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Abstract. Simulations of dynamic global vegetation mod-
els (DGVMs) are typically conducted at a spatial resolution
of 0.5°, while higher-resolution simulations remain uncom-
mon. This coarse resolution eliminates detailed orographic
features and hence, associated climate variability, which are
especially pronounced in mountainous regions. The impact
of disregarding such variability on vegetation dynamics has
not been thoroughly examined. In this study, we explore
the differences in vegetation outcomes between the DGVM
LPJ-GUESS simulations conducted at high and low spa-
tial resolutions. Using the CHELSA algorithm, we create an
elevation-informed high-resolution climate dataset for a do-
main encompassing the European Union. Distinctive features
of this algorithm include orographic nature of formation of
precipitation, a negative derivative of temperatures with re-
spect to elevation, and also, detailed consideration of shad-
owing and exposure of the terrain to the Sun in computations
of solar radiation. We design a custom experiment protocol
and use it to perform LPJ-GUESS simulations on both res-
olutions. Comparative analysis reveals significant systematic
discrepancies between the two resolutions. In mountainous
areas, all of the considered output variables show statistically
significant differences. In particular, carbon pools are smaller
on the high resolution, with the total carbon pool being 37 %-—
39 % smaller. Furthermore, we quantify the extent to which
the under-representation of orographic climate variation af-
fects regional predictions across the European Union. This
is expressed as a difference in the total value, which ranges
from — 3.8 % for the net ecosystem productivity to 2.9 % for
the litter and soil C pools. These values are found to be com-

parable to differences caused by miss-representation of water
bodies and shorelines on the low resolution.

1 Introduction

The rapidly progressing climate change reinforces the ur-
gency with which political and societal measures need to
be implemented to reduce greenhouse gas emissions and to
mitigate further climate change as much as possible, while
also considering appropriate adaptation measures. Due to
the complexity of general circulation models, global climate
change projections are still available only at very coarse
spatial resolutions (> 0.5°; e.g., Masson-Delmotte et al.,
2021). These allow to assess very well the basic response
of the earth system to climate change. But impacts of climate
change on ecosystems and societies are felt locally; weather
extremes in particular can happen at scales of few km, rather
than tenths or hundreds of km. Many mitigation and adapta-
tion measures that are being discussed rely on the ecosystem
services provided by natural and managed ecosystems (Shin
et al., 2022; Smith et al., 2022). Their design and perma-
nence require climate change projections of a spatial resolu-
tion much closer to the spatial extents of the ecosystems un-
der study. For instance, using the dynamic global vegetation
model LPJ-GUESS, Lagergren et al. (2024) explored how
climate change and CO, impacts of different vegetation types
in Fennoscandia would affect habitats of rare and threatened
species and also how reindeer grazing (an important source
of income for the local population) would be affected. An-

Published by Copernicus Publications on behalf of the European Geosciences Union.

laded uonduosap uswiadxe [9PO



9102

other study based on LPJ-GUESS simulated the negative im-
pacts of late-spring frosts on forest productivity, yielding a
decline of NPP in frost years of around 50 % compared to
non-frost years (Meyer et al., 2024). High-resolution climate
for these analyses provided important information on, e.g.,
seasonal and altitudinal distribution of snowfall (Lagergren
et al., 2024) and minimum temperatures (Meyer et al., 2024).
Similarly, in the Spanish region of Catalonia 1km down-
scaled climate projections supported simulations of future
productivity of a number of species of wild edible mush-
rooms, which provide both large economic and recreational
value (Morera et al., 2024). In this study, too, the capabil-
ity to resolve climate gradients in mountain areas underpins
confidence in the projected patterns.

Downscaling methods can be applied to overcome the
mismatch between coarse global climate projections, and
the fine-resolution needs of impact models (Karger et al.,
2023). At present, terrain-informed downscaling could be
executed by either regional climate models for dynamical
downscaling, or by topogaphic downscaling methods. Al-
gorithms of the first class are very precise as they directly
model physical and chemical processes in the atmosphere.
This comes with the disadvantage of being computationally
slow, which makes their application on large scales chal-
lenging (Giorgi et al., 2009; Sgrland et al., 2021; Schér
et al., 2020). Topogaphic downscaling uses mechanistic re-
lationships to turn low-resolution climatologies into high-
resolution ones based on knowledge of terrain. These rela-
tionships are quite simple and do not capture atmospheric
effects unrelated to topography, so this class of algorithms
fails to represent some small-scale effects, such as convective
precipitation (Karger et al., 2021). Also, topographic down-
scaling is characterized by less computational complexity
than that of dynamical downscaling. The two best perform-
ing and widely known topogaphic methods are CHELSA
(Karger et al., 2017, 2021, 2023) and PRISM (Daly et al.,
1994, 1997). For this study we choose CHELSA to per-
form downscaling for two reasons. First, we need a compu-
tationally fast algorithm as we examine a region covering the
whole of Europe. Second, out of the two best performing to-
pogaphic downscaling methods, CHELSA provides the eas-
iest way to interpret the results from the point of view of
atmospheric physics.

Here we present a downscaled climate product for the
European region at 0.05° for use in climate change impact
studies (Sect. 3). The downscaling adopts the approach pre-
sented in Karger (2022) and Karger et al. (2023), and uses
ISIMIP3b 0.5° climate data (Lange and Biichner, 2021) to
obtain their high-resolution counterpart. We used the down-
scaled data to force LPJ-GUESS simulations and, applying
an ensemble approach, tested whether systematic differences
in simulated output emerged between fine and coarse reso-
lutions (Sect. 4). Lastly, we evaluated the impact of this bias
on the scale of European Union (Sect. 5). The work is part
of an ongoing effort to incorporate a simplified downscal-

Geosci. Model Dev., 18, 9101-9118, 2025

D. Otryakhin et al.: Comparison of LPJ-GUESS simulations with low- and high-resolution climate

ing method into LPJ-GUESS, which eventually should allow
users to downscale flexibly different climate projections for
different regions.

2 Methods
2.1 CHELSA downscaling algorithm

CHELSA (Karger et al., 2017, 2021, 2023) is a family
of semi-mechanistic algorithms designed to perform spa-
tial downscaling of near-surface climate data. For this study,
we choose CHELSA V2.1 presented in Karger et al. (2023)
and its original software implementation (Karger, 2022),
that scales ISIMIP3b temperature, precipitation, and down-
welling shortwave radiation from an input resolution of 0.5°
down to 0.0083(3)°. The code additionally requires 3D data
from the CMIP6 ensemble (Jungclaus et al., 2019), as well
as static data such as high-resolution surface elevation.

2.1.1 Temperature

For every low-resolution grid cell, the temperature is pro-
jected to the sea level via Eq. (1);

niea_ngzy(zsea_zﬁ)’ (1)
where y is the lapse rate, 7;°* is the temperature to com-
pute, Z*% is the sea-level elevation, and 7} and Z are,
correspondingly, the temperature and elevation of the cell.
The lapse rate y is obtained by applying linear regression to
CMIP6 pressure-level data. The projected values 7} are in-
terpolated using B-splines to obtain high-resolution sea-level
temperatures (7;;°*). For every high-resolution grid point, the
surface temperature is computed using the interpolated val-
ues, the surface elevation, the lapse rates and Eq. (2):

T =T = v (Ziy = 29, 2)

Elevation values are from the Global Multi-resolution Terrain
Elevation Data 2010 (Danielson and Gesch, 2011), with the
spatial resolution of 30 arcsec. This method is used to down-
scale mean, maximum, and minimum daily temperatures.

2.1.2 Precipitation

CHELSA considers only orographic precipitation (Karger
et al., 2023), which is done by computing the wind effect
index H for each high-resolution cell. This index reflects
how much moisture gets pushed up towards the top of a
mountain as well as rain shadow in its leeward direction,
and it is computed using u-wind and v-wind components
from CMIP6 data. Those components were interpolated to
the high-resolution grid with a B-spline, and then were pro-
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jected onto a world Mercator projection.
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where dwpy, and dpp, denote the horizontal distances in
windward (W) and leeward (L) directions, while dwz, and
diz; are the corresponding vertical distances. The summa-
tions in Egs. (4) and (5) are performed within a circle with
the radius of 75 km.

The H index is then corrected according to the atmo-
spheric boundary layer height to account for the contribution
of the surface pressure level to the wind effect. Lastly, the
low-resolution precipitation pj. is multiplied by the corre-
sponding H indices and normalized to obtain high-resolution
precipitations ppr, so that within each low-resolution grid cell
the sum of the values pp, remains equal to pj (see section
Methods in Karger et al., 2021).

2.1.3 Surface downwelling shortwave radiation (RSDS)

The total shortwave radiation, measured in W m~2 is repre-
sented as in Karger et al. (2023), Sect. 2.2.2:

Sn = Ss + Sh' (6)

Here, S; is direct solar radiation reaching the surface, com-
puted according to the position of the Sun with respect to the
high-resolution grid cell. Diffuse solar radiation Sy, which is
the energy re-emitted by the atmosphere, takes into account
the percentage of the sky observable from a grid cell.

Computation of S; component starts with astronomical
equations. For the sun elevation angle 8, sun azimuth ¢, lat-
itude A, the solar declination angle &, the Julian day number
J, hour A, and the hour angle in degrees @, we have the fol-
lowing:

sinf = cosA cosdcosw + sinA sind

cosdcosw — sinf cos A

cosp = -
sinAcosf
365

w=15°(12 - h). @)
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Using these identities, cos y is computed as
cosy =cosf-sinf +sinf - cosh - cos(p — ), ®)

where y is the angle between the Sun beam and the normal to
the terrain, while o and B are surface slope and aspect. Then,
Ss is computed using constants Gy = 1367 kW m2, 7 =0.8,
and air optical thickness m defined in formula (13) of Karger
et al. (2023):

Ss(h) =¢(h) -G - T™ -cosy. 9)
Diffuse solar radiation is calculated as
Sh = (0.271 — 0.2947t™) G Vs, (10)

where W is the sky view factor computed as

N
Uy = Z[cosﬁ cosg; + sin Bcos(P; — )

i=1

(90 — ¢; — sing; cos ;)] (11)

1
N

for N = 8 azimuth directions ®; and the corresponding hori-
zon angles ¢; .

rsds = S,(1—0.75 - clt®), (12)

where S, is an average of S, over 24 h, and clt is the cloud
cover computed according to formulas (19)-(22) (Karger
etal., 2023).

To summarize this procedure, we note that the S5 and Sy
components are obtained by taking into account shadowing
and obstruction of light, the position of the Sun, the slope
and the aspect of the terrain, and cloud cover resulting from
orographic precipitation formation.

2.2 Bootstrap hypothesis test

In Sect. 4, we try to find systematic differences between
high and low resolutions by comparing the corresponding re-
gional averages of LPJ-GUESS output variables. We do this
by testing if the mean values of the samples of the output
variables are equal on both resolutions. Since on the 2 res-
olutions LPJ-GUESS produces outputs with different distri-
bution variance, we are interested in the mean values only
instead of the whole distributions. In order to test whether
two random samples come from distributions having equal
means, we employ the so-called bootstrap two-sample het-
erogenic location test (see Dikta and Scheer, 2021, Sect. 4.3)
and its implementation in R package boot (Canty and Rip-
ley, 2024; Davison and Hinkley, 1997). Assume that there
are two samples: X,, = {X1,...,Xp}and Y, = {Y1,..., Y}
X, is drawn from distribution F', and Y,, is drawn from G,
where both distributions are univariate and have finite (but
not necessarily equal) variances oy and oy as well as mean
values py and py. The goal is to test null-hypothesis H,
against the alternative Hy:

Ho:py =y VS, Hy:py7# iy (13)
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Following the standard bootstrap approach,

Xj, i€ll,...,n], and
l S [1a"'7L]» (14)

are obtained via sampling with replacement from sets
{X1,...,Xn} and {Y1,...,Y,} respectively, and bootstrap
counterparts of the sample means and variances are com-
puted:

— 1 <& 1 & —
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Under H,, the following limiting result holds, which is
used by the test:

. Kon = X) = (Vo = V)

2 2
s;zx/n—i—slfy/m

4 Xn—Vm T,

[s2/n+s3/m

when n— oo, n/m— A,

O<A<oo L>n+m. (16)

T is used as a test statistic with the distribution of 7*, provid-
ing a p-value for the difference of the two populations. Here,
the classical two-sided test is used: if 7" lies beyond 95 % of
the generated sample of T* (no matter to which side), then
the null-hypothesis is rejected, otherwise — accepted.

We chose this test for two reasons. First, its only restric-
tion on the data is the existence of a finite variance, which
is justified by the conservation laws of physics. On the con-
trary, parametric tests, such as Z-test, require assuming at
least a certain distribution family, which is too constraining,
as we apply the testing procedure to a number of different
quantities. Also, a standard 7-test cannot be used due to dif-
ferences in variations of samples we obtain — the low res-
olution data have smaller variation than the high-resolution
ones (see Sect. 4.2). Second, our data are too small to make
use of the central limit theorem; see Sect. 4.1 for the setup
of the experiment. In the context of studies of large regions
over the historical period 1850-2014, LPJ-GUESS simula-
tions are computationally demanding especially on the high
resolution. Because of this, generating samples that contain
more than 50-100 observations of averages in the Alpine re-
gion is a challenging task on both 0.5° and 0.083(3)° resolu-
tions. When the number of observations is larger, for exam-
ple in regional studies, the central limit theorem ensures con-
vergence in law of the means of the two samples to normal
distributions, and it becomes possible to use Welch’s ¢-test
(Welch, 1947) as a good alternative to the bootstrap test.
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2.3 LPJ-GUESS
2.3.1 Model description

LPJ-GUESS is a process-based Dynamic Global Vegeta-
tion Model (DGVM) that incorporates ecosystem biogeo-
chemistry, water cycling, and tree demography (Smith et al.,
2001, 2014). The model is able to simulate several types of
land cover and land use change (Lindeskog et al., 2013; Olin
et al., 2015; Lindeskog et al., 2021). At any given geograph-
ical location (gridcell), the different land cover types consti-
tute separate stands, which share the same climate forcings.
We restrict our test here to a model configuration that only
includes potential natural vegetation. In natural forest stands,
vegetation is represented as a mixture of woody Plant Func-
tional Types (PFTs), divided into age classes or cohorts, and
a grassy understory. Yearly establishment of new cohorts is
subject to prescribed bioclimatic limits, which are specific to
each PFT. Trees and grasses coexist in the same patch, which
roughly represents the area of influence of one large, mature
tree. Competition for available water, light and nutrients de-
termines the daily rate at which each cohort absorbs atmo-
spheric CO;. At the end of every simulation year, the assimi-
lated carbon is allocated to leaves, sapwood, or roots accord-
ing to a set of PFT-specific allometric constraints. Within the
stand, horizontal heterogeneity is represented by simulating
a number of replicate patches. Establishment of new cohorts,
death of individuals, and vegetation-destroying disturbances
are modeled as stochastic processes, giving rise to different
successional histories for each patch. Ecosystem pools and
fluxes are estimated by averaging over patches. Wildfires are
simulated explicitly with the SIMFIRE-BLAZE submodel
(Knorr et al., 2014, 2016; Rabin et al., 2017). The potential
burned area for each gridcell is calculated annually as a func-
tion of land cover type, meteorological information, and the
fraction of absorbed photosynthetically-active radiation (FA-
PAR) as a proxy for vegetation cover. This is then used to
model ignition stocastically, and calculate combustion rates
and associated carbon and nitrogen fluxes. A comprehensive
description of the fire submodel is available in Molinari et al.
(2021).

In this paper we used the “European Applications” branch
of LPJ-GUESS. This version differs from the standard
(global) version in that the PFTs are parametrized based on
observed characteristics of common European species (Hick-
ler et al., 2012; Gregor et al., 2022, 2024).

2.3.2 Model modification

Stochastic events in LPJ-GUESS are triggered by the out-
comes of a Random Number Generator (RNG). In the un-
modified version of the model code, each stand keeps its own
random number sequence, which is initialized (seeded) with
a hard-coded value when the stand is created at the beginning
of the simulation. This implies that all stands in the simula-
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tion derive their stochasticity from the same random num-
ber sequence. However, ensemble experiments require that
observations within the ensemble are statistically indepen-
dent. In order to emulate statistical independence of stands
and gridcells between ensemble realizations, we modified the
model code to initialize each stand’s seed as follows:

Seed;gy = (1 000 000 + Nyc - i + g) - 1000 + 5, (17)

where i =0, ..., N — 1 identifies the simulation within the
ensemble, Ny is the total number of gridcells in the sim-
ulation domain, g =0, ..., Ngc — 1 runs over gridcells, and
s =0,...,999 is a unique stand identifier. This method en-
sures that each stand in every realization of the ensemble
draws random numbers from a different sequence, up to 1000
stands per gridcell. We emphasize, however, that each grid-
cell contains only one natural vegetation stand in the present
study.

3 Climate data downscaling
Data processing

The CHELSA algorithm was used to downscale ISIMIP3b
mean, maximum and minimum daily temperatures, precipi-
tation rate, and downwelling solar radiation in the domain de-
fined by A € [26.75°W,35.25°E]; ¢ € [34.75°N,71.75°N],
where A and ¢ are geographical longitude and latitude, re-
spectively. This domain encompasses the continental Euro-
pean Union plus Norway, Iceland, Switzerland, the United
Kingdom, the non-EU Balkan states, Moldova, Belarus, and
parts of Ukraine, Russia, Morocco, Algeria, and Tunisia.
CHELSA generates one TIFF file per day for each of the
input variables at an output resolution of 0.0083(3)° (ap-
proximately 1km near the Equator). LPJ-GUESS simula-
tions covering the target domain at this resolution are com-
putationally impractical. We thus first upscaled the files to
0.05° by taking the mean of every 6 x 6 block of adjacent
0.0083(3)° x 0.0083(3)° gridcells. This upscaled version was
stored in NetCDF format. Gaps produced by missing days
in CHELSA’s output (~ 0.34 % in the historical period, and
fewer than 0.14 % in the scenarios) were filled with previ-
ous day values. The daily NetCDF files were stacked along
the time dimension, and we added CF-compliant metadata
(Hassell et al., 2017). LPJ-GUESS simulates the whole tar-
get period in one gridcell before proceeding to the next lo-
cation. To optimize data retrieval by the model code, the
stacked NetCDF files were rechunked along the time dimen-
sion. This operation rearranges the internal structure of the
file in a way that greatly enhances performance when read-
ing the full time series at a single spatial location. The result-
ing files underwent quality control, which included checking
that there were no missing days, ensuring that all values were
non-negative, and manually assessing that annual mean val-
ues were reasonable. In addition to the variables downscaled
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Table 1. Characteristics of the final downscaled dataset. Variable
names follow the ISIMIP3b nomenclature: daily average temper-
ature, minimum, and maximum (“tas”, “tasmin”, “tasmax”), pre-
cipitation (“prec”’), downwelling shortwave radiation (“rsds”), wind

speed (“sfcwind”), and relative humidity (“hurs”).

Spatial resolution 0.05°
Temporal resolution Daily
Format NetCDF4

Variables (CHELSA)
Variables (interp)
Spatial extent

tas, tasmin, tasmax, pr, rsds
sfcwind, hurs

A €[26.75°W,35.25°E]

¢ €[34.75°N,71.75°N]

Temporal extent 1850-2100

GCM MPI-ESM1-2-HR

SSP/RCP scenarios Historical, SSP1-2.6, SSP3-7.0, SSP5-8.5
Total size 1.3TB

with CHELSA, we remapped ISIMIP3b near-surface wind
speed and air relative humidity data to high resolution by ap-
plying bilinear interpolation to the original files. These vari-
ables are required when running LPJ-GUESS with the SIM-
FIRE/BLAZE fire model (Knorr et al., 2014, 2016; Rabin
et al., 2017) (see Sect. 5). The CHELSA original algorithm
depends on a B-spline interpolation for wind, while we adopt
here bilinear interpolation. Both techniques derive from the
same class-polynomial interpolation, and bi-linear interpo-
lation is expected to capture terrain heterogeneity better.
Relative humidity is not included in the original CHELSA
approach. The pipeline scripts were implemented in Bash
Script and Python, and use the NetCDF Operators (Zender,
2008) and the Climate Data Operators (Schulzweida, 2023).

Table 1 summarizes the properties of the dataset. The data
is freely accessible through KIT/IMK-IFU’s thredds storage
server Otryakhin and Belda (2024), and is made available
under the CC BY-SA 4.0 license.

4 Ensemble experiment
4.1 Setup

This experiment aims to find systematic differences in re-
gional predictions between low- and high-resolution LPJ-
GUESS simulations, arising from underrepresentation of
orography-induced climate variability in the low-resolution
forcings. To this end, we ran two sets of ensembles of
LPJ-GUESS simulations (high- and low-resolution) in se-
lected study and control regions. The simulations spanned
the historical period 1850-2014. The low-resolution simu-
lations were forced with ISIMIP3b climate, while the high-
resolution simulations were forced with the downscaled
dataset. Both simulations use the same soil properties dataset,
derived from the Digitized Soil Map of the World (Zobler,
1986), as in Sitch et al. (2003). In order to prevent introduc-
ing possible confounding factors, the soil information was
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not downscaled, and we kept nitrogen deposition at a con-
stant pre-industrial rate of 2kgNha~! yr~!. We chose the
Alps as our study region for its high variability in surface ele-
vation. The control region, located between the Dinaric Alps
and the Carpathian Mountains, was chosen to contain com-
paratively little mountainous terrain (Table 2), while being in
close proximity to the Alpine region and of approximately
the same size. The climate between the Pannonian basin and
the European alps naturally differs but is still influenced by
similar, large-scale circulation patterns that affect the Euro-
pean continent and the choice of the control region intended
to prevent significant global differences. Figure 1 shows the
study and control regions overlayed on an elevation map. The
gridcell centers were chosen such that any low-resolution
gridcell contains a block of 10 x 10 high-resolution gridcells,
with no high-resolution gridcells outside these blocks (i.e., a
perfect overlap of the high- and low-resolution grids). Promi-
nent water bodies were avoided.

The experimental design is outlined in Fig. 2. We con-
sidered the regional averages of each modeled variable (Ta-
ble 3), evaluated in the last year of the simulation (2014), as
random variables. We run 50 simulations per region and res-
olution, giving rise to 44 ensembles of random variables (11
modeled variables/simulation x 2 resolutions x 2 regions),
each containing 50 observations of its random variable. For
a given region and resolution, the simulations were identi-
cally set up, but used a different seed for the random number
generator (see Sect. 2.3.2). Model runs were assumed to be
independent and identically distributed. We note that such an
assumption is not imposed on pairs of ecosystem variables
within the same model run. The patch number was set to 20
in all simulations.

Let Mﬁr, ulsr, /’Lgr’ and /‘1(; denote the ensemble means of
any of the modeled variables, with superscripts “S” and “C”
identifying the study and control regions, and subscripts “hr”
and “Ir” denoting high- and low- resolution. The question of
whether there are systematic differences between low- and
high-resolution regional predictions in areas with high oro-
graphical variability can be cast in terms of two formal hy-
pothesis tests:

HOS : Mﬁr = ,u,lsr (There are no differences in the study region)
Vvs.

HS:ud #pud, (There are differences in the study region), (18)

and

HOC : Mgr = Mﬁ (There are no differences in the control region)
VS.

HE : u #ul,  (There are differences in the control region).  (19)

where the subscript “0” denotes the null hypotheses and “a”

identifies the alternatives. We tested these hypotheses for ev-

ery variable by applying the bootstrap test method described

in Sect. 2.2.
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CHELSA conserves the amount of precipitation in the up-
scaled output by construction (Sect. 2.1.2), but does not im-
pose such constraint on mean temperature and radiation. In
order to investigate the possible biases associated with this
non-conservative downscaling we repeated the above exper-
iment, this time forcing the low-resolution simulations with
CHELSA climate, upscaled back to 0.5° by spatially averag-
ing the high-resolution data. This ensures that mean temper-
ature, radiation and precipitation are the same on both reso-
lutions. In addition, we wished to investigate the impact of
fire disturbance on the results of the above experiments. This
was motivated by the fact that, in LPJ-GUESS, fire distur-
bance depends on the climate forcings through the fire model
(Rabin et al., 2017). To explore this effect we rerun the last
experiment with fire switched off. The characteristics of the
three ensemble experiments are summarized in Table 4.

4.2 Results and analysis

The results of the first experiment (I3b/Fire) are shown in
Table 5. We found statistically significant differences be-
tween the means of the high- and low-resolution samples
(85 := /Lf‘r - ugr) over the study region. The bootstrap test re-
turned a p-value of O for all the variables, leading us to reject
H3 in favor of the alternative H.

In the control region all differences between ensemble
means, §€ := ug — “Er’ are substantially smaller than their
study region counterparts, ranging from |85/8C| ~ 7 in the
case of NEP and Transpiration to ~ 116 in the case of Cyj.
For the majority of the variables, the p-values indicate a sta-
tistically significant difference between ensemble means 5€.
For NEP and Cj;;, however, we found no evidence in the data
to reject the null hypothesis HOC. This indicates that, for these
two variables, either there are no significant differences be-
tween ug and ufr, or the ensemble size is too small to detect
them with a sufficient confidence level. Figure 3 shows 685
and §€, as a fraction of Inr, for all variables. These values in
the study region have the opposite sign to those in the control
region, with the exception of NEP and Rg;.

An additional bootstrap test was run to check whether ran-
dom variability in the control region could give rise to differ-
ences between ensemble means as large as those seen in the
study region. With low- and high-resolution values in place
of X; and Y;, we generated the distribution of 7* from the
left side of Eq. (16), and found the two-sided p-values us-
ing —|85| and +|83|. These tests returned a p-value pX =0
for all variables, which strongly suggests that control-region
differences as large as those found in the study region could
not be explained by mere random variability of the ensemble
means.

Table 6 shows the results of the second experiment (WCH/-
Fire). All bootstrap tests returned a p-value of 0 in the study
region, again indicating very strong evidence of a mean dif-
ference between high- and low-resolution outputs. In the con-
trol region, 5 of 11 tests failed to reject the null hypoth-
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Table 2. Characteristics of elevations in the study and the control regions computed using values from GMTED2010 (Danielson and Gesch,

2011). All values are in meters.

Region Min. 1stQu. Median Mean SD  3rd Qu. Max.
Study 0 748 1310 1369 761 1941 4505
Control 69 81 88.0 1004 445 105.0 860.0

Figure 1. Study (violet) and control (green) regions for the ensemble experiment, overlaid on an elevation map based on values of
GMTED2010 (Danielson and Gesch, 2011). The centers of low-resolution gridcells are indicated by solid circles. The smaller dots mark the
location of the high-resolution gridcells. Elevation is encoded as a color gradient ranging from dark brown (low elevation) to white (high

elevation).

esis: NEP, Cyeg, Tr., FPC, and LAL Interestingly, the Cy;
test switched to returning a significant p-value. The rela-
tive differences between ensemble means in the study and
control regions, 8S / ulslr and &€ / ufr, are now both negative
(Fig. 3) except for the high-resolution Rof. Runoff shows the
largest relative discrepancy with respect to the previous ex-
periment, but the difference in absolute terms is very small.
This sign switch of §€ with respect to I3b/Fire suggests that
CHELSA’s non-conservative properties introduce a bias of
sign opposite to the response of the model to the altitude-
driven climate differences. The relative importance of this
effect is much larger over the control region, where it de-
termines the sign of the overall difference §C. The change
in magnitude of 8€ with respect to I3b/Fire, ASC|, was be-
tween ~ 110 % and ~ 310 %, except for NEP (~ 57 %). By
contrast, A(SS| is much smaller, ranging between ~ 0.04 %
and ~ 14 %. This may explain the significance switch in the
Cyi¢ test over the control region; the non-conservative bias
present in the I3b/Fire experiment nearly compensates the
altitude-induced differences for this variable. This brings the
high- and low-resolution means closer together, which makes
it more difficult to discern them. When this bias is removed in
uCH/Fire, the difference between ensemble means increases,
and the bootstrap test is able to detect it.

https://doi.org/10.5194/gmd-18-9101-2025

The outcome of the uCH/NoFire experiment is shown in
Table 7. Like before, the impact on the control region is com-
paratively larger than in the study region, as shown by the
values of |ASS| and |A8C , and by the fact that some of the
tests in the control region returned switched p-values again.

We summarize the analysis described in this section as fol-
lows. It was demonstrated that high- and low-resolution sim-
ulations produce significantly different average predictions
over a study region with high elevation variability. Differ-
ences in the control region were also detected, but they are
much smaller than in the study region. Climate data down-
scaled with CHELSA introduces a bias related to its non-
conservative treatment of temperature and radiation. This
bias is comparable in magnitude to the altitude-related dif-
ferences in the control region, but small in relation to the
magnitude of the variables, and largely inconsequential in
the study region. When this bias was removed, average NEP,
Cyeg, Tr., and FPC were indistinguishable in the high- and
low-resolution simulations. Fire was found to be a significant
contributor to the ensemble mean differences in the control
region.

CHELSA-downscaled climate data is closer to observa-
tions than the original, coarse resolution data (Karger et al.,
2021, 2023). This motivates us to consider the difference be-

Geosci. Model Dev., 18, 9101-9118, 2025
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Figure 2. Scheme of computations in the ensemble experiment. Here, X is the average of values at the end of the computation period 1850-
2014 in the region, Ir and hr are the indicators of the low and high resolution correspondingly, i = {1, ..., 50} is the experiment id, u’s are

the sample mean estimates.

Table 3. List of ecosystem variables modeled by LPJ-GUESS that were included in the experiment. These include carbon fluxes (GPP,
NPP, and NEP), carbon pools (Cijt, Csoil, Cveg, and Ciot), water cycle variables (Tr. and Roff), and vegetation structural variables (FPC and
LAI). The units refer to regional aggregates (for all variables except FPC and LAI) and regional averages (for FPC and LAI) of the selected

variables.

Variable  Description Units
GPP Gross Primary Productivity kgC yr_1
NPP Net Primary Productivity kgC yr_]
NEP Net ecosystem productivity kgC yr_l
Clit Amount of carbon stored in litter kgC
Cyoil Amount of carbon stored in the soil kgC
Cveg Amount of carbon stored in above-ground vegetation kgC

Crot Total amount of stored carbon kgC

Tr. Ecosystem transpiration mmyr— 1
Rogr Runoff mmyr- !
FPC Foliar Projective Cover m?m—2
LAI Leaf Area Index m? m~2

Table 4. Ensemble experiments carried out in Sect. 4. The exper-
iments differ in the climate data used to force the low-resolution

simulations and on whether wildfires are allowed.

Experiment LR forcing Fire
I3b/Fire ISIMIP3b On
uCH/Fire Upscaled CHELSA  On
uCH/NoFire = Upscaled CHELSA  Off

Geosci. Model Dev., 18,

9101-9118, 2025

tween high- and low-resolution simulations as a systematic
bias incurred when running LPJ-GUESS at low resolution,
arising from the underrepresentation of orographical climate
variability.

5 Comparison of Europe-wide simulations

5.1 Setup

In order to assess the impact of systematic biases in low-
resolution LPJ-GUESS outputs on a European-regional level,

https://doi.org/10.5194/gmd-18-9101-2025
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Table 5. Results of the I3b/Fire experiment. The ensemble means and standard deviations are denoted ¢ and o, respectively. The superscripts
S and C identify the study and the control regions, respectively. The subscripts hr and Ir denote high- and low-resolution. The § is used for the
difference between the low- and high-resolution ensemble means for the given region. The pS and pC denote the p-values for the statistical
tests defined by Egs. (18) and (19). The pX are the p-values for the test defined in Sect. 4.2. A bold font face is used to identify tests with a
p-value below the significance threshold. The ratios 8S / uﬁr, sC / /’ngr’ and 85 / € are expressed as percentages.

GPP  NPP NEP Ciit  Csoil  Cveg  Crot Tr. Ro  FPC  LAI
e 096 052 —0.05 107 137 158 402 328 827 070  2.64
o> 0.0005 0.0003  0.0005 0.014 0.004 0027 002 020 0.14 0.0006 0.002
ud 119 0.66 —0.06 156 192 212 560 374 789 0.80  3.12
op 0.006  0.003 0.005 0.154 0058 0257 017 211 160 0006  0.03
88 —022  —0.13 001 —492 —544 541 —158 —457 381 —0.10 —0.48
pS 0 0 0 0 0 0 0 0 0 0 0
8S/up.  —234 =255 —153 —46.0 —39.6 —342 —392 —139 46 —148 —183
us 1.08 0.50 008 727 893 174 336 402 445 082 3.4
oS 0.0007 0.0004  0.0013 0.026 0.005 004 003 035 022 0001 0.005
us 1.07 0.49 008 722 888 172 332 395 425 081  3.13
of 0.0073 0.0037 00114 0216 0041 045 033 314 196 0013 0.036
sC 0.012  0.0055 —0.0014 0050 0047 023 033 679 200 0004 0014
p€ 0 0 041  0.10 0 0 0 0 0 0022 0.003
5C /s, 12 L1 -7 0.7 0.5 13 1.0 20 40 0.5 0.5
§5/sC —18 —24 -7  —98 —116 —24  —48 -7 19 —25  -34
pX 0 0 0 0 0 0 0 0 0 0 0

we ran two simulations, at high and low resolutions, in the
European domain from Sect. 3 (Table 1). The input to the
model is as in the ensemble experiment, except now we use
historical ISIMIP nitrogen deposition data (Tian et al., 2018).
Both simulations were fed with the original 0.5° x 0.5° data.
To capture coastline features and inland water bodies as ac-
curately as possible for each resolution, we drop the restric-
tion of one-to-one correspondence between blocks of 10 x 10
high-resolution gridcells and the low-resolution ones (see
Sect. 4.1). The number of patches was set to 100 for both
runs, and wildfires were enabled.

5.2 Analysis and results

Forcing LPJ-GUESS with low-resolution climate data intro-
duces a bias in average predictions, related to the underrep-
resentation of climate spatial variability (Sect. 4). Figure 4
shows this climate-response bias for GPP, averaged over the
2010-2014 period. Similar maps for the rest of the variables
can be found in the Supplement (Sect. S1: Supplement to
Comparison of Europe-wide simulations). The most promi-
nent discrepancies concentrate over highly mountainous re-
gions, such as the Alps, the Spanish mountains and the Scan-
dinavian Mountains. Large differences are also seen in Ice-
land, where the rapidly changing elevation leads to high spa-

https://doi.org/10.5194/gmd-18-9101-2025

tial variability above and below the low-resolution predic-
tions.

Additional bias results from the limitations of the low-
resolution grid in representing areas around coastlines and
inland water bodies (Fig. 5). In a low resolution simulation,
some gridcells protrude outside the coastline, thus covering
some sea-surface area (marked A), which is simulated as
land. Similarly, the low-resolution grid cannot resolve small
lakes, which adds to the overestimation of land-surface area.
By contrast, some land-surface areas close to the seashore
(marked B) are correctly accounted for in high-resolution
simulations, but cannot be captured in low-resolution. In the
European domain under consideration, these two counteract-
ing effects amount to a ~ 3.5 % increase in simulated surface
area in the low resolution runs. This leads to a shoreline-
representation bias in regional estimates.

Aggregating GPP across the domain yields an aver-
age of 7.01 PgCyr~! over the period 20102014 for the
high-resolution simulation, and 7.40 PgCyr~! for the low-
resolution simulation (a 5.6 % increase). The climate-
response and shoreline-representation contributions to this
increase are Oc; = 2.1 % and 8gpo = 3.4 %, respectively. Ta-
ble 8 shows aggregate high- and low-resolution values for the
rest of the selected variables. In this region, the shoreline-
representation bias is larger in magnitude than the climate-
response bias for all variables. The largest relative discrep-

Geosci. Model Dev., 18, 9101-9118, 2025
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Table 6. Results of the uCH/Fire experiment. Repeated symbols are as in Table 5. ’ABS‘ and ‘A(SC‘ are the changes in magnitude of 88 and

€ with respect to [3b/Fire, expressed as a percentage.

GPP NPP NEP Ciit  Csoil  Cveg Cot Tr.  Rogr FPC LAI
e 0.96 0.52 —0.05 11 14 16 40 328 827 0.70 2.64
oS 0.0005  0.0003  0.0005 0.014 0.004 0027 0019 020 0.4 0.0006  0.002
u 1.18 0.65 —0.06 15.5 18.5 21 55 367 791 0.81 3.12
o 0.0055  0.003 0.004 015 004 022 015 214 15 0006  0.025
8S -022 —0.13 001 —48 —48 —55 —15 =39 36 —0.11  —0.48
pS 0 0 0 0 0 0 0 0 0 0 0
sS/ud. —228 244 —141 —452 351 348 377 —120 44 —159 —182
e 1.08 0.50 0.08 7.3 89 174 336 401 44 0.82 3.14
oS 0.0007  0.0004  0.0013 0026 0.005 004 003 035 022 0002  0.005
us 1.08 0.50 0.08 7.37 9 1747 338 402 48 0.82 3.15
of 0.007  0.003 0.01 024  0.04 0.4 0.3 3.7 2 0.01 0.04
€ —0.004 —0.003 —0.0006 —0.1 —0.08 —0.09 —026 —0.7 —42 —0.002 —0.009
pC 0 0 0.75  0.0025 0 0.6 0 021 0 0.26 0.10
8€/ut 0.4 -0.6 -07 —-14 —-09 -05 —08 —02 —94 -0.3 —-0.3
85/5C 56 41 -12 49 63 63 58 56 -9 53 52
p¥ 0 0 0 0 0 0 0 0 0 0 0
MS) 0.73 1.3 27 1.8 11 1.8 4 14 5 11 0.04
Aéc‘ 133 156 57 299 263 138 180 110 310 154 166

ancy is seen in Ci; a 6.6 % increase respect to the high-
resolution value, with contributions 8. = 2.9 % and 6¢po =
3.7 % (the bias in NEP is even larger, but NEP is a very small
quantity resulting from the difference of two large quantities
(GPP and ecosystem respiration), and hence very sensitive to
small variations in either of those terms. In the case of aggre-
gate runoff, the shoreline-representation bias (8sho = 4.1 %)
and the climate-response bias (8.;; = —1.3 %) act in opposite
directions, adding up to a net total of Sy = 2.8 %. The cal-
culation of the climate-response and shoreline-representation
contributions to the total bias is detailed in Appendix A.

6 Discussion

Earlier work by Miiller and Lucht (2007) showed little im-
pact on model results when running the LPJ DGVM between
10° and 0.5°, at 0.5° intervals, suggesting that a resolution
of 0.5° is still too coarse to account for relevant effects of
spatial heterogeneity. Our study suggests that the impacts of
resolution on the modeled output, linked to the influence of
orography on the input climate, become noticeable at higher
resolutions. The relative importance of these effects strongly
depends on the focus region. Europe-wide simulations show
an impact of resolution on aggregated ecosystem pools and

Geosci. Model Dev., 18, 9101-9118, 2025

fluxes of ~ 3 %, likely smaller than the uncertainty derived
from the spread in climate forcings by different GCMs (see,
e.g., Schaphoff et al., 2006; Morales et al., 2007; Schurg-
ers et al., 2018). By contrast, these differences increase up
to ~ 46 % in an Alpine region. Additional bias may result
from poor representation of shorelines and small inland wa-
ter bodies, but this effect could be mitigated by scaling the
model output by the land-cover fraction in the affected grid-
cells. In areas of low variability in surface elevation, the dif-
ference between LPJ-GUESS outputs at different resolutions
is much smaller and may be safely ignored in calculations
involving regional averages of ecosystem variables. For this
type of studies, one could optimize the resource requirements
of the simulations by using a coarser resolution in areas with
low elevation variability.

The high-resolution simulations were performed on a grid
that captures coastlines and water bodies more precisely,
and are driven by climate that is generally closer to the ob-
served regional climate (see validation sections in Karger
et al., 2021, 2023). This motivates us to interpret these dif-
ferences as systematic biases incurred when running LPJ-
GUESS on a coarse grid. We defer evaluating the simula-
tion results against observational data to future studies. How-
ever, we note here that if the model output on low resolution

https://doi.org/10.5194/gmd-18-9101-2025
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Table 7. Results of the uCH/NoFire experiment. Repeated symbols are as in Table 5. ‘A(SS’ and ‘ASC‘ are the changes in magnitude of 88

and 6€ with respect to uCH/Fire, expressed as a percentage.

GPP NPP NEP Ciit Csoil Cveg Crot Tr.  Rog FPC LAI

The 0.96 0.53 —0.05 11 14 16 40 328 827 0.7 2.64
oS 0.0005  0.0003  0.0004 0013  0.005 002 001 02 016 0.0005  0.002
T 1.18 0.65 —0.06 16 19 21 55 368 791 0.81 3.12
ad 0.005 0.003 0.005 0.18  0.041 028 0.8 2 148 0006  0.022
88 —0.22 —0.13 0.007  —4.8 48 -55  —15  —40 36 —0.11 —048
pS 0 0 0 0 0 0 0 0 0 0 0
85 /ud -22.6 —24.4 —145 —451 —350 —348 —37.6 -—l12.1 43  —-159 —182
us 1.08 0.5 0.08 7.28 8.93 17 34 402 45 0.82 3.14
oS 0.0008  0.0004  0.0011 0.02  0.004 0042  0.03 03 022 00014  0.004
u 1.08 0.5 0.08 7.36 9.01 17 34 402 49 0.82 3.15
of 0.007 0.004 001 0215 0.036 0381 0.3 3.5 199 0013  0.043
€ —0.0004 —0.0011 —0.0016 —0.08 —0.079 —0.055 —021 —02 —46 —0.003 —0.013
pC 0.63 0.09 0.26  0.0025 0 0.37 0 069 0 0.09 0.04
8/t —0.04 —0.22 -19 -1.1 —0.9 —-03 -06 —005 -—104 —0.4 —0.4
85/5C 545 117 -5 60 61 100 71 215 -8 36 39
pX 0 0 0 0 0 0 0 0 0 0 0
A(SS‘ 0.14 0.08 2.7 0.09 0.04 0.18 008 053 028 0.09 0.23

A(SC‘ 90 65 167 20 2.9 37 19 74 10 48 36

Table 8. Comparison of domain-wide aggregates of selected ecosystem variables for the high- and low- resolution European simulations
(HR and LR, respectively). §iot is the total bias, dgpo is the shoreline-representation bias, and §.j; is the bias arising from the difference in
climate forcings. Percentages are calculated with respect to the high-resolution values.

HR LR Stot dsho 8cli
GPP 7.01 7.40 0.39 (5.6 %) 0.24 (3.4 %) 0.15 (2.1 %)
NPP 3.68 3.90 0.22 (5.9 %) 0.12 (3.3 %) 0.09 (2.6 %)
NEP —-0.405 —-0434 -0.029(-7.3%) —-0.014(-3.5%) —0.015(—3.8%)
Clit 64.1 68.3 4.2 (6.6 %) 2.3 (3.7 %) 1.9 (2.9 %)
Cyoil 72.0 76.7 4.7 (6.5 %) 2.6 (3.6 %) 2.1 (2.9 %)
Cueg 99.0 104.4 5.4 (5.5%) 3.0(3.1 %) 2.4 (2.4 %)
Ciot 235.0 249.4 14.4 (6.1 %) 8.0 (3.4 %) 6.4 (2.7 %)
Tr. 2.322 2.412 0.090 (3.9 %) 0.076 (3.3 %) 0.014 (0.6 %)
Rosr 2.54 2.61 0.07 2.8 %) 0.10 (4.1 %) —0.03 (—1.3%)
FPC 0.305 0.321 0.016 (5.2 %) 0.011 (3.6 %) 0.005 (1.6 %)
LAI 1.14 1.20 0.06 (5.2 %) 0.04 (3.4 %) 0.02 (1.8 %)

was closer to observations, that would suggest that the model
needs recalibration or revision.

Since geographical features and climate effects are not re-
lated to intrinsic properties of LPJ-GUESS, we infer that pre-
dictions by other DGVMs are likely to be affected in a simi-
lar manner. We note, however, that gridcells in LPJ-GUESS

https://doi.org/10.5194/gmd-18-9101-2025

are independent of each other (there is no lateral information
flow) and completely unaware of gridcell size. By contrast,
other models may include processes, such as lateral matter
transport, which are sensitive to the coarseness of the grid.
This introduces an additional dependence of the output on
resolution, on top of the effects discussed in this study.

Geosci. Model Dev., 18, 9101-9118, 2025
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Figure 3. Mean difference between high- and low- resolution en-
semble means, as a percentage of the high-resolution ensemble
mean, over the study region (a) and the control region (b). The
different symbols represent the three experiments; I3b/Fire: low-
resolution simulations are forced with ISIMIP3b climate; uCH/Fire:
low-resolution simulations are forced with upscaled CHELSA cli-
mate; uCH/NoFire: low-resolution simulations are forced with up-
scaled CHELSA climate and fire is switched off.

One possible mechanism underpinning the difference in
modeled GPP between high- and low-resolution simulations
in areas with high elevation variability is the non-linear rela-
tionship between the mean gridcell temperature and the dura-
tion of the growing season, which is dynamically calculated
by LPJ-GUESS. The linear relationship between temperature
and elevation (Egs. 1 and 2) implies that air temperatures in
higher parts of resolved mountainous areas are lower than
the average value in the corresponding low-resolution grid-
cell (Fig. 6), causing a shorter growing season. The lower
parts will, in turn, experience a longer growing season. The
shorter growing season in high areas leads to reduced pro-
ductivity and vegetation cover. Because of the non-linear re-
sponse of the model to climate forcings, this is not fully com-
pensated by the additional productivity in the lower, warmer
parts. A similar argument can be made for the photosynthetic
rate, which is temperature-dependent.

On the other hand, rainfall redistribution in the high-
resolution grid may provide a counteracting effect. CHELSA
tends to concentrate the total amount of rainfall towards high-
elevation areas to account for the influence of orography on
precipitation (Fig. 7), which may reduce water availability
for plant growth in the lower areas.

The radiation downscaling algorithm is more involved,
and includes the effects of orographical features as well as

Geosci. Model Dev., 18, 9101-9118, 2025
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those of the position of the Sun (Sect. 2.1.3). Nonetheless,
there is a clear pattern in Fig. 8 showing that higher parts of
mountains receive less solar radiation per square meter than
the corresponding low-resolution value, while the lower parts
—more. This suggests that the increased cloud cover resulting
from orographic precipitation leads to a decrease in average
radiation in areas of higher elevation difference. This effect
contributes to the reduction of vegetation in places with high
elevations.

Another counteracting factor is the excess land simulated
in a grid too coarse to resolve small inland water bodies. The
interplay between these factors will depend on the specific
region being simulated, which emphasizes the complexity of
the model’s response to orographical and climate drivers.

There are many other modeled processes that respond
non-linearly to climate forcings. Leaf-level photosynthesis
shows a saturating (as opposed to linear) response to ab-
sorbed photosynthetically-active radiation when not limited
by RuBisCo production (see Haxeltine and Prentice, 1996,
for a discussion of the scaling of leaf-level photosynthesis
to canopy-level productivity). Soil water transport follows
a power law of available water content, which in turn de-
pends on the amount of rainfall (see Gerten et al., 2004).
The amount of radiation reaching the forest floor, which de-
termines potential establishment of new saplings, obeys an
exponential law that depends on the forest canopy’s LAI
(Monsi and Saeki, 1953, 2005). The decay rate of C in the
different soil carbon pools is a non-linear function of soil
temperature (driven by air temperature in the model) and soil
water content (which depends non-linearly on precipitation
rate, as mentioned above; see description of the carbon cycle
submodel in Smith et al., 2014).

The effect of fire on simulation results was found to be
somewhat important, but not as strong as those of non-
conservative properties of CHELSA and differences in cli-
mate due to orography. The effect includes 2 parts. First,
since ignition is stochastic, the presence of the fire mod-
ule may be able to increase the variation of the simulation
results. Comparison of the standard deviations in Tables 6
and 7 shows that this effect does not play a significant role.
Second, fire is a rare but destructive event which introduces
changes in the potential vegetation structure. This could be
one of the reasons why we see more variables with statis-
tically indistinguishable ufr and “1(; in the uCH/NoFire ex-
periment than in the uCH/Fire one. In the study region on the
high resolution, ignition is expected to occur more in valleys,
which are warmer and drier than mountain tops, thus the ef-
fect of reduced vegetation in mountainous areas should be
decreased in the uCH/NoFire experiment. However, in Fig. 3
we see that the influence of fire on vegetation in the study
region is negligible compared to the influence of orography-
induced climate difference.

Systematic biases in model outputs may arise as a conse-
quence of differences in forcings other than resolution. For
instance, high-resolution simulations might be sensitive to
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Figure 4. Climate-response bias in low-resolution modeled GPP, calculated as the difference between the low- and high-resolution predic-
tions, averaged over the period 2010-2014. The value from every high-resolution gridcell was subtracted from the value in the corresponding
10 x 10 low-resolution block. Only fully overlapping low- and high- resolution gridcells are represented. Red indicates a higher GPP value

in the low-resolution run than in the high-resolution run.
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Figure 5. Three low-resolution gridcells (outlined in red) projected
onto a high-resolution grid. A small lake and the coastline are rep-
resented with black, thick lines. The sea is to the right of the coast-
line. Red-shaded regions (marked A) indicate areas that are consid-
ered land in low-resolution simulations and water in high-resolution
simulations. The blue-shaded area (marked B) is accounted for in
a high-resolution run, but not in a low-resolution run. Gray areas
(marked C) are represented in both high- and low-resolution simu-
lations. White areas are considered water points in both simulations.

https://doi.org/10.5194/gmd-18-9101-2025

the algorithm used to downscale the forcings. In the context
of climate change mitigation, correlations between different
climate variables might influence relevant modeled variables
(Zscheischler et al., 2019). To give an example of mecha-
nisms responsible for these correlations, we notice that at
points where light is obstructed, the temperature is lower
than at neighboring points with no obstruction. Analogously,
a spot with a significant amount of precipitation would be
colder and darker than the same spot without precipitation.
Such correlations are not built into univariate methods like
CHELSA but can be captured by dynamical or multivariate
downscaling methods. These methods are, however, gener-
ally more complex, and might require intensive use of com-
putational resources. Therefore, it might be of interest to find
systematic differences between simulations forced by the dif-
ferent methods. This could be done with the help of the
methodology presented in Sects. 2.2 and 4. A similar setup
could also be employed to investigate systematic differences
originating from alternative model configurations. For exam-
ple, one could assess whether the modeled impacts of two
different forest managing strategies on regional carbon sinks
are significantly different from each other.

Geosci. Model Dev., 18, 9101-9118, 2025
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Figure 6. Distribution of the difference in mean air temperature be-
tween the downscaled and the original datasets. Positive values indi-
cate a temperature increase after downscaling. The data was binned
in octiles of elevation difference, calculated with respect to the av-
erage elevation of the low-resolution gridcell that contains the data
point. The x-axis labels indicate limits of the bins. Water points are
excluded. The distributions were derived from temperature averages
over the 2011-2014 period.
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Figure 7. As in Fig. 6, but for average precipitation.

7 Summary

In this paper we presented a high-resolution climate dataset
for ecosystem modeling applications in Europe. We ap-
plied the CHELSA semi-mechanistic algorithm to scale four
ISIMIP3b scenarios (historical, SSP1-2.6, SSP3-7.0, and
SSP5-8.5) from an original resolution of 0.5° down to 0.05°.
Further processing involved quality checks, rechunking to
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Figure 8. As in Fig. 6, but for average RSDS.

optimize time-series retrieval at a single location, and the
addition of CF-compliant metadata. The new dataset is pro-
vided in NetCDF format (one file per variable), and is pub-
licly accessible under a CC BY-SA 4.0 license.

We studied systematic differences between high-
resolution LPJ-GUESS simulations, forced with the new
dataset, and low-resolution simulations. We found that
low-resolution simulations are systematically biased. Two
main sources of bias were identified: (a) bias associated to
the non-linear response of the model to orographical climate
variability, and (b) bias associated to the poor representation
of coastlines and inland water bodies on a coarse grid.
While the latter may be mitigated by rescaling the output
by the land cover fraction in the affected gridcells, reducing
the climate-response bias requires a finer grid resolution.
These sources of bias are independent of the downscaling
algorithm, and apply to other DGVMs, insofar as their
response to climate forcings is non-linear. Climate-response
bias can be very large in mountainous areas; low-resolution
simulations overestimated average predictions between
~ 4 9% and ~ 45 % in an alpine region, as opposed to a mean
bias of ~ 1.4 % in a nearly-flat control region. Biases as large
as in the alpine region were shown to be vanishingly unlikely
in the control region. On a European scale, climate-response
bias led to an overestimation of regional averages of ~ 3 %.
This suggests that this type of bias is very sensitive to overall
changes in elevation, and should be accounted for when the
focus region presents high orographical variability.

Appendix A: Bias decomposition

Let X be a modeled variable, Sy the aggregated value of
X over the simulated domain, and py the domain-average.
In order to calculate the climate-response and shoreline-

https://doi.org/10.5194/gmd-18-9101-2025
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representation components of the bias, we consider the fol-
lowing quantities, defined in the high resolution grid:

1. X SR Value of the high-resolution output at grid point
@@ J).

2. X l!}R: Value of the low-resolution output at grid point
(i, j). We note that this value will be the same for

all (i, j) within the same low-resolution gridcell (see
Fig. 5).

3. A;j: Surface area of the gridcell at gridpoint (i, j).

4. MleR HR, : Overlap mask. It takes the value 1 at land

points where low-resolution values and high-resolution
values overlap (gray cells in Fig. 5), and 0 everywhere
else.

5. MZI;R HR, : Only high-resolution mask. It takes the value 1

at land points present in the high-resolution simulation,
but not present in the low resolution one (blue cells in
Fig. 5) and O everywhere else.

6. MIL]R HR, : Only low-resolution mask. It takes the value 1

at land points present in the low-resolution simulation,
but not present in the high resolution one (red cells in
Fig. 5) and O everywhere else.

Al Regionally aggregated quantities

For regionally aggregated variables, such as the carbon fluxes
and pools, the bias between high- and low- resolution outputs
is:

Stor = SER — SR

ZXLRAZJ (MLR HR + MiLjR,HR)

_ ZXHRA (M[I;R,HR +M[I;R,HR)’ (AD)

where the indices (i, j) cover the whole domain. In this equa-
tion, the first sum represents the regional sum of the low res-
olution values, and the second term is the regional sum of the
high-resolution values. Rearranging terms yields:

LR,HR
Sov= Y (X = X[ M,
ij

Scli

+ ZAII (XLRMLR HR XHRMLR HR)' (A2)

Ssho

The first term of the above equation, labeled as J.j;, involves
values of X at overlapping gridcells exclusively (shown as
gray cells in Fig. 5). Hence this term can be attributed to the
difference in climate forcings between the two simulations.

https://doi.org/10.5194/gmd-18-9101-2025

The second term, labeled &0, involves values of X at non-
overlapping gridcells between the high- and low- resolution
simulations. These gridcells are the red and blue gridcells
from Fig. 5, and are associated with poor shoreline represen-
tation at low resolution.

A2 Regionally averaged quantities

The variables FPC and LAI in Sect. 5 are averaged across
the domain, rather than aggregated. The bias in this case is
calculated as:
Sot = HES — "

ZXLRAU (MLR HR +MLR HR)

LR,HR LR, HR
ZA, (MR MR

ZXSRAIJ (MLR HR + MLR HR)

i)
N ZA (MLRHR_i_Mﬁ,HR) ’ (A3)
ij i

where the first term is the low-resolution regional average,
and the second term is the high-resolution regional average.
Rearranging terms yields

8tot = 5cli + 88h07 (A4)
where
LR LR,HR
2 X Aij My
ij
Beti = LR,HR LR,HR
i,j

ZXHRA MLR HR

N AL (RHR | TRHRY (A3)
2 A (M= + M)
l’.]
and
ZXLRA MLR HR
8sh0 =
ZAIJ (MLR HR +MLR HR)
ZXHR A, MLR HR
Ly (A6)

ZAij (M};R,HR + M[I;R,HR)
L]

Code availability. The code base wused in this work
along with intemediate and final results are available in
https://doi.org/10.5281/zenodo.14941305 (Otryakhin and Belda,
2025).
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Data availability. The high-resolution climate data described in
Sect. 3 is available in IMK-IFU storage https://thredds.imk-ifu.kit.
edu/thredds/catalog/catalogues/luc_and_climate_catalog_ext.html
(Otryakhin and Belda, 2024).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-9101-2025-supplement.

Author contributions. DO: conceptualization, data processing and
quality control in Sects. 3 and 4, formal analysis, software in
Sects. 3 and 4. DMB: conceptualization, data processing in Sects. 3,
4 and 5, formal analysis, software in Sects. 3, 4 and 5. AA: original
idea of using CHELSA with LPJG, conceptualization. All authors
helped shape the final form of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibil-
ity lies with the authors. Views expressed in the text are those of the
authors and do not necessarily reflect the views of the publisher.

Financial support. The article processing charges for this open-
access publication were covered by the Karlsruhe Institute of Tech-
nology (KIT).

Review statement. This paper was edited by Hisashi Sato and re-
viewed by two anonymous referees.

References

Canty, A. and Ripley, B. D.: boot: Bootstrap R (S-Plus)
Functions, R package version 1.3-30, CRAN [code],
https://doi.org/10.32614/CRAN.package.boot, 2024.

Daly, C., Neilson, R. P, and Phillips, D. L.: A Statistical-
Topographic Model for Mapping Climatological Precipitation
over Mountainous Terrain, Journal of Applied Meteorology
and Climatology, 33, 140-158, https://doi.org/10.1175/1520-
0450(1994)033<0140:ASTMFM>2.0.CO:;2, 1994.

Daly, C., Taylor, G., and Gibson, W.: The PRISM approach to map-
ping precipitation and temperature, in: Proc., 10th AMS Conf. on
Applied Climatology, 20-23, 1997.

Danielson, J. J. and Gesch, D. B.: Global multi-resolution ter-
rain elevation data 2010 (GMTED2010), US Department of
the Interior, US Geological Survey Washington [data set],
https://doi.org/10.3133/0fr20111073, 2011.

Geosci. Model Dev., 18, 9101-9118, 2025

Davison, A. C. and Hinkley, D. V.: Bootstrap Methods and Their
Applications, Cambridge University Press, Cambridge, ISBN
0-521-57391-2,  https://doi.org/10.1017/CB0O9780511802843,
1997.

Dikta, G. and Scheer, M.: Bootstrap methods: with applications in
R, Springer Nature, https://doi.org/10.1007/978-3-030-73480-0,
2021.

Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terrestrial vegetation and water balance—hydrological evaluation
of a dynamic global vegetation model, Journal of Hydrology,
286, 249-270, https://doi.org/10.1016/j.jhydrol.2003.09.029,
2004.

Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate in-
formation needs at the regional level: the CORDEX frame-
work, World Meteorological Organization (WMO) Bulletin,
58, 175, https://www.adaptation-changement-climatique.gouyv.
fr/sites/cracc/files/inline-filess CORDEX1.pdf (last access: 21
November 2025), 2009.

Gregor, K., Knoke, T., Krause, A., Reyer, C. P. O., Lindeskog,
M., Papastefanou, P., Smith, B., Lansg, A.-S., and Rammig,
A.: Trade-Offs for Climate-Smart Forestry in Europe Under
Uncertain Future Climate, Earth’s Future, 10, e2022EF002796,
https://doi.org/10.1029/2022EF002796, 2022.

Gregor, K., Krause, A., Reyer, C. P. O., Knoke, T., Meyer,
B. F, Suvanto, S., and Rammig, A.: Quantifying the impact
of key factors on the carbon mitigation potential of managed
temperate forests, Carbon Balance and Management, 19, 10,
https://doi.org/10.1186/s13021-023-00247-9, 2024.

Hassell, D., Gregory, J., Blower, J., Lawrence, B. N., and
Taylor, K. E.: A data model of the Climate and Forecast
metadata conventions (CF-1.6) with a software implementa-
tion (cf-python v2.1), Geosci. Model Dev., 10, 4619-4646,
https://doi.org/10.5194/gmd-10-4619-2017, 2017.

Haxeltine, A. and Prentice, I. C.: A General Model for the Light-
Use Efficiency of Primary Production, Functional Ecology, 10,
551-561, https://doi.org/10.2307/2390165, 1996.

Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa,
L., Giesecke, T., Fronzek, S., Carter, T. R., Cramer, W., Kiihn,
L., and Sykes, M. T.: Projecting the future distribution of Eu-
ropean potential natural vegetation zones with a generalized,
tree species-based dynamic vegetation model, Global Ecology
and Biogeography, 21, 50-63, https://doi.org/10.1111/j.1466-
8238.2010.00613.x, 2012.

Jungclaus, J., Bittner, M., Wieners, K.-H., Wachsmann, F,
Schupfner, M., Legutke, S., Giorgetta, M., Reick, C., Gayler,
V., Haak, H., de Vrese, P., Raddatz, T., Esch, M., Mauritsen,
T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M.,
Crueger, T., Fast, L., Fiedler, S., Hagemann, S., Hohenegger, C.,
Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L.,
Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali,
K., Miiller, W., Nabel, J., Notz, D., Peters-von Gehlen, K.,
Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and
Roeckner, E.: MPI-M MPI-ESM1.2-HR model output prepared
for CMIP6 CMIP historical, Earth System Grid Federation [data
set], https://doi.org/10.22033/ESGF/CMIP6.6594, 2019.

Karger, D. N.: CHELSA_ISIMIP3b_BA_1lkm, GitLab [code],
https://gitlabext.wsl.ch/karger/chelsa_isimip3b_ba_lkm (last ac-
cess: 6 March 2024), 2022.

https://doi.org/10.5194/gmd-18-9101-2025


https://thredds.imk-ifu.kit.edu/thredds/catalog/catalogues/luc_and_climate_catalog_ext.html
https://thredds.imk-ifu.kit.edu/thredds/catalog/catalogues/luc_and_climate_catalog_ext.html
https://doi.org/10.5194/gmd-18-9101-2025-supplement
https://doi.org/10.32614/CRAN.package.boot
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
https://doi.org/10.3133/ofr20111073
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1007/978-3-030-73480-0
https://doi.org/10.1016/j.jhydrol.2003.09.029
https://www.adaptation-changement-climatique.gouv.fr/sites/cracc/files/inline-files/CORDEX1.pdf
https://www.adaptation-changement-climatique.gouv.fr/sites/cracc/files/inline-files/CORDEX1.pdf
https://doi.org/10.1029/2022EF002796
https://doi.org/10.1186/s13021-023-00247-9
https://doi.org/10.5194/gmd-10-4619-2017
https://doi.org/10.2307/2390165
https://doi.org/10.1111/j.1466-8238.2010.00613.x
https://doi.org/10.1111/j.1466-8238.2010.00613.x
https://doi.org/10.22033/ESGF/CMIP6.6594
https://gitlabext.wsl.ch/karger/chelsa_isimip3b_ba_1km

D. Otryakhin et al.: Comparison of LPJ-GUESS simulations with low- and high-resolution climate 9117

Karger, D. N., Conrad, O., Bohner, J., Kawohl, T., Kreft,
H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P,
and Kessler, M.: Climatologies at high resolution for the
earth’s land surface areas, Scientific Data, 4, 170122,
https://doi.org/10.1038/sdata.2017.122, 2017.

Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E.,
and Jetz, W.: Global daily 1 km land surface precipitation based
on cloud cover-informed downscaling, Scientific Data, 8, 307,
https://doi.org/10.1038/s41597-021-01084-6, 2021.

Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O.,
Zimmermann, N. E., and Frieler, K.: CHELSA-W5ES: daily 1
km meteorological forcing data for climate impact studies, Earth
Syst. Sci. Data, 15, 2445-2464, https://doi.org/10.5194/essd-15-
2445-2023, 2023.

Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of hu-
man population density on fire frequency at the global scale,
Biogeosciences, 11, 1085-1102, https://doi.org/10.5194/bg-11-
1085-2014, 2014.

Knorr, W., Jiang, L., and Arneth, A.: Climate, CO and human pop-
ulation impacts on global wildfire emissions, Biogeosciences, 13,
267-282, https://doi.org/10.5194/bg-13-267-2016, 2016.

Lagergren, F.,, Bjork, R. G., Andersson, C., Belusi¢, D., Bjork-
man, M. P, Kjellstrom, E., Lind, P., Lindstedt, D., Olenius,
T., Pleijel, H., Rosqvist, G., and Miller, P. A.: Kilometre-
scale simulations over Fennoscandia reveal a large loss of tun-
dra due to climate warming, Biogeosciences, 21, 1093-1116,
https://doi.org/10.5194/bg-21-1093-2024, 2024.

Lange, S. and Biichner, M.: ISIMIP3b bias-adjusted atmo-
spheric climate input data, ISIMIP Repository [data set],
https://doi.org/10.48364/ISIMIP.842396.1, 2021.

Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J.,
Olin, S., and Smith, B.: Implications of accounting for land
use in simulations of ecosystem carbon cycling in Africa, Earth
Syst. Dynam., 4, 385-407, https://doi.org/10.5194/esd-4-385-
2013, 2013.

Lindeskog, M., Smith, B., Lagergren, F., Sycheva, E., Ficko, A.,
Pretzsch, H., and Rammig, A.: Accounting for forest man-
agement in the estimation of forest carbon balance using the
dynamic vegetation model LPJ-GUESS (v4.0, r9710): imple-
mentation and evaluation of simulations for Europe, Geosci.
Model Dev., 14, 6071-6112, https://doi.org/10.5194/gmd-14-
6071-2021, 2021.

Masson-Delmotte, V., Zhai P., Pirani, A., Connors, S. L., Pean,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis,
M. I, Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.
B. R., Maycock, T. K., Waterfield, T., Yelek¢i, O., Yu, R.,
and Zhou, B.: SPM - Summary for Policymakers, in: Cli-
mate change 2021: The physical science basis, Contribution of
working group I to the sixth assessment report of the inter-
governmental panel on climate change, Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
https://doi.org/10.1017/9781009157896.001, 2021.

Meyer, B. F., Buras, A., Gregor, K., Layritz, L. S., Principe, A.,
Kreyling, J., Rammig, A., and Zang, C. S.: Frost matters: incor-
porating late-spring frost into a dynamic vegetation model reg-
ulates regional productivity dynamics in European beech forests
, Biogeosciences, 21, 1355-1370, https://doi.org/10.5194/bg-21-
1355-2024, 2024.

https://doi.org/10.5194/gmd-18-9101-2025

Molinari, C., Hantson, S., and Nieradzik, L. P.: Fire Dy-
namics in Boreal Forests Over the 20th Century: A Data-
Model Comparison, Frontiers in Ecology and Evolution, 9,
https://doi.org/10.3389/fevo.2021.728958, publisher: Frontiers,
2021.

Monsi, M. and Saeki, T.: On the Factor Light in Plant Communities
and its Importance for Matter Production, Japanese Journal of
Botany, 14, 22-52, 1953.

Monsi, M. and Saeki, T.: On the Factor Light in Plant Communities
and its Importance for Matter Production, Annals of Botany, 95,
549-567, https://doi.org/10.1093/aob/mci052, 2005.

Morales, P., Hickler, T., Rowell, D. P., Smith, B., and Sykes, M. T.:
Changes in European ecosystem productivity and carbon balance
driven by regional climate model output, Global Change Biology,
13, 108-122, https://doi.org/10.1111/j.1365-2486.2006.01289 %,
2007.

Morera, A., LeBlanc, H., Martinez de Aragédn, J., Bonet, J. A.,
and de Miguel, S.: Analysis of climate change impacts on
the biogeographical patterns of species-specific productiv-
ity of socioeconomically important edible fungi in Mediter-
ranean forest ecosystems, Ecological Informatics, 81, 102557,
https://doi.org/10.1016/j.ecoinf.2024.102557, 2024.

Miiller, C. and Lucht, W.: Robustness of terrestrial carbon and
water cycle simulations against variations in spatial resolu-
tion, Journal of Geophysical Research: Atmospheres, 112,
https://doi.org/10.1029/2006JD007875, 2007.

Olin, S., Schurgers, G., Lindeskog, M., Warlind, D., Smith, B.,
Bodin, P., Holmér, J., and Arneth, A.: Modelling the response
of yields and tissue C:N to changes in atmospheric CO2 and
N management in the main wheat regions of western Europe,
Biogeosciences, 12, 2489-2515, https://doi.org/10.5194/bg-12-
2489-2015, 2015.

Otryakhin, D. and Belda, D. M.: ISIMIP3b-CHELSA cli-
mate input data for LPJ-GUESS, IMK-IFU storage [data
set], https://thredds.imk-ifu.kit.edu/thredds/catalog/catalogues/
luc_and_climate_catalog_ext.html (last access: 28 February
2025), 2024.

Otryakhin, D. and Belda, D. M.: Software for comparison of LPJ-
GUESS simulations driven by low- and high-resolution climate
data, Zenodo [code], https://doi.org/10.5281/zenodo.14941305,
2025.

Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest,
M., Hantson, S., Kaplan, J. O., Li, F,, Mangeon, S., Ward, D.
S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W.,
Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voul-
garakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison,
S., and Arneth, A.: The Fire Modeling Intercomparison Project
(FireMIP), phase 1: experimental and analytical protocols with
detailed model descriptions, Geosci. Model Dev., 10, 1175—
1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.

Schaphoff, S., Lucht, W., Gerten, D., Sitch, S., Cramer, W., and
Prentice, I. C.: Terrestrial biosphere carbon storage under al-
ternative climate projections, Climatic Change, 74, 97-122,
https://doi.org/10.1007/s10584-005-9002-5, 2006.

Schir, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Di Giro-
lamo, S., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler,
D., Osterried, K., Panosetti, D., Riidisiihli, S., Schlemmer, L.,
Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.:
Kilometer-scale climate models: Prospects and challenges, Bul-

Geosci. Model Dev., 18, 9101-9118, 2025


https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/s41597-021-01084-6
https://doi.org/10.5194/essd-15-2445-2023
https://doi.org/10.5194/essd-15-2445-2023
https://doi.org/10.5194/bg-11-1085-2014
https://doi.org/10.5194/bg-11-1085-2014
https://doi.org/10.5194/bg-13-267-2016
https://doi.org/10.5194/bg-21-1093-2024
https://doi.org/10.48364/ISIMIP.842396.1
https://doi.org/10.5194/esd-4-385-2013
https://doi.org/10.5194/esd-4-385-2013
https://doi.org/10.5194/gmd-14-6071-2021
https://doi.org/10.5194/gmd-14-6071-2021
https://doi.org/10.1017/9781009157896.001
https://doi.org/10.5194/bg-21-1355-2024
https://doi.org/10.5194/bg-21-1355-2024
https://doi.org/10.3389/fevo.2021.728958
https://doi.org/10.1093/aob/mci052
https://doi.org/10.1111/j.1365-2486.2006.01289.x
https://doi.org/10.1016/j.ecoinf.2024.102557
https://doi.org/10.1029/2006JD007875
https://doi.org/10.5194/bg-12-2489-2015
https://doi.org/10.5194/bg-12-2489-2015
https://thredds.imk-ifu.kit.edu/thredds/catalog/catalogues/luc_and_climate_catalog_ext.html
https://thredds.imk-ifu.kit.edu/thredds/catalog/catalogues/luc_and_climate_catalog_ext.html
https://doi.org/10.5281/zenodo.14941305
https://doi.org/10.5194/gmd-10-1175-2017
https://doi.org/10.1007/s10584-005-9002-5

9118

letin of the American Meteorological Society, 101, ES67-E587,
2020.

Schulzweida, U.: CDO User Guide,
https://doi.org/10.5281/zenodo.10020800, 2023.
Schurgers, G., Ahlstrom, A., Arneth, A., Pugh, T. A. M., and Smith,
B.: Climate Sensitivity Controls Uncertainty in Future Terres-
trial Carbon Sink, Geophysical Research Letters, 45, 43294336,

https://doi.org/10.1029/2018GL077528, 2018.

Shin, Y.-J., Midgley, G. F., Archer, E. R. M., Arneth, A., Barnes,
D. K. A., Chan, L., Hashimoto, S., Hoegh-Guldberg, O., In-
sarov, G., Leadley, P, Levin, L. A., Ngo, H. T., Pandit, R.,
Pires, A. P. F,, Portner, H.-O., Rogers, A. D., Scholes, R. J., Set-
tele, J., and Smith, P.: Actions to halt biodiversity loss gener-
ally benefit the climate, Global Change Biology, 28, 28462874,
https://doi.org/10.1111/gcb.16109, 2022.

Sitch, S., Smith, B., Prentice, 1. C., Arneth, A., Bondeau, A.,
Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T.,
Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynam-
ics, plant geography and terrestrial carbon cycling in the LPJ dy-
namic global vegetation model, Global Change Biology, 9, 161—
185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.

Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of
vegetation dynamics in the modelling of terrestrial ecosystems:
comparing two contrasting approaches within European cli-
mate space, Global Ecology and Biogeography, 10, 621-637,
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.

Smith, B., Warlind, D., Arneth, A., Hickler, T., Leadley, P., Silt-
berg, J., and Zaehle, S.: Implications of incorporating N cy-
cling and N limitations on primary production in an individual-
based dynamic vegetation model, Biogeosciences, 11, 2027—
2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.

Smith, P., Arneth, A., Barnes, D. K. A., Ichii, K., Marquet, P. A.,
Popp, A., Portner, H.-O., Rogers, A. D., Scholes, R. J., Strass-
burg, B., Wu, J., and Ngo, H.: How do we best synergize climate
mitigation actions to co-benefit biodiversity?, Global Change Bi-
ology, 28, 2555-2577, https://doi.org/10.1111/gcb.16056, 2022.

Zenodo,

Geosci. Model Dev., 18, 9101-9118, 2025

D. Otryakhin et al.: Comparison of LPJ-GUESS simulations with low- and high-resolution climate

Serland, S. L., Brogli, R., Pothapakula, P. K., Russo, E., Van de
Walle, J., Ahrens, B., Anders, 1., Bucchignani, E., Davin, E.
L., Demory, M.-E., Dosio, A., Feldmann, H., Friih, B., Geyer,
B., Keuler, K., Lee, D., Li, D., van Lipzig, N. P. M., Min, S.-
K., Panitz, H.-J., Rockel, B., Schir, C., Steger, C., and Thiery,
W.: COSMO-CLM regional climate simulations in the Coordi-
nated Regional Climate Downscaling Experiment (CORDEX)
framework: a review, Geosci. Model Dev., 14, 5125-5154,
https://doi.org/10.5194/gmd-14-5125-2021, 2021.

Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson,
R. B., Armneth, A., Chang, J., Chen, G., Ciais, P., Gerber, S.,
Ito, A., Huang, Y., Joos, F, Lienert, S., Messina, P., Olin, S.,
Pan, S., Peng, C., Saikawa, E., Thompson, R. L., Vuichard,
N., Winiwarter, W., Zaehle, S., Zhang, B., Zhang, K., and
Zhu, Q.: The Global N20 Model Intercomparison Project, Bul-
letin of the American Meteorological Society, 99, 1231-1251,
https://doi.org/10.1175/BAMS-D-17-0212.1, 2018.

Welch, B. L.: The Generalization of “Student’s” Problem
When Several Different Population Variances Are Involved,
Biometrika, 34, 28-35, https://doi.org/10.1093/biomet/34.1-
2.28, 1947.

Zender, C. S.: Analysis of self-describing gridded geo-
science data with netCDF Operators (NCO), Envi-
ronmental Modelling &  Software, 23, 1338-1342,
https://doi.org/10.1016/j.envsoft.2008.03.004, 2008.

Zobler, L.: A world soil file grobal climate modeling, NASA Tech-
nical Memorandum, 32, 1986.

Zscheischler, J., Fischer, E. M., and Lange, S.: The effect of
univariate bias adjustment on multivariate hazard estimates,
Earth Syst. Dynam., 10, 31-43, https://doi.org/10.5194/esd-10-
31-2019, 2019.

https://doi.org/10.5194/gmd-18-9101-2025


https://doi.org/10.5281/zenodo.10020800
https://doi.org/10.1029/2018GL077528
https://doi.org/10.1111/gcb.16109
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.1111/gcb.16056
https://doi.org/10.5194/gmd-14-5125-2021
https://doi.org/10.1175/BAMS-D-17-0212.1
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1016/j.envsoft.2008.03.004
https://doi.org/10.5194/esd-10-31-2019
https://doi.org/10.5194/esd-10-31-2019

	Abstract
	Introduction
	Methods
	Downscaling with CHELSA
	Temperature
	Precipitation
	Surface downwelling shortwave radiation (RSDS)

	Bootstrap hypothesis test
	LPJ-GUESS
	Model description
	Model modification


	Climate data downscaling
	Ensemble runs in Alps
	Setup
	Results and analysis

	Comparison of Europe-wide simulations
	Setup
	Analysis and results

	Discussion
	Summary
	Appendix A: Bias decomposition
	Appendix A1: Regionally aggregated quantities
	Appendix A2: Regionally averaged quantities

	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

