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Abstract. The Multi-Angle Imager for Aerosols (MAIA)
satellite mission, to be jointly implemented by NASA and
the Italian Space Agency, aims to study how different types
of particulate matter (PM) pollution affect human health.
The investigation will primarily focus on a discrete set of
globally distributed Primary Target Areas (PTAs) containing
major metropolitan cities, and will integrate satellite obser-
vations, ground observations, and chemical transport model
(CTM) outputs (meteorology variables and PM concentra-
tions) to generate maps of near-surface total and speciated
PM within the PTAs. In addition, the MAIA investigation
will provide satellite measurements of aerosols over a set of
Secondary Target Areas (STAs), which are useful for study-
ing air quality more broadly. For the CTM, we have devel-
oped a Unified Inputs (of initial and boundary conditions) for
WRF-Chem (UI-WRF-Chem) modeling framework to sup-
port the MAIA satellite mission, building upon the standard
WRF-Chem model. The framework includes newly devel-
oped modules and major enhancements that aim to improve

model simulated meteorology variables, total and speciated
PM concentrations as well as AOD. These developments in-
clude: (1) application of NASA GEOS FP and MERRA-2
data to provide both meteorological and chemical initial and
boundary conditions for performing WRF-Chem simulations
at a fine spatial resolution for both forecast and reanalysis
modes; (2) application of GLDAS and NLDAS data to con-
strain surface soil properties such as soil moisture; (3) ap-
plication of recent available MODIS land data to improve
land surface properties such as land cover type; (4) develop-
ment of a new soil NO, emission scheme — the Berkeley Dal-
housie Iowa Soil NO Parameterization (BDISNP); (5) devel-
opment of a stand-alone emission preprocessor that ingests
both global and regional anthropogenic emission inventories
as well as fire emissions.

Here, we illustrate the model improvements enabled by
these developments over four target areas: Beijing in China,
CHN-Beijing (STA); Rome in Italy, ITA-Rome (PTA); Los
Angeles in the U.S., USA-LosAngeles (PTA), and Atlanta
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in the U.S., USA-Atlanta (PTA). UI-WRF-Chem is config-
ured as 2 nested domains using an outer domain (D1) and
inner domain (D2) with 12 and 4 km spatial resolution, re-
spectively. For each target area, we first run a suite of sim-
ulations to test the model sensitivity to different physics
schemes and then select the optimal combination based on
evaluation of model simulated meteorology with ground ob-
servations. For the inner domain (D2), we have chosen to
turn off the traditional Grell 3D ensemble (G3D) cumulus
scheme. We conducted a case study over USA-Atlanta for
June 2022 to demonstrate the impacts of the cumulus scheme
on precipitation and subsequent total and speciated PM; 5
concentrations. Our results show that keeping the G3D cu-
mulus scheme turned on results in higher precipitation and
lower total and speciated PMj 5 than the simulation with
the G3D cumulus scheme turned off. Compared with sur-
face observations of precipitation and PM> 5 concentration,
the simulation with the G3D scheme off shows better per-
formance. We focus on two dust intrusion events over CHN-
Beijing and ITA-Rome, which occurred in March 2018 and
June 2023, respectively. We carried out a suite of sensitiv-
ity simulations using UI-WRF-Chem by excluding chemi-
cal boundary conditions or including MERRA-2 chemical
boundary conditions. Our results show that using MERRA-2
data to provide chemical boundary conditions can help im-
prove model simulation of surface PM concentrations and
AOD. Some of the target areas have also experienced sig-
nificant changes in land cover and land use over the past
decade. Our case study over CHN-Beijing in July 2018 in-
vestigates the impacts of improved land surface properties
with recent available MODIS land data on capturing the ur-
ban heat island phenomenon. Model-simulated surface skin
temperature shows better agreement with MODIS observed
land surface temperature. The updated soil NO, emission
scheme in July 2018 also leads to higher NO, vertical col-
umn density (VCD) in rural areas within the CHN-Beijing
target area, which matches better with TROPOMI observed
NO;, VCD. This in turn affects the simulation of surface ni-
trate concentration. Lastly, we conducted a case study over
USA-LosAngeles to tune dust emissions. These examples il-
lustrate the fine-tuning work conducted over each target area
for the purpose of evaluating and improving model perfor-
mance.

1 Introduction

Ambient particulate matter (PM) pollution has been ranked
as the top environmental risk factor for premature deaths
(Forouzanfar et al., 2016). The integrated use of satellite and
chemical transport model (CTM) outputs have shed light on
the impacts of PM; 5 (PM with aerodynamic diameter less
than 2.5um) on public health in the past decade (Cohen
et al., 2017; Wang et al., 2021a). Satellite-retrieved aerosol
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data products such as aerosol optical depth (AOD) have
been widely used to estimate ground-level PMj 5 concentra-
tion over the past two decades (e.g., Shin et al., 2020; Van
Donkelaar et al., 2006; Wang and Christopher, 2003) due to
the wide spatial coverage achievable from spaceborne ob-
servations. Because of uncertainties in remote sensing re-
trievals and the complex AOD-PMj; s relationship (Wang
and Christopher, 2003), satellite-derived ground-level PM> 5
have been combined with ground observations of PMj s
and/or CTM simulated PM; s to form a hybrid method of
providing a new data source for epidemiological health stud-
ies (e.g., Van Donkelaar et al., 2010; Holloway et al., 2021;
Diao et al., 2019). This hybrid method has also been used
for estimating PM»> s component concentration and its ap-
plication in health-related studies (Philip et al., 2014; Li et
al., 2021; Hu et al., 2019; Wei et al., 2023). The association
between exposure to PM and mortality has been well estab-
lished. However, since ambient PM is a complex mixture of
particles that vary in size, shape and chemical composition,
there remains uncertainty in understanding the relative toxi-
city of different PM types to human health (Sangkham et al.,
2024; Weichenthal et al., 2024).

The Multi-Angle Imager for Aerosols (MAIA) satellite
mission to be jointly implemented by the National Aeronau-
tics and Space Administration (NASA) (Diner et al., 2018)
and the Italian Space Agency (ASI) has a key objective to
map PM composition and study the impacts of different types
of PM on human health (Liu and Diner, 2017). The MAIA
instrument builds upon the work of the Multi-angle Imag-
ing SpectroRadiometer (MISR) instrument onboard NASA’s
Terra spacecraft, which has been retrieving aerosol proper-
ties including aerosol type since February 2000 (Diner et
al., 1998; Kahn et al., 2005). MISR has also been one of
the commonly used satellite instruments for mapping global
PM concentration for studying air quality and public health
(Liu et al., 2009; Holloway et al., 2021; Meng et al., 2018).
The MAIA instrument contains a pointable 14-wavelength
pushroom camera, spanning the ultraviolet (UV), visible and
near-infrared (VNIR) and shortwave infrared (SWIR) re-
gions of the electromagnetic spectrum to measure the spec-
tral radiance of sunlight scattered by the Earth’s atmosphere
and surface. Three of the bands are polarimetric to further
help constrain aerosol particle properties. The MAIA investi-
gation will focus on a globally distributed set of primary tar-
get areas (PTAs) (https://maia.jpl.nasa.gov/mission/#target_
areas, last access: 7 November 2025) for PM health studies,
which include metropolitan cities. For each PTA, it will em-
ploy Geostatistical Regression Models (GRMs), to generate
maps of surface total PM> 5, PM| and speciated PM includ-
ing sulfate, nitrate, dust, organic carbon (OC) and elemental
carbon (EC). The GRMs use satellite retrieved aerosol pa-
rameters, CTM outputs (meteorological variables along with
total and speciated PM mass concentrations) and other an-
cillary information such as population density data as pre-
dictors. Surface observations of total and speciated PM are
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used to train the GRMs (i.e., determine the coefficients of
the model predictors) (Jin et al., 2024).

Our work here introduces the development of the Unified
Inputs (of initial and boundary conditions) for WRF-Chem
(UI-WRF-Chem) as the CTM for supporting the MAIA satel-
lite mission, based on the standard WRF-Chem model (Fast
et al., 2006; Grell et al., 2005). Since meteorological vari-
ables as well as total and speciated PM mass concentra-
tions from UI-WRF-Chem outputs are used in the GRMs
to derive the total and speciated PM maps, we have imple-
mented major updates in UI-WRF-Chem that aim to im-
prove model simulated meteorology variables or PM con-
centration through the integrated use of satellite and ground-
based observations. Because WRF-Chem is an online cou-
pled chemical transport model, the improvement of aerosol
concentration simulation could also enhance the simulation
of meteorology through the incorporation of aerosol radia-
tion feedback, especially in polluted regions such as Delhi,
India (Chutia et al., 2024).

The UI-WRF-Chem modeling framework builds upon the
standard WRF-Chem model with newly developed modules
and major enhancements that enable integration of NASA
Goddard Earth Observing System (GEOS) data for unified
meteorology and chemistry inputs, updates of land surface
properties with recent available Moderate Resolution Imag-
ing Spectroradiometer (MODIS) land data, and expanded
emission processing capabilities:

— First, we use the NASA GEOS products including both
GEOS Forward Processing (FP) and Modern-Era Retro-
spective analysis for Research and Application, version
2 (MERRA-2) data to provide both meteorological and
chemical initial and boundary conditions for performing
WRF-Chem simulation with a finer spatial resolution
in forecasting and reanalysis modes, which allows for
consistency between meteorology and chemistry. The
NASA GEOS system assimilates satellite observations
of aerosol products (Randles et al., 2017). Using these
assimilated data to provide chemical initial and bound-
ary conditions for WRF-Chem simulations over MAIA
target areas would be computationally efficient for cap-
turing long-range or regional transport without enlarg-
ing the model domain to include the emission sources.
A number of studies have demonstrated the influence of
chemical boundary conditions on regional air pollution
in the domain of interests, when running WRF-Chem
(e.g., Mo et al., 2021; Ukhov et al., 2020; Roozitalab et
al., 2021; Wang et al., 2004).

— Second, we employ data from the Global Land Data As-
similation System (GLDAS) (Rodell et al., 2004) or the
North American Land Data Assimilation System (NL-
DAS) (Mitchell et al., 2004) to constrain soil proper-
ties such as soil moisture in WRF-Chem. Soil properties
are critical for weather forecasts, biogenic emission esti-
mates and dust storm simulation (Han et al., 2021), and
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ultimately, air quality prediction (Thomas et al., 2019;
Jenkins and Diokhane, 2017; de Rosnay et al., 2014).
Both GLDAS and NLDAS provide optimized initial soil
conditions with a high spatial and temporal resolution
for numerical weather forecasting (Dillon et al., 2016;
Xia et al., 2014). Better estimates of soil properties also
enhance the simulation of soil NO, emissions, serv-
ing as an important part of the total global NO, bud-
get (Jaeglé et al., 2005), and subsequently improve the
simulation of nitrate aerosols.

— Third, we use recent available MODIS land data to up-
date static land surface properties such as land cover
type in WRF-Chem. Some of the default land surface
properties used in WRF-Chem are out of date. Using re-
cent available MODIS land data to update land surface
properties would help improve mesoscale model perfor-
mances (Li et al., 2014, 2017a; Aegerter et al., 2017,
Wang et al., 2023).

— Fourth, we develop the Berkeley Dalhousie Iowa Soil
NO Parameterization (BDISNP) scheme for simulat-
ing soil NO, (NO+NO;) emissions, building upon
the Berkeley Dalhousie Soil NO Parameterization (BD-
SNP) scheme (Hudman et al., 2012). Previous study
showed that the default soil NO, emissions in WRF-
Chem could be underestimated by a factor of 10 in some
regions (Oikawa et al., 2015). Since soil NO, emissions
play a critical role in the formation of ozone (O3) and
nitrate aerosols (Sha et al., 2021; Lin et al., 2021), their
accurate representation in the model is essential.

— Finally, we develop a stand-alone WRF-Chem Emission
Preprocessing System (WEPS) that ingests both global
and regional anthropogenic emission inventories as well
as fire emissions. Because anthropogenic and fire emis-
sions are important for aerosol simulations in the model,
building our own emission preprocessor allows us the
opportunities to optimize existing emission inventories
and add new ones, including those from top-down esti-
mates (Wang et al., 2020b, c).

In this paper, we present the developments of the UI-WRF-
Chem modeling framework and illustrate the resulting model
improvements. We focus on four target areas, three of which
are MAIA PTAs: Rome, Italy (ITA-Rome), Los Angeles,
California (USA-LosAngeles) and Atlanta, Georgia (USA-
Atlanta). We also include Beijing, China (CHN-Beijing),
which is MAIA secondary target areas (STAs). STAs are
regions that will be observed by the MAIA satellite instru-
ment but not necessarily processed to the same level as PTAs.
These four target areas together provide a good representa-
tion of the range of PM pollution levels from low (Los Ange-
les and Atlanta), to high (Beijing) with Rome in the middle.
Some of our previous studies have focused on other MAIA
PTAs using the UI-WRF-Chem modeling framework. Li et
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al. (2024) developed an inverse modeling method to improve
the diurnal profile of anthropogenic emissions in the Addis
Ababa, Ethiopia PTA, using surface-based PM observations
from both U.S. Embassy sites and PurpleAir sensors. Chutia
et al. (2024) investigated the impacts of aerosol-radiation in-
teraction on air quality in the Delhi, India PTA. Overall, cur-
rent work along with previous work can provide a good pic-
ture of the model performance for different applications. This
paper is organized as follows: Sect. 2 focuses on the descrip-
tion of the UI-WRF-Chem model development; Sect. 3 pro-
vides the model configuration used in the target areas; Sect. 4
analyzes the case studies for different target areas; and Sect. 5
presents conclusions and discussion.

2 UI-WRF-Chem development

In this section, we first provide a brief overview of the MAIA
PM products to illustrate the role of UI-WRF-Chem. We then
describe the development of the UI-WRF-Chem modeling
framework, emphasizing the major updates and key compo-
nents designed to address the needs of the MAIA satellite
mission.

2.1 Overview of MAIA PM products

The MAIA PM products to be generated in the PTAs in-
clude a Level 2 (L2) PM product and a Level 4 (L4) Gap-
Filled PM (GFPM) product. Both L2 and L4 PM products in-
clude 24 h averaged total and speciated PM mass concentra-
tion with a spatial resolution of 1 km within bounding boxes
measuring 360 km x 480 km (east-west x north-south) size.
The L2 PM data are only available for days correspond-
ing to MAIA satellite overpasses (typically 3—4 times per
week in the PTAs) at locations with valid MAIA aerosol
retrievals. The L4 PM data merge L2 satellite-derived PM
concentration with bias-corrected PM concentrations from
UI-WRF-Chem outputs and are therefore spatially (cover-
ing the whole target area) and temporally (daily) “complete”.
The L2 PM product is derived using GRMs which take the
satellite retrieved aerosol parameters, meteorological vari-
ables and total and speciated PM concentrations from UI-
WRF-Chem and other ancillary information such as pop-
ulation density data as predictors and surface observations
of total and speciated PM concentrations as target variables.
GRMs are trained for each PM type and each PTA. For the
launch-ready version of the GRMs, four meteorological vari-
ables from UI-WRF-Chem are used: 2 m air temperature, 10
m wind speed, surface relative humidity (RH) and planetary
boundary layer height (PBLH). To generate the L4 GFPM
product, separately trained GRMs are employed to generate
a bias-corrected, CTM-based PM product where the primary
predictor is the CTM-generated PM concentration, rather
than the satellite-retrieved aerosol optical depth. Other pre-
dictors and target variables are the same as those used in the
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generation of L2 PM product. For areas where both satellite-
derived L2 PM and CTM-based PM products are available,
these two products are then combined using weights derived
from a Bayesian Ensemble Averaging model to generate the
final L4 GFPM product. More detailed information can be
found in Jin et al. (2024).

Two versions of the MAIA L2 PM and L4 GFPM products
will be generated as part of the routine processing: the “fore-
cast” and the “reanalysis” version. For the forecast product
version, GEOS FP meteorology is used for model initial and
boundary conditions and GEOS FP fields of aerosols and
aerosol precursors will also be used to specify boundary con-
ditions of atmospheric composition. The reanalysis versions
replace GEOS FP variables with outputs from MERRA-2
data. Due to the ~ 6 month latency of speciated PM; 5 data
from surface monitors, the forecast versions will rely on pre-
viously available measurements. Generation of the reanaly-
sis products will nominally occur on an annual basis and will
benefit from more complete surface monitor datasets. More
detailed information about the PM products can be found
at https://maia.jpl.nasa.gov/resources/data-and-applications/
(last access: 7 November 2025).

2.2 Overview of UI-WRF-Chem modeling framework

To meet these needs, UI-WRF-Chem is designed to operate
in both forecasting (or near real time, NRT) and reanalysis
modes. We use the NASA GEOS model data: GEOS FP in
forecasting or NRT mode and MERRA-2 in reanalysis mode
to drive WRF-Chem simulations by providing self-consistent
and unified meteorological and chemical initial and boundary
conditions, referred to as the Unified Inputs (of initial and
boundary conditions) for meteorology and chemistry. Fig-
ure 1 presents the flowchart of the UI-WRF-Chem modeling
framework. Here, we provide a brief description of the Ul-
WREF-Chem framework, outline the components included in
the standard WRF-Chem model and highlight the major up-
dates we have introduced.

Compared with the standard WRF-Chem model, the UI-
WRF-Chem modeling framework incorporates new modules
and significant modifications to enable the seamless use of
NASA GEOS data, updates of land surface properties with
recent available MODIS land data and expanded emission
capabilities. First, we incorporate the GEOS2WRF mod-
ule from NASA’s Unified-Weather Research and Forecasting
model (NU-WRF) (Peters-Lidard et al., 2015), which func-
tions similarly to the standard ungrib process, by converting
GEOS FP or MERRA-2 data to an intermediate file format.
We also develop the LDAS2WRF module, adapted from the
GEOS2WRF module to convert the GLDAS or NLDAS data
into the same intermediate file format. The standard metgrid
process then converts these intermediate files into meteoro-
logical files in the NetCDF format (met_em.d*.nc), respec-
tively. These two NetCDF files are subsequently merged to
generate the final meteorological files for the real process.
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Figure 1. Flowchart of UI-WRF-Chem modeling framework. Pink parallelogram represent input datasets used, including meteorological,
land surface and emission data. Rounded rectangles represent different modules and processes within the UI-WRF-Chem framework. Blue
rounded rectangles denote standard WRF-Chem components without any changes, except for GEOS2WREF, which is from NASA’s NU-WRF
framework. Yellow round rectangles represent modified modules based on standard WRF-Chem components, except for LDAS2WREF, which
is adapted from GEOS2WREF. Orange rounded rectangles indicate new modules developed in this work. The input datasets and modules
enclosed within the dashed box corresponds to the WPS in the standard WRF-Chem model, where meteorological files (met_em.d*.nc) are
generated. The conv_geo process converts MODIS land data into binary files, for the geogrid process. Both GEOS2WRF and LDAS2WRF
convert input data in the NetCDF file format to an intermediate file format, equivalent to the ungrib process. GEOSBC is adapted from the
mozbc module, where GEOS FP and MERRA-2 data are used to update chemical initial and boundary conditions. The bio_emiss module
reads MEGAN emission input datasets (e.g., isoprene emission factor) and generates files (wrtbiochemi_d0*) for WRF-Chem to calculate
biogenic emissions. The add_fert module is used to add the BDISNP input datasets (e.g., fertilizer data) into the wrfbiochemi_d0* files for
the real process. WEPS processes both anthropogenic and fire emission datasets and converts them into WRF-Chem ready emission files
(*wrfchemi*). Dashed lines from real to bio_emiss and WEPS indicate that real needs to be executed once before running the full flow to

‘Anthropogenic
Iwildfire

generate wrfinput_dO* files, which provide domain information to these two modules.

Second, to integrate the MODIS land data into the static geo-
graphical datasets, we develop the conv_geo Python-based
module, where we convert the MODIS land data into the
standard binary file formats required by the geogrid process.
This enables updates of land surface properties with recent
available MODIS land data, not available in the standard
WRF-Chem model. We also develop the GEOSBC module,
by modifying the standard mozbc module to use GEOS FP
or MERRA-2 data for updating both chemical initial and
boundary conditions, which improves the consistency be-
tween meteorology and chemistry inputs. Additionally, we
modify WRF-Chem’s chemistry scheme to ensure compati-
bility between dust fields from GEOS FP or MERRA-2 and
the dust representation in the chemistry scheme itself (see
Sect. 2.7 for more information).

For emissions, we develop the BDISNP scheme for soil
NO, emissions by extending the workflow of the stan-
dard MEGAN-based biogenic VOC calculation. Same as the
MEGAN process, we first use the standard bio_emiss mod-
ule to read the MEGAN emission input datasets (e.g., iso-
prene emission factor) and then convert them into the wrf-
biochemi_dO* files for the real process. We then apply the
add_fert module that we have developed here to incorpo-
rate emission input datasets (e.g., fertilizer data), specific
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to the BDISNP scheme into wrfbiochemi_dO* files. Ad-
ditionally, we modify WRF-Chem codes to calculate soil
NO, emissions. We also develop the WEPS module to
process both anthropogenic and fire emissions, adopting
some functionalities from the widely used anthro_emiss and
EPA_ANTHRO_EMISS utilities in the WRF-Chem commu-
nity. This provides flexibility for incorporating additional
emission inventories into the WEPS. Lastly, we develop a
Python-based postprocessing module to calculate selected
WRF-Chem variables and compile hourly WRF-Chem out-
put files into daily files in the formats required by the GRMs.

2.3 Updates of meteorological and chemical initial and
boundary conditions as well as soil properties

Here, we have adopted the functionality of the NASA’s NU-
WREF to drive WRF-Chem by providing unified meteoro-
logical and chemical initial and boundary conditions using
GEOS FP and MERRA-2 data. Both GEOS FP and MERRA-
2 data are generated within the GEOS atmospheric and data
assimilation system (Rienecker et al., 2008), in which mete-
orological and aerosol observations are jointly assimilated.
GEOS FP uses the most recent GEOS system to produce
the real-time forecasting data while MERRA-2 uses a frozen

Geosci. Model Dev., 18, 9061-9099, 2025



9066

version of the GEOS system to conduct the long-term atmo-
spheric reanalysis since 1980. The GEOS native model is on
a cubed sphere grid with 72 hybrid-eta layers from surface to
0.01 hPa. Products are saved on a 0.5° x 0.625° latitude by
longitude grid for MERRA-2 and 0.25° x 0.3125° latitude
by longitude for GEOS FP (Gelaro et al., 2017).

MERRA-2 assimilates multiple streams of aerosol prod-
ucts including bias corrected AOD calculated from observed
radiances measured by the Advanced Very High Resolu-
tion Radiometer (AVHRR) over ocean prior to 2002 and by
MODIS on Terra and Aqua satellites over dark surfaces and
ocean since 2000 and 2002, respectively; also assimilated
are the MISR AOD over bright land surface and AOD mea-
surements from Aerosol Robotic Network (AERONET) be-
fore 2014 (Randles et al., 2017). In the NRT mode, GEOS
FP only assimilates AOD derived from MODIS Terra and
Aqua. The aerosol module used in the GEOS system is the
Goddard Chemistry, Aerosol, Radiation, and Transport (GO-
CART) model (Colarco et al., 2010; Chin et al., 2002). The
GOCART module simulates major aerosol species including
sulfate, BC, OC, dust (five bins with lower and upper radius
range as: 0.1-1, 1-1.8, 1.8-3, 3-6, 610 um), and sea salt
(five bins with lower and upper radius range as: 0.03-0.1,
0.1-0.5, 0.5-1.5, 1.5-5.0, 5.0-10 um). These aerosol prod-
ucts are available in both GEOS FP and MERRA-2 products.
Since 2017, nitrate aerosols have been added into the GEOS
system and GEOS FP products thus include nitrate aerosols.

Our work differs from the past work that uses the GEOS
FP or MERRA-2 data to drive WRF-Chem in several as-
pects. For example, Peters-Lidard et al. (2015) presented
the NU-WRF model that can be driven by GEOS FP and
MERRA-2, but its atmospheric chemistry process is simpli-
fied with the GOCART module (without prognostic simu-
lation of aerosol size distribution and nitrate for example)
and is designed to be an observation driven integrated mod-
eling system that represents aerosol, cloud, precipitation,
and land processes at satellite-resolved scales (~ 1-25 km).
Hence, its real-time application for atmospheric chemistry
and aerosol composition forecast is rather limited. Neverthe-
less, the NU-WRF’s concept and framework (GEOS2WREF,
Fig. 1) of using GEOS FP and MERRA-2 to drive WRF-
Chem are adopted by UI-WRF-Chem development here to
provide meteorological initial and boundary conditions for
WRF-Chem, using meteorological variables other than soil
properties.

Adopting of GEOS FP or MERRA-2 soil properties into
WREF-Chem needs special treatment. In the GEOS system,
the land surface model (LSM) is a catchment-based model
(Koster et al., 2000), which is fundamentally different from
the LSMs available in WRF-Chem. The commonly used
LSMs in WRF-Chem include the Noah scheme (Chen et
al., 1996; Chen and Dudhia, 2001), the Rapid Update Cy-
cle (RUC) (Smirnova et al., 2000), and the Community Land
Model (CLM) (Oleson et al., 2004), which are all column-
based models with different soil layers. To resolve this issue,
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Peters-Lidard et al. (2015) used the Land Information Sys-
tem (LIS) (Kumar et al., 2006) to process GEOS outputs and
provide initial conditions of soil properties such as soil tem-
perature and soil moisture for running WRF and NU-WRF
(Kumar et al., 2008). Since land surface process is slow and
usually requires years of LIS simulation to stabilize the soil
properties in the model, we have here developed a module
(LDAS2WRE, Fig. 1) to utilize soil data products from two
land data assimilation systems, GLDAS (Rodell et al., 2004)
and NLDAS (Mitchell et al., 2004), which use LIS to focus
on the analysis of soil properties in near real time. This way,
we reduce the computational cost and complexity of run-
ning LIS within the UI-WRF-Chem. The initial conditions
of soil properties can have an important impact on boundary
layer processes for days to weeks (the so-called memory ef-
fect). Hence, the special treatment of soil properties by using
observation-constrained GLDAS and NLDAS in UI-WRF-
Chem is warranted.

We have developed the capability to use GEOS FP and
MERRA-2 data to provide chemical initial and bound-
ary conditions in our UI-WRF-Chem modeling framework.
Since WRF-Chem is a regional chemical transport model,
time-varying chemical boundary conditions from global
chemical transport models are typically used to specify
concentrations of different chemical species at the domain
boundaries. This is especially important for long-lived chem-
ical species, such as O3, or capturing regional or long-range
transport events. The common practice is to use global model
outputs such as the Community Atmosphere Model with
Chemistry, CAM-Chem (Emmons et al., 2020) for reanal-
ysis or the Whole Atmosphere Community Climate Model
(WACCM) (Gettelman et al., 2019) for forecasts. Unlike
CAM-Chem or WACCM, which do not assimilate satel-
lite aerosol observations, GEOS FP and MERRA-2 incor-
porate satellite-based aerosol data assimilation, which pro-
vides observational constraints for the day-to-day variations
in aerosol concentrations over a given domain. To lever-
age this unique capability, we have modified the WRF-
Chem preprocessor tool — mozbc (https://www2.acom.ucar.
edu/wrf-chem/wrf-chem-tools-community, last access: 10
May 2022) to create the GEOSBC module (Fig. 1), enabling
direct ingestion of GEOS FP and MERRA-2 data for updat-
ing chemical initial and boundary conditions.

Lastly, we have developed a method to constrain the chem-
ical boundary condition for the allocation of dust concentra-
tion in the MERRA-2 data as a function of different dust size
bins. While assimilating satellite-derived aerosol optical pa-
rameters can improve the simulation of dust in MERRA-2
data, uncertainties remain in simulating the dust size distribu-
tion from emission sources and along the transport pathway
in the MERRA-2 data (Kramer et al., 2020). These uncertain-
ties are particularly evident during long-range dust transport
events, due to factors such as the deposition process and the
quality of satellite data being assimilated (Zhu et al., 2025).
To address this, we have developed a method to further con-
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strain the MERRA-2 simulated dust size distribution with
AERONET observation, which can be incorporated into the
chemical boundary conditions for simulating the impacts of
dust transport on the domain of interest. This method is appli-
cable in regions where AERONET sites with long-term data
are available. We compare the dust particle size distribution
(PSD) from MERRA-2 data with AERONET observations
to improve the allocation of dust concentration into differ-
ent size bins in the chemical boundary conditions. A detailed
description and application of this approach are provided in
Sect. 4.1 and 4.2.

2.4 Updates of land surface properties

We develop capabilities within UI-WRF-Chem to update
land surface properties using recent available satellite-based
land data products through the WRF Preprocessing System
(WPS). MODIS land products are applied here to update
four key land surface properties in the Noah LSM: land cover
type on an annual basis and green vegetation fraction (GVF),
leaf area index (LAI), and surface albedo on a monthly ba-
sis. These variables are among the key surface properties in
the land model that regulate the exchanges of energy, water,
and momentum (Molders, 2001). The major technical devel-
opment and its application to study the impacts of land use/-
cover changes on urban temperature in Eastern China during
2003-2019 were described in Wang et al. (2023). Below we
briefly describe the updates of each land surface property.

The standard WRF-Chem model provides different
sources of data for land surface properties. For land cover
type, one data source is from the U.S. Geological Survey
(USGS) map with 24 land cover types, which is derived from
the monthly AVHRR Normalized Difference Vegetation In-
dex (NDVI) observations from April 1992 to March 1993.
Another one is from the MODIS land cover data including
17 land cover types, based on the International Geosphere-
Biosphere Program (IGBP) scheme (Friedl et al., 2002) and
three classes of tundra (Justice et al., 2002). Historically,
MODIS land cover data inputs used in WRF-Chem have
been fixed to years such as 2001 or 2004, or to 2001-2010
climatology data (Broxton et al., 2014). For GVF, the default
data is derived from the AVHRR NDVI observations (1985—
1990). An alternative option is to use the MODIS Fraction of
Photosynthetically Active Radiation (FPAR) (early 2000s) to
substitute for GVF. For LAI and surface albedo, one option
is to calculate the values online using a look-up table, based
on each land cover type. Another option is to use the MODIS
LAI and albedo data directly (early 2000s).

Since these data sources are outdated, we have developed
the conv_geo Python-based module (Fig. 1) to update all four
land surface properties in UI-WRF-Chem via the WPS us-
ing recent available MODIS land data. This approach pro-
vides self-consistence among the key land surface properties
used in the land model as they come from the same satellite
observations and offers a flexible way to apply the data for
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WRF-Chem simulations across different spatial resolutions.
Specifically, the land cover type is updated with the MODIS
yearly land cover type product (MCD12Q1). GVF can be
updated by: (1) deriving from the MODIS monthly NDVI
product (MOD13A3) or (2) substituting with MODIS 8-day
FPAR product (MCD15A2H). LAI is updated directly from
MODIS 8-day LAI product (MCD15A2H). Surface albedo
can be updated using either the MCD43A3 daily albedo
product or the MODIS combined Terra and Aqua Bidirec-
tional Reflectance Distribution Function (BRDF) and Albedo
daily product (MCD43C3). For the MAIA project, MODIS
land data from 2018-2020 are used as static inputs to the
UI-WRF-Chem simulations, except for CHN-Beijing where
only 2018 data are applied.

2.5 Development of the BDISNP soil NO,, emission
scheme

The new BDISNP soil NO, emission scheme is also inte-
grated as part of the UI-WRF-Chem framework. The de-
tailed development of the scheme has been described in
Sha et al. (2021) and Wang et al. (2021c). Briefly, in the
standard WRF-Chem model, soil NO, emissions are calcu-
lated using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) (Guenther et al., 2006; Guenther
et al,, 2012), which is intended for estimating biogenic
emissions of volatile organic compounds (VOCs). In the
MEGAN model, emission factors are based on four global
plant function types (broadleaf trees, needleleaf trees, shrub-
s/bushes and herbs/crops/grasses). Previous work by Oikawa
et al. (2015) has suggested that soil NO, emissions calcu-
lated from the MEGAN model using WRF-Chem can be a
factor of 10 underestimated in the Imperial Valley, Califor-
nia, compared with ground observations. The BDSNP soil
NO, emission scheme, currently implemented in the global
3-D GEOS-Chem model (Hudman et al., 2012), was added
into the UI-WRF-Chem, as the BDISNP, with several of our
own updates.

As in BDSNP, the BDISNP includes a more physical rep-
resentation of the soil NO, emission process compared with
the MEGAN model. The BDISNP considers available nitro-
gen (N) in soils from biome specific emission factors, online
dry and wet deposition of N, and fertilizer and manure N. It
also includes the pulsing of soil NO, emission following soil
wetting by rain and the impacts of soil temperature and mois-
ture. Compared to BDSNP, we have made four major updates
in the BDISNP: (1) updating the land cover type data with the
recent available MODIS land cover type data to better reflect
the land cover change; (2) using the GLDAS soil temperature
data for calculating soil NO, emissions rather than using the
2 m air temperature as a proxy for soil temperature; (3) us-
ing the modeled GVF data to determine the distribution of
arid and non-arid regions to replace the static climate data
used in the BDSNP scheme. With these three updates, Sha et
al. (2021) has shown that the WRF-Chem simulation with the
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BDISNP scheme leads to a better agreement with TROPO-
spheric Monitoring Instrument (TROPOMI) retrieved NO;
columns over California for July 2018, compared with using
the default MEGAN scheme. The increased soil NO, emis-
sions with the BDISNP scheme result in a 34.7 % increase in
monthly mean NO; columns and 176.5 % increase in surface
NO, concentration, which causes an additional 23.0 % in-
crease in surface O3 concentration in California. The work
of Zhu et al. (2023) used derived soil NO, flux measure-
ments from a field campaign over the San Joaquin Valley in
California during June 2021 to evaluate three soil NO, emis-
sion schemes: the MEGAN in the California Air Resource
Board (CARB) emission inventory, the Biogenic Emission
Inventory System (BEIS) and the BDISNP developed here.
It was found that both MEGAN and BEIS inventories were
lower than the observation by more than one order of mag-
nitude, and the BDISNP was lower by a factor of 2.2. Even
though being underestimated, the BDISNP and the observa-
tion showed a similar spatial pattern and temperature depen-
dence.

The fourth update revises the default soil temperature re-
sponse function in the BDSNP scheme, as described in Wang
et al. (2021c). In the default scheme, the soil temperature re-
sponse follows an exponential function for soil temperature
between 0 and 30 °C and stays the same as 30 °C after the
soil temperature is above 30 °C. In the work of Oikawa et
al. (2015), which found high soil NO, emissions in high-
temperature agricultural soils, an observation-based soil tem-
perature response function was developed. This function is
used here to update the default soil temperature response
function. Specifically, for soil temperature in the range of 20
and 40 °C, it is a cubic function of soil temperature. When
soil temperature is greater than 40 °C, the value of the re-
sponse function is set the same as the value of soil temper-
ature at 40 °C. In addition, final soil NO, emissions are re-
duced by 50 % following the work of Silvern et al. (2019) and
Vinken et al. (2014). With this update, Wang et al. (2021c)
showed that the GEOS-Chem simulated tropospheric NO;
vertical column density (VCD) agrees better with Ozone
Monitoring Instrument (OMI) observed NO, VCD for 2005-
2019 summer in the U.S., compared with the GEOS-Chem
simulation that uses the default soil temperature function.
This model improvement further helps explain the slowdown
of tropospheric NO, VCD reduction during 2009-2019 ob-
served by OMI in the U.S.

2.6 Development of WRF-Chem Emission
Preprocessing System (WEPS)

The WEPS Fortran utility is developed to map both
global and regional anthropogenic emissions as well as
fire emissions for running UI-WRF-Chem simulations.
WEPS builds upon a few tools used in the WRF-
Chem community (https://www?2.acom.ucar.edu/wrf-chem/
wrf-chem-tools-community, last access: 10 May 2022).
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For example, the anthro-emiss utility creates WRF-Chem
ready emission files from global anthropogenic emission
inventory datasets. There is also another Fortran program
(emission_v3.F) to process the U.S. EPA National Emis-
sions Inventory (NEI) 2005 and 2011. Recently, a new tool
EPA_ANTHRO_EMIS has been developed to create WRF-
Chem ready anthropogenic emission files from Sparse Ma-
trix Operator Kernel Emissions (SMOKE) Modeling System
netcdf outputs for NEI 2014 and 2017. We have adopted
some of the functionalities in these tools into the WEPS.
Currently in WEPS, we can ingest the following global an-
thropogenic emission inventories: (1) HTAP_v2.2 (Janssens-
Maenhout et al., 2015) and HTAP_v3 (Crippa et al., 2023),
created under the umbrella of the Task Force on Hemi-
spheric Transport of Air Pollution (TF HTAP), which
is the compilation of different emission inventories over
specific regions (North America, Europe, Asia including
Japan and South Korea) with the independent Emissions
Database for Global Atmospheric Research (EDGAR) in-
ventory filling in for the rest of the world; (2) EDGARVS5.0
for year 2015 (Crippa et al., 2020). The HTAP_v3 in-
cludes regional emission inventories from U.S. EPA NEI,
CAMS-REGVS5.1 for Europe, the Regional Emission in-
ventory in Asia (REASv3.2.1), the Clean Air Policy Sup-
port System (CAPSS-KU) inventory over South Korea,
the JAPAN emission inventory (PM2.5EI and J-STREAM)
in Japan and EDGARV6.1 (https://data.jrc.ec.europa.eu/
dataset/df521e05-6a3b-461c-965a-b703fb62313e, last ac-
cess: 1 December 2023) for the rest of the world. It con-
sists of 0.1° x 0.1° grid maps of species: CO, SO,, NO,,
non-methane volatile organic compound (NMVOC), NHj3,
PMjg, PM» 5, BC and OC for year 2000-2018 (Crippa et
al., 2023). Four sectors are included for these species: en-
ergy (mainly power industry), industry (manufacturing, min-
ing, metal, cement, etc.), transport (ground transport such as
road) and residential (heating/cooling of buildings etc.). For
NH3, an additional sector — agriculture is also included. The
datasets have a monthly temporal resolution, and we have
interpolated them to daily data. In addition, we have added
sector-based diurnal profiles, following the work of Du et
al. (2020). For UI-WRF-Chem simulation over the U.S. do-
main or China domain, we have added the capability to use
U.S. EPA NEI 2017 or the Multi-resolution Emission Inven-
tory model for Climate and air pollution research (MEIC)
(Zheng et al., 2018; Li et al., 2017b) emission inventory to re-
place the global emission inventory HTAP_v3, respectively.
For fire emissions, the WEPS can process several emission
inventories as described in Zhang et al. (2014). They include:
Fire Locating and Modeling of Burning Emissions inventory
(FLAMBE) (Reid et al., 2009); Fire INventory from NCAR
version 1.0 (FINN v1.01) (Wiedinmyer et al., 2011); Global
Fire Emission Database version 3.1 (GFED v3.1) (van der
Werf et al., 2010); Fire Energetics and Emissions Research
version 1.0 using fire radiative power (FRP) measurements
from the geostationary Meteosat Spinning Enhanced Visi-
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ble and Infrared Imager (FEER-SEVIRI v1.0) (Roberts and
Wooster, 2008; Ichoku and Ellison, 2014); Global Fire As-
similation System (GFAS v1.0) (Kaiser et al., 2012); NES-
DIS Global Biomass Burning Emissions Product (GBBEP-
Geo) (Zhang et al., 2012); Quick Fire Emissions Dataset ver-
sion 2.4 (QFED v2.4) (Darmenov and Da Silva, 2015). Our
recent work involves developing a Visible Infrared Imaging
Radiometer Suite (VIIRS) based fire emission inventory, Flre
Light Detection Algorithm (FILDA-2) (Zhou et al., 2023).
Our past work has mainly focused on OC and BC emissions
from the FLAMBE emission inventory (e.g., Ge et al., 2014;
Zhang et al., 2022, 2020). We have now included gas species
such as CO from FLAMBE emission inventory. The injection
height by default is set to range from 500 to 1200 m, based
on our previous work (e.g., Yang et al., 2013; Wang et al.,
2013; Ge et al., 2017) and users have the option to specify
the injection height on their own.

2.7 Updates of WRF-Chem chemistry scheme

The MAIA investigation not only focuses on the total PM; 5
and PMo mass but the speciated PM, 5 including sulfate, ni-
trate, BC or EC, OC and dust. We have therefore selected the
Regional Acid Deposition Model, Version 2 (RADM2) for
gas-phase chemistry (Stockwell et al., 1990) and the Modal
Aerosol Dynamics model for Europe (MADE) (Ackermann
et al., 1998) and the Secondary ORGanic Aerosol Model
(SORGAM) (Schell et al., 2001) as the aerosol module for
MAIA model simulations, using WRF-Chem Version 3.8.1.
The RADM2-MADE/SORGAM chemistry mechanism in
WRF-Chem simulates the above-mentioned aerosol species
and has been widely used to study air quality (e.g., Geor-
giou et al., 2018; Zhang et al., 2020; Tuccella et al., 2012).
The MADE/SORGAM aerosol module also includes ammo-
nium, sea salt and water. The aerosol size distribution is rep-
resented by the modal approach (Binkowski and Shankar,
1995), which uses three modes (the Aitken, accumulation
and coarse mode). A log-normal size distribution and internal
mixing of aerosol species are assumed in each mode.

In the MADE/SORGAM aerosol scheme, dust is not ex-
plicitly simulated but rather blended into other species. For
smaller size bins of dust, they are represented by the unspec-
ified PM» 5 chemical species, which have Aitken and accu-
mulation modes. For larger size bins of dust, they are counted
as the “soila”, which are used for coarse soil-derived aerosol
species. To output the dust proportion of the surface PM s
mass concentration as required by the MAIA project, we add
dust species in five size bins (same as the GOCART dust bins
in MERRA-2) into the MADE/SORGAM aerosol scheme.
This way, when using GEOS FP or MERRA-2 to provide
chemical initial and boundary conditions, dust species from
the boundary file can also be consistent with the dust species
in the aerosol scheme. WRF-Chem currently provides three
dust emission schemes: the original GOCART dust emis-
sion scheme (Ginoux et al., 2001), GOCART dust emission
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with the Air Force Weather Agency (AFWA) modifications
(LeGrand et al., 2019), and the University of Cologne (UOC)
scheme (Shao et al., 2011). Both GOCART and GOCART-
AFWA emission schemes release dust in five size bins with
lower and upper radius range of 0.1-1, 1-1.8, 1.8-3, 3-6,
6—10 um, same as the dust size bin used in the MERRA-2
system. The UOC dust emission scheme considers dust in
four size bins with lower and upper radius range of 0—1.25,
1.25-2.5, 2.5-5, and 5-10 um. Here, we have selected the
GOCART-AFWA emission scheme in the UI-WRF-Chem
framework, which matches the dust size bins in the GEOS
FP and MERRA-2 aerosol scheme.

Subsequently, a new chemistry scheme
(MADE/SORGAM-DustSS) is created in UI-WRF-Chem
to include the dust in five size bins and sea salt aerosols as
additional chemical tracers while all other gas and aerosol
species are the same as in the MADE/SORGAM scheme.
The standard WRF-Chem model currently supports the
GOCART sea salt emission scheme, which releases sea salt
aerosol species in four bins. The lower and upper radius
range of sea salt aerosols species are: 0.1-0.5, 0.5-1.5,
1.5-5.0, 5.0-10 um. We have then added sea salt aerosols in
these four bins into the MADE/SORGAM-DustSS scheme
in the UI-WRF-Chem framework. The GOCART sea salt
aerosols in MERRA-2 data have five bins with lower and
upper radius range as: 0.03-0.1, 0.1-0.5, 0.5-1.5, 1.5-5.0,
5.0-10 um. This way, the GOCART sea salt aerosols in
the aerosol scheme would also match the aerosols in the
chemical boundary file provided by MERRA-2 data. In
the newly added scheme of MADE/SORGAM-DustSS,
we have followed the simple GOCART aerosol scheme in
the standard WRF-Chem model to add different transport
processes for dust and sea salt aerosol species such as dry
deposition. We have also added a simple wet scavenging
scheme for dust and sea salt aerosols, which is described
more in Sect. 4.2.

Aerosol optical properties such as extinction and single
scattering albedo are calculated based on a sectional ap-
proach (Barnard et al., 2010) with 8 bins in WRF-Chem, re-
gardless of the aerosol scheme selected. For aerosol species
in the MADE/SORGAM-DustSS aerosol scheme, the mass
and number concentrations of each aerosol species in the
three modes will be matched to the 8 bins. For dust and sea
salt aerosol species, the dust and sea salt aerosols in their
original 5 and 4 bins, are matched to the 8 bins. In each bin,
the particles are assumed to be internally mixed and spher-
ical. The bulk properties such as refractive index for each
bin is based on volume approximation. Then, Mie theory is
called to calculate the optical properties such as the absorp-
tion efficiency and asymmetry parameter for each bin. The
optical properties are computed and outputted at four wave-
lengths (300, 400, 600 and 1000 nm). In addition, the work
of Ukhov et al. (2021) has found a few inconsistencies in
WRF-Chem related to dust emissions coupled with the GO-
CART aerosol module, which also impacts other aerosols
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schemes such as the MADE/SORGAM module. These in-
consistencies were found in the calculation of surface PM» 5
and PMo concentration, calculation of aerosol optical prop-
erties and estimation of gravitational settling. We have in-
corporated the corrections of these inconsistencies made by
Ukhov et al. (2021) in our UI-WRF-Chem framework.

2.8 Postprocessing and evaluation codes, and
repository management

Python-based modules are developed in house to postpro-
cess UI-WRF-Chem hourly outputs as part of the UI-WRF-
Chem framework. They include diagnostics of some com-
monly used variables which are not directly outputted such
as relative humidity (RH) and the capability to extract and
compile hourly model output into daily output to facilitate
file management. We have also created Python modules to
evaluate UI-WRF-Chem model performance against ground-
based and satellite observations, e.g., comparing model sim-
ulated column concentration of trace gases NO; with satel-
lite observed column concentration of NO5,. In addition, bash
scripts are developed to automatically run UI-WRF-Chem
framework for both forecasting and reanalysis modes. It
needs minimal work to specify the paths of the codes and
data on the servers before running the UI-WRF-Chem model.
The UI-WRF-Chem framework uses the GitHub, a git-based
version control system to manage its codes and develop-
ments. The repository stores the main codes of UI-WRF-
Chem. When major developments from our group and col-
laborators are made and validated, a new version will be re-
leased. The WRF-Chem community updates the WRF-Chem
code and releases new versions periodically and we also
check the major bug fixes and developments to incorporate
them in our codes accordingly.

3 Evaluation statistics and model configuration
3.1 Evaluation statistics

Several statistics are used to evaluate the model performance
against ground and satellite observations, including linear
correlation coefficient (R), root mean square error (RMSE),
mean bias (MB), normalized mean bias (NMB), mean ab-
solute error (MAE), normalized standard deviation (NSD)
and normalized centered root mean square error NCRMSE).
NSD is the ratio of the standard deviation of the model simu-
lation to the standard deviation of the observation. NCRMSE
is like RMSE except that the impact of the bias is removed.
Some of these statistics are summarized in a Taylor Diagram
(Taylor, 2001), which includes R (shown as the cosine of
the polar angle), NSD (shown as the radius from the quad-
rant center), and NCRMSE (shown as the radius from the
expected point, which is located at the point where R and
NSD are unity).

Geosci. Model Dev., 18, 9061-9099, 2025

H. Zhang et al.: Development of UI-WRF-Chem (v1.0)

To determine whether the performances among model sen-
sitivity simulations for different case studies over different
target areas are statistically significant, we conduct the paired
t-test on collocated model-observation samples or between
model simulations. We focus on the MAE as the evalua-
tion metric. For comparison of hourly data, we account for
the temporal autocorrelation by estimating the lag-1 autocor-
relation and applying the effective sample size adjustment
(Wilks, 2011). For cases with smaller sample size, we also
apply the non-parametric Wilcoxon signed rank test (e.g.,
Menut et al., 2019; Tao et al., 2025) to ensure the robust-
ness of our test. In addition, when multiple model sensitiv-
ity simulations are evaluated, we apply a Bonferroni correc-
tion procedure (SIMES, 1986) to both paired-# and Wilcoxon
tests, following previous work (Crippa et al., 2017). Under
this approach, the null hypothesis is rejected if p < -, where
p is the raw p value, « is the significance level (0.05 in
this study) and m is the number of hypothesis tests. For test-
ing the significance over spatial maps, where a large number
of tests are performed simultaneously, we instead apply the
Benjamini-Hochberg false discovery rate (FDR) correction
(Benjamini and Hochberg, 1995). We hence report adjusted
p-value throughout this work unless noted otherwise.

3.2 Model configuration

All the UI-WRF-Chem model simulations for MAIA tar-
get areas are set up as 2 nested domains (Fig. 2) with
a 4km x 4km horizontal spatial resolution for the inner
domain (D2) focusing on the MAIA target area and a
12 km x 12 km horizontal spatial resolution for a larger outer
domain (D1). The inner and outer domain have nominal
dimension of ~360km (east-west) x 480km (north-south)
and ~ 1080 km (east-west) x 1000 km (north-south), respec-
tively. Both domains have 48 vertical levels extending from
the surface to 50 hPa. For the inner domain (D2), we have
turned off the cumulus scheme to let the model fully resolve
the convective process while all other model configurations
are kept the same for both domains. A summary of model
configurations regarding different schemes used for the four
targets areas is provided in Table 1. For each target area, we
first run a suite of sensitivity simulations to test the model
sensitivity to different physics schemes by evaluating model
simulated meteorology variables with ground observations
and then select the optimal combination of physics schemes
based on evaluation results. A description of the satellite and
ground observation datasets used are provided in Sect. S1 in
the Supplement.

There are many physics schemes that can be used in WRF-
Chem. We select the commonly used schemes for each target
area based on literature review and our previous work (e.g.,
Yang et al., 2013; Sha et al., 2021; Zhang et al., 2022). We
also consider a few other factors as described below. For the
cumulus scheme, we consider the Grell 3D ensemble (G3D,
Grell and Dévényi, 2002) scheme, which also accounts for
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Table 1. A summary of model physics, chemistry and emissions configurations for CHN-Beijing, ITA-Rome, USA-LosAngeles, and USA-

Atlanta target areas.

Category Model component CHN-Beijing ITA-Rome USA-Los USA-Atlanta
Angeles

Physics ~ Microphysics Lin Morrison Lin Lin
Cumulus G3D G3D G3D G3D
Longwave radiation RRTMG RRTMG RRTMG RRTMG
Shortwave radiation RRTMG RRTMG RRTMG RRTMG
Planetary boundary layer YSU YSU YSU YSU
Surface layer Revised MM5
Land surface model Noah Noah Noah Noah

Chemistry Gas-phase RADM2 RADM2 RADM2 RADM2
Aerosols MADE/SORGAM-DustSS
Photolysis Madronich F-TUV

Emissions Anthropogenic emissions MEIC 2016 HTAP v3 (2018) NEI 2017 NEI 2017
Dust emissions GOCART with AFWA modifications
Biogenic emissions of VOCs MEGAN MEGAN MEGAN MEGAN
Soil NO, emissions BDISNP BDISNP BDISNP BDISNP
Wildfire emissions FLAMBE FLAMBE FLAMBE FLAMBE

cloud radiation feedback. For model spatial grids greater than
10km, they usually rely on the cumulus parameterization to
determine the subgrid convective processes. For model spa-
tial grids smaller than 10 km, it is generally considered as the
convective gray zone, where the use of convective param-
eterization or explicit resolving treatment of the convective
process remains to be an ongoing question (Jeworrek et al.,
2019). Typically, for model spatial grids larger than 5km,
convective parameterization has been used in regional model
studies (e.g., Zhang and McFarlane, 1995; Clark et al., 2009;
Dudhia, 2014). For model spatial grids smaller than 5km,
generally considered convection-permitting scale, numerous
regional model studies have suggested to turn off the cumu-
lus scheme (e.g., Prein et al., 2015; Wang et al., 2021b; Weis-
man et al., 1997; Weisman et al., 2008; Done et al., 2004;
Gao et al., 2017), especially if the cumulus scheme is not
scale-aware (Wagner et al., 2018). Therefore, we have cho-
sen to turn off the cumulus scheme here for the inner domain
(D2) with the 4 km spatial resolution.

With the current version (WRF-Chem v3.8.1) of the code,
chemical species are transported using the G3D scheme,
regardless of which cumulus scheme is used, while other
scalars are transported with the selected cumulus scheme.
Therefore, the G3D scheme is used to ensure the consistency
between chemistry and physics. Additionally, WRF-Chem
v3.8.1 was selected as the base version at the beginning of
this project due to its stability. We have maintained this ver-
sion over the course of the project to ensure the consistency
and reproducibility of the results. Although there are several
scale-aware cumulus schemes available in WRF-Chem such
as the Kain-Fritsch scheme (KF, Kain, 2004) and the Grell-
Freitas scheme (GF, Grell and Freitas, 2014), only the GF
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scheme has been updated to ensure the consistent transport
of both chemical species and other scalars, as described by
Li et al. (2018, 2019). We acknowledge the limitation of us-
ing only the G3D scheme in this work and plan to update the
UI-WRF-Chem modeling framework to a newer version to
enable the use of the GF scheme and incorporate other re-
cent improvements as well.

For the microphysics scheme, an inexpensive scheme is
typically sufficient for model spatial grids greater than 10 km
but a more complex scheme that accounts for the predic-
tion of the mixed phases (6-class schemes, including grau-
pel) and number concentrations (double-moment schemes)
is required (Han et al., 2019). Therefore, we consider these
three schemes in the current work: the Lin scheme (Lin et
al., 1983; Chen and Sun, 2002), the WRF Single-Moment 6-
Class Microphysics Scheme (WSM6) (Hong and Lim, 2006)
and the Morrison scheme (Morrison et al., 2009). The for-
mer two is a single-moment 6 class scheme and the latter one
is a double-moment scheme, which also predicts the number
concentration of the hydrometer besides the total amount. All
the three schemes include the simulations of graupel which
is shown to help with the simulation of convection for higher
resolution simulation (Brisson et al., 2015). At convective-
permitting scales, the graupel size representation could play
a more important role in the precipitation prediction than
the number of moments (single vs. double) in certain cases
(Adams-Selin et al., 2013).

For the shortwave radiation scheme, we only consider
the two-stream multiband Goddard scheme (Chou et al.,
1998) and the Rapid Radiative Transfer Model for GCMs
(RRTMG) (Iacono et al., 2008), which both include the di-
rect aerosol radiation feedback. For the longwave radiation,
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Figure 2. Terrain height for (a) CHN-Beijing, (b) ITA-Rome, (c) USA.
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-LosAngeles and (d) USA-Atlanta target areas of the 2 nested domains:

the outer domain (D1) and the inner domain (D2) shown as the white box. For (a), the orange filled triangles represent the ground observation
sites of PMj 5 and PM |y mass concentration. Both open magenta squares and stars represent the AERONET ground observation sites. The
sites denoted by the stars are used to constrain the dust particle size distribution as described in Sect. 4.1, while the sites denoted by squares
are used to evaluate model simulated AOD. (b) is same as (a), except that the orange open circles represent ground observations of PMy
mass concentration, and orange filled triangles are the ground observations sites of PMj 5 mass concentration. (c) is the same as (b) except
that the orange box is defined as the dust-prone region, which is used to tune dust emissions. For (d), orange filled triangles represent the

ground observation sites of PMj 5 mass concentration.

we select the RRTMG and the Rapid Radiative Transfer
Model (RRTM) schemes (Mlawer et al., 1997). RRTMG
for both shortwave and longwave radiation schemes are rec-
ommended to pair together in the model by the develop-
ing team of WRF-Chem. For the planetary boundary layer
(PBL) scheme and the corresponding surface layer scheme,
we consider the nonlocal boundary layer scheme — the Yon-
sei University scheme (YSU, (Hong et al., 2006)) with the
revised fifth-generation Pennsylvania State University — Na-
tional Center for Atmospheric Research Mesoscale Model
(MM5) (Grell et al., 1994; Jiménez et al., 2012) surface layer
scheme. We also consider two commonly used local bound-
ary layer schemes: Mellor-Yamada-Janjic (MYJ, (Janjic,
2001)) with the ETA similarity surface layer scheme; Mellor-
Yamada-Nakanishi-Niino level 2.5 (MYNNZ2.5, (Nakanishi
and Niino, 2004)) with the MYNN surface layer scheme.
When using the YSU scheme, we also turn on the surface
drag parameterization (Jiménez and Dudhia, 2012) to im-
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prove topographic effects on surface winds over a complex
terrain. The land surface model is the Noah land model (Chen
and Dudhia, 2001), which incorporates our updates of the
land surface properties as described in Sect. 2.4. Addition-
ally, for a specific target area, other physics schemes not
mentioned here but commonly used in that area will also be
tested.

Details regarding the selection and evaluation results of
the physics scheme for the four target areas are available in
Sect. S2. Here, we provide a summary of the evaluation re-
sults. Sensitivity simulations performed for each target area
are listed in Table S1 and we focus on testing the follow-
ing schemes: microphysics, shortwave and longwave radia-
tion and PBL. We evaluate four UI-WRF-Chem simulated
meteorology variables with surface observations: air temper-
ature at 2 m (t2), dew temperature at 2 m (dewt2) or relative
humidity (RH), wind speed at 10 m (wspd10) and sea level
pressure (pres). Results of the hourly or 3-hourly evaluation

https://doi.org/10.5194/gmd-18-9061-2025
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Figure 3. Taylor Diagrams for evaluating UI-WRF-Chem model simulated (a) meteorological variables (t2, dewt2 or RH, wspd10 and pres)
with ground observations for CHN-Beijing, ITA-Rome, USA-LosAngeles and USA-Atlanta target areas, and (b) surface skin temperature
(TSK) with MODIS observed land surface temperature (LST) for CHN-Beijing during July 2018. In (a), evaluation results of daily meteorol-
ogy variables are based on the model final configuration for each target area (Table 1). Color bar represents the ratio between model results
and ground observations. In (b), USGS and updated refer to the UI-WRF-Chem sensitivity simulations 2N_def (default USGS land cover
type and subsequently derived GVF, LAI and albedo) and 2N_upd (updated land cover type, GVF, LAI and albedo with MODIS land data)
in Table 2, respectively. UI-WRF-Chem simulated TSK averaged over the Terra and Aqua overpass time during daytime (TD and AD) and
nighttime (TN and AN), respectively are compared to the corresponding Terra and Aqua observations. Color bar represents the normalized

mean bias (NMB) between model results and satellite observations.

of the meteorology variables are summarized in Table S2 and
Fig. S1. Overall, all the sensitivity simulations of t2 and pres
for all the target areas show the highest correlation (> 0.8).
Dewt2 or RH also show good correlation (0.59-0.84) with
ITA-Rome showing the lowest correlation. The case study of
ITA-Rome is conducted over June 2023, where some regions
in Italy experienced rainfall events about one third of the
month. Uncertainties of UI-WRF-Chem capturing the rain-
fall events (discussed in Sect. 4.2) could result in the lower
correlation of RH. Comparatively, wspd10 shows lower cor-
relation (0.22-0.52) over USA-Atlanta. Across the target ar-
eas, we find that wspd10 is most sensitive to the PBL scheme
compared with other schemes tested, which is also found in
previous studies (e.g., Yu et al., 2022). It is found that no
single combination of the physics scheme will result in the
best performance for each meteorology variable evaluated.
The interaction of these different parameterized processes
mentioned above (e.g., convection, boundary layer mixing,
microphysics and radiation) are complex (Prein et al., 2015)
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and it is region, case and variable specific. Therefore, model
performance can vary from region to region or case to case.
Based on the evaluation results, we select the optimal com-
bination of various physics schemes tested as the final con-
figuration for each target area (Tables S1 and 1). We summa-
rize the statistics of the evaluation of the daily meteorology
variables for the four target areas in Fig. 3a, for the final con-
figuration only. We find that UI-WRF-Chem simulated daily
t2, dewt2 and pres all show high correlation (> 0.7) and low
NMB (—10% to +10 %) across the target areas. For eval-
uation of daily wspdl10, correlation increases, and bias de-
creases compared with hourly evaluation. For USA-Atlanta,
the daily wspd10 still shows lower correlation (~ 0.25) com-
pared with other target areas. The sensitivity simulation over
USA-Atlanta is conducted over June 2022 and majority of
the wspd10 are under Sms~!. It can be challenging for the
model to capture this stable condition very well. Future work
could focus on trying nudging with ground observation to
improve the model performance over this area. We also rec-
ognize that our sensitivity tests are limited to one month for
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each target area. We are not able to test the performance for
different seasons. Nevertheless, it provides values for under-
standing the model sensitivity to different schemes at differ-
ent locations.

Biogenic emissions for VOCs are from the MEGAN
scheme and soil NO, emissions are from the BDISNP
scheme. Fire emissions are from the FLAMBE emission in-
ventory and dust emissions use the GOCART with AFWA
modification. Here, we use MEIC 2016 as the anthropogenic
emission for CHN-Beijing and NEI 2017 emission inven-
tory for USA-LosAngeles and USA-Atlanta. The HTAP_v3
2018 is used for ITA-Rome. The gas-phase chemistry is the
RADM?2, and the aerosol module is the newly added scheme
MADE/SORGAM-DustSS: the MADE/SORGAM scheme
with the addition of dust and sea salt aerosol species as de-
scribed in Sect. 2.7. Lastly, we use the Madronich Fast Tro-
pospheric UV and Visible Radiation Model (F-TUV) as the
photolysis scheme (Madronich, 1987; Tie et al., 2003).

4 Case studies for different target areas
4.1 Case study — CHN-Beijing

Beijing and its surrounding area in China, are affected by
both local and regional emissions as well as long-range trans-
port (Wu et al., 2021; Zhang et al., 2018). In recent decades,
the North China Plain including the Beijing area has experi-
enced severe PM pollution problems as a result of the rapid
economic growth and urbanization (Zhang et al., 2016). In
addition to the impacts of anthropogenic emission on surface
PM levels, strong dust storms from the Taklamakan Desert
and the Gobi Desert sometimes can be transported down-
wind to the Beijing area and affect local air quality in the
springtime. Here for the CHN-Beijing target area (Fig. 2a),
we first focus on a dust intrusion event during 24-31 March
2018, to study the impacts of chemical boundary conditions
on surface PM. Figure 4 shows the MODIS Aqua observed
AOD over part of China for the period of this event. The dust
storm can be seen on 26 March 2018, at both Taklamakan
and Gobi Deserts and by 28 March, strong dust clouds have
been transported to Beijing and its surrounding areas. Figure
S2 displays the movement of surface observations of daily
PM o mass concentration across China from 24 March to 31
March 2018. On 27 and 28 March 2018, high surface PMg
concentration were observed in Beijing, Tianjin and Hebei
province with hourly concentration exceeding 1000 ug m—3
(not shown here). Then, we focus on July 2018 to study the
impacts of updating land surface properties and soil NO,
emission scheme on model performances.

4.1.1 Sensitivity experiment design

For CHN-Beijing target area, we carry out a suite of sen-
sitivity simulations using the UI-WRF-Chem framework as
shown in Table 2 to investigate the impacts of chemical
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boundary conditions, updated land surface properties and soil
NO, emission scheme on model performance. First, three
simulations are conducted during March 2018 to study the
impacts of using MERRA-2 data to provide chemical bound-
ary conditions on model performance. Additionally, four
simulations are carried out for July 2018 to investigate the
impacts of updating land surface properties as well as surface
soil NO, emission scheme. The simulation with “2N_def”
uses the default USGS land cover type and subsequently de-
rived GVF, LAI and albedo, using a predefined look-up table.
The simulations with “2N_upd” uses the corresponding up-
dated land cover type, GVF, LAI and albedo, based on the
MODIS land data products for the simulation period, as de-
scribed in Sect. 2.4. The simulations with “2N_*_snox*” use
our newly developed BDISNP soil NO, emission scheme.

The impacts of chemical boundary conditions are evalu-
ated from several sensitivity experiments. In the simulation
“2N_upd_ snox-none”, no chemical species from MERRA-
2 data are transported into the domain. In the simulation
“2N_upd_ snox-dust”, dust and other aerosols including sul-
fate, BC and OC are considered in the chemical boundary
condition from MERRA-2 data. Furthermore, to constrain
the chemical boundary condition for the allocation of dust
concentration as a function of different size bins, we ana-
lyze the AERONET measured aerosol volume size distri-
bution (AVSD) data from 2000 to 2020. If the fine mode
fraction (FMF) of AOD at 500 nm is less than 0.3 (Lee et
al., 2017), it is considered as a dust event. Figure 5a shows
the averaged dust particle size distribution (PSD) over the
AERONET sites (Fig. 2a) between 2000-2020 from both
AERONET and MERRA-2 data for all the dust events that
occurred in CHN-Beijing. The ratio between the mean of the
AERONET PSD and MERRA-2 PSD for each of the five
dust size bins is then used as a constraint to scale the dust
concentration in each bin in the MERRA-2 chemical bound-
ary data. The sensitivity run “2N_upd_snox-dust PSD” in Ta-
ble 2 is based on this result.

Three UI-WRF-Chem sensitivity simulations in Table 2
are run from 18 to 31 March 2018, for evaluating the im-
pacts of using MERRA-2 data to provide chemical boundary
conditions. The simulation results with the first 6 d are used
as initialization. Model output from 24 to 31 March 2018,
are used for analysis, unless noted otherwise. The rest of the
four simulations are used for evaluating the impacts of updat-
ing land surface properties and soil NO, emission scheme on
model performance. They are carried out from 24 June to 31
July 2018, and model outputs from 1 to 31 July are used for
data analysis. We mainly use model output from the inner
domain (D2) for data analysis unless noted otherwise.

4.1.2 TImpacts of chemical boundary conditions on
surface PM and AOD

First, we evaluate the effectiveness of using MERRA-2 data
to provide chemical boundary conditions in capturing this
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Figure 4. (a-h) MODIS Aqua Deep Blue (DB) AOD from 24-31 March 2018. The white boxes represent the UI-WRF-Chem 2 nested
domains for outer (D1) and inner domain (D2) over CHN-Beijing, respectively. The white diagonal lines indicate the CALIOP tracks. The
magenta contour lines represent the boundaries of Taklamakan and Gobi Deserts.
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Figure 5. Averaged particle size distribution (PSD) from AERONET observations (blue line) and MERRA-2 data (the 5 colored bins) for
(a) CHN-Beijing and (b) ITA_Rome over 2000-2020 and 2000-2023, respectively. The AERONET sites used are shown as stars in Fig. 2a
and b, respectively. The dark gray areas represent the AERONET variability. AERO-mean and MERRA-2 mean represent the fraction of the
PSD from each bin over the sum of the 5 bins. Ratio-mean is the ratio of the total PSD of AERONET over MERRA-2 for each bin.
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Table 2. A suite of UI-WRF-Chem sensitivity simulations with different chemical boundary conditions, land data and soil NO, emission

schemes for CHN-Beijing.

simulation name? land data®  soil NO, emission® species considered in the chemical boundaryd simulation time®
2N_upd_snox-none updated BDISNP none 03/2018
2N_upd_snox-dust updated BDISNP dust + other aerosols 03/2018
2N_upd_snox-dust PSD  updated BDISNP dust PSD + other aerosols 03/2018
2N_def USGS Guenther dust 4 other aerosols 07/2028
2N_upd updated Guenther dust + other aerosols 07/2018
2N_upd_MEGAN updated MEGAN dust 4 other aerosols 07/2018
2N_upd_BDISNP updated BDISNP dust 4 other aerosols 07/2018

2 The simulation name starting with “2N*” refers to the 2 nested domains used for CHN-Beijing as shown in Fig. 2a. The 2 nested domains have a horizontal spatial
resolution of 4 km x 4km and 12 km x 12 km for the inner and outer domain, respectively.

b We test different land surface properties used for the UI-WRF-Chem static input data. The simulation name with “*def*” refers to the use of USGS land cover type data
and subsequently derived GVF, LAI and albedo, with a predefined look-up table. The simulation name with “*upd*” refers to the use of updated land cover type, GVF, LAL
and albedo data with MODIS land data products.

¢ We test different soil NOy emission schemes. The Guenther scheme calculates biogenic emissions including soil NO, emissions, without any external input datasets
needed. The MEGAN scheme requires external input files to calculate biogenic emissions including soil NOy emissions. The BDISNP is our newly developed scheme.
Since the USGS land data is only compatible with the Guenther scheme, we conduct sensitivity simulations “2N_def” and “2N_upd” to evaluate the impacts of updating
land surface properties. The simulation name with “*snox*” means that the BDISNP soil NO, emission scheme is used.

4 We test different scenarios of chemical species used in MERRA-2 data for updating UI-WRF-Chem chemical boundary conditions. “None” (simulation name with
“*none*””) means that chemical boundary conditions from MERRA-2 data are not used but instead the model default chemical boundary conditions are used. They
represent a clean North American summer day, which includes a limited number of chemical species and most of them are gas species. For aerosol species, the
concentrations are close to zero values. “dust + other aerosols” (simulation name with “*dust*”) means that dust and other aerosols including sulfate, BC and OC are
considered in the chemical boundary conditions from MERRA-2 data. “dust particle size distribution (PSD) + other aerosols” (simulation name with “*dust PSD*”) is the
same as “dust + other aerosols” except that we use the ratio of averaged PSD from AERONET observations and MERRA-2 data over 2000-2020 to scale the dust
concentration for each size bin in the MERRA-2 data. More details can be found in Sect. 4.1.1.

€ We conduct the sensitivity simulations in two different time periods: March and July 2018, respectively. The simulations in March focus on evaluating the impacts of
using MERRA-2 data to provide chemical boundary conditions on model performance while the simulations in July focus on the impacts of updating land surface

properties with MODIS data and soil NOy emission scheme.

dust long-range transport event in spring 2018. Figure 6
shows the overall evaluation of model simulated hourly sur-
face PM; 5 mass concentration against ground observations
over PTA-Beijing during 24-31 March 2018. Results are
presented for three sensitivity experiments, as described in
Sect. 4.1.1. WRF-Chem PM data are regridded onto the
MERRA-2 grid to ensure a fair comparison. Without con-
sidering any chemical species in the boundary, the UI-
WRF-Chem simulated PM» 5 concentration (2N_upd_snox-
none) substantially underestimates ground observations with
a MB of —66.4ugm™3. After including dust and other
aerosols in the boundary conditions, the UI-WRF-Chem sim-
ulated PM» 5 concentration (2N_upd_snox-dust) increases
from 18.7 to 35.5ugm™> and thus reduces the MB to
—49.6ugm™>. The correlation (R) increases from 0.19 to
0.51 and MAE decreases from 66.7 to 50.2ugm™> (paired
t-test, adjusted p < 0.05; Bonferroni correction). By con-
straining the dust PSD in the MERRA-2 data with the
AERONET climatology data, the UI-WRF-Chem simulated
PM> 5 (2N_upd_snox-dust PSD) further improves the model
performance with MB of —24 ugm™3, R of 0.54 and MAE
of 37.0ugm—3 (paired -test, adjusted p < 0.05; Bonferroni
correction). This sensitivity simulation also outperforms the
MERRA-2 simulated surface PM» 5 concentration with MB
of —33.7ugm™3, R of 0.39 and MAE of 41.7 uyg m > (paired
t-test, adjusted p < 0.05; Bonferroni correction).

Figures 7a and S3 show the time series of hourly surface
PM, 5 and PM|( concentration from 24-31 March 2018 for

Geosci. Model Dev., 18, 9061-9099, 2025

both model simulations and ground observations. During 27—
28 March, when the dust front intruded PTA-Beijing, hourly
observations of surface PM, s and PM;y concentration av-
eraged over all the sites could reach approximately 150
and 900 ugm~3, respectively. The UI-WRF-Chem simula-
tion without chemical boundary conditions (2N_upd_ snox-
none) misses this peak for both PM» s and PMg while both
the UI-WRF-Chem simulation with chemical boundary con-
dition (2N_upd_snox-dust) and MERRA-2 data capture this
peak for PM» 5 but miss the peak for PMjg. The UI-WRF-
Chem simulation with dust PSD constrained (2N_upd_snox-
dust PSD) capture the peaks of both PM,s and PMjg.
Compared with the simulation without boundary conditions
(2N_ upd_snox-none), adding chemical boundary conditions
(2N_upd_snox-dust) improves model performance with in-
creased correlation for both PM; 5 (0.41 to 0.72) and PM g
(0.06 to 0.23). The simulation with dust PSD constrained
(2N_upd_snox-dust PSD) does not improve the correla-
tion of PMj 5 (0.65) but does for PMjg (0.28), compared
with the simulation using dust in the chemical boundary
(2N_upd_snox-dust). Time series of UI-WRF-Chem sim-
ulated hourly speciated PMj 5 (e.g., OC, EC, sulfate, ni-
trate) and dust components in both PM» s and PM;¢ from
the two sensitivity simulations (2N_upd_snox-dust and 2N_
upd_snox-dust PSD) (not shown here) indicate that only the
dust components exhibit similar peaks as in the total PMj 5
and PM g, while other speciated PM; 5 components do not
follow the same temporal pattern. This demonstrates that the

https://doi.org/10.5194/gmd-18-9061-2025



H. Zhang et al.: Development of UI-WRF-Chem (v1.0) 9077
(a) 2N_upd_snox-none (b) 2N_upd_snox-dust #
300TR =019 R=051 1 A so
. y = 0.04x + 14.9 y = 0.18x + 20.3
® 5504 RMSE = 83.7 JRMSE = 67.1 45
= MAE = 66.7 MAE = 50.2
2 x: 85.1 + 51.8 x: 85.1 £51.8 40
=2001y:18.7 + 12.0 1y: 35.5 + 18.2 35
4 N = 2814 N = 2814
£ 1501 30
> 25
=}
2100 20
o]
- 15
2 507
~ 10
o = P i - Rt 10 g o oS 5
(c) 2N_upd_snox-dust PSD (d) MERRA-2 #
3007R =052 R =039 1 Nso
_ y = 0.49x + 19.5 y = 0.17x + 37.0
% 250 {RMSE =53.1 JRMSE = 58.3 45
= MAE =-37:0 MAE = 41.7
2 x: 85.1 +:51.8 x: 85.1 + 51.8 40
= 200y: 61.1-+ 46.7 1y:51.4 £ 22.2 g 35
4 N = 2814 N = 2814
& 150 % 30
= 25
=}
2100 20
o]
° 15
§ 50
10
0+ —— , — SPRZ . o5 : : ‘
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Ground hourly PM, 5 (ug m~3)

Ground hourly PM, 5 (ug m~3)

Figure 6. Scatter plot of hourly surface PM; 5 concentration between model (y axis) and ground observation (x axis) for surface sites in the
inner domain (D2) of CHN-Beijing for 24-31 March 2018. (a)—(c) refer to the UI-WRF-Chem sensitivity simulations with different chemical
boundary conditions being considered using MERRA-2 data (Table 2). (a) no chemical species, (b) dust and other aerosols and (¢) same as
(b) except that the dust concentration is scaled based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data. (d)
is from MERRA-2 simulated surface PM; 5 concentration. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-
square error (RMSE), the mean absolute error (MAE), the mean = standard deviation for observed (x) and model-simulated surface PM 5
(), the number of collocated data points (N), the density of points (the color bar), the best fit linear regression line (the solid black line) and
the 1 : 1 line (the dashed black line). WRF-Chem PM data are regridded onto the MERRA-2 grid, and when multiple surface sites fall within
the same MERRA-2 grid, the observations are then averaged to represent a single collocated site.

observed peaks in both PMj 5 and PM | are primarily driven
by the dust intrusion event. Moreover, the magnitude of the
peak from the sensitivity simulation — 2N_upd_snox-dust
PSD is larger and matches better with surface observations,
especially for PM g, than that of the 2N_upd_snox-dust. This
further highlights the effectiveness of our method in improv-
ing the representation of dust size distribution in MERRA-2
data.

Not only does considering chemical boundary condi-
tions improve surface PM mass concentration, it also en-
hances the total aerosol column amount and vertical dis-
tribution. Figure 7b—d shows the AOD evaluation be-
tween model simulations and AERONET observations.
Without considering boundary conditions, the UI-WRF-
Chem simulation (2N_upd_snox-none) significantly under-
estimates the AERONET observed AOD (0.05 vs. 0.73)
and shows poor correlation (0.02). Including dust and other
aerosols (2N_upd_snox-dust) increases UI-WRF-Chem sim-
ulated AOD (0.29), improves correlation (0.79) and reduces
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MAE from 0.67 to 0.44 (paired z-test, adjusted p > 0.05;
Wilcoxon, adjusted p < 0.05; Bonferroni correction). Fur-
ther constraining the dust in the boundary (2N_upd_snox-
dust PSD) yields the best model performance with simulated
AOD of 0.93 and correlation of 0.83, reducing MAE from
0.44 to 0.31 (paired ¢-test, adjusted p > 0.05; Wilcoxon, ad-
justed p <0.05; Bonferroni correction). The paired ¢-test
does not find statistically significant changes in the MAE,
likely due to the smaller sample size, whereas the Wilcoxon
test shows that changes in the MAE are statistically signifi-
cant.

We then compare the UI-WRF-Chem simulated vertical
aerosol profile with the Cloud-Aerosol Lidar with Orthogo-
nal Polarization (CALIOP) data for the outer domain (D1)
during 26-28 March, when dust reaches the PTA-Beijing
domain. Figure 8 shows the CALIOP derived aerosol ex-
tinction coefficient, aerosol type as well as Ul-WRF-Chem
simulated extinction coefficient. The CALIOP ground tracks
are located within the UI-WRF-Chem outer domain (D1)

Geosci. Model Dev., 18, 9061-9099, 2025
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Figure 7. (a) time series of hourly surface PM; 5 concentration averaged over surface sites in the inner domain (D2) of CHN-Beijing
for 24-31 March 2018, from model simulations and ground observations. 2N_upd_snox-none/dust/dust PSD refer to the UI-WRF-Chem
sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data (Table 2): no chemical species;
dust and other aerosols; dust concentration is scaled based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data.
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coefficient (R). (b—d): scatter plot of hourly AOD between model (y axis) and AERONET observation (x axis) for 24—31 March 2018.
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and the 1 : 1 line (the dashed black line).

(Fig. 4) and model grids that overlap with the tracks are se-
lected. From both CALIOP aerosol extinction coefficient and
aerosol type, we can see that dust is dominating the verti-
cal distribution above ~ 3—4 km and mixed with marine and
anthropogenic aerosols in the boundary layer. Without con-
sidering aerosols in the chemical boundary conditions, the
UI-WRF-Chem simulated extinction coefficient is negligi-
ble above the boundary layer (not shown here). After con-
sidering dust and other aerosols in the chemical boundary,
we can see the increase in the extinction coefficient in the
vertical distribution (Fig. 8g—i). Constraining the dust PSD
in the boundary (2N_upd_snox-dust PSD, Fig. 8j—1) further
enhances the vertical distribution of the aerosol extinction
coefficient, which matches better with the CALIOP obser-
vations. This reflects the effectiveness of including dust and
other aerosols in the chemical boundary condition to better
capture the vertical distribution of aerosol properties in this
dust intrusion event. We note that CALIOP data is also sub-
ject to uncertainties of the lidar ratio used in deriving the ex-
tinction, and so is the extinction modeled by UI-WRF-Chem

Geosci. Model Dev., 18, 9061-9099, 2025

(Yang et al., 2013). Hence, CALIOP data is used as a relative
reference to assess the model improvement.

Since PTA-Being is located downwind of the dust source
regions in this case, there could be uncertainties in simulat-
ing the transport of different dust size bins in MERRA-2 data
from source regions. Thus, our constraining method could
provide an effective way to improve the dust size distribution
in the boundary conditions and subsequently improve model
simulated surface PM concentration as well as vertical dis-
tribution of aerosols. This method could also benefit other
PTAs such as ITA-Rome, that can be affected by dust trans-
port events, which will be discussed in Sect. 4.2.

4.1.3 Impacts of updated land surface properties on
model performance

The UI-WRF-Chem model simulated surface skin temper-
ature (TSK) is evaluated with satellite observations of land
surface temperature (LST) from MODIS onboard Terra and
Aqua for July 2018. We first regrid the MODIS daily LST
data onto the WRF-Chem model grid, and then mask the
WRF-Chem output based on the spatial and temporal avail-

https://doi.org/10.5194/gmd-18-9061-2025
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Figure 8. Comparison of CALIOP—derived vertical profile of aerosol extinction coefficient (532 nm, a—c) and aerosol type (d—f) with Ul-
WRF-Chem simulated extinction coefficient for CHN-Beijing over 26-28 March 2018. UI-WRF-Chem outputs are from the outer do-
main (D1) that overlap with CALIOP tracks (Fig. 4). (g)—(i) are the extinction coefficients from the UI-WRF-Chem sensitivity simulation

2N_upd_snox-dust, where dust and other aerosols are considered in the

MERRA-2 chemical boundary conditions. (j)—(I) are the extinction

coefficients from UI-WRF-Chem sensitivity simulation 2N_upd_snox-dust PSD where dust concentration is scaled in the MERRA-2 chem-
ical boundary conditions, based on constraining MERRA-2 dust PSD data with AERONET PSD climatology data. In (a)—(f), the gray areas
represent cloud. In (d)—(f), different aerosol types are classified: d mari for dusty marine, p dust for polluted dust, ¢ cont for clean continental,

p cont for polluted continental and ¢ mari for clean marine. ND includes

ability of MODIS data to ensure a fair comparison. The
Beijing-Tianjin-Hebei region is one of the highly urban-
ized clusters in the world and has experienced intense ur-
ban heat island (UHI) effects in the past decade (Wang
et al., 2016; Clinton and Gong, 2013). First, by compar-
ing the default and updated land cover type (Fig. 9a and
f), we can see that the updated land cover type captures
the urban growth over the region. The corresponding land
surface properties including LAI, GVF and albedo also

https://doi.org/10.5194/gmd-18-9061-2025

areas that have clean air and aerosol type not being determined.

show changes with the updated data (Fig. S4). Both day-
time (~ 10:30 a.m. and ~ 01:30 p.m. LT) (Figs. 9b and S5a)
and nighttime (~ 10:30p.m. and ~01:30 a.m. LT) (Figs. 9g
and S5e) LST from MODIS Terra and Aqua show the UHI
phenomenon over the region. Our UI-WRF-Chem model
simulated TSK with updated land surface properties using
MODIS data can capture the UHI spatial pattern with higher
temperature in urban areas than rural areas for both day-
time and nighttime. It matches the spatial pattern of satellite

Geosci. Model Dev., 18, 9061-9099, 2025
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observed LST UHI better than the UI-WRF-Chem simula-
tion with the use of the default USGS land cover type and
other surface properties, which is consistent with our previ-
ous work (Wang et al., 2023). Figure 3b shows the Taylor
Diagram of comparing UI-WRF-Chem simulated LST with
MODIS Terra and Aqua daytime and nighttime, respectively.
We find that the UI-WRF-Chem simulated TSK with updated
land surface properties decreases the relative bias for both
Terra and Aqua daytime and nighttime, compared with the
UI-WRF-Chem simulation using the default USGS land sur-
face properties. The model simulated TSK with updated land
surface properties also results in an increase in correlation
for the Aqua daytime period compared with the model simu-
lation using the USGS land surface properties.

Figure S6 shows the potential impacts of updated land sur-
face properties on model simulated planetary boundary layer
height (PBLH) and subsequently on surface PM» 5 concen-
tration. We find that the PBLH mainly increases in the urban
areas where the land surface temperature increases, which in
turn leads to a decrease in surface PMj 5. Our work shows the
promising use of updated land surface properties with timely
satellite data to better capture the land cover type and other
land surface properties for regions with fast urban develop-
ment. To better study the impacts of UHI in the region, an
urban canopy model could be used to include more details
about the underlying urban surface feature and better simu-
late the physical processes in the boundary layer (He et al.,
2019; Liang et al., 2021) with a finer spatial resolution, which
is beyond the scope of the current work.

4.1.4 Impacts of updated soil NO, emission scheme on
model performance

Our previous work (Sha et al.,, 2021) has shown the im-
provement of model simulated NO, VCD, when evaluated
against TROPOMI NO, VCD over croplands in California,
using the BDISNP soil NO, emission scheme. Here, we also
use TROPOMI NO, VCD to evaluate UI-WRF-Chem sim-
ulated NO, VCD over croplands in the outer domain (D1)
of CHN-Beijing for July 2018. Daily TROPOMI NO, data
are regridded to UI-WRF-Chem grids with averaging ker-
nels being applied. Hourly data from UI-WRF-Chem out-
put, close to the TROPOMI overpass time (~ 01:30 p.m. LT)
are averaged to compare with TROPOMI data. First, Fig. S7
shows the UI-WRF-Chem simulated monthly mean soil NO,
emissions using the default emission scheme — MEGAN
(2ZN_upd_MEGAN in Table 2) and the updated scheme —
BDISNP (2N_upd_BDISNP in Table 2), respectively. The
MEGAN scheme (Fig. S7a) simulates low soil NO, emis-
sions over the whole domain and the BDISNP (Fig. S7b) in-
stead simulates higher soil NO, emissions in non-urban ar-
eas. Croplands show the largest soil NO, emissions due to
the use of fertilizer.

We compare the model simulated tropospheric NO, VCD
with TROPOMI NO, VCD for July 2018 (Figs. 10 and 11).
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We can find that both simulations underestimate TROPOMI
NO, VCD (2.2 x 10" molec.cm™2) by 1.4 x 10" and
1.3 x 10'> molec.cm™ for the MEGAN and BDISNP re-
spectively (Fig. 11a and b) over the whole domain. The
model simulated NO, VCD increases from 1.4 x 1015 us-
ing the MEGAN scheme to 1.7 x 103 molec.cm™? using
the BDISNP scheme over croplands. The BDISNP de-
creases MAE from 1.59 x 10" to 1.53 x 10> molec. cm™2
(paired t-test, adjusted p < 0.05; Bonferroni correction)
over the whole domain mainly due to the improvement
over croplands. Over croplands, we can see the enhance-
ment in the model simulated NO, VCD (Fig. 10c). MAE
for croplands decreases from 1.88 x 10'3 molec.cm™? to
1.77 x 101 (paired t-test, adjusted p < 0.05; Bonferroni
correction). Both reductions in MAE are statistically signifi-
cant, underscoring that the improvements are robust, though
moderate in magnitude. The increase in soil NO, emissions
has potential impacts on surface nitrate. Figure S8 shows that
the increase in surface soil NO, emissions leads to the in-
crease in surface nitrate up to 30 % in rural areas. Due to
the lack of surface observation of nitrate, we are limited to
quantify the impacts of the improvement of soil NO, emis-
sions on surface nitrate. The MAIA satellite mission coupled
with the Geostationary Environment Monitoring Spectrom-
eter (GEMS) (Kim et al., 2020) satellite mission could pro-
vide a synergetic opportunity to evaluate both gas and aerosol
chemistry.

4.2 Case study — ITA-Rome

Our case study over CHN-Beijing target area has demon-
strated the benefits of using MERRA-2 data to provide chem-
ical boundary conditions for capturing long-range transport
events such as dust intrusion. Some of the other target areas
including ITA-Rome are also impacted by dust transport. Sa-
haran dust transport poses a significant concern on air qual-
ity in Europe and the Mediterranean Basin. Previous stud-
ies have shown that Saharan dust outbreaks are more fre-
quent in southern Europe including Italy than northern Eu-
rope (Querol et al., 2009; Viana et al., 2014; Pey et al., 2013;
Wang et al., 2020a). For example, Pey et al. (2013) showed
that across the Mediterranean Basin, African dust outbreaks
occurred from 30 % to 37 % of the annual days in the south-
ern sites and less than 20 % of the days in the northern sites.
The work of Barnaba et al. (2022) investigated the impacts
of African dust on surface PM( concentrations in Italy using
surface monitoring sites in Italy from 2006-2012 and found
that African dust affected surface PMjq levels in Northern
and Southern Italy for about 10 % and 30 % of dates in a
year, respectively.

Here, we focus on June 2023, where Saharan dust affected
PM concentrations in ITA-Rome, and investigate the benefits
of using MERRA-2 data to provide chemical boundary con-
ditions for driving UI-WRF-Chem. For example, one Saha-
ran dust intrusion into Italy occurred from 19-22 June 2023
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Figure 9. Comparison of UI-WRF-Chem simulated monthly mean surface skin temperature (TSK) with MODIS Terra observed land surface
temperature (LST) over the inner domain (D2) of CHN-Beijing for July 2018. (a) and (f) are the land cover type from the default USGS
data and updated MODIS land data. (b) and (g) are the MODIS Terra LST during daytime (D) and nighttime (N), respectively. (¢) and (d)
are model simulated TSK averaged over Terra overpass time during daytime from UI-WRF-Chem sensitivity simulations 2N_def (default
USGS land cover type and subsequently derived GVF, LAI and albedo) and 2N_upd (updated land cover type, GVF, LAI and albedo with
MODIS land data) in Table 2, respectively. (e) is the ratio between (d) and (c), expressed as the geometric mean of daily ratio, with stippling
indicating model grids where the difference is statistically significant (Wilcoxon test, adjusted p < 0.05; FDR correction). (h)—(j) are the
same as (c)—(e) but averaged over Terra overpass time during nighttime. Oceans are masked as gray colors.
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Figure 10. Monthly mean tropospheric NO, vertical column density (VCD) over the outer domain (D1) of CHN-Beijing for July 2018
from TROPOMI observation and model sensitivity simulations. Only model grids identified as croplands are shown on the plots and the
rest are marked as gray colors. (a) TROPOMI observations; (b) UI-WRF-Chem sensitivity simulation 2N_upd_MEGAN (Table 2) using the
MEGAN scheme to calculate soil NOy emissions; (¢) UI-WRF-Chem sensitivity simulation 2N_upd_BDISNP (Table 2) using the BDISNP
scheme to calculate soil NOy emissions. The white box represents the inner domain (D2).

as seen from the VIIRS AOD (Fig. S9) and MERRA-2 simu- AOD: (1) simulation “2N-none”: no chemical species from

lated dust AOD (not shown here) also captures this dust intru- MERRA-2 data are transported into the domain; (2) simula-
sion event. We conduct three UI-WRF-Chem model sensitiv- tion “2N-dust”: dust and other aerosols including sulfate, BC
ity simulations with different chemical boundary conditions and OC are considered in the MERRA-2 chemical bound-
to evaluate model simulated surface PM concentrations and ary condition; (3) simulation “2N-dust PSD”: dust concen-

https://doi.org/10.5194/gmd-18-9061-2025 Geosci. Model Dev., 18, 9061-9099, 2025



9082

H. Zhang et al.: Development of UI-WRF-Chem (v1.0)

(a) MEGAN-all (b) BDISNP-all #
30TR=050 R=051 i~
& y =:0.62x - 0.6 y =0.75x - 0.7
= 25 | MAE'= 1.59 |MAE = 1.53
G X122 +12 x: 2.2 1.2
g |y:08%15 y: 0:9-+1.8 25
Q5o |N =70774 N =.70774
= ¢ ca
) . 20
[=)
=)
a
g 15
)
=
o 10
©
(=]
= £
———— . = - —— T 5
(c) MEGAN-cropland (d) BDISNP-cropland #
30TR=022 R=1040 30
y =0.44x + 0.0 y=0.6x-0.1
25 |MAE = 1.88 |MAE =1.77
x:3.1+1.3 x:31.+1.3
y:1.4+1.3 y:1.7:+ 1.9 25
N =23371 N =.23371
20
’ 20
15

104

Model NO, VCD (10 molec cm™—2)

Fotrtly

10

25

20
TROPOMI NO, VCD (10> molec cm™2)

0 5 15 30

10 15 20 25 30
TROPOMI NO, VCD (105 molec cm™—2)

Figure 11. Scatter plot of daily tropospheric NO, VCD between model (y axis) and TROPOMI observation (x axis) over the outer
domain (D1) of CHN-Beijing for July 2018. (a) and (c) refer to the UI-WRF-Chem sensitivity simulation using the MEGAN scheme
(2N_upd_MEGAN in Table 2) and (b) and (d) refer to the sensitivity simulation using the BDISNP scheme (2N_upd_BDISNP in Table 2) to
calculate soil NO, emissions, respectively. (a) and (b) are for model grids over the whole domain while (¢) and (d) are for model grids that are
identified as croplands. Also shown on the scatter plot is the correlation coefficient (R), the mean absolute error (MAE), the mean =+ standard
deviation for observed (x) and model simulated tropospheric NO, VCD (y), the number of collocated data points (N), the density of points
(the color bar), the best fit linear regression line (the solid black line) and the 1 : 1 line (the dashed black line).

tration of different size bins in the MERRA-2 boundary con-
ditions is constrained using the AERONET PSD climatology
data from 2000-2023. AERONET sites close to the Saha-
ran dust source region are used for constraining MERRA-2
PSD (Fig. 2b). Figure 5b shows the averaged PSD over the
AERONET sites between 2000-2023 from both MERRA-
2 and AERONET data. The ratio between the mean of the
AERONET PSD and MERRA-2 PSD for each of the five
dust size bins is then used as a constraint to scale the dust
concentration in each bin in the MERRA-2 chemical bound-
ary data in the simulation “2N-dust PSD”.

Like the case study in CHN-Beijing, using MERRA-2 data
to provide chemical boundary conditions for UI-WRF-Chem
over ITA-Rome also improves both model simulated surface
PM concentration and AOD (Fig. 12). WRF-Chem PM data
are regridded onto the MERRA-2 grid for a fair comparison.
Compared with the sensitivity simulation 2N-none, the cor-
relation (R) from the sensitivity simulation 2N-dust increases
from 0.12 to 0.54, 0.38 to 0.70, and 0.15 to 0.62 for surface
PMy s, surface PMjg and AOD, respectively, for the whole
month of June. The MB decreases from —6.8 to —2.1, —13.8

Geosci. Model Dev., 18, 9061-9099, 2025

to —2.3 g m—3, and —0.23 to —0.13 for surface PM, s,
PMjp and AOD respectively. The MAE decreases signifi-
cantly from 6.9to 3.8 uygm™3, 13.7t0 9.1 uygm~3, and 0.23 to
0.13 (paired ¢-test, adjusted p < 0.05; Bonferroni correction)
for surface PM» 5, PM ¢ and AOD respectively. Using con-
strained dust concentration in the MERRA-2 data (2N-dust
PSD) further reduces the MB for surface PM; s and AOD
and slightly overestimates surface PM ¢, compared with sim-
ulation 2N-dust. In contrast, both MERRA-2 simulated sur-
face PMj; 5 and PM | overestimate surface observations with
MB of 6.4 and 21.8 uygm~3, respectively. Both simulations
(2N-dust and 2N-dust PSD) show higher correlation than
MERRA-2 (0.70 vs. 0.66) when evaluating surface PMg
concentration against ground observations, while simulation
2N-dust PSD shows slightly lower correlation than MERRA-
2 for surface PMj3 5 (0.52 vs. 0.54). MAEs from both sim-
ulations are also improved significantly (paired z-test, ad-
justed p < 0.05; Bonferroni correction), compared to those
of MERRA-2 for both surface PM> s (3.8 vs. 6.7 ug m3;
4.1 vs. 6.7ugm™?) and PMjg (9.1 vs. 22.0ugm=3; 10.3 vs.
22.0ugm~3). Compared with simulation 2N-dust, simula-
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tion 2N-dust PSD improves model simulated AOD with MB
decreasing from 0.13 to 0.09 and MAE decreases from 0.13
to 0.11 (paired ¢-test, adjusted p < 0.05; Bonferroni correc-
tion). MERRA-2 data has the best AOD performance as ex-
pected since it assimilates satellite AOD.

During June 2023, some parts of the ITA-Rome domain
experienced precipitation events (Fig. S10), which occurred
mostly during the first half of the month. Compared to
the Global Precipitation Measurement (GPM) mission ob-
served precipitation and MERRA-2 simulated precipitation
(Fig S10), UI-WRF-Chem simulates higher precipitation,
which could result in higher wet deposition of aerosols and
lower concentration. Figure S11 shows the comparison of
model simulated surface daily PM» 5 and PM1¢ with ground
observations for the first and second half of the month in
June 2023, respectively. We can see that UI-WRF-Chem
simulation 2N-dust underestimates both surface PM; 5 and
PM ¢ during the first half of the month (Fig. S11a—h) with
MB of —3.1 and —5.7 pgm™—3, respectively, while MERRA-
2 overestimates surface PMj 5 and PM g with MB of 5.1
and 15.7 ug m~3, respectively. During the second half of the
month (Fig. S11i—p), UI-WRF-Chem simulation 2N-dust un-
derestimates surface PMj 5 with MB of —1.3 g m~3 but
slightly overestimates surface PMq with MB of 1.3 ugm™3.
MERRA-2 still overestimates surface PM» 5 and PMg with
MB of 7.4 and 28.4 uygm~3, respectively. Due to the coarse
spatial resolution of MERRA-2 data, it may not resolve the
localized convective processes well, which could affect the
subsequent wet deposition. There are also uncertainties as-
sociated with the dust size distribution in MERRA-2 data,
which could also affect the wet deposition.

Additionally, uncertainty in UI-WRF-Chem model sim-
ulated wet deposition of aerosols could play a role in the
model results discussed above. Previous studies have mostly
focused on dry dust events (e.g., Zeng et al., 2020), and less
has focused on wet dust events, especially dust wet deposi-
tion. Jung and Shao (2006) implemented a below-cloud dust
wet deposition scheme for the UOC dust emission scheme
in WRF-Chem. Currently, no dust wet scavenging scheme is
implemented for the original GOCART or GOCART AFWA
dust scheme in WRF-Chem. As in previous work (Su and
Fung, 2015), we have implemented a simple scheme to allow
dust wet scavenging by large scale and convective precipita-
tion by assigning a scavenging efficiency for different dust
size bins in the model. Future work will focus on implement-
ing a more complex dust wet deposition scheme to better
account for the scavenging processes that consider the dust
particle size distribution etc., such as the work of Tsarpalis
et al. (2018) and Zhao et al. (2003). Nevertheless, the case
study over ITA-Rome again demonstrates the benefits of us-
ing MERRA-2 data to drive UI-WRF-Chem for capturing
dust transport events.
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4.3 Case study — USA-LosAngeles

Each target area has its unique feature of aerosol composi-
tion and various factors that affect the aerosol concentration,
we have demonstrated the impacts of dust transport on sur-
face PM concentration and AOD over CHN-Beijing and ITA-
Rome target areas. Here, we focus on some fine tuning over
USA-LosAngeles target area to improve the model simula-
tion of surface PM concentration and AOD.

For the USA-LosAngeles target area (Fig. 2c), we investi-
gate the impacts of dust emissions on surface PM concentra-
tion and AOD. Part of the outer domain (D1) over the USA-
LosAngeles target area (here defined as the dust-prone re-
gion, the orange box in Fig. S12), located in the southwestern
U.S., are desert regions with higher soil erodibility than other
parts of the domain. It is common in WRF-Chem to tune
some of the parameters in the dust emission scheme includ-
ing the soil erodibility to better match model simulated PM g
concentration and AOD with satellite- and ground-based ob-
servations (e.g., Su and Fung, 2015). This approach has been
mainly focusing on the total atmospheric dust load instead
of an individual dust event and it is sufficient to capture the
general magnitude of dust aerosol patterns. We have adopted
this simple approach here to do some dust parameter tuning
to improve model simulated surface PM g concentration and
AOD with a focus on the overall magnitude.

There are several parameters that can be used to tune dust
emissions in the WRF-Chem model. One is the dust_gamma
(gamma for short here), which tunes the soil erodibility in an
exponential manner. Soil erodibility serves as an important
factor for identifying dust source and estimating dust emis-
sion flux in the model. The other one is the dust_alpha (al-
pha for short here), which linearly tunes the total dust emis-
sions. If we use the default setting (gamma =1, alpha=1),
both model simulated surface daily PMo concentration and
hourly AOD overestimate surface measurements of PMjg
and AOD in the dust-prone region (Figs. 13a and j, S13
and S14). Model simulated surface PMj 5 concentration also
overestimates surface measurements of PM, 5 (Fig. S13a).
We conduct two groups of sensitivity simulations to test the
responses of model simulated PMo and AOD to a range of
gamma and alpha values, respectively. For the first group test,
we set the gamma with 1.5, 2, 2.5 and 3 respectively, while
keeping the alpha value as 1. For the second group test, we set
the alpha with 0.2, 0.3, 0.4, and 0.5 respectively, while keep-
ing the gamma value as 1. As gamma increases from 1 to 3
with the constant alpha value of 1, correlation increases for
AOD and decreases for surface PMjq (Fig. 13). RMSE also
decreases with increasing gamma value until when gamma
value reaches 2.5 for both AOD and PM;y. MAE also de-
creases significantly for both AOD (0.08 to 0.04) and PM
(46.7 to 21.5 ug m~3) (paired ¢-test, adjusted p < 0.05; Bon-
ferroni correction) when gamma increases from 1 to 2.5. As
alpha value decreases from 1 to 0.5 with the constant gamma
of 1, both MB and RMSE for surface PM;p and AOD de-
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Figure 12. Scatter plot of daily PM» 5 concentration (a—d), PM | concentration (e-h), and AOD (i-1), between model (y axis) and ground
observation (x axis) over the inner domain (D2) of ITA-Rome for June 2023. (a)-(c), (e)—(g), and (i)—(k) refer to the UI-WRF-Chem
sensitivity simulations with different chemical boundary conditions being considered using MERRA-2 data. 2N-none: no chemical species;
2N-dust: dust and other aerosols; 2N-dust PSD: same as 2N-dust except that the dust concentration is scaled based on constraining MERRA-
2 dust PSD data with AERONET PSD climatology data. (d), (h) and (I) show the MERRA-2 simulated daily PM> 5, PM ¢ and AOD,
respectively. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean absolute error
(MAE), the mean = standard deviation for observed (x) and model-simulated PM» 5/PM|o/AOD (y), the number of collocated data points
(N), the best fit linear regression line (the solid black line) and the 1 : 1 line (the dashed black line). WRF-Chem PM data are regridded onto
the MERRA-2 grid, and when multiple surface PM sites fall within the same MERRA-2 grid, the observations are then averaged to represent

a single collocated site.

crease until alpha value drops to 0.3. The correlation al-
most stays the same or slightly increases for both PMjg and
AOD with decreasing alpha value. MAE also decreases sig-
nificantly for both AOD (0.08 to 0.04) and PMq (46.7 to
17.9ugm™3) (paired r-test, adjusted p < 0.05; Bonferroni
correction) when alpha decreases from 1 to 0.3. Further-
more, the sensitivity simulation (gamma=1, alpha=0.3)
outperforms the sensitivity simulation (gamma = 2.5, al-
pha=1) with enhanced correlation (0.48 vs. 0.37) and sta-
tistically significant decrease in MAE (17.9 vs. 21.5, paired
t-test, adjusted p < 0.05; Bonferroni correction). Therefore,
we choose gamma of 1 and alpha of 0.3 as the final config-
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uration to account for the model performance of both PMjg
and AOD.

Here, we use one month of data to tune the dust emis-
sions by focusing on the magnitude of the total dust load. It
is challenging to fine tune each individual dust event and ac-
quire consistent results. The work of Hyde et al. (2018) sim-
ulated nine dust storms in south-central Arizona with WRF-
Chem using the GOCART AFWA dust emission scheme and
the model unevenly reproduced the dust-storm events with
some cases overestimating surface PMg and some cases un-
derestimating surface PMg. Our evaluation of AOD with
AERONET observation is rather limited spatially as we only
have one AERONET site available over the dust-prone re-
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Figure 13. Scatter plot of daily surface PM|( concentration and hourly AOD between model (y axis) and ground observation (x axis) over the
dust-prone region of USA-LosAngeles for July 2018. (a)—(i) are for surface daily PM g and (j)—(r) are for hourly AOD from two groups of
sensitivity simulations: (1) gamma =1, 1.5, 2, 2.5, 3 while alpha stays as 1; (2) alpha =0.2, 0.3, 0.4, 0.5 while gamma stays as 1, respectively.
Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean absolute error (MAE), the
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gion. We also conduct the same set of sensitivity simula-
tions for July 2019 (results not shown here) and the sen-
sitivities to the tuned parameters are comparable to results
shown here in general, which further confirms the validity
of the simple approach we have used. Additionally, more
recent work has incorporated the albedo-based drag parti-
tion (Chappell and Webb, 2016) from satellite data into the
GOCART AFWA dust emission scheme to better represent
the impacts of roughness features from vegetation and non-
vegetation such as soil and rocks, which demonstrated im-
proved model performance in capturing individual dust event
over the Southwestern U.S. (LeGrand et al., 2023; Dhital et
al., 2024). It is beyond the scope of this work to implement
this method, but future work could explore the use of this
advanced method and focus on longer periods of model sim-
ulation to further evaluate model performances.

4.4 Case study — USA-Atlanta

As described in Sect. 3, for the standard PTA nested domain
setup, we have chosen to turn off the cumulus parameteriza-
tion in the inner domain (D2) with the spatial resolution of
4 km and allow the microphysics scheme to explicitly resolve
the convection. Here, we use PTA-Atlanta as an example
to examine the impacts of different setups of microphysics
and cumulus schemes on model simulated precipitation and
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surface total and speciated PM; 5. Since the MAIA satellite
mission focuses on speciated PM, we also use PTA-Atlanta
here to demonstrate how UI-WRF-Chem simulates speciated
PM> 5 mass concentrations in addition to total PM» 5.

4.4.1 Impacts of microphysics and cumulus schemes on
precipitation and surface total PM; 5

Southeastern U.S. including the PTA-Atlanta (Fig. 2d) target
area experiences pulse-type summer convective precipitation
due to the interplay of land-sea breezes, outflow boundaries
and complex terrain etc. (Case et al., 2011). Here, we focus
on June 2022 over PTA-Atlanta to demonstrate the impacts
of different setups of microphysics and cumulus schemes on
model simulated precipitation and subsequent surface total
PM, 5 concentration. We perform six UI-WRF-Chem sensi-
tivity simulations with different setups of microphysics and
cumulus schemes while keeping other schemes the same as
shown in Table 3: (1) mp2cu5: both domain 1 and domain
2 have the Lin microphysics scheme on. Domain 1 and do-
main 2 have the G3D cumulus scheme on and off, respec-
tively; (2) mp2cuSbothon: same as (1) except that both do-
main and 1 and domain 2 have the G3D cumulus scheme on,;
(3) mp2cu3bothon: same as (2) except that both domain 1
and domain 2 have the GF cumulus scheme on; (4) mp10cuS5;
(5) mp10cuSbothon; and (6) mp10cu3bothon. (4)—(6) are the
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same as (1)—(3) except that both domain 1 and domain 2 have
the Morrison microphysics scheme on. Here, the difference
between (1) and (2) illustrates the impacts of turning on/off
the cumulus scheme at the 4 km resolution. The difference
between (1), (2) and (1), (3) evaluates the impacts of us-
ing a traditional cumulus scheme vs. a scale-aware cumulus
scheme. Corresponding difference between (1), (3) and (4),
(6) represents the impacts of the microphysics scheme.

We first focus on the evaluation of daily precipitation. Al-
though, hourly precipitation rate can be important to tell the
intensity of the precipitation event, verification of the hourly
precipitation can raise double-penalty issues at the finer res-
olution (Rossa et al., 2008; Gilleland et al., 2009), where
a slight shift in the prediction of the timing or location of
the precipitation event compared with the ground truth could
result in the verification penalties in both space-time. Here,
we accumulate the hourly precipitation into daily precipita-
tion to help offset the errors associated with the timing of
the event. Figure S15 shows the monthly averaged daily pre-
cipitation from UI-WRF-Chem model sensitivity simulations
(1)—(6) with surface observations. In general, all the sensitiv-
ity runs overestimate the precipitation. Turning on the cu-
mulus scheme in domain 2 when using the traditional G3D
scheme results in larger bias compared to the results of turn-
ing the G3D scheme off. The work of Zhang et al. (2021) also
found that the WRF model had better prediction of precipi-
tation in the central Great Plains in the U.S. when turning
off the G3D cumulus scheme with the spatial resolution of
4 km, compared to the sensitivity run of turning on the G3D
cumulus scheme. Turning off the cumulus scheme in domain
2 when using the G3D scheme is comparable to the results
of the simulation using the scale-aware GF cumulus scheme.

We then investigate the impacts on surface total PM; s
concentration. Figure S16 shows the spatial map of surface
total PM» 5 concentration for June 2022 and Fig. 14 com-
pares model simulated daily total PMj; 5 concentration with
ground observation. Both sensitivity simulations (2) and (4)
with the G3D scheme on for the inner domain (D2) simulate
higher precipitation than other simulations, which leads to
lower surface PM» 5 concentrations (Fig. S16b and e). Over-
all, the surface PM» 5 concentrations from sensitivity simula-
tions (2) and (4) have the lowest correlation (0.34 and 0.49)
compared to other simulations (0.52-0.61) (Fig 14). They
also have higher MB (—5.1 and —5.9 ug m—3) compared with
other simulations (—4.7 to —3.2ugm™3) (Fig. 14). Sensi-
tivity simulations over CHN-Beijing also show similar re-
sults related to surface PMj 5 concentration when contrast-
ing the sensitivity simulation with or without the G3D cu-
mulus on for the inner domain (not shown here). This vali-
dates our choice of turning the cumulus scheme off for the in-
ner domain (D2) when using the traditional cumulus scheme
such as G3D. When only using the Lin microphysics scheme
(mp2), the MAE from simulation (1) mp2cu5 improves
on both simulation (2) mp2cuSbothon and simulation (3)
mp2cu3bothon (3.7 vs. 5.7; 3.7 vs. 5.1 ugm~3) (paired 7-test,
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adjusted p < 0.05; Bonferroni correction). When only con-
sidering using the Morrison microphysics scheme (mpl10),
simulation (4) mp10cu5 shows statistically lower MAE than
that of simulation (5) mp10cuSbothon (5.0 vs. 6.2 ug m™3),
while simulation (6) mp10cu3bothon shows statistically re-
duced MAE than simulation (4) (4.8 vs. 5.0 ug m?) (paired
t-test, adjusted p < 0.05; Bonferroni correction). Further-
more, simulation (1) outperforms simulation (6) with re-
duced RMSE (4.6 vs. 5.6ugm™>) and statistically signif-
icant lower MAE (3.7 vs. 4.8ugm™3) (paired r-test, ad-
justed p < 0.05; Bonferroni correction). Therefore, we have
selected simulation (1) as the final configuration for PTA-
Atlanta. It also indicates that surface PM, s concentrations
from sensitivity simulations, which turn off the G3D cumu-
lus scheme (1 and 4) are comparable to or even better than
the results from the sensitivity simulations (3) and (6), which
turn on the scale-aware cumulus scheme GF, although further
tests using the GF are needed.

There are some uncertainties in this case study. First, our
evaluation is limited in time. A longer dataset would be more
helpful to reveal model performances in other seasons too
(Jeworrek et al., 2021). Also, we have only considered a
limited number of model configurations. Previous studies
have shown that the prediction of precipitation is also sen-
sitive to other schemes in the model such as the PBL scheme
(Klein et al., 2015; Argiieso et al., 2011). Most previous work
have focused on the impacts of microphysics and cumulus
schemes on precipitation and less have focused on the cou-
pling with the aerosol fields. The process of handling aerosol-
cloud interactions would be another source of uncertainty
here. Lastly, deficiencies in MERRA-2 meteorology bound-
ary conditions could also introduce uncertainties or biases in
the WRF-Chem simulation (Zhang et al., 2021).

4.4.2 Evaluation of model simulated speciated PM; 5

Surface measurements of total and speciated PM> s mass
concentration from the Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE) (Malm et al., 1994;
Solomon et al., 2014) and the Chemical Speciation Network
(CSN) (Solomon et al., 2014) networks (see Fig. S17 for
sites location information) are used to evaluate model per-
formance. We compare UI-WRF-Chem simulated speciated
PM; 5 (OC, EC, Sulfate + Nitrate, Dust) and total PMj 5
against these observations. Figure S18 shows the compari-
son of daily speciated PM; 5 between the model and ground
observations for the six different sensitivity simulations (Ta-
ble 3), while Fig. S17 shows the spatial distribution of total
and speciated PM; 5 for the “mp2cu5” sensitivity simulation
only.

During this month of June, both surface observations and
model simulations indicate that OC, sulfate and dust are the
dominate components of total PM, 5, consistent with previ-
ous studies, which show that OC and sulfate are the primary
contributors to total PM» 5 in the Southeastern U.S. (Hand et
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Table 3. A suite of UI-WRF-Chem sensitivity simulations performed over PTA-Atlanta with different setups of microphysics and cumulus

schemes for the outer domain (D1) and inner domain (D2), respectively.

mp2cuS mp2cuSbothon  mp2cu3bothon mplOcu5S mplOcuSbothon  mplOcu3bothon
Microphysics-D1  Lin Lin Lin Morrison  Morrison Morrison
Microphysics-D2  Lin Lin Lin Morrison  Morrison Morrison
Cumulus-D1 G3D G3D GF G3D G3D GF
Cumulus-D2 off G3D GF off G3D GF
(a) mp2cu5 (b) mp2cu5bothon (c) mp2cu3bothon
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Figure 14. Scatter plot of daily surface PMj 5 concentration between model (y axis) and ground observation (x axis) over the inner domain
(D2) of USA-Atlanta for June 2022. (a)—(f) are the UI-WRF-Chem sensitivity simulations with different setups of microphysics and cumulus
schemes. (a)—(c) all have the Lin microphysics scheme on for domain 1. (a) has the Lin microphysics scheme on for domain 2 and no cumulus
scheme is used for domain 2. (b) is the same as (a) except that the G3D cumulus scheme is turned on for domain 2. (c) is same as (b) except
that the GF cumulus scheme is used for domain 2. (d)—(f) are the same as (a)—(c) except that the Morrison microphysics scheme is used for
both domain 1 and domain 2. Also shown on the scatter plot is the correlation coefficient (R), the root-mean-square error (RMSE), the mean
absolute error (MAE), the mean = standard deviation for observed (x) and model-simulated surface PM» 5 (y), the number of collocated data
points (N), the best fit linear regression line (the solid black line) and the 1 : 1 line (the dashed black line).

al., 2024; Zhu et al., 2024). Prescribed burns in the Southeast-
ern U.S. including the states of Alabama and Georgia are a
major source of OC emissions in this region (Li et al., 2023;
Cummins et al., 2023), some of which are represented by
the FLAMBE emission inventory in this work. All the model
sensitivity simulations for OC show good correlation (0.45—
0.60, Fig. S18) but underestimate ground observations with
MB from —1.78 to —1.36 uyg m—3. Model simulated EC con-
centrations also show good correlation (0.45-0.72, Fig. S18)
but underestimate ground observations with MB from —0.28
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to —0.21 ugm~3. For the dust component, correlation ranges
from 0.42-0.72 (Fig. S18) but all the model sensitivity sim-
ulations overestimate ground observations with MB from
0.35-1.53 ug m™3. In contrast, the combined sulfate + nitrate
for all the sensitivity simulations show relatively lower cor-
relation (—0.03 to 0.23) and underestimate ground obser-
vations with MB from —0.71 to —0.35 ugm™>. The nitrate
concentration from ground observations is low in this region
with an average value of 0.198 ug m~> for this month, which
makes it challenging for the model to reproduce such a low
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level. Also due to limited samples used for comparison here,
sulfate and nitrate are combined for evaluation. Overall, the
“mp2cuS” sensitivity simulation (Table 3) yields the best per-
formance.

Figure 15 shows the variability in total and speciated
PM; 5 mass concentration from model simulation mp2cu5
(Table 3) compared with surface observations as well as the
ratio of model simulation to observation. The simulated-to-
observed ratio for dust (1-5.8) exhibits much larger variabil-
ity than other PM> s components (0-2), with model simu-
lation consistently overestimating dust. During this month,
PTA-Atlanta may have been affected by long-range trans-
port of Sahara dust in the model simulation. These biases are
likely due to uncertainties in the MERRA-2 simulated dust
particle size distribution, as also demonstrated by the case
studies over CHN-Beijing and ITA-Rome, motivating future
work to tune the dust particle size distribution of MERRA-2
data for this region. Ratios for other components mostly re-
main below 2. Both sulfate and nitrate aerosols are predomi-
nantly secondary aerosols in the atmosphere, formed through
chemical reactions and are also highly water-soluble, making
them sensitive to uncertainties in the aerosol chemistry and
wet deposition schemes. As discussed earlier, this month ex-
periences some convective precipitation events, which likely
contributes to the uncertainty and large variability in the sim-
ulated speciated PM; 5 concentration.

Although our analysis here is limited to one month and
one PTA, it provides a valuable case study of how the Ul-
WRF-Chem modeling framework simulates speciated PM3 5.
Moreover, previous work by Jin et al. (2024) using the same
UI-WRF-Chem framework demonstrated its broader robust-
ness over the Boston PTA. It illustrated the feasibility of
the MAIA modeling framework for generating L2 and L4
PM products with a full year (2018) of UI-WRF-Chem out-
puts of total and speciated PM> 5 mass concentrations and
showed the correlation of evaluating model total and speci-
ated PM» 5 mass concentrations against ground observations
ranging from 0.40 to 0.73 (Table S1 therein). Together, these
results suggest that while the single-month evaluation such as
the case study here only provides a partial picture of model
performance, the framework has been shown to produce re-
liable and robust results for longer time periods. Future work
will therefore focus on a more comprehensive assessment of
model performance with respect to the PM composition us-
ing longer datasets across different PTAs.

5 Conclusions and discussion

We have developed the Unified Inputs (of initial and bound-
ary conditions) for WRF-Chem (UI-WRF-Chem) modeling
framework as the CTM, to support the MAIA satellite mis-
sion, which aims to study how different types of PM air pol-
lution affect human health. The UI-WRF-Chem outputs in-
cluding meteorology variables as well as total and speciated
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PM concentrations will be integrated together with satellite
and ground-based observations data to generate surface total
and speciated PM maps. Building upon the standard WRF-
Chem model, we have developed new modules and included
major enhancements in the UI-WRF-Chem framework to im-
prove model simulated meteorology variables, PM concen-
tration and AOD. These major developments include: (1) us-
ing NASA GEOS data including GEOS FP and MERRA-
2 data to provide both meteorological and chemical initial
and boundary conditions to drive WRF-Chem simulations at
a finer spatial resolution for both forecasting and reanaly-
sis modes; (2) using a global or regional land data assimi-
lation system (GLDAS or NLDAS) to constrain soil proper-
ties (e.g., soil moisture); (3) updating land surface properties
(land cover type, LAIL, GVF and albedo) with recent avail-
able MODIS land data products; (4) developing a new soil
NO, emission scheme — BDISNP; (5) developing the WEPS
stand-alone module to process both global and regional an-
thropogenic emissions as well as fire emissions.

In this work, we focus on four target areas to demonstrate
the application of the UI-WRF-Chem modeling framework:
CHN-Beijing, ITA-Rome, USA-LosAngeles, and USA-
Atlanta. Each target area is set up with 2 nested domains with
a 12 and 4 km spatial resolution for the outer domain (D1)
and inner domain (D2), respectively. First, we conduct a suite
of sensitivity simulations over each target area to select the
optimal combination of physics schemes used in the model.
We have chosen to turn off the cumulus scheme for the in-
ner domain (D2), since we are using the traditional G3D cu-
mulus scheme, which is not a scale-aware scheme. We in-
vestigate the impacts of cumulus and microphysics schemes
on model performance over the USA-Atlanta target area for
June 2022. Our case study shows that turning on the G3D
cumulus scheme in the inner domain (D2) produces higher
precipitation than the sensitivity simulation with the G3D
scheme off, which in turn leads to lower surface total and
speciated PM, 5 concentrations. Compared with surface ob-
servations of precipitation and PM> 5 concentration, the sen-
sitivity simulation with the G3D scheme off shows better per-
formance than keeping it on. Due to the problem with the
scale-aware GF cumulus scheme in the model (not coupled
to the chemistry), we are not able to fully investigate the im-
pact of a scale-aware scheme on model performance in the
current work. Future work will explore the use of this scale-
aware scheme with longer periods of simulation or across
different target areas.

Both CHN-Beijing and ITA-Rome target areas are affected
by dust long-range transport events. We select two dust intru-
sion events that impacted these two target areas. A dust storm
originated from the Taklamakan and Gobi Deserts around
24 March 2018 and moved downwind to CHN-Beijing from
27 to 28 March 2018. For ITA-Rome, we focus on June
2023, where Saharan dust transported to the target area. For
both target areas, we conduct UI-WRF-Chem sensitivity sim-
ulations with different chemical boundary conditions from
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Figure 15. Box-whisker plots of (a) total and speciated PMj 5 concentrations from UI-WRF-Chem simulation (mp2cu5 in Table 3) and
surface observations from IMPROVE and CSN sites over the inner domain (D2) of PTA-Atlanta for June 2022, and (b) the ratio of model
simulated to observed PM» 5. Speciated PMj 5 include OC, EC, dust and the combined sulfate + nitrate. Also Shown on the boxer plot are
the 5th and 95th percentiles (the whiskers), the interquartile range (the boxes), the median (the black lines) and the mean (the filled circles).
Note on (b), the y axis is truncated between 3.6-5.0 for improved visualization.

MERRA-2 data being considered: no chemical species; in-
cluding dust and other aerosols. Here, we develop a method
to constrain the dust concentration for each size bin in the
MERRA-2 data using AERONET data. We compare the dust
PSD from MERRA-2 data with AERONET observations to
better distribute the dust concentration in different size bins
in the MERRA-2 chemical boundary conditions, based on
long-term datasets. Our results show that including the dust
and other aerosols in the boundary improve model simulated
surface PM concentration and AOD during dust intrusion
events for both target areas, compared to the model run with-
out using MERRA-2 chemical boundary conditions. Using
the constrained dust concentration in the MERRA-2 data fur-
ther improves model performance. This method helps reduce
the computational cost when long-range transport or regional
transport affects a target area. Otherwise, we would need to
add a third nested domain with expanded domain size to
cover the pollution sources such as the dust source region.
Since our work mainly focuses on improving the representa-
tion of the dust size distribution in MERRA-2 data, we recog-
nize that other global models such as CAM-Chem may also
provide useful information for chemical boundary conditions
in different applications. While a comprehensive understand-
ing of how different global models affect WRF-Chem simu-
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lations of special events such as the dust long-range trans-
port, would provide valuable insights to the community, our
work here demonstrates an efficient way for improving the
simulation of dust transport using WRF-Chem.

Updating land surface properties (land cover type, LAI,
GVF and surface albedo) with recent available MODIS land
data improves model simulated TSK compared with MODIS
LST, which is demonstrated over the CHN-Beijing target
area for July 2018. This could help better capture the UHI
phenomenon, which leads to better simulation of processes
that are important for surface PM simulation. For other
PTAs, which have experienced rapid urbanization, updating
land cover type and other land surface properties with re-
cent MODIS land data can be important since the default
datasets used in the standard WRF-Chem model are out-
dated. We also recognize that we have not investigated the
use of an urban canopy model to simulate the UHI effect in
the UI-WRF-Chem framework. The newly updated BDISNP
soil NO, emission scheme improves the simulation of NO3,
which subsequently affects surface nitrate. Evaluated against
TROPOMI NO;, VCD, the updated BDISNP soil NO, emis-
sion scheme increases NO, VCD, mainly over croplands in
CHN-Beijing target area than the simulation using the default
MEGAN soil NO, emission scheme, which is mainly due to
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the application of fertilizer use. Since ground observations
of surface NO,, O3, and PM» 5 concentrations are mostly lo-
cated in urban areas, we acknowledge that our current work
is limited in scope, and additional efforts will be needed to
further evaluate the impacts of this updated BDISNP scheme
in rural areas. Nevertheless, the launch of the GEMS and the
Tropospheric Emissions: Monitoring of Pollution (TEMPO)
(Zoogman et al., 2017) satellites will provide good oppor-
tunities to further refine the BDISNP scheme. The synergy
between MAIA and GEMS/TEMPO will also provide op-
portunities to evaluate both gas and aerosol composition si-
multaneously.

We perform a case study over the USA-LosAngeles target
area, where we tune dust emissions inside the target area.
Southwestern U.S., covering part of the USA-LosAngeles
target area are desert regions, which experience dust out-
breaks. If we use the default dust emission scheme, the model
simulated surface PM and AOD overestimate ground obser-
vations. We conduct sensitivity simulations to fine tune the
parameters in the dust emission scheme as commonly done
in the literature to find the optimal parameter. The case study
over USA-LosAngeles together with other case studies give
an example of the fine-tuning work we are doing as we con-
tinue evaluating and improving model performance.

We also use PTA-Atlanta as an example to demon-
strate how UI-WRF-Chem simulates speciated PM; 5. Over-
all, model simulated daily OC, EC and dust show higher
correlation (0.5, 0.71 and 0.72) while the combined sul-
fate 4 nitrate aerosol concentration shows relatively lower
correlation (0.23), when evaluated against measurements
from IMPROVE and CSN networks. Since our work is based
on only one month of data with precipitation events, the sim-
ulated total and speciated PM; 5 concentrations are subject
to large uncertainty and variability, particularly due to chem-
istry and wet deposition schemes associated with precipita-
tion. As a result, this analysis only provides a partial pic-
ture of the model performance. Nevertheless, previous work
by Jin et al. (2024) demonstrated the robustness of the Ul-
WRF-Chem framework over the Boston PTA, showing its
feasibility for generating MAIA L2 and L4 PM products.
Using a full year (2018) of UI-WRF-Chem outputs, they re-
ported correlations of 0.40-0.73 between simulated and ob-
served total and speciated PM; s (Table S1 in the Supplement
therein).

The MAIA project leverages existing PM monitoring net-
works where available and has deployed additional PM spe-
ciation monitors in PTAs where such data were otherwise
unavailable, including through the Surface Particulate Mat-
ter Network (SPARTAN) (Snider et al., 2015). At the time
of writing, long-term datasets of speciated PMj; 5 from ob-
servations are only available for some PTAs and extended
model outputs are not yet available for all PTAs. We have
since generated extended UI-WRF-Chem model outputs for
each PTA and longer observations of speciated PMj 5 are be-
ing collected. As part of the MAIA satellite mission, these
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expanded UI-WRF-Chem model outputs will enable a more
comprehensive assessment of UI-WRF-Chem model perfor-
mance, especially for speciated PMj 5 across diverse PTAs.
Such evaluation will enhance the robustness of UI-WRF-
Chem for its role in the MAIA satellite mission and provide
valuable insights for simulating PM composition in support
of air quality and public health studies.

Code and data availability. The codes used in this work are
available at: https://doi.org/10.5281/zenodo.15074107 (Zhang,
2025a). WRF-Chem is an open-access model, which is avail-
able at GitHub (WRF-model, 2022). The WRF-Chem pre-
processor tools including mozbc, bio_emiss, anthro_emiss and
EPA_ANTHRO_EMIS are available at: https://www?2.acom.ucar.
edu/wrf-chem/wrf-chem-tools-community (last access: 10 May
2022). Input files for bio_emiss and U.S. EPA NEI 2017 data can
also be acquired from this website. EDGAR-HTAP global anthro-
pogenic emission data are available at: https://edgar.jrc.ec.europa.
eu/dataset_htap_v3 (last access: 1 December 2023). MEIC anthro-
pogenic emission data for China are available at: http://meicmodel.
org.cn/?page_id=1772&lang=en (last access: 1 November 2023).
MODIS and VIIRS data are available at: https://ladsweb.modaps.
eosdis.nasa.gov/ (last access: 15 August 2024); CALIOP data are
downloaded from https://asdc.larc.nasa.gov/project/CALIPSO (last
access: 9 July 2020); MERRA-2, GLDAS, NLDAS, TROPOIMI
and GPM data can be acquired from https://disc.gsfc.nasa.gov/
(last access: 10 November 2024). Both ground observations of
meteorology and PM data for Beijing are available at: https://
quotsoft.net/air/ (last access: 15 November 2023). Ground obser-
vations of meteorology and PM data for Los Angeles as well as
PM data for Atlanta are from https://ags.epa.gov/agqsweb/airdata/
download_files.html (last access: 22 January 2025). Ground ob-
servations of meteorology data for Rome and Atlanta are from
https://www.ncei.noaa.gov/pub/data/noaa/isd-lite/ (last access: 29
November 2024). Speciated PM; 5 data from both IMPROVE and
CSN networks are available at https://views.cira.colostate.edu/fed/
Membership/Login.aspx?ReturnUrl=%2ffed %2fQueryWizard (last
access: 6 August 2025). Ground observations of PM data for Rome
are available from https://search.earthdata.nasa.gov/search (use key
words MAIA PM data) (last access: 18 April 2025). AERONET
data can be downloaded at: https://aeronet.gsfc.nasa.gov/ (last ac-
cess: 18 April 2025). Other datasets that are used and created in
this work are available at: https://doi.org/10.5281/zenodo.15239058
(Zhang, 2025b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-9061-2025-supplement.
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