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S1 Complete description of Eq. (6) 

We consider the model depicted in Fig. 1 (panel a). Linear transport in and out of each grid cell is defined by a rate constant 𝑘 =

𝑈/𝐿 = 1/𝜏! (Jacob, 1999). We assume that the system is in steady state and write a mass balance for the mass of the trace gas in 

the 𝑗th grid cell (𝑚"):  

 5 
𝑑𝑚"

𝑑𝑡
= 0 = 𝐴𝑥" + 𝑘𝑚"#$ − 𝑘𝑚" (S1)

𝑚" =
𝐴
𝑘 𝑥" +𝑚"#$ (S2)

𝑚" = 𝐴𝜏!𝑥" +𝑚"#$ (S3)

 

 

The area 𝐴 converts the flux in the 𝑗th grid cell (𝑥") from units of mass per area per time to mass per time. Equation (S3) is 

recursive with 𝑚% = 𝑚& corresponding to the mass of the trace gas at the BC. We then write the non-recursive expression: 

 10 
𝑚" = 𝐴𝜏!6𝑥$ + 𝑥' +⋯+ 𝑥"8 +𝑚& . (S4) 

 

We convert from mass 𝑚" to concentration 𝑦" using 

 

𝑚" =
𝑀(

𝑀)*+

𝑃𝐴
𝑔 𝑦" (S5) 15 

 

where 𝑀( and 𝑀)*+ are the molar masses of the trace gas and air, respectively; 𝑃 is the atmospheric pressure, assumed constant; 

𝐴 is the grid cell area; and 𝑔 is gravitational acceleration. We rewrite Eq. (S4) in concentration units as 

 

𝑦" = 𝛼𝜏!6𝑥$ + 𝑥' +⋯+ 𝑥"8 + 𝑐 (S6) 20 
 

where 𝑐 is the concentration of the trace gas at the BC and  

 

𝛼 =
𝑀)*+

𝑀(

𝑔
𝑃 .

(S7) 

 25 
We then differentiate 𝑦" with respect to 𝑥, to obtain the 𝑗th row and 𝑖th column of the Jacobian matrix 𝐊",: 

 

𝐊", =
𝑑𝑦"
𝑑𝑥,

= F𝛼𝜏
!, 𝑖 ≤ 𝑗
0, 𝑖 > 𝑗 . (S8) 

 

This is a lower diagonal matrix with constant values given 𝜏 = 𝛼𝜏! as described by Eq. (6): 30 
 

𝐊 = 𝛼𝜏! K

1 	 	 	
1 1 	 	
⋮ ⋮ ⋱ 	
1 1 … 1

P (S9) 



If grid cells are combined, the corresponding elements of the Jacobian matrix are added together. 

  



S2 Complete definition and derivation of Eq. (8)  35 
We will show that Eq. (8) is equal to Δ𝒙T = −𝐆𝜺- in the extremes of 𝑅 ≪ 1 and 𝑅 ≫ 1. We define the Jacobian matrix 𝐊 to be 

lower diagonal with constant values given by 𝜏 so that 𝐊 = 𝜏𝐋 where 𝐋 ∈ ℝ.×. is the lower diagonal matrix of ones 

(Supplement S1). The prior and observing system covariance matrices 𝐒0 and 𝐒1 are assumed to be diagonal matrices with 

constant values of σ0'  and σ1' 𝑚2_ , respectively. We define 𝜺- = 𝜀-𝟏 where 𝟏 is the vector of ones. We then write the 

background-induced posterior error vector as 40 
 

Δ𝒙T = −𝐆𝜺- = −(𝐒0#$ +𝐊3𝐒1#$𝐊)#$𝐊3𝐒1#$𝜺- (S10)

= −
𝜏𝜀-
𝜎1'

c
1
𝜎0'
𝐈. +

𝜏'

𝜎1'
𝐋3𝐋e

#$

𝐋3𝟏 (S11)

= −(𝜏#$𝜀-)𝑅(𝐈. + 𝑅𝐋3𝐋)#$𝐋3𝟏 (S12)

 

 

where 𝑅 is the error ratio defined by Eq. (7). Rearranging yields 

 45 
(𝐋3)#$Δ𝒙T + 𝑅𝐋Δ𝒙T = −(𝜏#$𝜀-)𝑅𝟏. (S13) 

 

The inverse of the 𝐋3 is known to be a bi-diagonal matrix with diagonal entries equal to 1 and super-diagonal entries equal to -1. 

We write out the rows of this equation: 

 50 
Δ𝑥f$ − Δ𝑥f' + 𝑅Δ𝑥f$ = −(𝜏#$𝜀-)𝑅 (S14)

Δ𝑥f' − Δ𝑥f4 + 𝑅Δ𝑥f$ + 𝑅Δ𝑥f' = −(𝜏#$𝜀-)𝑅 (S15)
Δ𝑥f4 − Δ𝑥f5 + 𝑅Δ𝑥f$ + 𝑅Δ𝑥f' + 𝑅Δ𝑥f' 	= −(𝜏#$𝜀-)𝑅 (S16)

⋮																	=														⋮
Δ𝑥f.#$ − Δ𝑥f. + 𝑅Δ𝑥f$ + 𝑅Δ𝑥f' +⋯+ 𝑅Δ𝑥f.#$ 	= −(𝜏#$𝜀-)𝑅 (S17)
Δ𝑥f. + 𝑅Δ𝑥f$ + 𝑅Δ𝑥f' +⋯+ 𝑅Δ𝑥f.#$ + 𝑅Δ𝑥f. 	= −(𝜏#$𝜀-)𝑅 (S18)

 

 

We form an equivalent set of linear equations by taking pairwise differences of Eqs. (S14 – S18) and appending Eq. (S14). This 

is equivalent to multiplying Eq. (S13) by 𝐋#$, which is a bi-diagonal matrix with diagonal entries equal to 1 and sub-diagonal 

entries equal to -1. This allows us to rewrite Eqs. (S14 – S18) as: 55 
 

(𝑅 + 1)Δ𝑥f$ − Δ𝑥f' = −(𝜏#$𝜀-)𝑅 (S19)
−Δ𝑥f,#' + (𝑅 + 2)Δ𝑥f,#$ − Δ𝑥f, = 0, 𝑖 = 3,… , 𝑛 (S20)

−Δ𝑥f.#$ + (𝑅 + 2)Δ𝑥f. 	= 0. (S21)
 

 

We recognize Eq. (S20) as a discrete second-order recurrence relation with characteristic equation 

 60 
𝑧𝟐 − (𝑅 + 2)𝑧 + 1 = 0 (S22) 

 

which has roots 

 

𝜌$ =
(𝑅 + 2) + j(𝑅 + 2)' − 4

2 , 𝜌' =
(𝑅 + 2) − j(𝑅 + 2)' − 4

2 . (S23) 65 



 

These roots are distinct provided that 𝑅 ≠ 	0. Therefore, for 𝑗 = 1,… , 𝑛, the elements Δ𝑥f" will take the form 

 

Δ𝑥f" = 𝑏$𝜌$
"#$ + 𝑏'𝜌'

"#$, (S24) 

 70 
where the coefficients 𝑏$ and 𝑏' will be determined by Eqs. (S19) and (S21). These equations now respectively become 

 

(𝑅 + 1)(𝑏$ + 𝑏') − (𝑏$𝜌$ + 𝑏'𝜌') = −(𝜏#$𝜀-)𝑅 (S25)
−[𝑏$𝜌$.#' + 𝑏'𝜌'.#'] + (𝑅 + 2)[𝑏$𝜌$.#$ + 𝑏'𝜌'.#$] = 0. (S26)

 

 

We will re-write this in matrix form 75 
 

o
𝑅 + 1 − 𝜌$ 𝑅 + 1 − 𝜌'

(𝑅 + 2)𝜌$.#$ − 𝜌$.#' (𝑅 + 2)𝜌'.#$ − 𝜌'.#'
p o𝑏$𝑏'

p = o−(𝜏
#$𝜀-)𝑅
0

p , (S27) 

 

which we can invert to obtain 

 80 

o𝑏$𝑏'
p = o

𝑅 + 1 − 𝜌$ 𝑅 + 1 − 𝜌'
(𝑅 + 2)𝜌$.#$ − 𝜌$.#' (𝑅 + 2)𝜌'.#$ − 𝜌'.#'

p
#$

o−(𝜏
#$𝜀-)𝑅
0

p (S28)

=
1
𝚫 o

(𝑅 + 2)𝜌'.#$ − 𝜌'.#' −[𝑅 + 1 − 𝜌']
−[(𝑅 + 2)𝜌$.#$ − 𝜌$.#'] 𝑅 + 1 − 𝜌$

p o−(𝜏
#$𝜀-)𝑅
0

p (S29)

= −
(𝜏#$𝜀-)𝑅

𝚫 o
(𝑅 + 2)𝜌'.#$ − 𝜌'.#'

−[(𝑅 + 2)𝜌$.#$ − 𝜌$.#']
p , (S30)

 

 

where 𝚫 is the discriminant  

 

𝚫 ≔ [𝑅 + 1 − 𝜌$][(𝑅 + 2)𝜌'.#$ − 𝜌'.#'] − [𝑅 + 1 − 𝜌'][(𝑅 + 2)𝜌$.#$ − 𝜌$.#']. (S31) 85 
 

We now have the full expression for the values Δ𝑥f" in terms of 𝑅: 

 

Δ𝑥f" = [𝑏$ 𝑏'] s
𝜌$
"#$

𝜌'
"#$t (S32)

= −
(𝜏#$𝜀-)𝑅

𝚫 6[(𝑅 + 2)𝜌'.#$ − 𝜌'.#']𝜌$
"#$ − [(𝑅 + 2)𝜌$.#$ − 𝜌$.#']𝜌'

"#$8. (S33)

 

 90 
We now consider the asymptotics for large and small 𝑅. 

 

S2.1 Asymptotics: Large 𝑅 

Upon inspection, for large values of 𝑅, we note that 𝜌$ is asymptotically equal to 𝑅 + 2. We can approximate 𝜌' to the first 

order. If we consider the function 𝑓(𝑧) = √𝑧, then  95 
 



𝑓(𝑧 + 𝑑𝑧) ≈ 𝑓(𝑧) + 𝑓!(𝑧)𝑑𝑧 = √𝑧 +
1
2 𝑧

#$ '⁄ 𝑑𝑧. (S34) 

 

Thus, for large values of 𝑅, we have 

 100 

j(R + 2)' − 4 ≈ j(𝑅 + 2)' +
1
2
[(𝑅 + 2)']#$ '⁄ (−4) (S35)

= (𝑅 + 2) − 2(𝑅 + 2)#$. (S36)
 

 

Substituting this into our expression for 𝜌' shows that it is asymptotically equal to (𝑅 + 2)#$ for large 𝑅. Correspondingly, 𝚫 

asymptotically becomes  

 105 

𝚫 ≈ [𝑅 + 1 − (𝑅 + 2)]y(𝑅 + 2)(𝑅 + 2)#(.#$) − (𝑅 + 2)#(.#')z
−[𝑅 + 1 − (𝑅 + 2)#$][(𝑅 + 2)(𝑅 + 2).#$ − (𝑅 + 2).#'] (S37)

= −[(𝑅 + 2)#.:' − (𝑅 + 2)#. + 2] − [𝑅 + 1 − (𝑅 + 2)#$][(𝑅 + 2). − (𝑅 + 2).#'] (S38)
≈ −(𝑅 + 1)[(𝑅 + 2). − (𝑅 + 2).#'] (S39)

 

 

and  

 

−
(𝜏#$Δ𝑐)𝑅

𝚫 ≈
−(𝜏#$𝜀-)𝑅

−(𝑅 + 1)[(𝑅 + 2). − (𝑅 + 2).#'] (S40)

≈ (𝜏#$𝜀-)(𝑅 + 2)#.. (S41)
 110 

 

Therefore, when 𝑅 is large, Δ𝑥f" is approximately 

 

Δ𝑥f" ≈ (𝜏#$𝜀-)(𝑅 + 2)#.6y(𝑅 + 2)(𝑅 + 2)#(.#$) − (𝑅 + 2)#(.#')z(𝑅 + 2)"#$

−[(𝑅 + 2)(𝑅 + 2).#$ − (𝑅 + 2).#'](𝑅 + 2)#("#$)8 (S42)
≈ (𝜏#$𝜀-)(𝑅 + 2)#.6−[(𝑅 + 2). − (𝑅 + 2).#'](𝑅 + 2)#(;#$)8 (S43)
≈ −(𝜏#$𝜀-)(𝑅 + 2)#":$ (S44)
≈ −(𝜏#$𝜀-)𝑅#":$ (S45)

 

 115 
which matches Eq. (8). 

 

S2.1 Asymptotics: Small 𝑅 

For 𝑅 → 0, we now have the approximation  

 120 

j(R + 2)' − 4 = j4𝑅 + 𝑅' (S46)
≈ √4𝑅 (S47)
= 2√𝑅. (S48)

 

 

This allows us to approximate 𝜌$ and 𝜌' (Eq. (S23)) as 

 



𝜌$ ≈
(R + 2) + 2√R

2 ≈
2 + 2√𝑅

2 = 1 + √𝑅 (S49)

𝜌' ≈
(R + 2) − 2√R

2 ≈
2 − 2√𝑅

2 = 1 − √𝑅. (S50)
 125 

 

We can furthermore employ the linear approximations for powers of 𝜌$ and 𝜌': 

 

𝜌$< ≈ 1 + N√𝑅 (S51)
𝜌'< ≈ 1 − N√𝑅. (S52)

 

 130 
Now, examining the terms in our expression for the determinant 𝚫 (Eq. (S31)), we have 

 

R + 1 − 𝜌$ ≈ −√𝑅 (S53)
R + 1 − 𝜌' ≈ √𝑅 (S54)

(𝑅 + 2)𝜌'.#$ − 𝜌'.#' ≈ (𝑅 + 2)61 − (𝑛 − 1)√𝑅8 − 61 − (𝑛 − 2)√𝑅8 (S55)
≈ 261 − (𝑛 − 1)√𝑅8 − 61 − (𝑛 − 2)√𝑅8 (S56)
= 1 − 𝑛√𝑅 (S57)

(𝑅 + 2)𝜌$.#$ − 𝜌$.#' ≈ (𝑅 + 2)61 + (𝑛 − 1)√𝑅8 − 61 + (𝑛 − 2)√𝑅8 (S58)
≈ 261 + (𝑛 − 1)√𝑅8 − 61 + (𝑛 − 2)√𝑅8 (S59)
= 1 + 𝑛√𝑅. (S60)

 

 

This allows us to approximate 𝚫 as  135 
 

𝚫 ≈ −√𝑅y1 − 𝑛√𝑅z − √𝑅y1 + 𝑛√𝑅z (S61)
= −2√𝑅, (S62)

 

 

and consequently,  

 140 

−
(𝜏#$𝜀-)𝑅

𝚫 ≈
1
2
(𝜏#$𝜀-)√𝑅. (S63) 

 

Therefore, for small 𝑅, our expression for Δ𝑥f" now becomes approximately  

 

Δ𝑥f" ≈
1
2
(𝜏#$𝜀-)√𝑅6y1 − 𝑛√𝑅z𝜌$

"#$ − y1 + 𝑛√𝑅z𝜌'
"#$8 (S64)

≈
1
2
(𝜏#$𝜀-)√𝑅6y1 − 𝑛√𝑅zy1 + (𝑗 − 1)√𝑅z − y1 + 𝑛√𝑅zy1 − (𝑗 − 1)√𝑅z8 (S65)

=
1
2
(𝜏#$𝜀-)√𝑅6−2𝑛√𝑅 + 2(𝑗 − 1)√𝑅8 (S66)

= −(𝜏#$𝜀-)(𝑛 − 𝑗 + 1)𝑅 (S67)

 145 

 

which matches Eq. (8).  



S3 Definition of periodic boundary conditions 

We define a BC perturbation 𝑓 as a function of time 𝑡 

 150 

𝑓(𝑡) = 𝑏 + 𝐴 sin �
2𝜋𝜔𝑡
𝑡;=>

� (S68) 

 

where 𝑏 is the y-intercept, 𝐴 is the amplitude, 𝜔 is the number of periods over the simulation duration (including the spin-up and 

inversion), and 𝑡;=> the last simulated time step in the inversion. We define base values of 𝑏 = 1902.5 ppb,  𝐴 = 10 ppb, and 

𝜔 = 2.5. We then separately vary the y-intercept from 1902.5 ppb to 1910 ppb, the amplitude from 2.5 ppb to 10 ppb, and the 155 
period number from 2.5 to 6. All inversions use varying wind speeds. 

  



Table S1: Model configuration for simulation experiments 

Model parameter One-dimensional model Two-dimensional model 

Transport model One-dimensional model(a) with constant(b) and 
varying(c) wind speeds 

GEOS-Chem(h) 

Model domain 23 grid cells(d) Permian basin, Texas  
(28.75°N to 34.75°N, 99°W to 106.6875°W) 

Model resolution 25 km 0.25° ⨉ 0.3125° 
True emissions 30 ppb d-1 (e) EDF inventory and Express Extension of the 

Gridded EPA inventory(i) 
True boundary condition 1900 ppb TROPOMI-based boundary conditions(j) 
Spin-up(f) 150 hours April 2020 
Simulation duration 150 hours May 2020 
Number of pseudo-
observations 

1000 Domain: 4431  
Buffer zone: 6391(k) 

Pseudo-observation 
distribution 

Uniform in time and space(g) Averaged TROPOMI methane observations for 
May 2020(l) 

Pseudo-observation error 
statistics 

Mean: 0 ppb 
Standard deviation: 8 ppb 

Mean: 0 ppb 
Standard deviation: 10.5 ppb(m) 

(a) Advection is solved using the Lax-Wendroff scheme in the first 𝑛 − 1 grid cells and an upstream scheme for the last grid cell (Brasseur and 
Jacob, 2017). The model time step is defined so that the maximum Courant number equals 1. The model is initialized at steady state. 160 
(b) The constant wind speed is 𝑈 = 5 m s-1. 
(c) The varying wind see-saws between 3 and 7 m s-1 at 1 m s-1 increments for each time step over 20 hours. 
(c) The model simulates concentrations outside of the inversion domain of interest to ensure comparability between the no correction, buffer, 
and boundary inversions. 
(e) True emissions are constant in time and space. 165 
(f) As is standard in regional inversions, we use a model spin-up to ensure that the background is unbiased with respect to the true BC. 
(g) Pseudo-observations are generated by sampling each grid cell’s atmosphere at 50 regular intervals over the simulation period. 
(h) GEOS-Chem is driven by the GEOS-FP meteorological data from the NASA’s Global Modeling and Assimilation Office (GMAO).  
(i) True oil and gas emissions are defined by the Environmental Defense Fund (EDF) high-resolution Permian basin inventory for 2019 (Zhang 
et al., 2020) while all emissions from all other sectors are given by the Express Extension of the Gridded EPA inventory for 2020 (Maasakkers 170 
et al., 2023)  
(j) We use TROPOMI-based smoothed BCs from the Integrated Methane Inversion (IMI) to generate the true BC concentrations. We calculate 
the BC concentrations 𝒄 following the definition of the linearized forward model 𝐹(𝒙) = 𝐊𝒙 + 𝒄 (Section 2.1) where 𝐹 is the GEOS-Chem 
forward model driven by the true BCs, 𝒙 is a vector of the IMI default emissions, and 𝐊 is the Jacobian matrix generated from the IMI. 
(k) Following the IMI, we average the observations over hourly GEOS-Chem grid cells. These counts represent the number of averaged 175 
observations over the inversion domain of interest and buffer zone (used only for the buffer method). 
(l) The TROPOMI observations are averaged on the 0.25° ⨉ 0.3125° model grid for each hour of the inversion. 
(m) We generate random, uncorrelated errors with the error statistics shown here for each individual observation. The error statistics correspond 
to the non-transport observing system error assumed by the IMI (Estrada et al., 2024; Chen et al., 2023). To account for the decrease in error 
associated with averaging the observations, we reduce the mean error for each hourly grid cell by the square root of the observation count.  180 



 

 
Figure S1: Sensitivity of posterior flux estimates from a one-dimensional inverse model to periodic BC biases using different BC 
correction methods. Different periodic BC biases are applied to the one-dimensional inverse model by varying the y-intercept (a), 
amplitude (c), and number of periods over the simulation duration (g) of a periodic function. The influence of these BC biases on the 185 
posterior fluxes is shown as the difference between inversions solved with the true and biased BCs, normalized by the mean prior 
fluxes (b, d, and h for varying y-intercept, amplitude, and periods, respectively). The influence of the mean bias of the periodic BC over 
the inversion period is also shown (c, f, and i for varying y-intercept, amplitude, and periods, respectively). 


