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Abstract. With rising global temperatures, urban environ-
ments are increasingly vulnerable to heat stress, often exac-
erbated by the Urban Heat Island (UHI) effect. While most
UHI research has focused on large metropolitan areas around
the world, relatively smaller-sized cities (with a population
100 000–300 000) remain understudied despite their growing
exposure to extreme heat and meteorological significance. In
particular, urban heat advection (UHA), the transport of heat
by mean winds, remains a key but underexplored mecha-
nism in most modeling frameworks. High-resolution numer-
ical weather prediction (NWP) models are essential tools for
simulating urban hydrometeorological conditions, yet most
prior evaluations have focused on retrospective reanalysis
products rather than forecasts. In this study, we assess the
performance of a widely used operational weather forecast
model, the High-Resolution Rapid Refresh (HRRR), as a
representative example of current NWP systems. We inves-
tigate its ability to predict spatial and temporal patterns of
urban heat and UHA within and around Lubbock, Texas, a
small-sized city located in a semi-arid environment in the
southwestern US. Using data collected between 1 September
2023, and 31 August 2024 from the Urban Heat Island Exper-
iment in Lubbock, Texas (U-HEAT) network and five West
Texas Mesonet stations, we compare 18 h forecasts against in
situ observations. HRRR forecasts exhibit a consistent night-
time cold bias at both urban and rural sites, a daytime warm
bias at rural locations, and a pervasive dry bias across all
seasons. The model also systematically overestimates near-

surface wind speeds, further limiting its ability to accu-
rately predict UHA. Although HRRR captures the expected
slower nocturnal cooling in urban areas, it does not well cap-
ture advective heat transport under most wind regimes. Our
findings reveal both systematic biases and urban represen-
tation limitations in current high-resolution NWP forecasts.
Our forecast–observation comparisons underscore the need
for improved urban parameterizations and evaluation frame-
works focused on forecast skill, with important implications
for heat-risk warning systems and forecasting in small and
mid-sized cities.

1 Introduction

Global cities are experiencing increasingly pronounced en-
vironmental changes driven by rapid urbanization, climate
change, and other anthropogenic influences (Masson et al.,
2020; Oke et al., 2017). In turn, cities have been shown to
substantially alter local weather and climate processes, such
as cloud and precipitation patterns (Lu et al., 2024; Vo et
al., 2023; Yang et al., 2024), boundary layer development
(Caicedo et al., 2019; Fenner et al., 2024; Pal et al., 2012),
and air pollutant transport (Klein et al., 2014; Lac et al.,
2013; Wang et al., 2018a). Among these, urban thermal con-
ditions stand out as being particularly affected, shaped by the
heterogeneous nature of the built environment and surround-
ing semi-urban and rural areas. Indeed, heat-related phenom-
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ena, such as the urban heat island (UHI) effect, urban dry/-
moisture islands, and heat waves, have remained central fo-
cuses in urban climate research (Barlow, 2014)

Like other urban climatic phenomena, urban thermal con-
ditions are strongly influenced by both atmospheric pro-
cesses and surface properties (Oke et al., 2017). Wind plays
a particularly important role by transporting heat via advec-
tion and turbulent mixing, mechanisms that drive tempera-
ture gradients within and around urban areas, a phenomenon
known as urban heat advection (Lowry, 1977). Both the in-
tensity and spatial structure of the UHI are more closely
linked to wind speed and direction compared to humidity or
urban morphology (Bassett et al., 2019). Strong winds typ-
ically reduce UHI intensity by enhancing heat dispersion,
whereas calm wind conditions tend to promote a circular
UHI footprint (Oke, 1976). Under high wind conditions, the
UHI often becomes elongated in the downwind direction due
to advective heat transport (Bohnenstengel et al., 2011). Be-
yond thermal effect, the dynamic urban heat advection pro-
cess also influences local pollution dispersion and regional
air quality (Agarwal and Tandon, 2010), and may affect con-
vective processes such as cloud formation and precipitation
patterns around cities (Wang et al., 2018b). A comprehensive
understanding of the spatial variability in urban heat and its
advection behavior is therefore critical for improving urban
weather forecasting and mitigating temperature-related risks.

Understanding urban heat-related processes has tradition-
ally relied on observations (Bassett et al., 2016, 2017). While
such observations offer high accuracy and real-time insights,
they are inherently limited by sparse spatial coverage, lack
of temporal continuity, and the high costs associated with
installation and maintenance (Chen et al., 2022). Satellite
remote sensing, by contrast, provides broad spatial cover-
age and effectively captures key urban surface characteristics
(Zhou et al., 2018). However, it remains insufficient for char-
acterizing urban thermal conditions, particularly due to its
limited temporal resolution and the inability to retrieve key
atmospheric variables such as air temperature and wind. In
this context, Numerical Weather Prediction (NWP) models
have emerged as valuable tools for investigating urban heat
processes, which provide full atmospheric properties at high
temporal frequency with operational relevance (Best, 2005;
Chen et al., 2011). Importantly, NWP forecasts, rather than
reanalyses, are particularly critical for supporting urban re-
silience and heat mitigation through early warning systems
(Kacker et al., 2025; Yang et al., 2016). Because operational
heat warnings depend on lead-time forecast skill, evaluation
efforts should focus on forecast fields, whereas reanalysis
products, which assimilate observations, may mask system-
atic model errors and bias performance assessments. Never-
theless, earlier land surface models (LSMs) commonly used
in NWP systems, such as Noah-LSM (Chen and Dudhia,
2001), the Common Land Model (CLM) (Dai et al., 2003),
and Rapid Update Cycle (RUC) (Benjamin et al., 2004), of-
ten underrepresented urban processes due to coarse spatial

resolution and limited urban-specific parameterizations, in
part reflecting the operational emphasis on rapid forecasts.

Recent advances in high-resolution urban land-use
datasets and urban land surface models (ULSMs) have sub-
stantially improved urban representation in numerical mod-
els (Chen et al., 2011; Lipson et al., 2024; Stewart et al.,
2014). Among ULSMs, one-dimensional slab models remain
widely used in operational NWP because they are compu-
tationally efficient (Oleson et al., 2008) and perform rea-
sonably well in simulating urban surface energy fluxes over
predominantly impervious surfaces with strong sensible heat
fluxes (Jongen et al., 2024; Lipson et al., 2024). However,
these models idealize the urban surface as a homogeneous
layer and oversimplify radiative and hydrological interac-
tions that are increasingly important in cities with nature-
based solutions such as urban vegetation, green infrastruc-
ture, and irrigation (Huang et al., 2025; Wang et al., 2025).
While slab models have been criticized for their structural
simplicity and are often considered surpassed by more ad-
vanced urban schemes in research applications, they remain
the default choice in many operational forecasting systems.
Despite this continued use, there has been limited evaluation
of their forecast performance, especially with respect to cap-
turing fine-scale spatiotemporal variations in urban heat. Ad-
dressing this gap is crucial for enhancing urban heat fore-
casting and informing the development of more accurate and
adaptive urban land surface parameterizations for operational
use.

In addition, urban climate studies have predominantly fo-
cused on major metropolitan areas, often overlooking small
to mid-sized cities due to limitations such as low model res-
olution and sparse observational networks. Yet, there are nu-
merous small cities around the world that remain understud-
ied in urban climate research. For example, approximately
96 % of US cities with populations over 20 000 have fewer
than 300 000 residents (U.S. Census Bureau, Population Di-
vision, 2024). Despite their smaller size and lower population
density, these cities are increasingly vulnerable to heat stress
due to limited adaptive capacity, constrained resources, and
inadequate emergency response systems (Youngquist et al.,
2023). Evidence from cities such as Szeged, Hungary, and
Utrecht, the Netherlands, demonstrates that smaller urban ar-
eas can exhibit substantial UHI intensities, emphasizing their
susceptibility to elevated temperatures and associated risks
(Brandsma and Wolters, 2012; Unger et al., 2011). This vul-
nerability is further amplified in dryland regions considering
their fragile ecosystems and chronic water scarcity (Huang
et al., 2017; Lee et al., 2023a, 2025). In these areas, decreas-
ing soil moisture and vegetation cover contribute to a positive
feedback loop of surface warming, land degradation, and fur-
ther aridification (Charney et al., 1977; Li et al., 2021; Zhang
et al., 2020), which may in turn exacerbate UHI effects. Re-
cent global modeling work also indicates that urbanization-
induced warming and associated land–atmosphere feedback
processes are stronger in water-limited (dry) regimes than in
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humid ones, underscoring dryland cities as critical stress tests
for operational urban forecasts (Zhang et al., 2025). As pop-
ulation growth and climate fragility increase in semi-arid re-
gions, small and mid-sized cities are becoming critical fron-
tiers for addressing heat-related challenges.

In this study, we conduct a year-long evaluation of ur-
ban heat forecasts from the High-Resolution Rapid Refresh
(HRRR) model in Lubbock, Texas, a small city located in
a semi-arid region of the southwestern US. HRRR is one
of the highest-resolution operational NWP systems and in-
corporates a slab urban parameterization scheme. The fore-
cast products from HRRR have been evaluated from a va-
riety of perspectives in previous studies. These include as-
sessments of warm-season precipitation over the US Central
Plains (Bytheway et al., 2017), cloud cover across the con-
tiguous United States (Griffin et al., 2017), and convective
storm characteristics in the eastern United States (Katona et
al., 2016). More recent evaluations have focused on convec-
tive available potential energy, near-surface meteorology, and
surface energy fluxes in Alabama (Lee et al., 2019; Wag-
ner et al., 2019), as well as winds and gusts in New York
State (Fovell and Gallagher, 2022). Beyond these evalua-
tions, HRRR forecast products have increasingly been incor-
porated into urban applications. For example, HRRR fore-
casts have been coupled with hydrological models to sup-
port urban flood forecasting (Coelho et al., 2022) and used
to improve air quality predictions (Park et al., 2025). To our
knowledge, however, HRRR forecasts have never been sys-
tematically evaluated for urban heat dynamics.

To address this critical gap, we pose the following research
questions: (1) How accurately does HRRR simulate near-
surface hydrometeorological conditions, particularly temper-
ature and humidity, within and around a semi-arid urban en-
vironment across different times of the day and throughout
varying seasons? (2) To what extent does HRRR reproduce
observed nocturnal cooling rates across heterogeneous ur-
ban and rural landscapes? (3) Can HRRR capture the spatial
variability and magnitude of UHI and urban heat advection
(UHA), particularly under varying wind regimes? Our eval-
uation leverages observational data collected from 23 Urban
Heat Island Experiment in Lubbock, Texas (U-HEAT) sta-
tions measuring 2 m air temperature and dew point temper-
ature (Danzig et al., 2025). Wind speed and direction data
from five West Texas Mesonet stations are also used to char-
acterize local advection. Corresponding to these questions,
we focus on three key aspects of urban thermal conditions:
near-surface hydrometeorological forecasts, the spatial vari-
ability of UHA, and nocturnal cooling rates. By explicitly
addressing these questions, our findings aim not only to sys-
tematically evaluate HRRR’s skill in urban heat forecasting
across critical temporal scales but also to directly inform en-
hancements in operational NWP systems. Ultimately, this
research seeks to improve forecast-based heat-risk manage-
ment strategies for small and mid-sized cities facing growing
heat vulnerability.

2 Datasets and methods

2.1 Study area

The study area, Lubbock, Texas (33.58° N, 101.84° W), is
situated in the northwestern part of Texas within the Great
Plains region (Fig. 1). As of the 2023 census, Lubbock had
a population of 266 878, considerably smaller than major
US metropolitan areas such as New York City, Los Angeles,
and Chicago. Despite recent population growth, Lubbock re-
mains a medium-sized city. Its rapid urbanization, semi-arid
climate, and relative isolation from the influence of larger
metropolitan areas makes it an ideal testbed for examining
thermal conditions in small, climate-sensitive cities.

According to the Köppen climate classification (Cui et al.,
2021), Lubbock exhibits a cold semi-arid climate, charac-
terized by an average annual precipitation of approximately
466 mm and a mean annual temperature of 16.3 °C. The
majority of precipitation occurs between May and October.
While the overall decadal mean precipitation has shown a
declining trend in recent decades, May remains an excep-
tion, exhibiting relatively stable or even increased precipita-
tion levels (Fig. S1b in the Supplement). Concurrently, both
monthly and decadal mean temperatures have demonstrated a
consistent upward trend, with the decadal mean temperature
rising from 15.5 to 17.2 °C over recent decades (Fig. S1a).
In the context of ongoing climate change, which is ampli-
fying the frequency and intensity of heatwaves (Meehl and
Tebaldi, 2004), Lubbock has experienced a notable increase
in extreme heat events. Specifically, during the 2010s, the
city recorded up to 171 d yr−1 with maximum temperatures
exceeding 100 °F (37.8 °C), indicating a significant escala-
tion in heat stress conditions (Fig. S1a).

2.2 In-situ data

2.2.1 Observation networks in Lubbock

Accurately characterizing urban thermal conditions requires
observational datasets that offer both high temporal resolu-
tion and extensive spatial coverage across urban and sur-
rounding rural areas. To address this need, we leveraged
observational data from two complementary networks: the
West Texas Mesonet (WTM) and the newly established Ur-
ban Heat Experiment Around Lubbock, Texas (U-HEAT)
network.

The WTM, established in 1999 through funding from
the Texas Department of Economic Development, is op-
erated by the National Wind Institute. For this study, we
utilized one-minute interval observations of 10-meter wind
speed and direction. Among the 158 active WTM sta-
tions, five located in and around Lubbock were selected
due to their proximity to the urban core and their repre-
sentative spatial coverage (Fig. 1b). These stations are Lub-
bock TTU East Campus (33.59° N, 101.78° W), Lubbock All
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Figure 1. Geographical overview of the study area: (a) location of Lubbock, Texas, within the contiguous United States (CONUS) shown
on the topographic map; (b) distribution of 28 in-situ observational sites in and around Lubbock, including 23 U-HEAT stations and 5
West Texas Mesonet stations overlaid on a satellite image (map source: Esri, U.S. Department of Agriculture Farm Service Agency; urban
boundary source: U.S. Census Bureau).

Saints School (33.50° N, 101.88° W), Lubbock South Plains
Food Bank (33.54° N, 101.81° W), Lubbock TTU (33.60° N,
101.89° W), and Lubbock LCU (33.57° N, 101.94° W).

The U-HEAT stations use HOBO MX2301A data loggers.
Each logger is equipped with internal sensors for tempera-
ture and relative humidity, enabling the calculation of dew
point temperature. The entire U-HEAT was deployed be-
tween June and August 2023 and began recording observa-
tions immediately upon installation. To capture detailed tem-
perature variability during periods of extreme heat in sum-
mer and early fall, the loggers were configured with a 1 min
recording interval. For the remaining months, when tempera-
ture is typically lower, a 5 min interval was applied. A total of
23 stations were strategically placed across Lubbock (Fig. 1b
and Table S1 in the Supplement), aligned along the city’s
southwest-to-northeast urban development axis. This orien-
tation, forming a round-shaped network, has been demon-
strated in previous studies to enhance the accuracy of UHI in-
tensity and UHA assessments (Bassett et al., 2016; Danzig et
al., 2025). Sensor placement, including height, land-surface
characteristics, and deployment practices, adhered to World
Meteorological Organization guidelines, ensuring installa-
tion on grassy surfaces, free from overhead vegetation and
nearby anthropogenic heat sources.

2.2.2 Data pre-processing

We retrieved both the 18 h forecast and the 0 h forecast
(i.e., the model initialization) from HRRRv4 for the period
between 1 September 2023 and 31 August 2024, via the
NOAA Open Data Dissemination (NODD) program through
the Google Cloud Platform HRRR archive. For site-specific
analysis, the nearest HRRR grid point was identified for each
observation location, resulting in a total of 24 HRRR grid

points selected for direct comparison with in situ measure-
ments (Fig. S2). To ensure temporal consistency, all U-HEAT
observational data were converted to Coordinated Universal
Time (UTC), while the Mesonet data were already recorded
in UTC. We also took into account daylight-saving time
in Lubbock, where the local time offset from UTC shifts
from −5 to −6 h between 5 November 2023, at 01:00 and
10 March 2024, at 02:00 due to the transition to standard
time. For the 1 min interval data from the Mesonet and U-
HEAT, hourly means were calculated by averaging observa-
tions within a 10 min window centered on each exact hour
(i.e., 5 min before and after). This approach helps smooth
short-term variability and reduce potential errors associated
with localized fluctuations, such as those induced by tran-
sient urban influences or microscale atmospheric perturba-
tions. For the U-HEAT data recorded at 5 min intervals, the
observation at the exact hour was directly used to represent
the hourly value. A summary of the extracted HRRR vari-
ables and corresponding observational datasets used for com-
parison is provided in Table 1.

2.3 HRRR forecast data

The HRRR model is a deterministic, convection-allowing
numerical weather prediction system that provides high-
resolution (3 km) short-term (hourly) forecasts across the
conterminous United States (CONUS). Operational since
2014, HRRR has been widely used to support real-time
weather forecasting (Benjamin et al., 2016; Lee et al., 2024).
Our evaluation focuses on version 4 of HRRR (HRRRv4),
which incorporates the Rapid Update Cycle Land Surface
Model (RUC LSM) to simulate surface and near-surface hy-
drometeorological conditions. The RUC LSM includes 21
land-cover categories based on MODIS classifications; how-
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Table 1. Summary of variables retrieved from the observational networks and HRRR model.

Data Source Variables Measurement height Time

U-HEAT (23 sites) and Air temperature (°C) 2 m Local Time (LT)
WTM (5 sites) Dew point temperature (°C) 2 m LT

Wind speed (m s−1) 10 m Coordinated Universal Time (UTC)
Wind direction (–) 10 m UTC

HRRR (24 grids) Air temperature (K) 2 m UTC
Dew point temperature (K) 2 m UTC
Westward wind component (m s−1) 10 m UTC
Southward wind component (m s−1) 10 m UTC
Total cloud cover (%) Entire atmosphere UTC

ever, it represents all urban areas using a single category
(Category 13: Urban and Built-Up), which limits its ability to
capture the heterogeneity of urban surface types (Smirnova
et al., 2016). A technical summary of RUC LSM and urban
parameterization in HRRRv4 can be found in Appendix A.
We specifically assess HRRR’s 18 h forecast, as it represents
the maximum lead time available in its hourly forecast cycle.
This forecast horizon is also less influenced by initial condi-
tions and data assimilation compared to shorter lead times,
making it more suitable for evaluating the model’s forecast
capability, particularly its treatment of land–atmosphere in-
teractions (Lee et al., 2024). Detailed descriptions of the
HRRR system and the RUC LSM can be found in Benjamin
et al. (2016) and Dowell et al. (2022).

2.4 Model evaluation metrics

The overall performance of HRRR was determined by thor-
oughly evaluating near-surface meteorological variables (2 m
air temperature, 2 m dew point temperature, and 10 m wind
speed) in different seasons and during daytime or nighttime
against observational data. Here, daytime is defined as 12:00
to 05:00 p.m. local time and nighttime as 12:00 to 05:00 a.m.
local time, efficiently capturing the periods of peak solar in-
fluence and nocturnal cooling. Evaluation metrics include
mean bias error (MBE), root mean square error (RMSE), and
Pearson correlation coefficient (r), which are expressed as
(Wang and Wang, 2020; Wilks, 2011):

MBE=
1
N

N∑
i=1

(Mi −Oi) (1)

RMSE=

√√√√ 1
N

N∑
i=1
(Mi −Oi)

2 (2)

r =

N∑
i=1
(Mi −Mi)(Oi −Oi)√

N∑
i=1
(Mi −Mi)2

√
N∑
i=1
(Oi −Oi)2

(3)

where Mi and Oi represent the model forecast and observa-
tion, respectively, an overbar (i.e., Mi and Oi) indicates the
mean of all samples, and N denotes the number of simulated
periods, which is 8784 for a year-long simulation. In gen-
eral, model performance is considered more accurate when
the MBE and RMSE are close to 0, and r approaches 1.

2.5 Determination of nocturnal cooling rate

The nocturnal cooling rate indicates how effectively an area
losses heat accumulated during the day. Urban areas, char-
acterized by high fraction of impervious surfaces, complex
geometries, and distinct thermal properties, typically ex-
hibit slower cooling rates than rural surroundings, leading
to pronounced nighttime UHI effects (Oke et al., 2017).
Several seminal studies have demonstrated that nighttime
cooling is strongly modulated by surface properties, atmo-
spheric conditions, and land cover patterns, making it a key
metric for assessing nighttime thermal behavior and urban
hydrometeorological conditions (Kidder and Essenwanger,
1995; Spronken-Smith and Oke, 1999). This contrast is par-
ticularly pronounced in semi-arid cities such as Lubbock,
where prevailing clear skies and dry air conditions can en-
hance radiative cooling in rural areas and intensify urban–
rural cooling differences. Here we consistently define night-
time as from 12:00 a.m. to 05:00 a.m. local time, aligning
with the evaluation window used in model evaluation. To
isolate the effects of surface characteristics and minimize
cloud-induced variability, we restrict our analysis to nights
with continuous domain-wide cloud cover below 25 %. This
threshold, corresponding to “mostly clear” conditions in U.S.
National Weather Service definitions, is selected to isolate
surface-driven cooling processes and minimize cloud-related
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variability while retaining an adequate sample size. Only
regression-derived cooling rates with statistical significance
(p < 0.05) are retained for further analysis.

2.6 Assessment of urban heat advection

The general framework of estimating urban effects on lo-
cal and regional climate was initially established by Lowry
(1977). Although urban heat advection has been recognized
in numerous UHI studies, it remains relatively underex-
plored, primarily due to the scarcity of dense observational
networks and challenges in effectively isolating urban influ-
ences from those of the surrounding landscape or background
climate (Lowry, 1977). Using measurements from only a few
sites, Angevine et al. (2003) provided some qualitative ideas
about the presence of UHA in their work. Building upon this
foundational concept, Heaviside et al. (2015) introduced a
novel approach to isolate UHA from the background UHI
by decomposing UHI intensity into two components: (1) a
time-mean temperature field representing background condi-
tions aggregated over all wind directions, and (2) a wind-
dependent temperature field driven by the prevailing flow.
This method has been applied and validated in various stud-
ies utilizing both observational networks and numerical mod-
els (Bassett et al., 2016, 2019). However, to the best of our
knowledge, weather forecast model has never been examined
in the context of UHA.

In this study, we adopt a similar wind-direction-dependent
analytical framework to quantify UHA forecasts from the
HRRR model. Specifically, we use wind-direction-dependent
rural reference temperatures, Trural, following the procedu-
ral steps outlined in Heaviside et al. (2015), but extend the
method by refining the wind classification. Instead of the
original four categories, we classify the mean nighttime 10 m
wind field from HRRR into eight directional sectors. To min-
imize noise from short-term directional shifts, only nights
with relatively stable wind conditions (defined as having con-
sistent wind direction over six consecutive nighttime hours)
are included in the analysis. These filtered nights are referred
to as “effective nights”. For each effective night t , we derive
the temperature anomaly1T(t) at each grid cell as the differ-
ence between the HRRR-forecasted temperature and the cor-
responding rural reference temperature Trural. We then deter-
mine the annual mean temperature anomaly 1T annual across
all effective nights. Lastly, the wind-dependent UHA signal,
denoted UHA(wind)

(annual), is derived by subtracting1T annual from
the wind-direction-specific temperature anomaly. We calcu-
lated temperature anomaly following a similar procedure us-
ing station-based wind direction data to indicate the urban
heat advection inferred from observational data. Tempera-
ture anomalies at each site are computed during each effec-
tive night and then averaged across all effective nights for
each wind direction. This approach isolates persistent spatial
patterns in nocturnal temperature associated with mean wind
advection. Since wind transports heat from warmer to cooler

regions, a systematic downwind warming captured through
these directional composites would serve as a robust proxy
for UHA. The workflow for calculating HRRR-derived UHA
is illustrated in Fig. 2.

3 Results

In this section, we present a comprehensive evaluation of
HRRR forecast performance against U-HEAT and WTM ob-
servations. In Sect. 3.1, we assess overall forecast skill for
three key urban hydrometeorological variables: 2 m air tem-
perature, 2 m dew point temperature, and 10 m wind speed.
Section 3.2 compares predicted hourly outputs at two lead
times, i.e., 0 h (near-real-time) and 18 h, to assess sensitiv-
ity to forecast horizon. The final two subsections focus on
HRRR’s capability to capture the temporal and spatial fea-
tures of urban thermal environments. Specifically, Sect. 3.3
evaluates forecasted nocturnal cooling rates at urban and ru-
ral sites, while Sect. 3.4 assesses HRRR-derived UHA in
comparison with observation-based estimates.

3.1 Spatial, seasonal, and diurnal evaluation of HRRR
hydrometeorological forecast

The comparison between HRRR 18 h forecasts and observa-
tions across the U-HEAT suggests generally strong correla-
tions for both 2 m air temperature and dew point temperature
throughout the day during the entire study period, with aver-
age correlation coefficients (r) across all sites of 0.98± 0.00
and 0.93±0.01, respectively (Fig. 3). The average RMSE for
dew point temperature (4.06±0.19 °C) is notably higher than
for 2 m air temperature (2.01± 0.12 °C). There is no clear
urban–rural contrast in RMSE, though slightly better per-
formance is observed in the southwestern part of the study
domain for 2 m air temperature. In terms of MBE, urban
sites exhibit a consistent cold bias for 2 m air temperature
(average MBE =−0.27 °C), whereas peripheral rural sites
show a warm bias (average MBE= 0.10 °C). In comparison,
HRRR forecasts uniformly underestimate dew point temper-
ature at both urban and rural sites, with an average MBE of
−1.95±0.22 °C. HRRR struggles to accurately capture wind
speed across all five Mesonet sites, irrespective of their ur-
ban or rural classification, as evidenced by low correlations
(r ranging from 0.37 to 0.39) and consistent overestimations
(average MBE= 0.29± 0.12 °C).

Seasonal variations in forecast performance reveal dis-
tinct patterns. For 2 m air temperature, HRRR shows rela-
tively better performance in spring (Fig. S3; RMSE= 2.04±
0.20 °C, r = 0.90± 0.01) and fall (Fig. S5; RMSE= 1.81±
0.17 °C, r = 0.98± 0.01). Summer forecasts feature a pro-
nounced warm bias across all sites (Fig. S4; average
MBE= 0.26 °C), while winter forecasts exhibit a system-
atic cold bias (Fig. S6; mean MBE =−0.48 °C). During
spring and fall, a clear spatial MBE pattern emerges, resem-
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Figure 2. Workflow for calculating Urban Heat Advection (UHA), adapted from the framework by Heaviside et al. (2015).

bling the annual pattern of urban cold biases and periph-
eral warm biases (cf. Fig. 3). Dew point temperature fore-
casts are least accurate during spring, characterized by a pro-
nounced dry bias (average MBE=−2.90 °C), higher RMSE
(mean= 5.30 °C), and lower correlations (mean r = 0.86).
The dry bias persists consistently across other seasons as
well, albeit to a lesser extent. Wind speed forecasts per-
form slightly better during winter (mean r = 0.44, average
MBE= 0.12 m s−1), while overestimations with relatively
low correlations are consistent in other seasons.

In addition to spatial variability, clear forecast perfor-
mance contrasts emerge between urban and rural sites. As
illustrated in the top row of Fig. 4, rural sites generally show
a slight warm bias (average annual MBE= 0.10 °C), while
urban sites consistently show a cold bias (average MBE
=−0.28 °C). This contrast persists across all seasons, with
rural sites exhibiting consistently higher MBE values relative
to urban sites. While urban sites show persistent underesti-
mation of 2 m air temperature throughout all seasons, rural
sites exhibit milder cold biases, specifically in fall and win-
ter (average seasonal MBE =−0.20 °C). For dew point tem-
perature, urban–rural differences are minimal, with similar
average annual MBEs of −2.00 °C for urban and −1.89 °C
for rural sites. Both urban and rural sites consistently show
a systematic dry bias across seasons and most pronounced
in spring (average seasonal MBE =−2.93 °C) compared to
other seasons (average MBE=−1.62 °C). Wind speed over-

estimations persistent year-round, with urban sites slightly
more biased (average MBE= 0.24 m s−1) than rural ones
(average MBE= 0.15 m s−1).

We further evaluated HRRR forecasts during daytime and
nighttime periods, as shown in Fig. 5. MBEs at both urban
and rural sites are generally larger during the day across
all variables and seasons. For 2 m air temperature, HRRR
forecasts show a daytime warm bias at both urban (an-
nual average MBE = 0.38 °C) and rural (annual average
MBE= 0.59 °C) sites. At night, urban sites exhibit a pro-
nounced cold bias (annual average MBE=−0.57 °C), while
rural sites show only a slight underestimation (annual aver-
age MBE =−0.09 °C). Notably, daytime warm biases are
consistent during spring, summer, and fall, while cold bi-
ases dominate during winter. At night, cold biases are present
across all seasons, except for a slight warm bias at rural
sites during spring (average MBE= 0.08 °C). Additionally,
extreme temperature biases (outliers) tend to be less preva-
lent during nighttime periods.

For dew point temperature, HRRR forecasts generally
yield drier conditions during daytime than nighttime at both
urban and rural sites across all seasons. Spring notably ex-
hibits the strongest dry bias, on average with daytime MBE
of −4.59 °C (urban) and −4.28 °C (rural), and nighttime
MBEs of −1.93 °C (urban) and −1.86 °C (rural). Dew point
forecasts show the best performance during summer nights,
as reflected by narrower MBE spreads and less pronounced
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Figure 3. Site-specific evaluation of HRRR 18 h forecasts against in situ observations in and around Lubbock, Texas. Rows correspond to
different variables: 2 m air temperature (top), 2 m dew point temperature (middle), and 10 m wind speed (bottom). Columns show spatial
distributions of three statistical metrics: Root Mean Square Error (RMSE; left), correlation coefficient (r; middle), and Mean Bias Error
(MBE; right). Urban and rural sites are color-coded by metric value, with urban and rural sites marked by circles and triangles, respectively.

negative outliers with mean MBE of −0.16 °C (urban) and
0.01 °C (rural). Daytime periods consistently show dry bi-
ases across all sites and seasons. Wind speed forecasts reveal
systematic overestimations year-round, with stronger biases
at urban sites except during winter daytime. Although sea-
sonable differences are relatively minor, HRRR forecasts are
most accurate during summer daytime and winter nighttime.

3.2 Comparison of HRRR forecast skill at 0 and 18 h
lead times

To assess the extent to which forecast performance may de-
teriorate with lead time, particularly within urban areas, we
compared HRRR model performance between the 18 h lead-
time forecasts and the 0 h forecasts, the latter of which incor-

porates data assimilated on hourly to sub-hourly timescales
from multiple observational sources. As shown in the lower
row of Fig. 4, the average annual MBEs of 2 m air temper-
ature for the 0 h lead time forecasts (urban: −0.52 °C; ru-
ral: −0.17 °C) do not show marked improvement relative to
the 18 h lead time forecast (urban: −0.28 °C, rural: 0.10 °C).
However, the 0 h forecasts display notably lower variability
in the temperature bias, with errors generally confined within
±2.5 °C, which indicates improved performance in capturing
extreme temperatures.

Across individual seasons, rural sites consistently exhibit
smaller MBEs under the 0 h forecasts compared to urban
sites, while slightly larger temperature biases are observed
using the 18 h forecast. A clear and substantial improvement
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Figure 4. Comparison of HRRR 18 h lead forecasts (top) and near-real-time (0 h lead) forecasts (bottom) evaluated using mean bias error
(MBE) across all seasons for 2 m air temperature (left), 2 m dew point temperature (middle), and 10 m wind speed (right). Each subplot
includes five seasonal groupings (All, Spring, Summer, Fall, and Winter), with paired boxplots for urban and rural sites. Each individual data
point corresponds to MBE based on a single day at each station location. Box denotes the interquartile range (IQR; 25th to 75th percentile),
with the horizontal line indicating the median. Whiskers extend to the furthest data points within ±1.5× IQR. Asterisks indicate statistically
significant differences between urban and rural results based on a paired-sample t-test such that ∗, ∗∗, and ∗∗∗ correspond with p < 0.05,
p < 0.01, and p < 0.001, respectively.

is observed for dew point temperature in the 0 h forecasts,
as suggested by the reduced biases, narrower spreads, and
fewer extreme outliers using the 0 h forecasts, both annually
and seasonally. Specifically, during summer and winter, aver-
age seasonal MBEs are close to zero, with average MBEs of
0.32 °C (urban) and 0.63 °C (rural) in summer, and−0.12 °C
(urban) and −0.08 °C (rural) in winter. On an annual ba-
sis, average MBE for urban sites markedly improves from
−2.0 °C (18 h) to −0.11 °C (0 h) and similarly for rural sites
from −1.89 to 0.01 °C. In contrast, shorter lead time show
negligible improvement for wind speed forecasts. The aver-
age annual MBEs for wind speed for 0 h forecasts (urban:
0.24 m s−1; rural: 0.14 m s−1) are nearly identical to those
from the 18 h forecasts, indicating limited sensitivity to fore-
cast lead time.

Overall, the near-real-time forecasts (0 h lead time) gener-
ally outperform 18 h forecasts in predicting extreme 2 m air
temperatures and dew point temperatures. However, 0 h fore-
casts do not notably improve wind speed predictions. From
an urban–rural contrast perspective, performance gains with
shorter lead times are more evident in rural areas, while lim-
ited improvements in urban areas may reflect persistent defi-

ciencies in the model’s urban representation rather than input
data constraints.

3.3 Nocturnal cooling behavior in HRRR forecasts

To better evaluate how well HRRR forecasts capture night-
time urban thermal conditions, we compared 18 h forecasted
nocturnal cooling rates against in situ observations from both
urban and rural sites throughout the study period. Out of 364
complete nights evaluated, 41 exhibited statistically signifi-
cant nocturnal cooling (p < 0.05), characterized by consis-
tent air temperature decreases at both urban and rural sites
(Fig. 6). Among these nights, there was no clear dominance
in cooling behavior between land cover types, as urban sites
showed faster cooling on 20 nights, while rural sites cooled
faster on 21 nights. Seasonal variations in nocturnal cool-
ing rates were notable, with winter and spring exhibiting the
highest cooling rates. Specifically, mean cooling rate dur-
ing winter was 0.88 °C h−1 at urban sites and 0.93 °C h−1 at
rural sites, followed by fall with 0.60 and 0.69 °C h−1, re-
spectively. HRRR forecasts effectively capture urban–rural
cooling difference, as rural areas cooled slightly faster. Con-
versely, summer had the lowest forecasted cooling rates
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Figure 5. Diurnal evaluation of HRRR forecasts using mean bias error (MBE) across all seasons for 2 m air temperature (left), 2 m dew
point temperature (middle), and 10 m wind speed (right) during daytime (12:00–05:00 p.m. LT; top) and nighttime (12:00–05:00 a.m. LT;
bottom). Each subplot includes five seasonal groupings (All, Spring, Summer, Fall, and Winter), with paired boxplots for urban and rural
sites. Each individual data point corresponds to MBE based on a single daytime or nighttime period at each station location. Box denotes
the interquartile range (IQR; 25th to 75th percentile), with the horizontal line indicating the median. Whiskers extend to the furthest data
points within ±1.5× IQR. Asterisks indicate statistically significant differences between urban and rural results based on a paired-sample
t-test such that ∗, ∗∗, and ∗∗∗ correspond with p < 0.05, p < 0.01, and p < 0.001, respectively.

(0.33 °C h−1 at urban and 0.46 °C h−1 at rural sites), though
based on only two clear nights due to frequent cloud cover.

Rapid cooling events – defined as cooling rates exceed-
ing 1.00 °C h−1 – were forecasted on 27 and 24 nights at ur-
ban and rural sites, respectively. These events occurred most
frequently during winter (14 urban and 10 rural cases) and
fall (13 urban and 12 rural cases). However, no events ex-
ceeded 1.50 °C h−1 during the study period. The seasonal
distribution of rapid cooling events shows no consistent pat-
tern: based on HRRR forecasts, urban sites recorded one such
event in winter and two in spring, while rural sites recorded
three events across fall, winter, and spring. Inter-site variabil-
ity in cooling rates remained low, as indicated by standard de-
viations of 0.36± 0.01 °C h−1 for both urban and rural sites.

Model performance evaluated using MBE reveals system-
atic underestimation of nocturnal cooling. At urban sites,
the HRRR predicted faster cooling than observations on 15
nights and slower cooling on 29 nights. Rural sites showed
a similar pattern, with 13 nights of overestimated cooling
rate and 32 nights of underestimation. The average MBE is
−0.12± 0.27 °C h−1 at urban sites and −0.14± 0.26 °C h−1

at rural sites. Seasonally, except for winter when HRRR ex-
hibited a slight overestimation of cooling rates (urban MBE:

0.05 °C h−1; rural MBE: 0.01 °C h−1), the model consistently
underestimated cooling across all other seasons, averaging
−0.28 °C h−1 at urban sites and −0.24 °C h−1 at rural sites.

Note that we also evaluated the sensitivity of the results
to the selection criteria. Using only the statistical signifi-
cance criterion (p < 0.05) yields 51 nights, whereas applying
a stricter 12.5 % cloud-cover threshold results in 40 nights.
The conclusions remain unchanged across these sensitivity
tests.

3.4 Urban heat advection in HRRR forecasts

Following the application of the filtering criteria outlined in
Sect. 2.6, 110 nights were identified as effective nights suit-
able for evaluating wind-direction-dependent UHA. Among
these, southerly winds, including south, southeast, and south-
west directions, dominated, occurring on 62 nights, as shown
in Fig. 7. This prevalence may reflect the influence of air
masses originating from the Gulf of Mexico.

Observation-based UHA analysis provides a coherent pic-
ture of UHA dynamics. Observed temperature anomalies
consistently shift downwind under all wind regimes, clearly
reflecting the influence of prevailing winds. The observed
UHA patterns also reflect the impacts of wind speed; distinct
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Figure 6. Evaluation of nocturnal cooling rates on clear nights during the study period. (a) Forecasted cooling rates at urban and rural sites;
negative values (red) indicate nighttime warming. (b) Difference between forecasted and observed cooling rates (HRRR – observation);
positive values indicate that HRRR predicts stronger (more rapid) cooling than observation. Clear nights are defined as those with domain-
wide cloud cover below 25 % between 00:00 and 05:00 local time. Only nights with statistically significant cooling rates (p < 0.05) for both
HRRR forecasts and observations are shown. Station numbering is listed in Table S1.

UHA signatures are less evident under both high wind speeds
(e.g., northerly winds of 5.35 m s−1) and low wind speed
(e.g., southeasterly winds of 3.41 m s−1). Overall, observa-
tions effectively characterize the spatial signature of UHA,
revealing clear relationships between wind direction, wind
speed, and UHA.

Analysis of UHA patterns derived from 18 h HRRR fore-
casts indicates that the model reasonably captures large-scale
wind-direction patterns. However, its performance in repre-
senting UHA varies considerably among wind regimes. Un-
der southeasterly, westerly, and northwesterly wind regimes,
the HRRR effectively predicts the spatial displacement of ur-
ban heat downwind of the city core, demonstrating its capa-
bility to capture directional UHA patterns. A weak but dis-
cernible UHA pattern is also reproduced by the model un-
der southerly wind conditions, suggesting that model cap-
tures this feature to some extent. In contrast, under northerly
wind conditions, the model incorrectly predicts a cold-core

anomaly centered over the urban area. Notably, HRRR-based
UHA patterns show limited sensitivity to wind speed, as dis-
tinct urban heat advection signatures are not consistently ob-
served across varying wind intensities, except under south-
easterly conditions with relatively low wind speeds (i.e.,
< 3.40 m s−1).

4 Discussion

Our analysis reveals distinct patterns and complexities in
the ability of HRRR forecasts to reproduce near-surface
hydrometeorological conditions and urban heat processes
within semi-arid urban environments. Across rural sites,
HRRR forecasts exhibit a characteristic pattern of overes-
timated daytime 2 m air temperatures and underestimated
nighttime temperatures. This diurnal bias is largely driven
by the model’s systematic overprediction of incoming short-
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Figure 7. Modeled mean Urban Heat Advection (UHA) patterns under eight distinct wind regimes during selected effective nights based
on 18 h HRRR forecasts. Black arrows indicate mean wind fields from HRRR forecasts, while red arrows represent observed mean winds
from five West Texas Mesonet stations. The gray boundary outlines Lubbock city limits. Colored scatter points depict averaged, normalized
temperature anomalies (Ta) during each selected effective night.
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wave radiation, particularly evident during the warm sea-
son (Lee et al., 2023b), also evident in our seasonal anal-
yses (Fig. 4), where summer exhibits higher warm bias at
both urban and rural sites than other season. Similar patterns
were documented in previous studies for rural areas. For in-
stance, Lee et al. (2019) evaluated 1 h HRRRv2 forecasts of
2 m air temperature using two micrometeorological towers
in rural northern Alabama and reported comparable daytime
warm biases (average MBE= 0.85 °C) and nighttime cold bi-
ases (average MBE=−0.75 °C). A subsequent evaluation of
HRRRv4 against 114 stations of the U.S. Climate Reference
Network suggested an average MBE of approximately 0.4 °C
for 18 h forecasts in 2021 (Lee et al., 2023b), with no particu-
lar emphasis on dryland cities. In urban areas, these existing
biases are further complicated by HRRR’s use of a simpli-
fied slab urban model, which omits detailed urban canopy
geometry and thus cannot capture the shading and radiative
trapping effects of urban street canyons. As a result, despite
a positive bias in shortwave radiation leading to higher day-
time temperatures (Fig. 5), the nighttime urban environment
shows a consistent cold bias due to excessive nocturnal ra-
diative cooling that would otherwise be impeded by urban
geometry. The daytime cold bias is presumably driven by en-
hanced longwave radiation loss, linked to the same shortwave
overestimation. This suggests that radiative trapping associ-
ated with urban surfaces (e.g., three-dimensional morphol-
ogy) plays a critical role in shaping near-surface meteoro-
logical conditions, underscoring the importance of explicitly
representing building structure and shading effects in urban
settings.

Regarding dew point temperature, our observations indi-
cate a consistent dry bias across all seasons, especially during
the warm season at rural sites. This finding generally aligns
with He et al. (2023), which used 6 h lead time forecasts to
evaluate HRRR performance over northern Oklahoma over a
full year cycle, an area with climatic and soil conditions anal-
ogous to Lubbock. In contrast to Lee et al. (2019), which did
not detect significant dew point biases, our persistent dry bias
could be attributed to systematic biases in HRRR’s repre-
sentation of incoming shortwave radiation (positive bias) and
precipitation (negative bias) over the southwestern CONUS
(Lee et al., 2023b). Interestingly, urban–rural contrasts in
dew point temperature biases are less pronounced than antic-
ipated. This diminished contrast likely results from the RUC
LSM used in HRRR, known to overestimate soil moisture un-
der dry conditions (soil moisture< 0.2 m3 m−3), particularly
in semi-arid regions of the southwestern CONUS (Lee et al.,
2023b). Similar soil moisture biases have also been found in
previous studies using different LSMs (Leeper et al., 2017;
Xia et al., 2015). Furthermore, the RUC LSM permits evapo-
ration from urban impervious surfaces modeled as homoge-
neous slabs, thus maintaining relatively higher soil moisture
levels. As a result, this may mask expected urban–rural con-
trasts in moisture availability.

Wind speed consistently exhibits a positive mean bias
throughout all seasons at both urban and rural sites, echoing
findings from Salamanca et al. (2018), which reported simi-
lar overestimations using various Noah-MP urban schemes
in Phoenix. Our urban sites exhibit a notably larger pos-
itive wind speed bias compared to rural areas, likely due
to HRRR’s slab urban representation failing to simulate the
blocking and drag effects of complex urban structures ad-
equately. A recent evaluation of HRRRv4 using 788 Au-
tomated Surface Observing System (ASOS) stations across
the US found nearly perfect correlations between observed
and forecasted 10 m wind speeds, independent of forecast
hour or time of day (Fovell and Capps, 2024). However,
this evaluation was biased toward well-exposed stations.
In the same study, a regional evaluation using 121 New
York State Mesonet (NYSM) stations reported an average
MBE of 1.22 m s−1, which is generally consistent with but
slightly higher than our results. Notably, several rooftop ur-
ban weather stations in New York City were excluded from
this evaluation due to mismatches with model heights (Fovell
and Capps, 2024), which further illustrates the current lack of
robust urban forecast evaluations. Nevertheless, the overesti-
mation identified in our evaluation contrasts with recent find-
ings by Thompson et al. (2025), which evaluated a long-term
Noah-MP-based CONUS simulation and reported a persis-
tent wind speed underestimation at urban sites. This recent
study attributed the underestimation to inaccurate representa-
tion of urban roughness lengths and the use of airport weather
stations from the CHUWD-H dataset (Wang et al., 2024) in
model evaluations. These contrasting findings highlight the
complexity of wind bias patterns and suggest that both model
physics and the choice of observational references play criti-
cal roles in determining the reliability of wind predictions in
urban areas.

Comparisons between two forecast lead times indicate that
data assimilation, characteristic of near-real-time forecasts,
partially improved HRRR’s predictive performance, partic-
ularly by reducing extreme values and improving the sim-
ulated diurnal cycle. However, these improvements are not
uniformly observed across all variables. Given that accu-
rate surface-layer parameterizations of heat and moisture ex-
changes are becoming increasingly critical at longer fore-
cast horizons, incorporating detailed, up-to-date land surface
data through data assimilation remains essential for enhanc-
ing HRRR’s overall predictive accuracy. To further investi-
gate the role of land surface characteristics on model per-
formance, we examined relationships between model biases
and fractional land cover within HRRR grid cells. The RUC
LSM integrates sub-grid heterogeneity, which calculates es-
sential surface parameters (e.g., roughness length, emissiv-
ity, soil porosity) based on fractional land-use types instead
of the dominant land type (Smirnova et al., 2016). As a re-
sult, grids with higher urban fraction and lower vegetation
fraction are expected to exhibit greater model errors. Our
analysis confirms this dependency on vegetation and urban
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fractions (Figs. S8 and S9). Specifically, increasing vegeta-
tion cover leads to reductions in cold biases for 2 m air tem-
perature in fall and winter and notably decreased dry biases
across all seasons except spring, especially during summer,
as it allows enhanced biophysical processes of urban vege-
tation such as evapotranspiration. Conversely, higher urban
fractions are associated with poorer performance in predict-
ing temperature and dew point. These dependencies under-
score the limitations of HRRR’s simplified urban scheme and
reinforce the need for more advanced urban canopy models
in NWP systems.

Regarding nocturnal cooling rates, HRRR consistently un-
derestimates the cooling rate relative to observations at both
urban and rural sites. This milder cooling in simulations
likely results from modeled excessive soil moisture, incur-
ring slower nocturnal heat release due to larger soil thermal
inertia. Interestingly, the HRRR accurately captures the ex-
pected urban–rural contrast, with urban areas showing slower
cooling, which is likely influenced by the interplay between
the land surface (high soil moisture) and atmospheric bound-
ary layer.

Urban heat advection, which is critical to understand-
ing spatial and temporal characteristics of canopy layer
UHI, posed additional modeling challenges. Compared with
megacities, small-sized cities are particularly sensitive to
dominant synoptic conditions such as frontal passages (see
Pal et al., 2025, for some example cases over Lubbock re-
gion), rendering them more likely to exhibit weaker urban
heat signals. Given HRRR’s systematic overprediction of
wind speeds at Lubbock, accurately capturing UHA is in-
herently challenging, as shown by our results. Yet, previ-
ous studies have demonstrated superior performance of more
sophisticated urban schemes, such as those embedded in
WRF-urban, which effectively simulate urban heat related
processes such as UHI effects especially under large scale
weather impacts (Di Bernardino et al., 2022; Ribeiro et al.,
2018). Thus, to advance predictive skill in urban environ-
ments, especially in small and semi-arid cities, future oper-
ational NWP models may incorporate more realistic urban
canopy parameterizations, improve the treatment of land–
atmosphere interactions, and account for dynamic surface
properties such as detailed vegetation phenology or even an-
thropogenic heat fluxes.

5 Conclusions

We compared HRRRv4 forecasts of key surface hydromete-
orological variables, including 2 m air temperature, 2 m dew
point temperature, and 10 m wind speed, using in situ ob-
servations from 23 densely deployed U-HEAT sites and 5
Mesonet stations in and around Lubbock, Texas. In addi-
tion to standard statistical metrics, we also evaluated HRRR’s
ability to represent urban heat-related processes such as noc-
turnal cooling and UHA, particularly in the context of a

small-sized city located in the semi-arid climate of the south-
western US.

During the study period, HRRRv4 demonstrates generally
strong agreement with observed 2 m air temperature (r >
0.95 and RMSE< 2 °C) and dew point temperature (r > 0.92
and RMSE< 4 °C). However, wind speed forecasts show
persistent biases and weaker skill, particularly at urban sites,
where the model fails to capture urban drag due to the use
of a simplified slab urban model. Characteristic warm bias
during the day and cold bias at night are observed at rural
sites, while urban sites tend to show mainly cold biases. For
dew temperature, a uniform dry bias is observed at both ur-
ban and rural sites, especially during the warm season and
daytime. Interestingly, the urban–rural contrast in dew point
temperature performance is very weak, likely due to over-
estimated urban soil moisture and evaporation in the model.
While HRRR captures the slower nocturnal cooling rates in
urban areas than rural surroundings, it generally underesti-
mates cooling rates for both site types. HRRR forecasts also
fail to accurately reproduce UHA patterns under most wind
regimes due in part to the model’s limitations in simulat-
ing near-surface wind fields. These deficiencies are likely
linked to oversimplified urban parameterizations and inac-
curate representation of urban surface characteristics such
as thermal inertia, roughness length, and anthropogenic heat
emissions.

Although this evaluation focuses on a single small city
in a semi-arid climate, several of the identified forecast bi-
ases are likely to occur in other small cities under different
climatic conditions. This expectation arises primarily from
HRRR’s use of a slab urban scheme, which simplifies urban
surfaces, and is partially supported by previous evaluations of
near-surface temperature and wind speed at non-urban sites.
However, confirming the transferability of these biases will
require dense, city-scale observational networks deployed in
additional small cities. This is particularly important because
many small urban areas are represented by only a few HRRR
urban grid cells, yet can exhibit substantial spatial variability
in vegetation fraction, soil moisture, and urban morphology.

Future work should advance evaluation and model devel-
opment in parallel. Replicating this analysis in other small
US cities that vary in population density, degree of urban-
ization, land cover, and background climate, with compa-
rably dense within-city observations, will enable more sys-
tematic assessments of model performance and provide ad-
ditional insight into the generalizability and scalability of our
results. Future developments should prioritize the integration
of advanced urban canopy parameterizations, refined sub-
grid land surface heterogeneity, and high-resolution urban
observations. More broadly, this evaluation highlights the
limitations of applying conventional NWP systems to urban
environments without targeted enhancements. As cities face
growing challenges from extreme heat and flooding, poor air
quality, and evolving land cover, integrating urban-specific
processes into NWP frameworks (Wang et al., 2025) and ex-
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amination of parameterization schemes (Lee et al., 2023a,
2025) will remain essential to ensure accurate, actionable
forecasts in both research and operational contexts.

Appendix A: Technical summary of the urban
parameterization used by the land surface model in
HRRRv4

This appendix summarizes the slab urban parameterization
implemented in the Rapid Update Cycle Land Surface Model
(RUC LSM) within HRRRv4. Technical details are primarily
based on Dowell et al. (2022) for HRRRv4, Smirnova et al.
(2016) for the MODIS-based RUC LSM, and Benjamin et al.
(2021) for the diagnostic fields.

A1 Surface representation and physical properties

Operational HRRRv4 couples the atmosphere model to the
RUC LSM, which includes nine soil layers extending to a
depth of 3 m. Urban areas are represented through the “urban
and built-up” land-use category in the MODIS classification.
The RUC LSM treats each urban grid cell as a slab surface
(i.e., without explicit building geometry), rather than more
advanced urban canopy models such as the single-layer ur-
ban canopy model.

RUC LSM in HRRRv4 uses a mosaic approach to ac-
count for sub-grid land-use heterogeneity. For each grid
cell, surface parameters such as emissivity, leaf area index,
and plant coefficient for transpiration function are computed
as fractional-area weighted averages of all land-use types
present. These aggregated values govern the grid-mean prop-
erties. However, the effective roughness length is not a sim-
ple area-weighted mean. It is computed based on a blending-
height formulation following Mason (1988).

Sub-grid soil heterogeneity is similarly represented using
the area-weighted mosaic method. Soil hydraulic and thermal
properties, including heat capacity, Clapp–Hornberger pa-
rameterization exponent, available water capacity, saturated
hydraulic conductivity, saturated soil matric potential, resid-
ual soil moisture, field capacity, wilting point, and quartz
fraction, are averaged over soil types within the grid. The
resulting effective parameters are used in the soil heat con-
duction and moisture transport equations.

In HRRRv4, the greenness fraction has been updated from
climatological values to a real-time VIIRS-based green vege-
tation fraction product, allowing dynamic seasonal evolution
of vegetation cover.

A2 Surface energy balance

The RUC LSM solves coupled heat and moisture transfer
equations for soil and canopy layers together with a surface
energy balance at the interface between the surface and the
atmosphere. The net radiation flux at the surface is decom-
posed into sensible heat flux, latent heat flux, ground (soil)

heat flux in the top layer, heat storage, and energy flux of
snow phase change. The model solves for surface/skin tem-
perature and specific humidity to close this balance using
a root-finding algorithm. Surface exchange coefficients for
heat and moisture are from the MYNN surface layer scheme,
which provides stability-dependent turbulent transfer coeffi-
cients.

A3 Near-surface temperature, humidity, and wind

The 2 m air temperature is diagnosed using surface/skin tem-
perature, sensible heat flux, air density, heat transfer coef-
ficient, and potential temperature at the lowest prognostic
model level (0.999σ or ∼ 8 m above ground level). The 2 m
specific humidity is diagnosed from surface and lowest-level
specific humidities, latent heat flux, air density, and mois-
ture transfer coefficient. The 2 m dew point temperature is
calculated directly from temperature, specific humidity, and
pressure at the lowest prognostic model level.

The 10 m winds are estimated by logarithmic interpolation
between model levels using Monin–Obukhov similarity, typ-
ically between the first and second model levels (0.999σ and
0.996σ or ∼ 8 and ∼ 30 m above ground level). The derived
10 m wind represents a grid-cell mean wind, consistent with
the grid-mean roughness length.

A4 Known limitations of the HRRRv4 urban
parameterization

Although HRRRv4 benefits from frequent data assimilation
and high spatial resolution (3 km), the representation of ur-
ban processes remains simplified. Major limitations include:

– Lack of explicit urban geometry. Buildings and streets
are represented as a uniform slab, with no street-canyon
radiative trapping and shading. As a result, nocturnal
longwave trapping and diurnal shadowing effects are
not captured.

– Prescribed and static urban parameters. Thermal and
radiative properties (e.g., emissivity, roughness, and
heat capacity) are fixed for the urban land-use category
and do not vary with geographic location, morphology,
or building material.

– Simplified surface heterogeneity. The sub-grid mosaic
approach represents fractional contributions to param-
eters from multiple land use types but cannot resolve
within-grid variations and interactions.

– Diagnostic height inconsistency in urban canopy layers.
The 2 and 10 m output variables essentially assume hor-
izontally homogeneous, aerodynamically smooth sur-
faces and therefore do not accurately represent condi-
tions within urban canopy layer, where the mean build-
ing height often exceeds the first or even second atmo-
spheric model levels.
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– Simplified hydrology. Urban surfaces are not treated
as fully impervious; infiltration and evaporation can
still occur through soil properties. The model lacks
stormwater routing or runoff storage, which limits its
direct applications for hydrological or flood studies.

– Omission of anthropogenic fluxes and urban vegetation
management. Anthropogenic heat emissions, building
energy use, or irrigation of green spaces, which can
modify local energy and moisture balances, are not con-
sidered.

Code and data availability. The NOAA Online Weather
Data (NOWData) for Lubbock Area are available at
https://www.weather.gov/wrh/Climate?wfo=lub (National Weather
Service, 2025). Original HRRRv4 outputs can be accessed at
https://rapidrefresh.noaa.gov/hrrr/ (National Oceanic and Atmo-
spheric Administration, 2025). HRRRv4 uses the Weather Re-
search and Forecasting (WRF) model v3.9.1, which is available at
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
(National Center for Atmospheric Research, 2025), with the
namelist provided at https://rapidrefresh.noaa.gov/hrrr/wrf.nl.txt
(National Oceanic and Atmospheric Administration, 2025).
The processed HRRRv4 data, observations from West Texas
Mesonet and U-HEAT, and source code are available at
https://doi.org/10.5281/zenodo.15885174 (Huang and Wang,
2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-9237-2025-supplement.

Author contributions. YH: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Software, Visualization,
Writing (original draft preparation). CW: Conceptualization, Data
curation, Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation, Vi-
sualization, Writing (review and editing). TL: Data curation, Inves-
tigation, Validation, Writing (review and editing). TD: Data cura-
tion, Investigation, Validation, Writing (review and editing). SP:
Conceptualization, Data curation, Funding acquisition, Investiga-
tion, Methodology, Project administration, Resources, Validation,
Writing (review and editing).

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. The scientific results and conclusions, as well as any
views or opinions expressed herein, are those of the authors and do
not necessarily reflect those of NOAA, OAR, the Department of
Commerce, the South Central Climate Adaptation Science Center,
or the USGS. This manuscript is submitted for publication with the
understanding that the U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Acknowledgements. This work was supported by the National
Oceanic and Atmospheric Administration (NOAA) Weather Pro-
gram Office under grant No. NA21OAR4590361. We would like to
thank our research partners at the National Wind Institute and the
West Texas Mesonet (WTM), particularly Wesley Burgett, Matthew
Asel, and Brian Hirth, for providing the WTM datasets essential to
the development of the U-HEAT network. U-HEAT network has
been routinely maintained by our community partners in Lubbock
NWS, Citizen Climate Lobby and TTU graduate students Diya Das,
Hassanpreet Dhaliwal, and Matthew Hamel. We also would like to
thank Dr. Tatiana Smirnova for her help with the retrieval of the
HRRR dataset.

Financial support. This research has been supported by the
National Oceanic and Atmospheric Administration (grant no.
NA21OAR4590361), the National Aeronautics and Space Ad-
ministration (grant nos. 80NSSC24K1056, 80NSSC24K0357,
and 80NSSC25K7496), the National Science Foundation (grant
no. OIA-2327435), and the U.S. Geological Survey (grant no.
G24AC00475). Financial support for publication was provided by
the University of Oklahoma Libraries’ Open Access Fund.

Review statement. This paper was edited by Ting Sun and reviewed
by two anonymous referees.

References

Agarwal, M. and Tandon, A.: Modeling of the urban heat is-
land in the form of mesoscale wind and of its effect on
air pollution dispersal, Appl. Math. Model., 34, 2520–2530,
https://doi.org/10.1016/j.apm.2009.11.016, 2010.

Angevine, W. M., White, A. B., Senff, C. J., Trainer, M., Banta, R.
M., and Ayoub, M. A.: Urban–rural contrasts in mixing height
and cloudiness over Nashville in 1999, J. Geophys. Res., 108,
2001JD001061, https://doi.org/10.1029/2001JD001061, 2003.

Barlow, J. F.: Progress in observing and modelling the
urban boundary layer, Urban Clim., 10, 216–240,
https://doi.org/10.1016/j.uclim.2014.03.011, 2014.

Bassett, R., Cai, X., Chapman, L., Heaviside, C., Thornes, J.
E., Muller, C. L., Young, D. T., and Warren, E. L.: Obser-
vations of urban heat island advection from a high-density
monitoring network, Q. J. R. Meteorol. Soc., 142, 2434–2441,
https://doi.org/10.1002/qj.2836, 2016.

Bassett, R., Cai, X., Chapman, L., Heaviside, C., and Thornes, J.
E.: The effects of heat advection on UK weather and climate

Geosci. Model Dev., 18, 9237–9256, 2025 https://doi.org/10.5194/gmd-18-9237-2025

https://www.weather.gov/wrh/Climate?wfo=lub
https://rapidrefresh.noaa.gov/hrrr/
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://rapidrefresh.noaa.gov/hrrr/wrf.nl.txt
https://doi.org/10.5281/zenodo.15885174
https://doi.org/10.5194/gmd-18-9237-2025-supplement
https://doi.org/10.1016/j.apm.2009.11.016
https://doi.org/10.1029/2001JD001061
https://doi.org/10.1016/j.uclim.2014.03.011
https://doi.org/10.1002/qj.2836


Y. Huang et al.: Urban heat forecasting in small cities 9253

observations in the vicinity of small urbanized areas, Bound.-
Layer Meteorol., 165, 181–196, https://doi.org/10.1007/s10546-
017-0263-0, 2017.

Bassett, R., Cai, X., Chapman, L., Heaviside, C., and Thornes, J.
E.: Semi-idealized urban heat advection simulations using the
Weather Research and Forecasting mesoscale model, Int. J. Cli-
matol., 39, 1345–1358, https://doi.org/10.1002/joc.5885, 2019.

Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage,
K. J., Brown, J. M., Grell, G. A., Kim, D., Schwartz,
B. E., Smirnova, T. G., Smith, T. L., and Manikin, G.
S.: An hourly assimilation–forecast cycle: The RUC, Mon.
Weather Rev., 132, 495–518, https://doi.org/10.1175/1520-
0493(2004)132<0495:AHACTR>2.0.CO;2, 2004.

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander,
C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C.,
Grell, G. A., Lin, H., Peckham, S. E., Smith, T. L., Moninger, W.
R., Kenyon, J. S., and Manikin, G. S.: A North American hourly
assimilation and model forecast cycle: The Rapid Refresh, Mon.
Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-
D-15-0242.1, 2016.

Benjamin, S. G., James, E. P., Brown, J. M., Szoke, E. J., Kenyon,
J. S., Ahmadov, R., and Turner, D. D.: Diagnostic fields devel-
oped for hourly updated NOAA weather models, NOAA Techni-
cal Memorandum OAR GSL-66, https://doi.org/10.25923/f7b4-
rx42, 2021.

Best, M. J.: Representing urban areas within operational numerical
weather prediction models, Bound.-Layer Meteorol., 114, 91–
109, https://doi.org/10.1007/s10546-004-4834-5, 2005.

Bohnenstengel, S. I., Evans, S., Clark, P. A., and Belcher, S. E.:
Simulations of the London urban heat island, Q. J. R. Meteorol.
Soc., 137, 1625–1640, https://doi.org/10.1002/qj.855, 2011.

Brandsma, T. and Wolters, D.: Measurement and statistical mod-
eling of the urban heat island of the city of Utrecht (the
Netherlands), J. Appl. Meteorol. Climatol., 51, 1046–1060,
https://doi.org/10.1175/JAMC-D-11-0206.1, 2012.

Bytheway, J. L., Kummerow, C. D., and Alexander, C.: A
features-based assessment of the evolution of warm sea-
son precipitation forecasts from the HRRR model over three
years of development, Weather Forecast., 32, 1841–1856,
https://doi.org/10.1175/WAF-D-17-0050.1, 2017.

Caicedo, V., Rappenglueck, B., Cuchiara, G., Flynn, J., Ferrare, R.,
Scarino, A. J., Berkoff, T., Senff, C., Langford, A., and Lefer,
B.: Bay breeze and sea breeze circulation impacts on the plane-
tary boundary layer and air quality from an observed and mod-
eled DISCOVER-AQ Texas case study, J. Geophys. Res.-Atmos.,
124, 7359–7378, https://doi.org/10.1029/2019JD030523, 2019.

Charney, J., Quirk, W. J., Chow, S., and Kornfield, J.:
A comparative study of the effects of albedo change
on drought in semi-arid regions, J. Atmospheric
Sci., 34, 1366–1385, https://doi.org/10.1175/1520-
0469(1977)034<1366:ACSOTE>2.0.CO;2, 1977.

Chen, F. and Dudhia, J.: Coupling an advanced land surface–
hydrology model with the Penn State–NCAR MM5 mod-
eling system. Part I: model implementation and sensitivity,
Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-
0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.

Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S.
B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli,
A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M.,

Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The integrated
WRF/urban modelling system: development, evaluation, and ap-
plications to urban environmental problems, Int. J. Climatol., 31,
273–288, https://doi.org/10.1002/joc.2158, 2011.

Chen, S., Yang, Y., Deng, F., Zhang, Y., Liu, D., Liu, C., and
Gao, Z.: A high-resolution monitoring approach of canopy
urban heat island using a random forest model and multi-
platform observations, Atmos. Meas. Tech., 15, 735–756,
https://doi.org/10.5194/amt-15-735-2022, 2022.

Coelho, G. D. A., Ferreira, C. M., and Kinter III, J. L.: Multi-
scale and multi event evaluation of short-range real-time flood
forecasting in large metropolitan areas, J. Hydrol., 612, 128212,
https://doi.org/10.1016/j.jhydrol.2022.128212, 2022.

Cui, D., Liang, S., Wang, D., and Liu, Z.: A 1 km global dataset
of historical (1979–2013) and future (2020–2100) Köppen–
Geiger climate classification and bioclimatic variables, Earth
Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-
5087-2021, 2021.

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B.,
Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P.
R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L.:
The Common Land Model, Bull. Am. Meteorol. Soc., 84, 1013–
1024, https://doi.org/10.1175/BAMS-84-8-1013, 2003.

Danzig, T. B., Pal, S., Medley, Z., Dhaliwal, H., Hamel,
M., Sorensen, M., Das, D., Menon, K. V., Lee, T. R.
and Conder, M.: Impact of advection on the urban heat
of a small-sized city: The Urban Heat Island Experi-
ment Around Lubbock, Texas (U-HEAT), Urban Clim.,
https://doi.org/10.1016/j.uclim.2025.102714, in press 2025.

Di Bernardino, A., Mazzarella, V., Pecci, M., Casasanta, G., Cac-
ciani, M., and Ferretti, R.: Interaction of the sea breeze with
the urban area of Rome: WRF mesoscale and WRF large-eddy
simulations compared to ground-based observations, Bound.-
Layer Meteorol., 185, 333–363, https://doi.org/10.1007/s10546-
022-00734-5, 2022.

Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S.,
Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M.,
Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J.
S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I.:
An hourly updating convection-allowing forecast model. Part I:
motivation and system description, Weather Forecast., 37, 1371–
1395, https://doi.org/10.1175/WAF-D-21-0151.1, 2022.

Fenner, D., Christen, A., Grimmond, S., Meier, F., Morrison, W.,
Zeeman, M., Barlow, J., Birkmann, J., Blunn, L., Chrysoulakis,
N., Clements, M., Glazer, R., Hertwig, D., Kotthaus, S., König,
K., Looschelders, D., Mitraka, Z., Poursanidis, D., Tsiranton-
akis, D., Bechtel, B., Benjamin, K., Beyrich, F., Briegel, F.,
Feigel, G., Gertsen, C., Iqbal, N., Kittner, J., Lean, H., Liu,
Y., Luo, Z., McGrory, M., Metzger, S., Paskin, M., Ravan, M.,
Ruhtz, T., Saunders, B., Scherer, D., Smith, S. T., Stretton,
M., Trachte, K., and Van Hove, M.: urbisphere-Berlin Cam-
paign: Investigating multiscale urban impacts on the atmospheric
boundary layer, Bull. Am. Meteorol. Soc., 105, E1929–E1961,
https://doi.org/10.1175/BAMS-D-23-0030.1, 2024.

Fovell, R. G. and Capps, S. B.: Sustained wind forecasts
from the High-Resolution Rapid Refresh model: skill
assessment and bias mitigation, Atmosphere, 16, 16,
https://doi.org/10.3390/atmos16010016, 2024

https://doi.org/10.5194/gmd-18-9237-2025 Geosci. Model Dev., 18, 9237–9256, 2025

https://doi.org/10.1007/s10546-017-0263-0
https://doi.org/10.1007/s10546-017-0263-0
https://doi.org/10.1002/joc.5885
https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.25923/f7b4-rx42
https://doi.org/10.25923/f7b4-rx42
https://doi.org/10.1007/s10546-004-4834-5
https://doi.org/10.1002/qj.855
https://doi.org/10.1175/JAMC-D-11-0206.1
https://doi.org/10.1175/WAF-D-17-0050.1
https://doi.org/10.1029/2019JD030523
https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
https://doi.org/10.1002/joc.2158
https://doi.org/10.5194/amt-15-735-2022
https://doi.org/10.1016/j.jhydrol.2022.128212
https://doi.org/10.5194/essd-13-5087-2021
https://doi.org/10.5194/essd-13-5087-2021
https://doi.org/10.1175/BAMS-84-8-1013
https://doi.org/10.1016/j.uclim.2025.102714
https://doi.org/10.1007/s10546-022-00734-5
https://doi.org/10.1007/s10546-022-00734-5
https://doi.org/10.1175/WAF-D-21-0151.1
https://doi.org/10.1175/BAMS-D-23-0030.1
https://doi.org/10.3390/atmos16010016


9254 Y. Huang et al.: Urban heat forecasting in small cities

Fovell, R. G. and Gallagher, A.: An evaluation of sur-
face wind and gust forecasts from the High-Resolution
Rapid Refresh model, Weather Forecast., 37, 1049–1068,
https://doi.org/10.1175/WAF-D-21-0176.1, 2022.

Griffin, S. M., Otkin, J. A., Rozoff, C. M., Sieglaff, J. M., Cronce,
L. M., Alexander, C. R., Jensen, T. L., and Wolff, J. K.: Seasonal
analysis of cloud objects in the High-Resolution Rapid Refresh
(HRRR) model using object-based verification, J. Appl. Meteo-
rol. Climatol., 56, 2317–2334, https://doi.org/10.1175/JAMC-D-
17-0004.1, 2017.

He, S., Turner, D. D., Benjamin, S. G., Olson, J. B., Smirnova,
T. G., and Meyers, T.: Evaluation of the near-surface vari-
ables in the HRRR weather model using observations from
the ARM SGP site, J. Appl. Meteorol. Climatol., 62, 769–780,
https://doi.org/10.1175/JAMC-D-23-0003.1, 2023.

Heaviside, C., Cai, X.-M., and Vardoulakis, S.: The effects of hori-
zontal advection on the urban heat island in Birmingham and the
West Midlands, United Kingdom during a heatwave, Q. J. R. Me-
teorol. Soc., 141, 1429–1441, https://doi.org/10.1002/qj.2452,
2015.

Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M.,
Ma, Z., Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie,
Y., Guan, X., Ji, M., Lin, L., Wang, S., Yan, H., and Wang, G.:
Dryland climate change: Recent progress and challenges, Rev.
Geophys., 55, 719–778, https://doi.org/10.1002/2016RG000550,
2017.

Huang, Y. and Wang, C.: Evaluation of High-Resolution Rapid
Refresh forecasts in small cities, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.15885174, 2025.

Huang, Y., Wang, C., and Wang, Z.-H. Multi-
parameterization of hydrological processes in an ur-
ban canopy model, Build. Environ., 285, 113567,
https://doi.org/10.1016/j.buildenv.2025.113567, 2025.

Jongen, H. J., Lipson, M., Teuling, A. J., Grimmond, S., Baik, J.-J.,
Best, M., Demuzere, M., Fortuniak, K., Huang, Y., De Kauwe,
M. G., Li, R., McNorton, J., Meili, N., Oleson, K., Park, S. -B.,
Sun, T., Tsiringakis, A., Varentsov, M., Wang, C., Wang, Z. -H.,
and Steeneveld, G. J.: The water balance representation in Urban-
PLUMBER land surface models, J. Adv. Model. Earth Syst.,
16, e2024MS004231, https://doi.org/10.1029/2024MS004231,
2024.

Kacker, K., Srivastava, P., and Mukherjee, M.: Personalized heat
stress early warning system for an urban area, Environ. Int., 199,
109507, https://doi.org/10.1016/j.envint.2025.109507, 2025.

Katona, B., Markowski, P., Alexander, C., and Benjamin, S.: The
influence of topography on convective storm environments in
the eastern United States as deduced from the HRRR, Weather
Forecast., 31, 1481–1490, https://doi.org/10.1175/WAF-D-16-
0038.1, 2016.

Kidder, S. Q. and Essenwanger, O. M.: The effect of
clouds and wind on the difference in nocturnal cool-
ing rates between urban and rural areas, J. Appl. Me-
teorol., 34, 2440–2448, https://doi.org/10.1175/1520-
0450(1995)034<2440:TEOCAW>2.0.CO;2, 1995.

Klein, P. M., Hu, X.-M., and Xue, M.: Impacts of mixing
processes in nocturnal atmospheric boundary layer on urban
ozone concentrations, Bound.-Layer Meteorol., 150, 107–130,
https://doi.org/10.1007/s10546-013-9864-4, 2014.

Lac, C., Donnelly, R. P., Masson, V., Pal, S., Riette, S., Donier,
S., Queguiner, S., Tanguy, G., Ammoura, L., and Xueref-Remy,
I.: CO2 dispersion modelling over Paris region within the CO2-
MEGAPARIS project, Atmos. Chem. Phys., 13, 4941–4961,
https://doi.org/10.5194/acp-13-4941-2013, 2013.

Lee, T. R., Buban, M., Turner, D. D., Meyers, T. P., and Baker, C.
B.: Evaluation of the High-Resolution Rapid Refresh (HRRR)
model using near-surface meteorological and flux observa-
tions from northern Alabama, Weather Forecast., 34, 635–663,
https://doi.org/10.1175/WAF-D-18-0184.1, 2019.

Lee, T. R., Pal, S., Krishnan, P., Hirth, B., Heuer, M., Meyers, T.
P., Saylor, R. D., and Schroeder, J.: On the efficacy of Monin–
Obukhov and bulk Richardson surface-layer parameterizations
over drylands, J. Appl. Meteorol. Climatol., 62, 1655–1675,
https://doi.org/10.1175/JAMC-D-23-0092.1, 2023a.

Lee, T. R., Leeper, R. D., Wilson, T., Diamond, H. J., Meyers,
T. P., and Turner, D. D.: Using the U.S. Climate Reference
Network to identify biases in near- and subsurface meteoro-
logical fields in the High-Resolution Rapid Refresh (HRRR)
weather prediction model, Weather Forecast., 38, 879–900,
https://doi.org/10.1175/WAF-D-22-0213.1, 2023b.

Lee, T. R., Pal, S., Leeper, R. D., Wilson, T., Diamond, H. J.,
Meyers, T. P., and Turner, D. D.: On the importance of regime-
specific evaluations for numerical weather prediction models as
demonstrated, Weather Forecast., https://doi.org/10.1175/WAF-
D-23-0177.1, 2024.

Lee, T. R., Pal, S., Meyers, T. P., Krishnan, P., Hirth, B., Heuer, M.,
Saylor, R. D., Kochendorfer, J., and Schroeder, J.: Impact of the
Bowen ratio on surface-layer parameterizations of heat, mois-
ture, and turbulent fluxes in drylands, J. Appl. Meteorol. Clima-
tol., 64, 549–568, https://doi.org/10.1175/JAMC-D-24-0075.1,
2025.

Leeper, R. D., Bell, J. E., Vines, C., and Palecki, M.: An evaluation
of the North American Regional Reanalysis simulated soil mois-
ture conditions during the 2011–13 drought period, J. Hydrome-
teorol., 18, 515–527, https://doi.org/10.1175/JHM-D-16-0132.1,
2017.

Li, C., Fu, B., Wang, S., Stringer, L. C., Wang, Y., Li, Z.,
Liu, Y., and Zhou, W.: Drivers and impacts of changes
in China’s drylands, Nat. Rev. Earth Environ., 2, 858–873,
https://doi.org/10.1038/s43017-021-00226-z, 2021.

Lipson, M. J., Grimmond, S., Best, M., Abramowitz, G., Coutts,
A., Tapper, N., Baik, J., Beyers, M., Blunn, L., Boussetta, S.,
Bou-Zeid, E., De Kauwe, M. G., De Munck, C., Demuzere, M.,
Fatichi, S., Fortuniak, K., Han, B., Hendry, M. A., Kikegawa, Y.,
Kondo, H., Lee, D., Lee, S., Lemonsu, A., Machado, T., Manoli,
G., Martilli, A., Masson, V., McNorton, J., Meili, N., Meyer, D.,
Nice, K. A., Oleson, K. W., Park, S., Roth, M., Schoetter, R.,
Simón-Moral, A., Steeneveld, G., Sun, T., Takane, Y., Thatcher,
M., Tsiringakis, A., Varentsov, M., Wang, C., Wang, Z., and Pit-
man, A. J.: Evaluation of 30 urban land surface models in the
Urban-PLUMBER project: Phase 1 results, Q. J. R. Meteorol.
Soc., 150, 126–169, https://doi.org/10.1002/qj.4589, 2024.

Lowry, W. P.: Empirical estimation of urban effects
on climate: A problem analysis, J. Appl. Mete-
orol., 16, 129–135, https://doi.org/10.1175/1520-
0450(1977)016<0129:EEOUEO>2.0.CO;2, 1977.

Lu, Y., Yu, Z., Albertson, J. D., Chen, H., Hu, L., Pendergrass,
A., Chen, X., and Li, Q.: Understanding the influence of urban

Geosci. Model Dev., 18, 9237–9256, 2025 https://doi.org/10.5194/gmd-18-9237-2025

https://doi.org/10.1175/WAF-D-21-0176.1
https://doi.org/10.1175/JAMC-D-17-0004.1
https://doi.org/10.1175/JAMC-D-17-0004.1
https://doi.org/10.1175/JAMC-D-23-0003.1
https://doi.org/10.1002/qj.2452
https://doi.org/10.1002/2016RG000550
https://doi.org/10.5281/zenodo.15885174
https://doi.org/10.1016/j.buildenv.2025.113567
https://doi.org/10.1029/2024MS004231
https://doi.org/10.1016/j.envint.2025.109507
https://doi.org/10.1175/WAF-D-16-0038.1
https://doi.org/10.1175/WAF-D-16-0038.1
https://doi.org/10.1175/1520-0450(1995)034<2440:TEOCAW>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<2440:TEOCAW>2.0.CO;2
https://doi.org/10.1007/s10546-013-9864-4
https://doi.org/10.5194/acp-13-4941-2013
https://doi.org/10.1175/WAF-D-18-0184.1
https://doi.org/10.1175/JAMC-D-23-0092.1
https://doi.org/10.1175/WAF-D-22-0213.1
https://doi.org/10.1175/WAF-D-23-0177.1
https://doi.org/10.1175/WAF-D-23-0177.1
https://doi.org/10.1175/JAMC-D-24-0075.1
https://doi.org/10.1175/JHM-D-16-0132.1
https://doi.org/10.1038/s43017-021-00226-z
https://doi.org/10.1002/qj.4589
https://doi.org/10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2
https://doi.org/10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2


Y. Huang et al.: Urban heat forecasting in small cities 9255

form on the spatial pattern of precipitation, Earth’s Future, 12,
e2023EF003846, https://doi.org/10.1029/2023EF003846, 2024.

Mason, P. J.: The formation of areally-averaged rough-
ness lengths, Q. J. R. Meteorol. Soc., 114, 399–420,
https://doi.org/10.1002/qj.49711448007, 1988.

Masson, V., Lemonsu, A., Hidalgo, J., and Voogt, J.: Urban climates
and climate change, Annu. Rev. Environ. Resour., 45, 411–444,
https://doi.org/10.1146/annurev-environ-012320-083623, 2020.

Meehl, G. A. and Tebaldi, C.: More intense, more frequent, and
longer lasting heat waves in the 21st century, Science, 305, 994–
997, https://doi.org/10.1126/science.1098704, 2004.

National Center for Atmospheric Research: WRF Source Codes
and Graphics Software Downloads, https://www2.mmm.ucar.
edu/wrf/users/download/get_source.html, last access: 4 October
2025.

National Oceanic and Atmospheric Administration: The High-
Resolution Rapid Refresh (HRRR), https://rapidrefresh.noaa.
gov/hrrr/, last access: 25 July 2025.

National Weather Service: NOWData – NOAA Online Weather
Data, https://www.weather.gov/wrh/Climate?wfo=lub, last ac-
cess: 25 July 2025.

Oke, T. R.: The distinction between canopy and boundary-
layer urban heat islands, Atmosphere, 14, 268–277,
https://doi.org/10.1080/00046973.1976.9648422, 1976.

Oke, T. R., Mills, G., Christen, A., and Voogt, J.
A.: Urban Climates, Cambridge University Press,
https://doi.org/10.1017/9781139016476, 2017.

Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M.,
and Grimmond, C. S. B.: An urban parameterization for
a global climate model. Part I: formulation and evaluation
for two cities, J. Appl. Meteorol. Climatol., 47, 1038–1060,
https://doi.org/10.1175/2007JAMC1597.1, 2008.

Pal, S., Xueref-Remy, I., Ammoura, L., Chazette, P., Gibert, F.,
Royer, P., Dieudonné, E., Dupont, J.-C., Haeffelin, M., Lac,
C., Lopez, M., Morille, Y., and Ravetta, F.: Spatio-temporal
variability of the atmospheric boundary layer depth over the
Paris agglomeration: An assessment of the impact of the
urban heat island intensity, Atmos. Environ., 63, 261–275,
https://doi.org/10.1016/j.atmosenv.2012.09.046, 2012.

Pal, S., Prince, N. E., Anand, M., and Hamel, M.: Aerosol transport
and associated boundary layer thermodynamics under contrast-
ing synoptic conditions over a semiarid site, Sci. Total Environ.,
962, 178357, https://doi.org/10.1016/j.scitotenv.2024.178357,
2025.

Park, S., Sayeed, A., Seo, J., Henderson, B. H., Naeger,
A. R., and Gupta, P.: Hour by hour PM2.5 mapping us-
ing geostationary satellites, ACS ES&T Air, 2, 1816–1830,
https://doi.org/10.1021/acsestair.4c00365, 2025.

Ribeiro, F. N. D., Oliveira, A. P. D., Soares, J., Miranda, R.
M. D., Barlage, M., and Chen, F.: Effect of sea breeze prop-
agation on the urban boundary layer of the metropolitan re-
gion of Sao Paulo, Brazil, Atmospheric Res., 214, 174–188,
https://doi.org/10.1016/j.atmosres.2018.07.015, 2018.

Salamanca, F., Zhang, Y., Barlage, M., Chen, F., Mahalov, A., and
Miao, S.: Evaluation of the WRF-urban modeling system cou-
pled to Noah and Noah-MP land surface models over a semiarid
urban environment, J. Geophys. Res.-Atmos., 123, 2387–2408,
https://doi.org/10.1002/2018JD028377, 2018.

Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kenyon,
J. S.: Modifications to the Rapid Update Cycle land surface
model (RUC LSM) available in the Weather Research and Fore-
casting (WRF) model, Mon. Weather Rev., 144, 1851–1865,
https://doi.org/10.1175/MWR-D-15-0198.1, 2016.

Spronken-Smith, R. A. and Oke, T. R.: Scale modelling of nocturnal
cooling in urban parks, Bound.-Layer Meteorol., 93, 287–312,
https://doi.org/10.1023/A:1002001408973, 1999.

Stewart, I. D., Oke, T. R., and Krayenhoff, E. S.: Evaluation of
the “local climate zone” scheme using temperature observa-
tions and model simulations, Int. J. Climatol., 34, 1062–1080,
https://doi.org/10.1002/joc.3746, 2014.

Thompson, L., Wang, C., He, C., Lin, T.-S., Liu, C., and Dudhia,
J.: Assessment of convection-permitting hydroclimate modeling
in urban areas across the contiguous United States, Urban Clim.,
61, 102375, https://doi.org/10.1016/j.uclim.2025.102375, 2025.
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