of the volumetric formulation
across observed gradients in SOM and bulk density. fvom is
derived from the observed ρb, the organic matter mass frac-
tion fmom , either observed directly or converted from fmoc

via Eq. (28), and a reconstructed ρbom . This reconstructed
value is obtained through Eq. (23) to Eq. (25), using ρsms

predicted by Ruehlmann (2020) and wsatms estimated from
the Cosby-SC PTF (i.e. sand and clay only) given in Table 5
of Cosby et al. (1984). We adopt this Cosby-SC PTF because
it has been identified as the most reliable PTF for simulat-
ing soil water balance with the Brooks and Corey (1964)
model (e.g., Weihermüller et al., 2021). Finally, wsatom is es-
timated using the PTF of Liu and Lennartz (2019), which
relates ρbom to wsatom (Eq. 30). To evaluate this framework,
we use three independent datasets (Keller and Håkansson,
2010; Arkhangel’skaya, 2009; Kristensen et al., 2019), each
providing in situ measurements of ρb, fmoc or fmom , and soil
texture (fmclay , fmsand and fmsilt ) across a broad range of soil
types and land uses.

As shown in Fig. 4, we compare the performance of our
framework against two commonly used parameterizations,
applied separately to each dataset. First, the mineral soil
Cosby-SC PTF of Cosby et al. (1984) serves as a bench-
mark representative of LSMs that do not account for organic
matter. Second, we include the parameterization of Lawrence
and Slater (2008) using fmoc content (either directly observed
or estimated from fmom by inverting Eq. 28) and assuming
fixed ρbom of 130 kg m−3 and wsatom of 0.9 m3 m−3. As in
our framework, wsatms for the parameterization of Lawrence
and Slater (2008) is given by the Cosby-SC PTF. The com-
parisons reveal systematic differences between the three ap-
proaches. The Cosby-SC PTF, which does not account for
organic matter, consistently underestimates wsat in soils with
moderate to high SOM content. The parameterization of
Lawrence and Slater (2008), although it includes organic soil
properties, shows slightly improved skill scores and linear re-
gression slopes compared to the purely mineral-based Cosby
PTF. This suggests a partial correction effect due to the in-
clusion of organic properties. However, it still fails to accu-
rately capture wsat across the full SOM gradient. In partic-
ular, it systematically overestimates porosity in organic-rich

soils. This overestimation partly stems from its fixed assump-
tions of a low ρbom and a constantwsatom , which do not reflect
the variability estimated in natural soil structures (Fig. 5).
In contrast, the proposed framework shows improved agree-
ment across all datasets. By explicitly accounting for the
variability in SOM content and structure, it captures both the
lower porosities of mineral soils and the higher porosities of
organic-rich soils with greater realism. Because porosity es-
timates are constrained by bulk density in the mixture-theory
formulation, this agreement also reflects the consistency of
the inferred ρbom and ρsom , which fall within reported ranges
as shown by Figs. 4 and S3. This consistent performance
highlights the robustness of the underlying soil mixture the-
ory and its adaptability across a wide range of soil conditions,
requiring only observed fmom or fmoc content as well as mea-
surements of ρb and soil texture as inputs.

While the overall agreement between our framework
and the observed porosities is strong, a closer examina-
tion of Fig. 4 (lowest line) reveals a tendency to overes-
timate wsat for samples with observed low porosity value
(≤ 0.4 m3 m−3) generally associated with low SOM content.
This deviation is not due to the soil mixture theory itself,
but rather to the porosity of the mineral reference phase,
which is derived from the Cosby-SC PTF. This texture-
based model rarely predicts wsatms below 0.4 m3 m−3, even
in dense mineral soils. The same pattern is visible in the
Arkhangelskaya dataset. To isolate this effect, we recalcu-
lated model performance metrics by retaining only the sam-
ples with fmom ≥ 4 % or with fmoc ≥ 2 % (see Fig. S2). In
this subset, the r2 of our framework increases significantly
from 0.73 to 0.90 in the Kristensen dataset and from 0.93 to
0.95 in the Arkhangelskaya dataset. In contrast, the perfor-
mance of the Lawrence and Slater (2008) approach deterio-
rates sharply, with r2 dropping from 0.17 to 0.02 in the Kris-
tensen dataset. This highlights the limited realism of older
SOC-based parameterizations when applied to organic-rich
soils. As expected, the scores for the Cosby PTF remain
largely unchanged, since this method is independent of or-
ganic matter content. These results confirm the validity of our
process-based framework. They also indicate that the resid-
ual biases in porosity predictions are primarily attributable
to uncertainties in mineral property estimations rather than
limitations in the soil mixture formulation itself.

Figure 5a and b compare the predicted fvom as a function
of SOM content across the three in situ datasets. In Panel
(a), the parameterization of Lawrence and Slater (2008) is
shown. The overall trend of increasing fvom with SOM con-
tent is expected, but the relationship is highly non-linear
and remarkably narrow: at any given SOM content, nearly
all points collapse onto the same predicted value. This re-
flects the fact that structural variability is not accounted for
in this approach. Moreover, for SOM contents above 20 %,
most fvom predictions saturate near 1 m3 m−3, which appears
excessive. Finally, the distribution of colors associated with
ρb shows no clear organization, highlighting that this vari-

https://doi.org/10.5194/gmd-18-9349-2025 Geosci. Model Dev., 18, 9349–9384, 2025



9370 B. Decharme: Modeling SOM physical properties in LSMs

Figure 4. Comparison of observed and predicted soil porosity across three in situ datasets: (a) Keller and Håkansson (2010), (b)
Arkhangel’skaya (2009), and (c) Kristensen et al. (2019). Each row corresponds to a different prediction method: the first row uses the
mineral-soil PTF of Cosby et al. (1984), which ignores the presence of organic matter; the second row applies the method of Lawrence and
Slater (2008), which includes SOM effects using a simplified approach; and the third row shows results from the process-based framework
developed in this study. The 1 : 1 line is shown in black, and the blue line represents the linear regression between predicted and observed
values where its slope and intercept provide an additional measure of agreement. Finally, skill scores are given for each panel.

able has no explicit influence on the prediction. As a result,
the approach can yield physically inconsistent outcomes: for
instance, some very low-density soils (in yellow) with high
SOM content (> 10 %) are assigned unrealistically low fvom

values (< 0.2 m3 m−3), while denser soils with lower SOM
contents may be assigned disproportionately high fvom val-
ues.

By contrast, our framework (Fig. 5b) accounts explicitly
for both ρb and ρbom in the derivation of fvom . This allows
to incorporate structural information about the soil, which
older approaches do not. As a result, the relationship ap-
pears more dispersed but also more physically meaningful.
As expected, low-density soils correspond to higher fvom ,

while denser soils show lower values. For a given SOM con-
tent, fvom varies depending on the soil’s bulk density: lighter
soils (shown in light yellow) have higher fvom than compact
soils (dark brown), which is consistent with the idea that
a looser structure allows organic matter to occupy a larger
volume. Unlike the Lawrence and Slater (2008) approach,
which quickly saturates toward fvom = 1 for SOM-rich soils,
the proposed method shows a smoother and more gradual
transition. In particular, when SOM content exceeds 10 %,
the previous method systematically predicts larger values of
fvom than the proposed approach. This also explains why the
Lawrence and Slater (2008) formulation systematically over-
estimates porosity in organic-rich soils (Fig. 4). More gener-
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Figure 5. Diagnostic analysis of the soil mixture theory framework behavior, based on the three in situ datasets used in Fig. 4. Panels (a) and
(b) show the volumetric organic matter fraction (fvom ) as a function of SOM content for the parameterization of Lawrence and Slater (2008)
and for the current study, respectively. Points are colored by observed bulk density (ρb). Panel (c) compares the reconstructed organic bulk
density (ρbom ) from our framework with ρb, with point color indicating SOM content. The dashed black line represents the 1 : 1 line. Panel
(d) shows the PDF (in %) of ρbom (main plot) and of the associated organic porosity wsatom (inset), both estimated across all data points
using Eqs. (23) and (30).

ally, our framework captures the structural heterogeneity of
the fine-earth fraction by accounting for both the actual bulk
density of the soil and the reconstructed apparent density of
SOM. This allows for the representation of a wider diversity
of soil profiles, particularly when two soils have the same
SOM content but differ in bulk density.

Indeed, Fig. 5c shows the estimated ρbom as a function of
total soil bulk density ρb, with SOM content indicated by
color. Denser soils tend to be associated with more com-
pact organic components. This is consistent with our formu-
lation, where ρbom is computed from mineral structure and
SOM content (via Eqs. 23 to 25). For a given ρbom , soils with
higher SOM content (warmer colors) usually show lower
ρb. This reflects the more porous structure of organic-rich
soils. As SOM increases, ρbom and ρb get closer. This is ex-
pected, since in organic-dominated soils, the total bulk den-
sity becomes close to that of the organic phase. Figure 5d
shows the PDF of the estimated ρbom and wsatom across all

in situ datasets. The distribution of ρbom is centered between
210 and 250 kg m−3, with main values ranging from about
10 to 400 kg m−3. This is consistent with previous obser-
vations from organic-rich horizons and peat soils (Adams,
1973; Boelter, 1968; Letts et al., 2000; Ruehlmann and
Körschens, 2009; Liu and Lennartz, 2019). In comparison,
a considerable number of LSMs adopt a fixed ρbom value of
130 kg m−3. While this value is physically plausible, it falls
toward the lower bound of our estimated values. The distribu-
tion of wsatom spans mainly from 0.8 to 0.95 m3 m−3, in good
agreement with empirical ranges reported for organic hori-
zons in natural and managed soils (Liu and Lennartz, 2019).
Together, these results support the internal consistency of
the framework in deriving physically realistic properties for
the organic soil component. A complementary quality check
can be provided by the inferred particle density of organic
matter (ρsom ), obtained from ρbom and wsatom (Eq. 11). The
distribution shown in Fig. S3 (mean 1380 kg m−3, and me-
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dian 1490 kg m−3) is centered within the typical range of
1100–1500 kg m−3 reported by Rühlmann et al. (2006) and
Ruehlmann (2020) or 900–1550 kg m−3 reported by Redding
and Devito (2006), further supporting the physical consis-
tency of the framework.

4.3 Water retention of natural soils

We now evaluate the ability of the framework to reproduce
water retention properties across a wide range of soil types
using the Brooks and Corey (1964) model. In addition to
validating wsat as done in the previous section, this also al-
lows us to assess the air-entry potential (ψsat) and the pore-
size distribution index (b). For mineral soils, both parameters
are estimated using the Cosby-SC PTF, consistent with the
porosity benchmarks used earlier. For organic soils, they are
predicted from ρbom using the empirical relationships intro-
duced in Sect. 2.2.6. In all cases, an arithmetic mixing (Eq. 4)
is applied to combine the mineral and organic components.
Additional tests on the water retention curves from the bi-
nary mixture datasets of Walczak et al. (2002) and Willaredt
and Nehls (2021) did not show any evidence that nonlinear
formulations would perform better than this linear approach.
To evaluate the framework’s performance, we compare sim-
ulated water contents to in situ estimates from two large-
scale datasets of Kristensen et al. (2019) and Gupta et al.
(2021). Both datasets offer independent validation opportu-
nities across diverse climates, textures, and SOM contents.

Figure 6 is drawn from the European soil profile database
of Kristensen et al. (2019), which includes estimations of
water contents at four standard matric potentials (−1, −10,
−100 and −1500 kPa) for over 4000 soil horizons. We eval-
uate our framework by comparing it with the mineral soil
PTF from Cosby et al. (1984) and the SOC-based param-
eterization of Lawrence and Slater (2008). At low suctions
(−1 kPa), our framework outperforms the others. The pre-
dicted values align more closely with observations, as indi-
cated by a tighter regression along the 1 : 1 line, higher coef-
ficients of determination, and reduced bias. This better per-
formance is mainly due to improvement in simulating wsat, a
key determinant parameter in near-saturation water retention.
At intermediate suction (−10 and −100 kPa), the three ap-
proaches seem to converge, though our framework maintains
a robust advantage (especially the r2 score). This suggests
that while the influence of porosity lessens, the model’s per-
formance still benefits from the organic-specific prediction of
the shape parameter b and the air-entry potential ψsat in the
Brooks and Corey formulation. At high suction (−1500 kPa),
the performance gap between models narrows considerably,
although our model still has a slight advantage. This is con-
sistent with the experimental literature showing that the in-
fluence of SOM on water retention decreases under strong
suctions. In particular, several binary mixture datasets re-
ported by Willaredt et al. (2023) indicate that differences in
water retention between mineral-organic mixtures are more

pronounced at low to moderate suctions, but tend to fade at
higher tension levels (e.g. −1500 kPa).

Figure 7 presents the evaluation against the global SoilK-
satDB dataset (Gupta et al., 2021), which provides in situ
measurements of texture, bulk density, organic carbon, depth
and water retention at four matric potentials (−1, −10, −33,
and −1500 kPa) for a wide range of soils worldwide. The
number of available samples increases with matric poten-
tial, from around 1000 at saturation to over 66 000 near the
wilting point (−1500 kPa). The overall patterns are consis-
tent with those observed for the previous dataset (Fig. 6). At
low suction (−1 kPa), our framework shows superior perfor-
mance compared to the two benchmark approaches, although
absolute scores remain modest. At intermediate potentials
(−10 and −33 kPa), all three approaches tend to converge,
yet our framework consistently maintains an advantage, at
least, in terms of square correlation and c-rmse. Finally, near
the wilting point, the three models yield similar performance,
though the overall shape of the regression fit remains slightly
better with our approach. These results confirm, across a
broad diversity of soil types and climates, the added value
of our physically based framework. They reinforce the valid-
ity of the porosity formulation and support the assumption of
arithmetic mixing for the water retention parameters ψsat and
b.

4.4 Saturated hydraulic conductivity of natural soils

We finally evaluate the ability of our approach to pre-
dict ksat using the observational dataset compiled by Gupta
et al. (2021). The SoilKsatDB contains approximately 16 000
measurements of ksat, covering a broad range of soil types,
textures, and organic carbon contents. From these, we retain
a subset of more than 14 000 samples for which soil texture,
bulk density, organic carbon content, and sampling depth are
available. Figure 8 compares predicted and observed ksat for
the mineral soil PTF of Cosby et al. (1984), the SOC-based
approach of Lawrence and Slater (2008), and the method pro-
posed in this study, which explicitly accounts for the bulk
density of the organic matter domain and its variation with
depth. In these two last approaches, the mineral component
of ksat is computed using the formulation of Cosby et al.
(1984). For the organic component, a fixed value of 1×10−4

m s−1 is used in Lawrence and Slater (2008), whereas we
apply Eq. (36) in our approach. The final ksat value is then
computed as an arithmetic mean in the case of Lawrence and
Slater (2008), and as a geometric mean in our formulation.

Figure 8a to c show the comparison across the full dataset.
The Cosby et al. (1984) PTF exhibits a negative bias and
a weak correlation with the observations (r2

= 0.15, and
0.40 on the log-transformed scale). The color distribution of
the points, which reflects SOM content, suggests that min-
eral soils (light colors, low SOM) tend to be overestimated,
whereas soils with higher SOM content (warmer colors) are
more frequently underestimated. The SOC-based approach
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Figure 6. Comparison between predicted and estimated volumetric water contents (w, m3 m−3) at four matric potentials (−1, −10, −100,
and−1500 kPa) from the Kristensen et al. (2019) dataset. Each column shows results for a different model: (a) the mineral soil PTF of Cosby
et al. (1984), (b) the SOC-based parameterization of Lawrence and Slater (2008), and (c) the framework developed in this study. Points are
colored by SOM content, the blue line represents the least-squares regression between predicted and estimated values, and dashed black
lines indicate the 1 : 1 line. Each panel includes the regression equation, bias, centered root mean square error (c-rmse), and coefficient of
determination (r2).

of Lawrence and Slater (2008) slightly reduces the bias,
but the predicted variability remains poorly correlated with
observations (r2

= 0.11, and 0.43 on the log-transformed
scale). The color distribution shows a general overestima-
tion of ksat in SOM-rich soils (warm colors systematically
above the 1 : 1 line), which may indicate that the fixed value

of 1× 10−4 m s−1 is too high, or that the organic fraction
is overestimated for these conditions. Our approach yields
improved agreement, with a higher r2 of 0.21 (0.46 on the
log-transformed scale), a lower c-rmse, and a better repre-
sentation of the ksat distribution across the SOM gradient. Al-
though performance remains limited for mineral soils, due to
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Figure 7. As in Fig. 6, but for the dataset of Gupta et al. (2021) with four matric potentials at −1, −10, −33, and −1500 kPa.

reliance on the Cosby et al. (1984) PTF for the mineral com-
ponent, results seem to show non negligible improvements
for soils with higher SOM content.

This is further illustrated in Fig. 8d, which focuses on soils
with SOC content above 8 % (corresponding to SOM content
greater than 16 %), where organic matter strongly influences
ksat. Differences between the parameterizations are more pro-
nounced in this subset. The mineral-only approach (green)
shows no correlation with observations (r2

= 0.00, 0.02 on
the log scale), and systematically underestimates ksat. The
SOC-based method of Lawrence and Slater (2008) (blue)
has limited predictive power (r2

= 0.19, 0.13 on the log
scale) and overestimates low observed values. Our formu-

lation (red) produces a slope closer to the 1 : 1 line, a smaller
bias, and a higher coefficient of determination (r2

= 0.25,
0.42 on the log scale), indicating improved consistency with
the measurements.

5 Discussion

The evaluation presented in the previous section confirms
the internal consistency and predictive skill of the proposed
framework across a wide range of soil types and conditions.
We will now move on to a more general discussion of its
conceptual implications, beginning with an examination of
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Figure 8. Comparison between predicted and observed ksat using the dataset of Gupta et al. (2021). Predictions are based on (a) the mineral
soil PTF from Cosby et al. (1984), (b) the SOC-based approach of Lawrence and Slater (2008), and (c) the process-based approach proposed
in this study. Colors indicate SOM content. Each panel includes the least-squares regression (blue line), the 1 : 1 reference line (black dashed),
the regression equation, the c-rmse, the bias, and the r2 score calculated in linear and log-transformed space (in parentheses). Panel (d) shows
the same comparison restricted to samples with SOC content≥ 8%. Results are displayed in green for Cosby et al. (1984), blue for Lawrence
and Slater (2008), and red for this study.

Table 1, which summarizes the key computation steps used
to derive the “true” soil organic volumetric fraction and the
associated physical properties of soil from a limited set of
input data. These input data are the SOC mass fraction, the
dry bulk density of the fine earth, and the mass fractions of
clay, sand, and silt. These data are commonly available in
widely used global and regional soil databases such as Soil-
Grids (Poggio et al., 2021) or HWSD (FAO, 2012; FAO and
IIASA, 2023). This framework can be readily implemented
without requiring additional measurements, making it com-
patible with the simple data infrastructure currently used by
most regional and global LSMs.

In contrast to existing SOC-based parameterizations that
rely on fixed reference densities, the proposed formula-
tion derives fvom from fundamental mass-volume relation-
ships using soil mixture theory. This physically consistent
approach ensures dimensional coherence and directly links
standard input variables (SOC, bulk density, texture) to key
volumetric properties such as porosity and hydraulic or ther-
mal parameters. Its implementation is detailed step by step in

Table 1. This conceptual clarification helps prevent structural
inconsistencies in LSMs by ensuring a physically grounded
representation of soil organic matter properties. However, as
illustrated in Fig. 3c, this physically consistent formulation
also makes the estimation of fvom sensitive to the quality of
input data. In particular, uncertainties in SOC, bulk density,
or mineral fraction can propagate through the computation
steps. One limitation of this approach lies also in the fact
that key parameters, such as the SOC-to-SOM conversion
and ρsms , are not directly observed but are instead estimated
using a texture-based PTF model (Ruehlmann, 2020). Al-
though widely used in LSMs, such PTF approximations may
reduce accuracy in soils with unusual mineralogical proper-
ties. Regardless, the improvements offered by the proposed
framework also hold when applied to observational data from
natural soils. As shown in Fig. 4, our framework reproduces
measured porosity with high accuracy, whereas SOC-based
or mineral-only formulations lead to systematic biases, es-
pecially in organic-rich soils. In addition, ρbom derived from
the soil mixture theory are consistent with values reported
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for peat soils, further supporting the physical realism of the
proposed approach. This consistency also reflects the ability
of our framework to distinguish soils that have similar SOM
content but differ in bulk density, by explicitly accounting
for structural variability (Fig. 5). Such differentiation is not
captured in previous SOC-based formulations used in LSMs.

This physical behavior of the proposed framework gives
further confidence in the choice to use ρbom as the main proxy
for describing the hydrodynamic parameters of the SOM do-
main (second section of Table 1). While all the proposed
PTFs are based on robust observational datasets and scien-
tifically sound protocols, they rely on measurements taken in
peat materials. The assumption that ρbom can be assimilated
to the bulk density of peats governing theirs hydraulic prop-
erties is a strong, yet physically justified choice. As a soil
becomes increasingly organic, its SOM content increases, its
bulk density ρb decreases, and ρbom tends to converge toward
ρb. This behavior, illustrated in Fig. 5c, supports the validity
of this assumption, especially for SOM-rich soils where the
organic domain dominates the fine-earth fraction. The results
presented in Figs. 6 and 7 provide also further support for the
use of ρbom as the main proxy for describing SOM hydrody-
namic behavior. When wom

sat , bom, and ψom
sat are reconstructed

using our framework and applied to simulate soil water re-
tention, the resulting curves show improved agreement with
observations compared to SOC-based or mineral-only for-
mulations. This improvement is consistent across both SOM-
poor and SOM-rich soils, indicating that the underlying as-
sumption linking ρbom to the structural state of the organic
domain holds across a wide range of soil conditions. How-
ever, our approach is most effective at low to moderate soil
water suctions. The gains in performance are strongest in the
wet to intermediate moisture range, while differences tend
to diminish near the wilting point. This behavior is consis-
tent with several binary mixture experiments which show that
differences in water retention between mineral-organic mix-
tures are more evident under low to moderate tension, but
tend to converge under high suction (Willaredt et al., 2023).
This perhaps reflects the dominance of mineral pore struc-
tures in controlling residual water content, regardless of or-
ganic composition, or a shift from macropore-dominated re-
tention to finer pore contributions, leading to a convergence
of retention behavior across soil types at high matric poten-
tials.

While the proposed framework clearly improves the sim-
ulation of soil water retention across a broad range of SOM
contents, its performance for predicting ksat is more nuanced
(Fig. 8). As reported by Gupta et al. (2021), ksat is intrin-
sically difficult to model with PTFs, given its high spatial
variability and strong dependence on measurement condi-
tions, soil structure, and climatic context. In addition, many
ksat values in the SoilKsatDB lack critical metadata such
as soil structure, land use, or vegetation cover, despite their
known influence on saturated conductivity. The database also
includes measurements taken under diverse and sometimes

undocumented conditions, with limited information on sam-
pling depth or saturation status. Combined with the fact that
ksat can vary by several orders of magnitude within a sin-
gle site, these limitations introduce substantial uncertainty in
model calibration and evaluation. Their work shows that even
advanced machine learning approaches suffer from limited
transferability across regions and measurement protocols,
with substantial drops in predictive accuracy when mov-
ing from temperate to tropical settings or from lab to field
observations. Furthermore, as emphasized by Morris et al.
(2019, 2022) for peat soils, proxies such as bulk density and
depth are not sufficient to capture the entire variability of
ksat. Accurate prediction requires accounting for additional
factors like the degree of humification or even the specific
composition of the SOM that are currently beyond the scope
of global or regional LSMs. This highlights an inherent lim-
itation in current modeling capabilities. Nonetheless, when
focusing on the most SOC-rich soils in the dataset of Gupta
et al. (2021), our approach does show a modest improve-
ment in the prediction of ksat compared to the other methods
(Fig. 8d). These results confirm that explicitly incorporat-
ing ρbom and depth into ksat predictions for organic-rich soils
can provide added value. While our approach offers a more
physical basis for modeling ksat, its predictive performance
remains constrained by the limitations of available data and
the structural complexity of the soil.

The third section of Table 1 addresses the choice of mix-
ing rules used to compute the bulk soil properties from the
mineral and organic components. For porosity, there is no
ambiguity. The application of soil mixture theory leads di-
rectly to a volume-weighted arithmetic mean, which is both
physically justified and analytically derived. In contrast, for
the Brooks and Corey (1964) parameters b and ψsat, there
is no theoretical or empirical evidence favoring a nonlinear
or more complex mixing approach. As already mentioned
in Sect. 4.3, to investigate this, we analyzed water retention
curves of each sample from the binary mineral-organic mix-
ture datasets of Walczak et al. (2002) and Willaredt et al.
(2023). The fitted values of b and ψsat for each mixture
showed no consistent trend or deviation that would support
an alternative to arithmetic averaging. In the absence of a
clear nonlinear relationship, the arithmetic mean remains the
most computational time-efficient, parsimonious and trans-
parent choice for these parameters. A geometric mean for-
mulation is adopted for ksat. This choice is supported by both
theoretical and empirical studies. Prudic (1991) proposed the
geometric mean as a realistic approximation for layered or
structured soils with high contrasts in hydraulic properties.
Stepanyants and Teodorovich (2003) further demonstrated,
using stochastic models, that the geometric mean emerges
naturally as the effective conductivity of randomly heteroge-
neous porous media. Paleologos et al. (1996) shows that, in
statistically isotropic and unstructured heterogeneous media,
the effective saturated hydraulic conductivity tends toward
the geometric mean of the local conductivities. Assuming
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that mineral-organic soils present such random distributions
of hydraulic contrasts, this supports the use of a geometric
mean formulation in our framework. More recent experimen-
tal work on binary mixtures by Sakaki and Smits (2015) and
Rojas et al. (2022) also supports this choice. In both cases,
ksat varies non-linearly with the proportion of fine or low-
conductivity material, often decreasing exponentially with
increasing content. While no single mixing rule captures all
configurations, we assume that the geometric mean offers a
physically consistent approximation for combining mineral
and organic domains in soils, especially when their conduc-
tivities differ by several orders of magnitude.

The selection of mixing rules used to compute soil thermal
properties can also be discussed, with the exception of volu-
metric heat capacity, for which we have shown that starting
from its physical definition and applying the soil mixture the-
ory leads analytically to an arithmetic mixing rule, similar
to what is found for porosity. In contrast, there is no ana-
lytical justification for using a specific mixing rule to com-
pute the dry thermal conductivity (λdry). However, experi-
mental data suggest that the arithmetic mean as proposed by
Lawrence and Slater (2008) is not appropriate in this case.
In particular, the measurements from Arkhangelskaya and
Telyatnikova (2023) clearly demonstrate that dry conductiv-
ity does not vary linearly with the organic volumetric frac-
tion (Fig. 3c). This means that a nonlinear mixing approach
is needed. As proposed by Decharme et al. (2016), a geo-
metric mean provides a simple option that gives reasonable
results. Still, we observed that a geo-harmonic mean, which
was developed to represent transport through heterogeneous
porous materials (Nielson and Rogers, 1982), performs even
better in this context. It more accurately captures the decline
in conductivity as the proportion of organic matter increases.
That said, this remains a modeling choice. More datasets of
the same type would be needed to confirm whether this mix-
ing rule should be preferred more generally. Regarding the
thermal conductivity of the soil matrix (λs), even though it is
not addressed in this study, several lines of evidence from
the literature support the use of the geometric mean. Pre-
vious studies, including those by Johansen (1977), Farouki
(1981), and Peters-Lidard et al. (1998), have shown that this
approach provides consistent and physically reasonable esti-
mates across a wide range of soil types.

Unfortunately, the full proposed framework cannot be di-
rectly applied in all LSMs, as some of them simulate soil
water retention using the van Genuchten (1980) model rather
than the Brooks and Corey (1964) formulation. Neverthe-
less, although the hydrological component is specifically de-
signed for Brooks and Corey-based LSMs, its core princi-
ples can also be adapted to models that rely on the van
Genuchten (1980) formulation. In particular, the estimation
of the true SOM volumetric fraction and the computation
of thermal properties remain independent of the retention
model and can be directly applied. For the van Genuchten
(1980) model parameters, an analogous procedure could be

developed. Mineral-only texture-based PTFs calibrated for
the van Genuchten (1980) model, such as those of Carsel
and Parrish (1988), may be combined with the same mixing
rules used in this study for Brooks and Corey parameters.
This hypothesis was tested using the evaluation framework
developed in this study and applied to porosity predictions
(Fig. 9). Results show that combining our framework with a
mineral PTF such as Carsel and Parrish (1988), in its con-
tinuous form (Decharme et al., 2011) designed for the van
Genuchten (1980) model, yields similar or even better per-
formance than using our framework with the mineral PTF
of Cosby et al. (1984) developed for the Brooks and Corey
(1964) model (Fig. 9 versus Fig. 4). For other soil hydrody-
namic parameters, the evaluation framework used here could
be readily extended to test equivalent or alternative mixing
strategies tailored to the van Genuchten (1980) model, as all
required input data are readily available.

An additional advantage in the van Genuchten (1980)
context is that several pedotransfer functions already exist,
which, in addition to soil texture, incorporate either bulk den-
sity, SOC/SOM content, or both (e.g., Wösten et al., 1999;
Weynants et al., 2009; Tóth et al., 2015). This hypothesis
is also tested in Fig. 9. The PTF of Weynants et al. (2009),
which accounts for bulk density effects, captures part of the
observed trend but fails to reproduce the full range of poros-
ity values. The PTF of Wösten et al. (1999), which incor-
porates both bulk density and SOM content in addition to
texture, provides improved results. However, it does not out-
perform our framework combined with the mineral PTF of
Carsel and Parrish (1988). In particular, the Wösten et al.
(1999) PTF tends to systematically underestimate porosity,
whatever the dataset used. In the SOM-rich soils of the Kris-
tensen et al. (2019) dataset, predicted porosity values show
large dispersion compared to observations, suggesting that
this PTF is likely not suited for organic-rich or peat soils. We
also extended the comparison to soil water retention (Figs. S4
and S5) and saturated hydraulic conductivity (Fig. S6), for
which the mixture-theory approach provided equal or better
agreement with observations than existing PTFs. The Wey-
nants PTF performed poorly for both variables, while the
Wösten PTF gave more promising results but with two clear
limitations: a large dispersion at high SOM contents, as also
noted for porosity (Fig. 9), and a systematic overestimation
of saturated conductivity. These results highlight that, while
promising, the continuous PTF of Wösten et al. (1999) would
likely require recalibration using for instance the datasets
presented in this study.

However, one may argue that the well-documented inter-
actions between organic and mineral components are not
captured by mixture theory and would only be represented by
PTFs. Numerous studies (e.g., Stewart et al., 1970; Adams,
1973; Raats, 1987; Rühlmann et al., 2006; Reynolds et al.,
2020) have demonstrated that soil bulk density, particle den-
sity, and porosity can be expressed as the sum of the effec-
tive volumes of mineral and organic domains, highlighting
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Figure 9. Comparison of observed and predicted soil porosity across three in situ datasets, as in Fig. 4, but using PTFs designed for the van
Genuchten (1980) model. Each row corresponds to a different prediction method. The first row uses the proposed framework combined with
the mineral-based PTF of Carsel and Parrish (1988) in its continuous form (Decharme et al., 2011). The second row applies the continuous
PTF of Weynants et al. (2009), which includes bulk density effects. The third row shows results from the continuous PTF of Wösten et al.
(1999), which includes both bulk density and SOM content as predictors.

that these interactions are indeed included in mixture the-
ory. This theory provides mathematical formulations con-
ceptually comparable to PTFs, which rely on empirical re-
gressions between texture, organic matter, and hydraulic
properties, while mixture theory captures these relationships
through conservation-based analytical expressions. The two
approaches should therefore be considered complementary
rather than exclusive. Moreover, for porosity our mixture-
theory approach provides a closer match to observations than
existing PTFs (Fig. 9), and similar behavior is found for re-
tention and saturated conductivity (Figs. S4 to S6), indicat-
ing that mixture theory can serve as a useful complement or
alternative to existing PTFs. For thermal properties, the situ-
ation differs. Conduction models (Johansen, 1975; De Vries,

1974; Balland and Arp, 2005) require the volumetric frac-
tions of each soil constituent, which makes mixture theory
not only suitable but indispensable in this domain.

6 Conclusions

The aim of this study was to propose a physically consis-
tent framework to represent the influence of soil organic mat-
ter on key physical properties required in LSMs. This is the
case for instance for the Community Land Model (CLM,
Lawrence et al., 2019) of the National Center for Atmo-
spheric Research (NCAR), the Noah-Multiparameterization
model (Noah-MP, Niu et al., 2011) of the National Centers
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for Environmental Prediction (NCEP), the Joint UK Land
Environment Simulator model (JULE, Best et al., 2011) of
the met-Office, or the Interaction Soil Biosphere Atmosphere
model (ISBA, Decharme et al., 2019) of Météo-France. In
these models, the volumetric fraction of organic matter (fvom )
is a critical quantity used to estimate soil porosity, thermal
conductivity, heat capacity, and hydrodynamic parameters.
Since global databases typically provide SOC content rather
than total SOM, many LSMs rely on empirical formulations
derived from the pioneer work of Lawrence and Slater (2008)
to infer fvom from SOC content only. Although these formu-
lations (Eqs. 1, 2 and 3) are mathematically valid, they are
physically flawed. The numerator is expressed in mass of car-
bon per unit soil volume, whereas the denominator represents
the mass of organic matter per unit soil volume. This subtle
confusion between SOC and SOM contents by weight leads
to a fundamental misrepresentation of soil composition.

To address this issue, we proposed a framework that ex-
plicitly accounts for the volumetric composition of the soil as
mixture of organic and mineral components. fvom is derived
from its mass content, the dry bulk density, and the bulk den-
sity of the organic matter component. This latter is not empir-
ically prescribed, but computed from the soil mixture theory
as a function of the total soil bulk density and the mineral
bulk density, both of which can be estimated from standard
inputs or pedotransfer functions. In summary, the derivation
of fvom from the soil mixture theory ensures internal consis-
tency between SOC, SOM, and volumetric properties. The
results of this study show that the proposed formulation is
not only theoretically consistent, but also performs reliably
across a wide range of real-world conditions. It yields im-
proved agreement with in situ measurements of soil poros-
ity and water retention, especially in SOM-rich soils where
previous formulations tend to produce systematic biases. A
key advantage of the proposed framework is that it applies
a unified and physically consistent treatment across porosity,
hydraulic, and thermal properties, using a single theoretical
basis. Moreover, it does not rely on any tuning or soil-specific
calibration parameters.

Based on this volumetric formulation, we derived a phys-
ically consistent scheme to compute key soil properties as
a mixture of mineral and organic domains. For the Brooks
and Corey (1964) model, the hydrodynamic parameters of
the organic matter domain are predicted from the apparent
bulk density of SOM, with the saturated hydraulic conduc-
tivity also depending on depth. These parameters are then
combined with standard mineral soil estimates using arith-
metic or geometric mixing rules. For thermal properties, the
framework provides physically consistent expressions based
on mass-volume relationships for the volumetric heat capac-
ity, while experimental data support non linear mixing for the
dry thermal conductivity. Indeed, the choice of mixing rules
is guided by theoretical considerations and supported by ex-
perimental data, with arithmetic averaging used for poros-
ity and heat capacity, and geometric or geo-harmonic means

for conductivity parameters. Importantly, the formulation is
designed to work with standard soil inputs, including SOC
content, texture, and dry bulk density, which are available in
global databases such as SoilGrids (Poggio et al., 2021) or
HWSD (FAO, 2012; FAO and IIASA, 2023). This makes the
framework directly applicable in LSMs at regional or global
scales. This fact is supported by the study results. Indeed,
the framework was evaluated using both experimental binary
mixtures and in situ datasets. It shows consistent improve-
ments over existing approaches for predicting soil porosity
and water retention curves across a wide range of SOM con-
tents. For saturated hydraulic conductivity, performance re-
mains limited overall, but non negligible improvements are
observed in SOM-rich soils.

While the proposed parameterizations were developed for
the Brooks and Corey (1964) model, the underlying struc-
ture of the framework can be extended to the van Genuchten
(1980) formulation. As shown in the discussion, applying the
same mixing principles to van Genuchten-based PTFs yields
comparable or even improved results, particularly when com-
bined with mineral PTFs such as that of Carsel and Parrish
(1988). In contrast, continuous PTFs directly calibrated for
van Genuchten parameters, such as those of Wösten et al.
(1999), may require recalibration, especially for organic-rich
or peat soils where predictions tend to show systematic bi-
ases or larger dispersion. Further development is needed to
establish a framework for the van Genuchten (1980) model
with the same level of physical consistency and robustness
demonstrated here for the Brooks and Corey formulation.
This effort could be facilitated by the collection of observa-
tional datasets compiled in this study, which provide a solid
basis for testing and calibrating mixing schemes across a
wide range of soil conditions.

The next step will be addressed in a companion paper,
where the proposed framework is implemented and evalu-
ated within a global LSM. While the improvements in phys-
ical consistency are clear, the overall impact on model out-
puts could remain moderate. This hypothesis is supported by
several factors. First, outside the near-saturation range, the
previous and proposed formulations produce similar water
retention behavior. Since many soils rarely reach full satu-
ration, especially at large scales, the differences in hydro-
dynamic properties may have limited influence on simulated
fluxes. Second, although previous approaches produce biased
estimates of the organic volumetric fraction, they still capture
part of the thermal insulating effect of SOM on soil temper-
ature. Third, compensating errors in physically inconsistent
formulations can, in some cases, lead to reasonable results
despite conceptual flaws. Indeed, results obtained with bi-
nary mixture data show that the use of a fixed bulk density to-
gether with SOC-based estimates leads to partial error com-
pensation, resulting in seemingly acceptable predictions of
the organic volumetric fraction at intermediate SOM levels.

Despite this, results from both the previous and proposed
formalisms diverge more strongly in SOM-rich soils, where
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their limitations become more apparent. This highlights the
importance of accurately representing the volumetric fraction
and intrinsic properties of SOM in soils with high organic
matter content. More generally, regardless of SOM content,
the proposed framework offers a physically grounded and in-
ternally consistent solution to a longstanding issue in LSMs.
It provides a robust method for deriving the volumetric frac-
tion and intrinsic properties of SOM from standard soil in-
puts. Now that a physically robust framework is available
and requires no additional data or calibration to improve
the representation of soil organic matter physical properties
in LSMs, maintaining inconsistent parameterisations is no
longer justifiable. The next step will be to test its integra-
tion in a full LSM in order to assess its added value in realis-
tic land-atmosphere simulations. In the companion paper, the
proposed approach will be implemented into the ISBA LSM
(Decharme et al., 2019; Decharme and Colin, 2025). This
model provides a suitable platform for global-scale testing,
allowing the framework to be evaluated under a wide range of
climate and soil conditions. Input data for soil texture, SOC
content, and dry bulk density will be derived from the Soil-
Grids database, ensuring compatibility with standard global
datasets. This implementation will make it possible to assess
not only the impact on individual soil properties, but also on
land surface fluxes and their coupling with the land surface
hydrology.

This next step will provide a clear baseline for land-surface
physics and a necessary preliminary stage before attempting
any more complex prognostic coupling to a dynamic soil car-
bon scheme, which will in turn deserve specific considera-
tion. The framework proposed in this study, which assumes
a time-constant bulk soil density to determine the bulk den-
sity of the organic domain, is not, in its current form, directly
applicable in LSMs that would couple it with an interactive
simulation of the soil carbon cycle. Indeed, attempting to dy-
namically couple the organic carbon mass simulated by an
LSM with our diagnostic relations between ρb, ρbom and fvom

raises questions that are outside the scope of this work. On
the one hand, if such a coupling were attempted, and in order
to avoid any potential circularity, a single structural variable
(e.g. ρb or ρbom ) should be prognostic, with the other diag-
nosed using the mixing relations presented here. On the other
hand, the desirability of such a coupling can be questioned
given the structural and parametric uncertainties of current
soil carbon schemes. A tight coupling with soil physics could
add uncertainty to the simulated physical state of the land
surface and generate undesired feedbacks on the carbon cy-
cle. These points should be studied specifically before any
coupling is proposed. Nevertheless, by providing a consis-
tent and physically based link between organic and mineral
components of the soil, the present framework offers a solid
basis for future developments toward more integrated repre-
sentations of soil processes in land surface models.

Code availability. All Python 3-compatible scripts used in this
study, including the implementation of the proposed framework,
data processing routines, and figure generation codes, are publicly
available at https://doi.org/10.5281/zenodo.15837794 (Decharme,
2025).

Data availability. This study uses seven datasets. The first four are
directly available in raw numerical form in the original publications
as detailed below: (1) the sand-peat binary mixtures with porosity
measurements of Walczak et al. (2002); (2) the compost-brick mix-
tures used to model Technosols of Willaredt and Nehls (2021); (3)
the sand-peat mixtures with thermal diffusivity data of Arkhangel-
skaya and Telyatnikova (2023); (4) the Nordic agricultural soil
profiles with bulk density and texture data of Keller and Håkans-
son (2010); (5) the Russian soil profiles with thermal and struc-
tural measurements of Arkhangel’skaya (2009). The remaining two
datasets are available from public data servers: (6) the harmonized
European profile database (SPADE14) of Kristensen et al. (2019),
available at https://doi.org/10.5194/soil-5-289-2019 and from the
EU Soil Data Centre (ESDAC) at https://esdac.jrc.ec.europa.
eu/content/spade-14 (last access: 26 November 2025); (7) the
“sol_hydro.pnts_horizons” version of the global SoilK-
satDB for saturated hydraulic conductivity of Gupta et al. (2020),
accessible via Zenodo at https://doi.org/10.5281/zenodo.4541586.
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