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Abstract. Regional inverse analyses of atmospheric trace
gas observations quantify gridded two-dimensional surface
fluxes by fitting the observations to simulated concentrations
from a transport model, usually by Bayesian optimization
regularized by a gridded prior flux estimate. Regional inver-
sions rely on the specification of background concentrations
given by the boundary conditions (BCs) at the edges of the
inversion domain, but biases in the BCs propagate to biases in
the optimized fluxes. We develop a theoretical framework to
explain how errors in the BCs influence the optimized fluxes
as a function of the prior and observing system error statis-
tics and of model transport. We derive a preview metric to
estimate the BC-induced errors before conducting an inver-
sion to support domain specification and a diagnostic metric
to accurately quantify these errors after solving the inversion.
We compare two methods to correct BC biases as part of an
inversion, either directly by optimizing BC concentrations
(boundary method) or indirectly by expanding the domain
and correcting grid cell fluxes outside the region of interest
(buffer method). We demonstrate that the boundary method
is generally more accurate, physically grounded, and compu-
tationally tractable.

1 Introduction

Regional inversions of observed atmospheric concentrations
of long-lived trace gases quantify surface fluxes by fitting
simulated concentrations from a transport model to the ob-
servations assuming boundary conditions (BCs) at the edge
of the inversion domain. Such analyses can improve knowl-
edge of fluxes and their trends on local to continental scales at
high spatiotemporal resolution while avoiding the need to ac-
curately quantify fluxes and concentrations globally (Sargent
et al., 2021; Nesser et al., 2024; Byrne et al., 2024). However,
BCs are often uncertain and biases in the BCs propagate to
the inferred fluxes. Here we examine the problem of how BC
biases affect regional inversions of greenhouse gas fluxes and
develop a framework to predict and correct the influence of
these biases.

BCs can be provided by coarse-resolution global simu-
lations (Göckede et al., 2010; Wecht et al., 2014), by sta-
tistical or meteorological analysis of trace gas observations
(Lauvaux et al., 2016; Balashov et al., 2020), or by combin-
ing simulated and observed concentrations (Sargent et al.,
2018; Estrada et al., 2025). The information used to con-
strain BCs is often spatiotemporally sparse and may be bi-
ased. Even small BC biases can cause large biases in the
inferred fluxes (Göckede et al., 2010; Lauvaux et al., 2012;
Karion et al., 2021). BC biases are particularly critical for re-
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gional inverse analyses of long-lived gases such as carbon
dioxide and methane where concentrations and variability
can depend significantly on inflow.

Regional inversions generally infer gridded surface fluxes
(the state vector) by minimizing a Bayesian cost function
that accounts for the error statistics of the observing sys-
tem (including the observations and transport model) and of
the prior flux estimate used to regularize the solution. BC
biases may be corrected as part of the inversion by optimiz-
ing BC concentrations as part of the state vector (Lauvaux
et al., 2012; Wecht et al., 2014), by allowing buffer grid cells
at the edge of the domain to absorb BC biases (Shen et al.,
2021; Varon et al., 2022), or by combining these approaches
(Estrada et al., 2025).

We present here a theoretical framework to predict, diag-
nose, and correct the influence of BC biases on the poste-
rior gridded surface fluxes generated by a regional inversion
(Sect. 2). We consider an inert trace gas with no sources
or sinks within the inversion domain other than the surface
fluxes. We demonstrate this framework with increasingly
complex one- and two-dimensional simulation experiments
that invert pseudo-observations of a long-lived trace gas gen-
erated using known fluxes and BCs (Sects. 3 and 4, respec-
tively). Throughout, we compare different methods to correct
BC biases within inversions and present metrics that estimate
the effect of BC biases.

2 Analytical solution for the effect of boundary
condition errors

We describe the analytical inverse solution, which we use to
derive an exact solution (diagnostic) for the sensitivity of the
posterior fluxes to a BC bias (Sect. 2.1). We apply this diag-
nostic to a simple one-dimensional transport model to deter-
mine how these errors depend on constant inversion param-
eters (Sect. 2.2). We then generalize the results using a two-
box model applicable to two-dimensional inversions with
variable inversion parameters. We use this two-box model to
derive a preview metric that predicts the sensitivity of poste-
rior fluxes to BC biases for a given inversion configuration,
allowing the user to improve inversion parameters as needed
before solving the inversion (Sect. 2.3).

2.1 Diagnostic equation

Given an n-dimensional state vector of gridded fluxes x and
an m-dimensional vector of observations y, both with nor-
mally distributed errors, the optimal flux estimate x̂ is ob-
tained by minimizing a Bayesian cost function

J (x)=(x− xA)
TS−1

A (x− xA)

+ (y−F(x))TS−1
O (y−F(x)) ,

(1)

where xA and SA are the prior flux estimate and error covari-
ance matrix, respectively, SO is the observing system error

covariance matrix representing uncertainties in the observa-
tions and the transport model, and F is the transport model
(Brasseur and Jacob, 2017). We assume as is standard that the
transport model initial conditions are given by a sufficiently
long spin-up simulation driven by the BCs so that the initial
conditions are consistent with the BCs. If the transport model
is linear, then F(x)=Kx+c where K= ∂F/∂x is the Jaco-
bian matrix. The vector c represents the model background
defined by the transport of the BCs to the same spatiotem-
poral locations as the observations. If the BC concentrations
are optimized as part of the inversion, information about the
background is instead contained in the state vector and in the
columns of the Jacobian matrix so that c = 0.

We can write the analytical solution for the cost function
minimum that yields the optimal (posterior) flux estimate x̂

as

x̂ = xA+G(y− (KxA+ c)) (2)

where

G=
∂x̂

∂y
=

(
KTS−1

O K+S−1
A

)−1
KTS−1

O (3)

is the gain matrix that represents the sensitivity of the pos-
terior fluxes to the observations. We can separate the model-
observation difference into the contributions from the errors
in the prior fluxes relative to the true fluxes (xT) and the er-
rors in the observing system (ε = y− (KxT+ c)) so that

x̂ = xA+A(xT− xA)+Gε (4)

where A= ∂x̂/∂x =GK is the averaging kernel matrix, a
measure of inversion information content that gives the sen-
sitivity of the posterior fluxes to the true fluxes. The trace of
the averaging kernel matrix gives the degrees of freedom for
signal (DOFS), the number of independent pieces of infor-
mation quantified by the inversion (Rodgers, 2000).

The posterior error induced by a BC error (εC) is derived
by comparing the posterior fluxes produced with the true BC
(cT) to an inversion with the BC error (c = cT+ εC):

1x̂ =−GεC . (5)

We define Eq. (5) as the diagnostic that estimates the ef-
fect of BC bias on the posterior fluxes given an explicitly
constructed Jacobian matrix and assumed BC error statistics,
which can be estimated from observed variability of back-
ground concentrations. BC-induced posterior errors are con-
trolled by the gain matrix, which is a function of the observ-
ing system errors, prior flux errors, and transport as repre-
sented by the Jacobian matrix.

2.2 One-dimensional model

To better understand how observing system errors, prior
flux errors, and transport determine the influence of BC bi-
ases on posterior flux estimates (Eq. 5), we consider a one-
dimensional horizontal transport model with constant wind
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Figure 1. One-dimensional and two-box models of a passive trace gas to quantify the influence of BCs on inverse analyses. The one-
dimensional model (a) simulates the concentrations of an inert trace gas over n grid cells of length L given a prescribed BC c, fluxes
x = [x1,x2, . . .,xn]

T, and advection with wind speed U . The two-box model (c) generalizes an inverse analysis optimizing fluxes over a
two-dimensional grid (b) where all grid cells have a representative grid cell length L given the wind direction. Each grid cell in the domain
is reduced to a two-box model composed of a cluster of the j upwind grid cells (index j0) and the grid cell itself (index j ). In all models, the
inversion is solved with the averaged observation yi over each grid cell i = {1, . . .,n} with corresponding error standard deviation σO,i . The
inversion is regularized by the prior flux xA,i in each grid cell with corresponding prior error standard deviation σA,i .

speed U . Figure 1a depicts this model for n grid cells of
length L. The Jacobian matrix for this transport model is
derived through steady-state mass balance (Sect. S1 in the
Supplement) to be lower diagonal with constant values given
by

τ = ατ ′ (6)

where α converts between the flux units and the observa-
tion units and τ ′ is the grid cell residence time calculated as
τ ′ = L/U . The trace gas sources in the model are the BC c

and fluxes x = [x1,x2, . . .,xn]
T. We assume that them obser-

vations are uniformly distributed in space and time with con-
stant uncorrelated error variance σ 2

O. We solve the inversion
(Eq. 2) using the averaged observations in each grid cell so
that the observing system error covariance matrix SO is diag-
onal with constant error variances σ 2

O/mg where mg =m/n

is the number of observations in each grid cell. We assume
constant prior fluxes xA and diagonal prior error covariance
matrix SA with constant error variances σ 2

A.

We define the dimensionless, domain-average information
ratio R of the prior error variances in concentration units to
the observing system error variances

R =mg

(
τσA

σO

)2

. (7)

The information ratio increases with decreasing observing
system error standard deviation, increasing prior error stan-
dard deviation, and increasing residence time so that the ob-
servations are more sensitive to the fluxes relative to the BC.
Large values of the information ratio (R� 1) represent the
case where the prior errors are larger than the observing
system errors so that the posterior fluxes are strongly con-
strained by the observations (observation-rich). Small val-
ues (R� 1) correspond to inversions that are limited by
the number or uncertainty of the observations (observation-
limited), including the common case of spatially heteroge-
neous observations. Consider an illustrative inversion of a
methane-like trace gas with τ = 1.4h (corresponding to U =
5ms−1 and L= 25 km), σA = 12.5ppbh−1 (corresponding
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to 50 % uncertainty on relatively large prior emissions of
25 ppb h−1), and σO = 10ppb. In this case, an average of
mg = 200 observations per grid cell are needed to achieve
R = 1. The information ratio for an inversion can be in-
creased by increasing the inversion duration to include more
observations or by coarsening the resolution of the gridded
fluxes optimized by the inversion.

The effect of a constant BC bias εC on the posterior fluxes
is calculated as a function of the information ratio with the di-
agnostic (Eq. 5). We derive (Sect. S2 in the Supplement) the
BC-induced error in the limiting cases of inversions that are
observation-limited (R� 1) or observation-rich (R� 1):

1x̂j =

{
−
(
τ−1εC

)
(n− j + 1)R , R� 1

−
(
τ−1εC

)
R−j+1 , R� 1

,

j = {1, . . .,n} .

(8)

Figure 2 shows the BC-induced error in these limiting
cases (panel a) and for intermediate values of the informa-
tion ratio calculated using Eq. (5) (panel b) for an illus-
trative inversion with n= 10, εC = 10 ppb, and τ = 1.4 h
corresponding to U = 5ms−1 and L= 25km. In all cases,
BC-induced errors decrease across the domain with the rate
of decay bounded by the limiting cases in Eq. (8). In the
observation-limited case, the BC-induced errors decrease lin-
early with the distance from the upwind boundary. The total
BC-induced error is relatively small because of the strong
constraint from the prior estimate. As the information ra-
tio increases from R� 1, BC-induced errors increase be-
cause of the decreased prior constraint. The errors increase
the most in the most upwind grid cells. As the information
ratio approaches one, the total error converges to the total
flux needed to explain the error in the BC (τ−1εC). Further
increases in the observational constraint decrease the length
scale over which the BC bias influences the posterior solu-
tion but not the total BC-induced error. In the observation-
rich case, the BC-induced errors decay geometrically as the
distance from the upwind boundary increases so that the BC-
induced errors are limited to the most upwind grid cell.

We also consider the effect of inverse methods to decrease
BC biases within the constant parameter, one-dimensional
inverse model. We compare the effect of optimizing the BC
concentrations (boundary method) or fluxes outside of the
domain of interest (buffer method). The boundary method
optimizes one or more terms corresponding to BC concen-
trations along with the domain fluxes (Lauvaux et al., 2012;
Wecht et al., 2014; Hancock et al., 2025). The buffer method
expands the inversion domain to optimize fluxes in outlying
grid cells, which are allowed to vary unphysically to absorb
BC biases and are excluded from the final analysis (Shen
et al., 2021; Varon et al., 2022). Both approaches increase
the state vector dimension, thereby altering the Jacobian ma-
trix and prior error covariance matrix. The buffer method
also applies large prior error standard deviations to the buffer

Figure 2. BC-induced error on posterior surface fluxes as a func-
tion of the information ratio R (Eq. 7) for a one-dimensional atmo-
spheric trace gas inversion over ten grid cells with constant parame-
ters. The inversions assume τ = 1.4h corresponding toU = 5ms−1

and L= 25. The solid lines (b) represent the error induced by a
10 ppb BC bias relative to the prior emissions of 25 ppbh−1 in each
grid cell (thin lines) and the total error integrated across the full do-
main (thick black line). The dashed line corresponds to an informa-
tion ratio of 1, while the dotted lines show representative values for
which the limiting cases described in Eq. (8) hold. The distribution
of the BC-induced errors across the domain for these representative
values is also shown (a).

grid cells, often by aggregating the buffer grid cells into large
clusters.

We derive the conditions under which the boundary and
buffer methods are equivalent for an inversion of a single grid
cell. For the boundary method, we use a BC prior error stan-
dard deviation equal to the constant BC bias εC and update
the Jacobian matrix to include the sensitivity of the grid cell
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average observation to the BC. For the buffer method, we add
a buffer grid cell and scale its prior error standard deviation
by a factor of p. We assume observations are equally dis-
tributed over both grid cells. We solve both inversions. The
posterior fluxes are equivalent when

p =
εC

τσA
√
R+ 2

. (9)

Assuming steady state and knowledge of the domain wind
speed, the buffer scale factor p can be chosen so that buffer
and boundary methods perform equivalently. The scale fac-
tor goes to infinity for very small values of the information
ratio (observation limited) and to zero for very large values
(observation rich). The dependence of the scale factor on res-
idence time implies that the buffer method is more vulnerable
to varying wind speeds than the boundary method.

2.3 Preview for boundary condition errors

Equation (5) can estimate the effect of BC-induced errors on
the posterior solution once model transport is characterized
by the construction of the Jacobian matrix. We estimate BC-
induced errors to inform the choice of inversion domain be-
fore building the Jacobian matrix by applying Eq. (5) to a
simple steady-state two-box model that generalizes a grid-
ded flux inversion. Figure 1b and c depict the model. The
domain has BC c and constant wind speed U . All grid cells
have representative grid cell length L given the wind direc-
tion. We consider a grid cell (with index j ) that is j grid
cells from the domain boundary and define the upwind grid
cell (with index j0) as the aggregate of the upwind j grid
cells. We conduct an inversion of the average observations
over these two grid cells y = [yj0 yj ]

T regularized by prior
fluxes xA = [xA,j0 xA,j ]

T. We define the prior error covari-
ance matrix as

SA =

[
σ 2

A,j0
0

0 σ 2
A,j

]
(10)

and use an equivalent structure for the observing system er-
ror covariance matrix. We assume the observing system error
standard deviations account for the reduction in error result-
ing from averaging the observations. The Jacobian matrix is
derived by steady-state mass balance (Sect. S1) to be a func-
tion of τ (Eq. 6) given by

K= τ
[
j 0
j 1

]
. (11)

We solve for the effect of a constant BC bias εC = [εC εC]
T

on the posterior flux in the grid cell of interest1x̂j by apply-
ing the diagnostic (Eq. 5) to compute 1x̂ = [1x̂j−1 1x̂j ]

T.
This defines the preview

1x̂j =−
(τ−1εC)Rj

1+Rj +βRj0 +RjRj0

(12)

where Rj0 and Rj refer to the information ratio (Eq. 7) in the
upwind and selected grid cell, respectively, with τj0 = jτ ,
and

β =
mg,j

mg,j0

+ 1 . (13)

Here, mg,j0 and mg,j refer to the number of observations in
the upwind and selected grid cell, respectively, so that β rep-
resents the relative observation density across the grid cells.
For grid cells abutting the boundary, all upwind values are set
to 0 so that the BC-induced error approaches τ−1εC when the
grid cell information ratio is large and 0 when the grid cell
information ratio is small. As distance from the boundary in-
creases, the BC-induced errors on average decrease due to
the accumulation of upwind fluxes and observations, which
increases the upwind information ratio Rj0 . Variability in the
prior fluxes and observation density as quantified by the in-
formation ratio Rj is super-imposed on this decay.

By analogy to our one-dimensional model, we consider the
observation-limited and observation-rich limiting cases as-
suming constant prior fluxes, prior flux standard deviations,
observation density, and observing system errors. In this
case, Rj0 = j

4Rj due to the dependence on the number of
grid cells j of the upstream observation count (mg,j0 = jmg),
grid cell residence time (τj0 = jτ ), and prior flux uncer-
tainty (assuming the uncertainties are uncorrelated, σA,j0 =

σA/
√
j ). The resulting BC-induced errors

1x̂j =

{
−(τ−1εC)R , R� 1

−(τ−1εC)j
−4R−1 , R� 1

(14)

match the general form of the one-dimensional approxima-
tion (Eq. 8), but with the geometric decay in the observation-
controlled limiting case approximated as quartic decay.

3 One-dimensional numerical solution

We demonstrate the preview, diagnostic, and correction
methods using illustrative, numerical inversions of a one-
dimensional model for the horizontal transport of an inert
trace gas (Sect. 2.2; Nesser, 2025). Table S1 in the Supple-
ment summarizes the model parameters and Table 1 the in-
version parameters, which we select to simulate realistic in-
versions. We use these demonstration inversions to illustrate
the effect of constant BC biases in inversions with constant
and varying wind speeds (Sect. 3.1). We then consider peri-
odic BC biases (Sect. 3.2). We finally generalize the results
by varying the parameter choice to understand the variables
controlling BC-induced errors (Sect. 3.3).

3.1 Constant boundary condition perturbations

We quantify the sensitivity of posterior fluxes to BC biases by
perturbing the true BC in our one-dimensional model, solv-
ing the inversion, and comparing the posterior fluxes to those
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generated by an inversion solved with the true BC (Nesser,
2025). The inversions apply no other sources of bias (includ-
ing transport errors) to isolate the effect of BC biases. The
domain-average information ratio R = 0.2 for these demon-
stration inversions reflects the low DOFS achieved (5 for in-
versions with constant wind speeds and 7 for varying wind
speeds) despite the uniformity and large number of obser-
vations (m= 1000), consistent with real inversions (Varon
et al., 2023).

Figure 3a shows the relative difference in the posterior
fluxes, normalized by the prior fluxes, induced by a constant
10 ppb BC perturbation for an inversion with constant wind
speeds. As expected from our theoretical analysis, the result-
ing error on average decreases as the distance from the up-
wind boundary increases. Exceptions to the decreasing trend
result from normalizing by the prior fluxes. The preview
(Eq. 12) accurately predicts the error as expected from the
specification of the wind speed. The diagnostic (Eq. 5; not
shown) perfectly quantifies the no correction method error as
expected given the specification of the BC bias.

Figure 3a also shows the effect of the buffer and boundary
methods, which are described in Table 1. The buffer method
optimizes a buffer cluster of three native resolution grid cells.
Increasing the buffer grid cell size decreases the magnitude
of BC-induced errors but increases the computational cost.
The prior uncertainties of the buffer element are increased
by a factor of 10p where p is the scale factor for which
the boundary and buffer methods are theoretically equivalent
(Eq. 9). Increasing p improves performance, but the error re-
duction quickly asymptotes so that a factor of 10 is sufficient
to maximize error reduction in all tested cases. The boundary
method optimizes an average correction to the BC.

Both the boundary and buffer methods reduce the error in-
duced by the constant BC perturbation. The buffer method
achieves larger uncertainty reductions than the boundary
method as expected due to the choice of scale factor on
the prior uncertainty. The uncorrected errors for the bound-
ary method result from the decreased information available
to correct the upwind fluxes, while the residual errors for
the buffer method result from uncorrected BC biases. In all
cases, the residual error magnitude, as measured by the root
mean square error (RMSE) of the posterior fluxes compared
to the inversion solved with the true BCs, is constant as a
function of BC perturbation. This implies that the correction
methods may increase posterior errors for grid cells close to
the boundary in inversions with small BC biases. Excluding
these grid cells from final analysis will minimize the effect
of BC biases on the inversion.

The consistent performance of the metrics and of the cor-
rection methods results in part from the use of constant wind
speeds, which is aligned with the assumptions used to derive
the preview and the equivalence between the correction ap-
proaches. Figure 3b shows the effect of varying wind speeds.
The BC-induced bias consists of decaying upwind biases
and structured downwind biases. The preview (Eq. 12) ac-

curately captures the average error decay over the domain,
though it is unable to predict the structure of the downwind
biases. The diagnostic (Eq. 5; not shown) perfectly predicts
both the upwind and downwind biases due to its representa-
tion of transport and perfect knowledge of the BC bias. Both
correction methods decrease the upwind biases, but only the
boundary method decreases the downwind biases. Moreover,
the RMSE of the posterior fluxes compared to the inversion
solved with the true BCs is constant as a function of pertur-
bation magnitude for the boundary method while the RMSE
increases with perturbation magnitude for the buffer method.
The buffer method is less able to decrease the variability of
the BC-induced biases due to its dependence on wind speed
(Eq. 9).

3.2 Varying boundary condition perturbations

Varying BC biases are unresolvable within inversions with-
out prior knowledge of their structure. We consider variable
BC biases to identify the types of biases that are most impor-
tant to avoid, to understand the impact of correction meth-
ods, and to demonstrate the performance of the preview and
diagnostic when the structure of the BC bias is not known.
Because varying biases can be represented as the sum of pe-
riodic functions, we represent them with periodic BCs with
varying y intercept, amplitude, and period number (Sect. S3
in the Supplement). The correction methods are implemented
as in the constant perturbation case (Table 1 and Sect. 3.1)
but with three BC elements optimized instead of one in the
boundary method. This marginally increases the computa-
tional cost of the inversion but improves performance.

As in the inversion with a constant BC error and varying
wind speeds, the periodic BC-induced bias consists of decay-
ing upwind biases and structured downwind biases (Fig. S1
in the Supplement). The upwind biases are driven by the
mean bias of the periodic perturbation over the inversion pe-
riod. The spatial structure of the downwind biases is driven
by the frequency of the BC error and the magnitude by the
amplitude. This suggests that the correction methods will im-
prove the upwind errors but not the downwind errors and that
decreasing the amplitude of BC errors may reduce biases that
are otherwise unresolvable.

Figure 4 shows the relative difference in the posterior
fluxes, normalized by the prior fluxes, induced by a demon-
stration periodic perturbation with mean bias of 4 ppb over
the inversion period (panel a and Sect. S3) for inversions with
constant and varying wind speeds (panels b and c, respec-
tively). The upwind biases are controlled by the mean bias
with the error on average decreasing with the distance from
the upwind boundary. The preview and diagnostic (Eqs. 13
and 5, respectively), which are calculated using the mean
bias, capture these biases. The diagnostic also captures the
downwind biases attributable to transport. Similarly, both
correction methods decrease the upwind bias. The boundary
method achieves modest error reductions because the BC-
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Table 1. Inversion parameters for simulation experiments.

Inversion parameter One-dimensional model Two-dimensional model

Domain state vector dimension 20 285

Prior emission estimate Randomly sampled from normal
distribution with mean 25 ppbd−1 and
standard deviation 5 ppbd−1

Modified Express Extension of the
Gridded EPA inventory for 2020f

Prior error standard deviationa 50 % 50 %

Prior boundary condition estimate 0 ppbb Smoothed TROPOMI fieldsg

Boundary condition error standard deviation 15 ppb 10 ppb

Number of buffer elements 1c Clusters: 10
No clusters: 440h

Buffer scale factor valuesd Constant winds: 33
Varying winds: 47e

1000

Observing system error standard deviationa 10 ppb 15 ppbi

a The error covariance matrices are assumed diagonal. b We optimize an incremental correction to the BC. c We optimize one buffer element that is a cluster of three
native-resolution grid cells. d The buffer scale factor is the factor p applied to the prior error standard deviation in the buffer grid cell. e We calculate the buffer scale factor
with Eq. (9). f We increase the Express Extension of the Gridded EPA inventory for 2020 (Maasakkers et al., 2023) by a factor of three so that the prior error statistics are
consistent with the true emissions. g We use the IMI default boundary conditions, which are given by monthly mean TROPOMI observations smoothed over ≈ 1000 km.
h We take as the inversion buffer zone the five concentric rings of 0.25°× 0.3125° grid cells around the outer edge of the domain. We solve inversions using 10 buffer
cluster elements and 440 native resolution buffer grid cells. i The IMI assumes a constant error standard deviation of 15 ppb for all observations aggregated into errors for
the averaged observations accounting for error correlations following Chen et al. (2023). We use the errors generated by the IMI directly.

Figure 3. Exact and predicted influence of a constant BC bias on the posterior fluxes generated by a one-dimensional inverse model using
different BC correction methods. The lines represent the posterior error induced by a 10 ppb BC perturbation as a function of the number of
grid cells from the upwind boundary using constant (a) and varying (b) wind speeds. The error is given as the difference between inversions
solved with the true and biased BCs, normalized by the prior fluxes (1x̂/xA). The error is shown for inversions solved with no BC correction
method, the boundary method, and the buffer method. The buffer grid cell is not shown. The panels also show the preview. Only the first 13
of 20 grid cells are shown; all errors approach zero after this point. The varying wind speed is a see-sawing wind with mean equal to the
constant wind speed.

induced error is of similar magnitude to the error generated
by the loss of information content due to the BC optimiza-
tion. Downwind biases are only decreased by the boundary
method when three or more BC elements are optimized.

3.3 Varying inversion parameters

BC-induced posterior biases are a function of the relative
constraint from the observations compared to the prior fluxes

as measured by the information ratio (R, Eq. 7) and the grid
cell residence time (τ , Eq. 6). To determine how changes
in these quantities influence BC-induced biases, we define
the influence length scale for our one-dimensional model as
the number of grid cells required for the BC-induced er-
ror normalized by the prior fluxes to decrease below 0.25
(1x̂/xA < 0.25). The influence length scale captures the
strong dependence of the BC-induced errors on the number
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Figure 4. Exact and predicted influence of a periodic BC bias on the posterior fluxes generated by a one-dimensional inverse model using
different BC correction methods. (a) shows the true and periodic BC. (b, c) show the posterior error induced by the periodic BC as a function
of the number of grid cells from the upwind boundary error is given as the difference between inversions solved with the true and biased
BCs, normalized by the prior fluxes (1x̂/xA) for constant and varying wind speeds, respectively. The error is shown for inversions solved
with no BC correction method, the buffer method, and the boundary method. The buffer and boundary methods each optimize one additional
element. The buffer grid cell is not shown. The panels also show the preview and diagnostic, which are calculated using the mean BC bias
over the inversion period. The varying wind speed is a see-sawing wind with mean equal to the constant wind speed.

of grid cells from the domain boundary and reflects the ad-
ditional computational cost associated with optimizing these
grid cells. We vary the mean prior flux (from 20–50 ppbh−1)
and associated prior error standard deviations, observation
density (from 50–200 observations per grid cell), and mean
wind speed (from 3–10 ms−1) and calculate the domain aver-
age information ratio and residence time for each inversion.
Uncertainty is quantified as the standard deviation of the in-
fluence length scale across 100 inversions solved with ran-
dom prior fluxes. All inversions use varying wind speeds and
a 10 ppb BC perturbation, though the results are robust for
constant wind speeds.

Figure 5a shows the influence length scale as a function
of the information ratio for an inversion with no correc-
tion method. As predicted from the one-dimensional model
solved with constant parameters (Eq. 8 and Fig. 2), the in-
fluence length scale decreases with the information ratio.
The largest rate of change occurs in the observation-limited
regime as the observational constraint shifts the BC-induced
errors into the upwind grid cells. In the observation-rich case,
the influence length scale is relatively constant as a function
of the information ratio. Figure 5b shows the inverse depen-
dence of the influence length scale on grid cell residence
time as predicted by Eq. (8). As residence time increases,
the influence length scale decreases because the relative con-
tribution of the fluxes compared to the BC increases in the
observed concentrations, improving the observational con-
straint.

Finally, we consider the performance of the metrics and
correction methods. The preview (Eq. 12) on average cap-
tures the dependence of the BC-induced error (no correction
method) on the information ratio and grid cell residence time.
In almost all cases, it marginally overestimates the influence
length scale so that it represents an upper bound on error.
As expected from the prescription of the BC perturbation,
the diagnostic (not shown) perfectly predicts the influence
length scale associated with no correction method. Both cor-
rection methods display functionally no dependence on the
information ratio and grid cell residence time. The boundary
and buffer methods comparably reduce the influence length
scale in all cases.

4 Two-dimensional numerical solution

We extend the framework and understanding derived from
the analytical solution and one-dimensional model to a
two-dimensional demonstration inversion of TROPOMI-like
methane column pseudo-observations over the Permian basin
using the GEOS-Chem transport model as implemented by
the Integrated Methane Inversion (IMI; Varon et al., 2022;
Estrada et al., 2025; Nesser, 2025). The Permian Basin is the
largest oil producing region in North America and the subject
of many inverse analyses (e.g., Zhang et al., 2020; Barkley
et al., 2023; Varon et al., 2023; Vanselow et al., 2024). Ta-
ble S1 summarizes the model parameters, Table 1 gives the
inversion parameters, and Fig. 6 shows the inversion domain,
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Figure 5. Sensitivity of the BC-induced posterior error to changes in parameters in a one-dimensional inverse model. The vertical axis shows
the influence length scale defined as the number of grid cells before which the prior-normalized posterior errors resulting from a 10 ppb BC
bias decrease below 0.25 (1x̂/xA < 0.25). The lines show the influence length scale for the preview and for inversions solved with no BC
correction method, the boundary method, and the buffer method. Shading gives the one standard deviation range for 100 inversions solved
with different random prior fluxes. (a) shows the influence length scale as a function of the information ratio R (Eq. 7) that describes the ratio
of observing system error variances to the prior error variances in concentration units. The information ratio R = 1 is marked by a vertical
dashed line. (b) shows the influence length scale as a function of grid cell residence time (τ ).

true emissions (panel a), prior emissions (panel b), and ob-
servation density as defined by real TROPOMI observations
for May 2020 (panel c) for the n= 285 grid cells within
the inversion domain. The true BC is given by the IMI’s
TROPOMI-based smoothed BCs (Estrada et al., 2025). As-
suming a constant wind speed of 5 ms−1 and using average
values of the prior and observing system error standard de-
viations, the domain average information ratio is R = 0.03,
reflecting the heterogeneous observational constraint.

We apply a spatially variable BC bias of 7.5, 10, 10
and 12.5 ppb to the northern, southern, eastern, and west-
ern boundaries, respectively, using the Jacobian matrix for
each edge of the domain as generated by the IMI. Figure 6e
shows the resulting error in the posterior emissions normal-
ized by the prior emissions. Unlike the BC-induced errors
shown in the one-dimensional inversions, which used ran-
dom prior fluxes, the distribution of the relative errors is
strongly a function of the prior emissions. This likely results
from the skewed distribution of the emissions across the do-
main, which limits the inversion’s ability to correct fluxes
near the domain edge.

The preview (Eq. 12) calculated with a BC uncertainty of
10 ppb is shown in Fig. 6d. We estimate the Jacobian ma-
trix elements following Eq. (6) as implemented by Nesser
et al. (2024) with a constant wind speed of 5 ms−1, con-
stant surface pressure of 1000 hPa, and a grid cell length
scale given by the square root of each grid cell’s area. We de-
fine the upwind length scale as the minimum distance from
each grid cell’s center to the border, dividing the domain into
four regions based on proximity to each boundary. Upwind
emissions and observation counts are calculated as the cu-
mulative sum of the median value of each row or column
between each grid cell and its closest boundary. Observing

system errors are calculated by decreasing the 15 ppb single-
observation uncertainty by the square root of the observation
count. We apply a 5 ppb observing system error minimum to
reflect transport and BC uncertainty.

The preview models the decay in BC-induced error as dis-
tance from the domain boundary increases accounting for the
prior emission distribution and observation density (Eq. 12
and Sect. 2.3). As a result, the preview most accurately cap-
tures the effect of the BC bias nearest to the domain edge
with a Pearson correlation coefficient of r = 0.76 between
the BC-induced biases and the preview for grid cells within
three rows of the boundary. The performance of the preview
degrades near the center of the domain, though there is still
good agreement between the BC-induced biases and the pre-
view for the full domain (r = 0.67). The preview is larger
than the BC-induced bias in most (63 %) of the grid cells so
that the preview represents an error upper-bound. The diag-
nostic (not shown) perfectly captures the errors across the
full domain as expected from the specification of the BC un-
certainty.

Figure 6f, g, and h also show the correction methods. For
the buffer method, we test two sets of buffer grid cells within
the five concentric rings of grid cells around the outer edge
of the domain. The first (clusters) aggregates the individual
grid cells into 10 large buffer clusters using K-means clus-
tering. The second (no clusters) uses 440 individual grid cells
as buffers. In all cases, we scale the prior error standard devi-
ation for the buffer elements by a factor of p = 1000, which
we find is sufficient to minimize BC-induced errors in all
tested inversions. This very large, unphysical factor is cho-
sen to compensate for the very small emissions around the
edge of the Permian basin. For the boundary method, we op-
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Figure 6. Exact and predicted influence of a constant BC bias on a two-dimensional simulation inversion over the Permian basin in Texas
using different BC correction methods. True emissions from the Environmental Defense Fund high-resolution inventory (a; Zhang et al.,
2020) and true BCs from smoothed TROPOMI observations are used to generate pseudo-observations over the Permian basin (dashed line)
with observational density (c) given by the TROPOMI methane observations for May 2020. The inversion is regularized by prior emissions
given by the Express Extension of the Gridded EPA Inventory for 2020 multiplied by a factor of three so that the prior error statistics include
the true emissions (b; Maasakkers et al., 2023). The error induced by a spatially variable BC bias with mean 10 ppb is calculated as the
difference between inversions solved with the true and biased BCs normalized by the prior fluxes. The error is shown for inversions solved
with no correction method (e), the boundary method (f), and the buffer method using ten buffer clusters (g) and five rows of native resolution
grid cells (h). The dark black outlines show the buffer clusters or grid cells where the prior uncertainties are artificially inflated and for which
posterior fluxes are calculated but not shown. The preview (d) is also shown.

timize a mean bias correction along the northern, southern,
eastern, and western boundaries.

The correction results mirror those found in the one-
dimensional varying wind speed example. All correction
methods decrease the BC-induced errors. Despite relying
on fewer than half of the observations used by the buffer
method, the boundary method virtually eliminates BC-
induced errors while avoiding unphysical flux corrections
and significantly decreasing computational cost by reducing
the domain size. The buffer method with no clusters outper-
forms the buffer method with clusters, suggesting that multi-
ple rows of buffer grid cells are preferable to large clusters.
Larger numbers of buffer grid cells may also better absorb
biases with higher resolution spatial variability.

5 Conclusions

We developed and demonstrated a framework to predict
and correct the effect of BC biases on the optimal (pos-

terior) gridded surface fluxes generated by regional inver-
sions of atmospheric trace gas observations using a transport
model. We proposed two metrics to predict BC-induced er-
rors both before (preview) and after (diagnostic) the inver-
sion is solved. The preview can inform the choice of inver-
sion domain while the diagnostic improves posterior error
quantification. We also considered two methods to correct
BC biases as part of an inversion by optimizing the BC di-
rectly (boundary method) or by unphysically correcting grid
cell fluxes outside the domain of interest (buffer method).
Both methods can obtain identical error reductions in inver-
sions with constant wind speeds, but the boundary method is
more effective for inversions with variable wind speeds, pro-
vides a physical constraint, and reduces computational cost.
Beyond the application to regional inversions of long-lived
gases presented here, the framework is more generally appli-
cable to the analysis of bias in the observations or transport
model and the treatment of initial conditions in global inver-
sions.
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We demonstrated our theoretical framework using a sim-
ple one-dimensional model for the horizontal transport of
an inert trace gas, which represents the worst-case scenario
for the propagation of BC biases to the posterior flux es-
timate. BC-induced errors on average decay with increas-
ing distance from the domain edge while smaller down-
wind systematic biases result from variability in the trans-
port model wind speeds or BC biases. The length scale over
which BC-induced errors have a significant effect on the pos-
terior fluxes is minimized when the observations provide a
strong constraint across the domain, which limits the bias to
the most upwind grid cells. The preview identifies the grid
cells with the largest biases, supporting domain specifica-
tion before the inversion is conducted, while the diagnostic
perfectly predicts the BC-induced error when the BC per-
turbation is specified. The boundary and buffer method both
significantly reduce the influence length scale, but only the
boundary method can decrease the magnitude of downwind
errors. The results are robust for constant and variable BC
biases.

We extended the framework to a two-dimensional demon-
stration inversion over the Permian Basin in Texas using
model transport from the GEOS-Chem transport model. The
BC-induced biases do not decay with distance from the
boundary but instead correlate with the prior flux estimate
due to the concentration of emissions in the center of the
domain. Despite the difference in the distribution of BC-
induced biases compared to the one-dimensional model, we
find similar performance of the metrics and correction meth-
ods. The preview accurately predicts the BC-induced errors,
with the best agreement occurring in the grid cells closest
to the domain boundary. The diagnostic accurately describes
the errors across the full domain. The boundary method func-
tionally eliminates the BC-induced errors at much lower
computational cost despite relying on fewer than half of the
observations used in the buffer method. The buffer method
decreases but does not eliminate BC-induced errors, with
performance improving as the number of buffer clusters in-
creases.

Code and data availability. The code and data for both the one-
dimensional and two-dimensional simulation experiments are avail-
able at https://doi.org/10.5281/zenodo.17417750 (Nesser, 2025).
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example is available at https://github.com/geoschem/integrated_
methane_inversion/releases/tag/imi-2.0.1 (last access: 6 October
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