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S1 Complete description of Eq. (6)
We consider the model depicted in Fig. 1 (panel a). Linear transport in and out of each grid cell is defined by a rate constant k =

U/L = 1/t' (Jacob, 1999). We assume that the system is in steady state and write a mass balance for the mass of the trace gas in

the jth grid cell (m;):
dm:
% = 0 = Ax; + kmy_, — km; (s1)
A
m; = At'x; + mj_, (S3)

The area A converts the flux in the jth grid cell (x;) from units of mass per area per time to mass per time. Equation (S3) is

recursive with my, = m, corresponding to the mass of the trace gas at the BC. We then write the non-recursive expression:
m; =A‘r’(x1 + x, +~~+xj) + m,. (54)
We convert from mass m; to concentration y; using

My PA 5)
m, =———Yy.
/ Mair g y]

where My and M,;, are the molar masses of the trace gas and air, respectively; P is the atmospheric pressure, assumed constant;

A is the grid cell area; and g is gravitational acceleration. We rewrite Eq. (S4) in concentration units as
y]-=a:‘r’(x1 +x2+m+x]-)+c (S6)

where c is the concentration of the trace gas at the BC and

« =’;’4_a:g. (s7)
We then differentiate y; with respect to x; to obtain the jth row and ith column of the Jacobian matrix Kj;:
ji = Z—?l = {m(;: i ij (58)
This is a lower diagonal matrix with constant values given T = a1’ as described by Eq. (6):
1
K=ar 1 1 (59)



If grid cells are combined, the corresponding elements of the Jacobian matrix are added together.



35 S2 Complete definition and derivation of Eq. (8)
We will show that Eq. (8) is equal to AX = —Geg in the extremes of R << 1 and R >» 1. We define the Jacobian matrix K to be
lower diagonal with constant values given by T so that K = 7L where L. € R™" is the lower diagonal matrix of ones
(Supplement S1). The prior and observing system covariance matrices S, and Sg are assumed to be diagonal matrices with
constant values of 0% and 63 / m,, respectively. We define &c = ¢1 where 1 is the vector of ones. We then write the

40 background-induced posterior error vector as

A% = —Gee = —(S3! + KTS5'K) " 'K"S5 & (S10)
Tee [ 1 72 -
_ __;<_21n ; —ZLTL> 1’1 (s11)
0o \0aA 0o
= —(t7'ec)R(I, + RLTL)'L'1 (512)

where R is the error ratio defined by Eq. (7). Rearranging yields

45
(LT)"*A% + RLAX = —(t7'¢c)R1. (513)
The inverse of the LT is known to be a bi-diagonal matrix with diagonal entries equal to 1 and super-diagonal entries equal to -1.
We write out the rows of this equation:
50
AR, — AR, + RAZ; = —(t7te)R (514)
AR,_; — A%, + RAZ; + RAZ, + -+ RA%,_;, = —(t7e)R (817)
AR, + RAR; + RAR, + -+ RAR,_; + RAX, = —(771¢-)R (518)

We form an equivalent set of linear equations by taking pairwise differences of Eqgs. (S14 — S18) and appending Eq. (S14). This
is equivalent to multiplying Eq. (S13) by L1, which is a bi-diagonal matrix with diagonal entries equal to 1 and sub-diagonal

55 entries equal to -1. This allows us to rewrite Egs. (S14 — S18) as:

(R + 1A%, — A%, = —(t7'&c)R (519)
—A%;_; + (R +2)A%;_, — A%; =0, i=3,..,n (S20)
—A%,_, + (R +2)A%, = 0. (S21)

We recognize Eq. (S20) as a discrete second-order recurrence relation with characteristic equation
60
zZ2—(R+2)z+1=0 (822)

which has roots

65 R+ +JR+2)?7—4 p__m+2ynKR+@2—4
= = 5 .

P1 2 ’ 2

(S23)
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These roots are distinct provided that R # 0. Therefore, for j = 1, ..., n, the elements A%; will take the form
A%; = blpf_l + bzpé_l'
where the coefficients b; and b, will be determined by Egs. (S19) and (S21). These equations now respectively become

(R +1)(by + by) — (b1py + bap,) = —(t7ec)R
—[by1pT™% + byp3 7] + (R + 2)[b1p] ™" + bop3~ '] = 0.

We will re-write this in matrix form

R+1-p R+1-p, ] [b1] _ [—(T‘lsC)R]
(R+2)pi™" —pi™? (R+2)p3™" —p3 2] 1b, 0 ’

which we can invert to obtain

bq_[ R+1-p; R+1-p, ]ﬂr{f%dﬂ
byl LR+2)pr™ —pi™* (R+2)p3 ™" —p3~? 0
_1r R+2)p3 —pi7? —m+1—pﬂH—@*&yq
Al-[R+2)pI™" —pi™?] R+1-p, 0
_ @R[ (R+2)p3* —py?
A —[(R+2)pi ™" - P?_Z]]'

where A is the discriminant
A=[R+1-p][R+2)p}" —pi?] = [R+1-p,][(R+2)pF ™" — p~2].

We now have the full expression for the values A%; in terms of R:

pi”!

A%, = [by bz][;_l]
P2
_ (T'&)R

& ((R+2)p57 = p5~1p] ™ = [(R+2)p ™" = pf 7?10y ).

We now consider the asymptotics for large and small R.

S2.1 Asymptotics: Large R
Upon inspection, for large values of R, we note that p; is asymptotically equal to R + 2. We can approximate p, to the first

order. If we consider the function f(z) = /z, then

(S24)

(S25)
(S26)

(S27)

(S28)
(S29)

(S30)

(S31)

(S32)

(S33)



flz+ d) ~ () + f/(Ddz = E + 5272z,

Thus, for large values of R, we have

100

VR+2)? -4~ (R+2)*+ % [(R +2)*]7/2(=4)
=R+2)-2R+2)7"

(S34)

(S35)
(S36)

Substituting this into our expression for p, shows that it is asymptotically equal to (R + 2)~? for large R. Correspondingly, A

asymptotically becomes

105

A~[R+1—R+2I[R+2)(R+2)" ™Y —(R+2)""2)]
—-R+1-R+2)'N[R+2)R+2)" =R +2)"7]
=—[R+2)"™-R+2)"+2]-[R+1-R+2)[R+2)"-(R+2)"?]

~—R+D[R+2)"—(R+2)"?]
and

(t7AC)R

—(t7'ec)R

110 A —R+D[R+2)"—(R+2)"7]

~ (t7le)(R+2)™

Therefore, when R is large, A%; is approximately

A% ~ (Tl )) R+ 2)™([(R+2)(R+2)" ™V — (R+2)""2|(R+2)/?
—[(R+2)(R+ 2" — (R +2)"2|(R +2)"UD)
~ (@R +D)T(-[R +2)" = (R +2)"?](R +2)""D)

~ —(t7 ') (R + 2) 7/
~ —(t7'ec)RT*?

115
which matches Eq. (8).

S2.1 Asymptotics: Small R

For R — 0, we now have the approximation

120

JR+2)2—4=1/4R + R?

This allows us to approximate p; and p, (Eq. (S23)) as

~ V4R
= 2vR.

(S37)
(S38)
(S39)

(S40)
(S41)

(S42)
(S43)
(S44)
(S45)

(S46)
(S47)
(548)



(R+2)+2VR 2+2VR

) > > 1++VR
125
(R+2)—2VR 2-2VR
P = > =~ > =1—\/§,

We can furthermore employ the linear approximations for powers of p, and p,:

pN ~ 1+ NVR
pY ~ 1—NvVR.
130

Now, examining the terms in our expression for the determinant A (Eq. (S31)), we have

R+1-p; ~—VR
R+1-p,~VR
(R+2)ps ' —pi~?~(R+2)(1-nm-1VR) - (1 - (n—2)VR)
~2(1—(n—1)VR) - (1 - (n—2)VR)
=1-nvVR
(R+2)p ' —pt 2~ (R+2)(1+ (- 1VR) — (1 + (n— 2)VR)
~2(1+ - 1VR) - (1+ (n—2)VR)
=1+nvVR.

135 This allows us to approximate A as

A= —\/ﬁ[l—n\/ﬂ —\/§[1+n\/§]

= —2\/E'
and consequently,
140
(t'e)R 1 |
—— 7 ~50 ec)VR.
Therefore, for small R, our expression for AX; now becomes approximately
1 . .
AR ~ E(‘L"lgc)\/ﬁ([l —nVR]p! ™" = [1 + nVR]ps ™)
1
145 ~— (7 eVR([1 - nVR][1 + G = DVR] = [1+nVR][1 - G - DVE])
1
=3 (t7tec)VR(—2nVR + 2(j — 1)VR)

= —(r‘lsc)(n _] + 1)R

which matches Eq. (8).
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S3 Definition of periodic boundary conditions

We define a BC perturbation f as a function of time ¢
150

£() = b + Asin (Ztm”t) (S68)

max

where b is the y-intercept, A4 is the amplitude, w is the number of periods over the simulation duration (including the spin-up and
inversion), and t,,,, the last simulated time step in the inversion. We define base values of b = 1902.5 ppb, A = 10 ppb, and
155 w = 2.5. We then separately vary the y-intercept from 1902.5 ppb to 1910 ppb, the amplitude from 2.5 ppb to 10 ppb, and the

period number from 2.5 to 6. All inversions use varying wind speeds.
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Table S1: Model configuration for simulation experiments

Model parameter

One-dimensional model

Two-dimensional model

Transport model
Model domain

Model resolution

True emissions

True boundary condition
Spin-up®?
Simulation duration

Number of pseudo-
observations

Pseudo-observation
distribution

Pseudo-observation error
statistics

One-dimensional model® with constant® and
varying® wind speeds

23 grid cells¥

25 km
30 ppb d1©@

1900 ppb
150 hours
150 hours
1000

Uniform in time and space®

Mean: 0 ppb
Standard deviation: 8 ppb

GEOS-Chem™

Permian basin, Texas
(28.75°N to 34.75°N, 99°W to 106.6875°W)

0.25° X 0.3125°

EDF inventory and Express Extension of the
Gridded EPA inventory®

TROPOMI-based boundary conditions®
April 2020
May 2020

Domain: 4431
Buffer zone: 6391®

Averaged TROPOMI methane observations for
May 20200

Mean: 0 ppb
Standard deviation: 10.5 ppb™

@ Advection is solved using the Lax-Wendroff scheme in the first n — 1 grid cells and an upstream scheme for the last grid cell (Brasseur and
Jacob, 2017). The model time step is defined so that the maximum Courant number equals 1. The model is initialized at steady state.

® The constant wind speed is U = 5 m s\,
© The varying wind see-saws between 3 and 7 m s at 1 m s”! increments for each time step over 20 hours.

© The model simulates concentrations outside of the inversion domain of interest to ensure comparability between the no correction, buffer,

and boundary inversions.

© True emissions are constant in time and space.
® As is standard in regional inversions, we use a model spin-up to ensure that the background is unbiased with respect to the true BC.

(® Pseudo-observations are generated by sampling each grid cell’s atmosphere at 50 regular intervals over the simulation period.

® GEOS-Chem is driven by the GEOS-FP meteorological data from the NASA’s Global Modeling and Assimilation Office (GMAO).

® True oil and gas emissions are defined by the Environmental Defense Fund (EDF) high-resolution Permian basin inventory for 2019 (Zhang
et al., 2020) while all emissions from all other sectors are given by the Express Extension of the Gridded EPA inventory for 2020 (Maasakkers

etal., 2023)

 We use TROPOMI-based smoothed BCs from the Integrated Methane Inversion (IMI) to generate the true BC concentrations. We calculate
the BC concentrations ¢ following the definition of the linearized forward model F (x) = Kx + ¢ (Section 2.1) where F is the GEOS-Chem
forward model driven by the true BCs, x is a vector of the IMI default emissions, and K is the Jacobian matrix generated from the IMI.

() Following the IMI, we average the observations over hourly GEOS-Chem grid cells. These counts represent the number of averaged
observations over the inversion domain of interest and buffer zone (used only for the buffer method).

O The TROPOMI observations are averaged on the 0.25° X 0.3125° model grid for each hour of the inversion.

(™ We generate random, uncorrelated errors with the error statistics shown here for each individual observation. The error statistics correspond
to the non-transport observing system error assumed by the IMI (Estrada et al., 2024; Chen et al., 2023). To account for the decrease in error
associated with averaging the observations, we reduce the mean error for each hourly grid cell by the square root of the observation count.
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Figure S1: Sensitivity of posterior flux estimates from a one-dimensional inverse model to periodic BC biases using different BC
correction methods. Different periodic BC biases are applied to the one-dimensional inverse model by varying the y-intercept (a),
amplitude (c), and number of periods over the simulation duration (g) of a periodic function. The influence of these BC biases on the
posterior fluxes is shown as the difference between inversions solved with the true and biased BCs, normalized by the mean prior
fluxes (b, d, and h for varying y-intercept, amplitude, and periods, respectively). The influence of the mean bias of the periodic BC over
the inversion period is also shown (c, f, and i for varying y-intercept, amplitude, and periods, respectively).



