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Abstract. The weather and climate model ICON (ICOsa-
hedral Nonhydrostatic) is being used in high-resolution cli-
mate simulations, in order to resolve small-scale physical
processes. The envisaged performance for this task is 1 sim-
ulated year per day for a coupled atmosphere–ocean setup
at global 1.2 km resolution. The necessary computing power
for such simulations can only be found on exascale super-
computing systems. The main question we try to answer in
this article is where to find sustained exascale performance,
i.e. which hardware (processor type) is best suited for the
weather and climate model ICON, and consequently how
this performance can be exploited by the model, i.e. what
changes are required in ICON’s software design so as to uti-
lize exascale platforms efficiently. To this end, we present
an overview of the available hardware technologies and a
quantitative analysis of the key performance indicators of the
ICON model on several architectures. It becomes clear that
parallelization based on the decomposition of the spatial do-
main has reached the scaling limits, leading us to conclude
that the performance of a single node is crucial to achieve
both better performance and better energy efficiency. Fur-
thermore, based on the computational intensity of the ex-
amined kernels of the model it is shown that architectures
with higher memory throughput are better suited than those
with high computational peak performance. From a software
engineering perspective, a redesign of ICON from a mono-
lithic to a modular approach is required to address the com-
plexity caused by hardware heterogeneity and new program-
ming models to make ICON suitable for running on such ma-
chines.

1 Introduction

High-performance computing in the early 2020s is reaching a
new era with the availability of the first exascale systems for
scientific simulations (e.g. the first official LINPACK (LIN-
ear system PACKage) exascale system Frontier; see Don-
garra and Geist, 2022, or the first planned European Exas-
cale HPC (high-performance computing) system JUPITER
in Jülich). These computer systems will enable unprece-
dented accuracy in climate research. For example, it will
be possible to calculate ensembles of climate processes over
several decades and on spatial scales of 1 km globally (Ho-
henegger et al., 2023). Such kilometre-scale climate models
offer the potential to transform both science and its appli-
cation, eventually leading to the creation of digital twins of
the Earth (Hoffmann et al., 2023). However, this technology
not only poses a programming challenge for climate science,
namely the development of adapted seamless simulation sys-
tems, but it must also be ensured that the enormous power
consumption of these machines can be utilized efficiently
(Bauer et al., 2021).

The upcoming exascale supercomputers are massively par-
allel processing systems. They consist of several thousands
of nodes, whereby certainly not only x86 architectures will
be used, but also other architectures such as GPU (graph-
ics processing unit), vector, or ARM have to be considered,
as they have all made it to the current TOP500 list (TOP500
list: https://www.top500.org/, last access: 11 February 2025),
e.g. the Supercomputer Fugaku of the RIKEN Center for
Computational Science with the A64FX architecture or the
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Earth Simulator SX-Aurora TSUBASA that uses vector en-
gines (VEs).

The task of efficiently using exascale systems is already
the subject of various research (e.g. in the Exascale Com-
puting Project; see Messina, 2017). Besides a good scal-
ing behaviour, which is given in ICON (ICOsahedral Non-
hydrostatic; Giorgetta et al., 2022), an optimal utilization
of the certain processing units is necessary in order to run
kilometre-scale climate simulations with acceptable perfor-
mance. In Sect. 2 we present a survey of the available hard-
ware technologies and outline software aspects of the ICON
model (Giorgetta et al., 2018; Crueger et al., 2018; Zängl
et al., 2015). Furthermore, by specifying the model configu-
ration and experiment, we determine the scope of our inves-
tigations. The multi-node scalability is explored in Sect. 3,
whereas in Sect. 4 an assessment of the single-node perfor-
mance is given, as we consider this the key to sustained ex-
ascale performance. Section 5 highlights the importance of
energy efficiency as energy consumption becomes a critical
cost factor.

2 Exascale in climate science?

2.1 Hardware perspective

Taking a look at the trend of the top 10 HPC systems in the
TOP500 list, it becomes clear that CPUs (central process-
ing units) alone are no longer sufficient to equip an exas-
cale system. GPU accelerators have dominated the top of the
TOP500 list since 2015 at the latest and are currently the cen-
trepiece of (pre-)exascale systems (i.e. 17 of the 20 fastest
systems). However, since many national weather services in
particular used vector processors and, in some cases still do,
the NEC SX-Aurora vector engine will also be the focus of
the investigations.

It is important to note that the sustained performance of
each architecture depends on the specific workload being ex-
ecuted and the respective implementation of the tasks. Also
note that the most effective architecture depends on the par-
ticular requirements of each application. In general, how-
ever, GPUs are often well-suited for highly parallel work-
loads such as machine learning or scientific applications with
a high degree of parallelization, while CPUs may be more
appropriate for general-purpose computing and applications
with more irregular data access patterns. Specialized archi-
tectures such as NEC SX-Aurora TSUBASA may be op-
timal for specific types of scientific computing workloads
(e.g. bandwidth-limited applications).

We use nodes equipped with AMD EPYC 7763, NVIDIA
A100 SXM4, NEC SX-Aurora TSUBASA VE10AE, or NEC
SX-Aurora TSUBASA VE30A as representative models for
the hardware architectures mentioned above in Table 1. The
hardware characteristics of the different nodes and proces-
sors are listed in Table 2. The GPUs and vector engines are

integrated into CPU host systems. These CPU systems man-
age the respective accelerator. The CPU compute capability
could in theory be used together with the accelerator in a het-
erogeneous fashion. Such heterogeneous computing compli-
cates the programming model, and, in the context of ICON,
this was considered not worth it as the theoretical compute
performance of the accelerator is much higher than that of
the host. However, the host capabilities can be utilized in
ICON by assigning output processes to the host’s CPU. Fur-
thermore, the host is used for reading and processing of the
initial state and setting up the model. In this study, we focus
on the sustained performance of the time integration loop and
ignore the initial phase and output so that we compare only
the accelerator performance.

2.2 Software perspective

Hardware alone does not deliver performance. The software
design of the model must be adapted to the individual hard-
ware of each platform in order to fully exploit its perfor-
mance. A major challenge that comes with heterogeneous
hardware is the variety of different programming models,
which might be used to enable the model to run on the vari-
ous processing units (Fang et al., 2020).

Although a vendor-specific solution will be very efficient,
as NVIDIA reports in Fuhrer (2023), it is tailored to the spe-
cific architecture and is not portable. A community model
like ICON is required to run on different architectures. For
this reason, performance portability across platforms is cru-
cial, and choosing the appropriate programming model be-
comes a difficult task as not all of them support all types
of accelerators. Furthermore, ICON is based on FORTRAN,
which limits the use of possible programming models to
directive-based models such as OpenACC or OpenMP. Ap-
plying programming models with higher levels of abstraction
and therefore higher performance portability, such as Kokkos
(Trott et al., 2022) or SYCL (Rovatsou et al., 2023), would
require a complete rewrite of the code.

2.2.1 ICON’s monolithic code base

The current parallel programming model in ICON is diverse.
Support for distributed-memory parallel systems in ICON
has been implemented using the Message Passing Interface
(MPI; see Message Passing Interface Forum, 2021). Multi-
ple ICON processes run concurrently on multiple nodes, and
each process is assigned a portion of the horizontal domain or
domains if online nesting is used (see Sect. 3). The boundary
information required to solve the differential equations for
each grid point in each local domain is exchanged between
the processes via MPI messages over the network. Besides
the classical domain decomposition via MPI, ICON supports
three additional programming models for parallelizing the
processes themselves. These are shared-memory paralleliza-
tion with OpenMP, automatic or semi-automatic vectoriza-
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Table 1. Different architectures and some of their hardware specialities.

Architecture Specialties

CPUs – General-purpose computing capabilities for a wide range of workloads

– Mature software ecosystem and a wide range of programming languages and tools available

– Large memory capacity and bandwidth

GPUs – Extremely high parallel compute power

– Requires special compilers and language extensions

– Is used in combination with CPUs in a heterogeneous computing architecture

– Supports HBM2 memory for fast data transfer rates

NEC Aurora – Supports high bandwidth memory (HBM2) for fast data transfer rates

– Supports a variety of programming languages and tools

– Requires vendor-specific compiler

– Can be used as a main processor or as an accelerator

Table 2. Hardware characteristics. Theoretical maximum performance metrics of the compared nodes are for a double-precision number for
a full node.

Node configuration 2× AMD 4× NVIDIA 8× NEC SX-Aurora TSUBASA

EPYC 7763 A100 SXM4 VE10AE VE30A

Architecture CPU GPU Vector engine Vector engine
Host CPU – 2× AMD 7713 AMD 7402P AMD 7443P
Number of cores 128 13 824 64 128
Core base clock speed [GHz] 2.450 1.065 1.584 1.600
Max. clock speed [GHz] 3.500 1.410 1.584 1.600
Theor. max. FLOPS [GFLOP s−1] 5018 38 800 19 464 39 322
Type of memory DDR4 HBM2E HBM2 HBM2E
Memory capacity [GB] 512 320 384 768
Theor. max. memory bandwidth [GB s1] 410 8156 10 800 19 600
Node interconnect InfiniBand HDR100G InfiniBand HDR100G InfiniBand HDR100 InfiniBand NDR200
Launch date March 2021 June 2021 February 2018 July 2023

tion enabled by the compiler, and OpenACC for accelerator
devices with discrete memory.

To take advantage of multi-core systems with shared mem-
ory, the OpenMP programming model has been implemented
to enhance the computational performance of each MPI pro-
cess. OpenMP is primarily being used to compute all time-
dependent routines in a thread-parallel manner. In addition,
vendor-specific pragmas have been added to the code to
guide certain compilers, such as the NEC compiler, to the
most efficient vectorization of individual loops. Most of the
pragmas mark loop iterations as independent of each other,
even though the compiler has initially noticed that a code
structure, like index lists, could theoretically imply a loop de-
pendency. Recent efforts have introduced another program-
ming model to ICON to take advantage of the massively par-
allel computing power of accelerators such as GPUs (Gior-
getta et al., 2022). The OpenACC application programming
interface (OpenACC API) was chosen in this regard as it was

the only practical solution to stay close to the original For-
tran code. OpenACC is used to manage the discrete memory
of the accelerator and also to parallelize the ICON computa-
tions. However, loops are parallelized at a lower level in the
ICON call tree with OpenACC compared to OpenMP.

The parallelization methods are not mutually exclusive.
A hybrid approach of MPI and parallelization within each
process is possible. Compiler-assisted vectorization and
OpenMP can also be combined. When combining MPI and
OpenACC, data exchange messages can be sent and received
directly from the dedicated accelerator memory without the
need to copy the data to the host memory first. This requires
an accelerator-aware implementation of MPI. For small prob-
lem sizes and testing purposes, ICON can also be run with-
out MPI. Just OpenMP and OpenACC are currently mutu-
ally exclusive in the ICON code, and the OpenMP target
offloading as defined in the 4.5 and later standards is not
supported in the main code. However, linked libraries could
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in principle be compiled, for example, using OpenMP, and
they can be linked to an OpenACC accelerated binary. Fur-
thermore, different ICON binaries compiled with different
process-specific parallelization methods can be combined us-
ing MPI, as long as all processes use the same MPI library.
The reader is referred to Chap. 8 of Prill et al. (2023) for
more information on the ICON parallelization.

ICON’s software design has so far taken a monolithic ap-
proach. All of the above parallel programming methods have
been implemented in the same source code, and the distinc-
tion between them is made by #if and #ifdef macros
and other directives. Although ICON functionalities are sep-
arated in modules and imported when needed, the extensive
use of rather complex derived data structures throughout the
code mitigates some of the advantages from encapsulation.
Some code is specifically optimized for certain architectures,
guarded by preprocessor macros and augmented with direc-
tives (see Table 3). Apart from the different directives (Ope-
nACC, OpenMP, NEC-Aurora), the loops for the different
architectures are also written in different variants in order to
optimally utilize the different processing units (see left-hand
side of Fig. 1). The latter is a hard requirement for ICON,
since it is meant to be a community tool and shall be able
to run on all upcoming supercomputers. However, this bloats
the code and makes it even more difficult to adapt the model
to new architectures.

To prepare the model for the exascale era of supercomput-
ing systems, ICON is currently undergoing a major refactor-
ing. Given the heterogeneous hardware, performance porta-
bility is crucial. For this purpose, the code base is converted
from a monolithic code into a modularized, scalable, and
flexible code (see right-hand side of Fig. 1).

2.2.2 ICON configuration

A specific model configuration had to be chosen to study the
sustained performance of ICON. From the available options
we chose a configuration based on the operational setup for
numerical weather prediction (NWP) of the Deutscher Wet-
terdienst (DWD). All components of ICON that are used
in this configuration have been ported in a joined effort by
MeteoSwiss, its partners, and DWD to GPU using the Ope-
nACC API (Prill et al., 2023; Osuna and Consortium for
Small-scale Modeling, 2023). These components have also
been optimized for the NEC Aurora, as that is DWD’s opera-
tional machine. The support for CPUs of this configuration is
provided almost naturally, as the CPU mode of ICON is the
foundational Fortran implementation and as the predecessor
of DWD’s current machine was CPU-based.

The climate-oriented ICON-A (ICON atmosphere)
physics package, as used in Giorgetta et al. (2022), can not
be used in this study as not all components are optimized for
performance on the NEC Aurora yet. However, ICON-NWP
and ICON-A use the same dynamical core that uses roughly
half of the runtime and similar data structures and a similar

programming model. Thus we assume that the principle
performance aspects of both physics packages are quite sim-
ilar; therefore we use the NWP package to study hardware
differences that would also apply to the ICON-A package.

In the chosen configuration, ICON runs the non-
hydrostatic dynamical core, a MIRUA-type (Miura, 2007)
horizontal transport scheme with linear reconstruction for
hydrometeors and combination of MIRUA with cubic re-
construction and a flux-form semi-Lagrangian horizontal
advection for water vapour, a piecewise parabolic method
for vertical tracer transport, a prognostic turbulent-kinetic-
energy scheme for turbulent transfer (Raschendorfer, 2001),
TERRA as the land surface model with tiles (Schrodin and
Heise, 2001; Schulz, 2006), a single-moment five-component
microphysics scheme (Doms et al., 2011; Seifert, 2006), a
shallow and deep convection scheme (Tiedtke, 1989; Bech-
told et al., 2008), a sub-grid-scale orographic (SSO) drag
scheme (Lott and Miller, 1997), a non-orographic gravity
wave drag (GWD) scheme (Orr et al., 2010), the ecRad radi-
ation scheme (Hogan and Bozzo, 2018; Rieger et al., 2019),
and other computationally less expensive schemes. Different
time stepping is used for different components. The so-called
fast-physics time step 1t is used for tracer transport; numer-
ical diffusion; and physics parametrizations such as turbu-
lence, TERRA, and microphysics. The convection scheme
is called with 21t . SSO and GWD parametrizations are
called with 41t . Radiation is called with 61t . The less fre-
quent calling frequencies reflect the relatively slower chang-
ing rates of the parameterized processes. However, the dy-
namical core is called at usually five sub-steps of the fast time
step 1t , and the number of sub-steps is increased automati-
cally to adapt for rare cases of very large orographic waves.
Such waves would otherwise be numerically unstable.

Besides a lower calling frequency, the cost of the radia-
tion scheme is further reduced by computing the radiation
on a horizontal grid of reduced resolution. The reduced grid
has twice the grid spacing of the original grid, and the grid
points are redistributed over the MPI processes so that they
are balanced evenly in the longitudinal and latitudinal direc-
tion. This means each process computes a similar number of
daytime and night-time grid points as well as a similar num-
ber of winter and summer points.

The ICON model is set up globally, and the horizontal res-
olution determines 1t . 1t is set to 6 and 3 min for grids with
a grid spacing of 40 km (R2B6) and 20 km (R2B7), respec-
tively. The model is configured with 90 levels in the vertical
for all horizontal resolutions. The model is initialized with
non-idealized data from the NWP data assimilation cycle.
The data assimilation was run directly for the target grid so
that no initial interpolation or extrapolation of the data is re-
quired.

ICON offers a two-way nesting option to study selected
regions at a higher spatial resolution. The nesting uses an ad-
ditional horizontal domain that has half the grid spacing of
global grid and that is limited in space. The nest is informed
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Table 3. Number of directives used for different architectures and conditions using them in ICON.

NEC directives OpenMP directives OpenACC directives

Number of directives 800 5750 15 100
Macro conditions using them 200 150 75

Figure 1. Left-hand side: visualization of ICON’s monolithic software design (e.g. illustrated for Dycore and Radiationwith specifically
optimized code for OpenMP, OpenACC, and NEC Aurora). Right-hand side: visualization of the new ICON-Consolidated (ICON-C) software
design. The model consists of multiple encapsulated modules, and each module can be independently ported to new architectures, using
different programming paradigms. A well-defined interface should integrate the individual modules together into the main time loop.

from the global domain at its boundaries and feeds back in its
interior after doing two integrations of length 1t/2. The con-
vection and SSO schemes are also called twice as often as on
the global domain; however the stepping of GWD and ecRad
remains unchanged. In the vertical, the nest is limited to the
lower 60 levels of the global domain, and the initial boundary
conditions at the nest top are derived from the global domain
as described by Zängl et al. (2022).

The reader is referred to Chap. 3 of Prill et al. (2023) for
further details on the ICON NWP model.

The experiments of this study are based on the code
of the 2.6.6 release candidate of ICON. Specifically the
f1a815e27c git commit was used initially, but that version
is indistinguishable from the 2.6.6 release in terms of the re-
ported performance. The performance has not changed in the
commit 7cc6511e76 of the 2.6.7 release candidate, and the
7cc6511e76 version was also used as adoptions were neces-
sary due to updates of the HPC software stacks. The ICON
binary used in Sect. 3 for benchmarking the GPU has been
compiled with code inlining enabled.

3 Multi-node scaling

Multi-node parallelization in ICON is based on spatial de-
composition in the latitude–longitude domain. This imposes
scaling limits in both strong scaling and weak scaling. In this

section we discuss the scaling of the entire time loop on dif-
ferent hardware architectures. This discussion will demon-
strate the influence of the application scope, such as domain
size and time-to-solution constraints, on the choice of the
most suitable hardware.

The scaling of ICON is assessed using an experiment se-
ries that is based on the numerical weather prediction (NWP)
physics package of ICON. The NWP physics is well-suited
for kilometre-scale simulations and has been adopted for all
three hardware architectures. The scaling of this test exper-
iment shows the same basic scaling characteristics as dis-
cussed in Giorgetta et al. (2022) for a climate simulation ori-
ented experiment. This means that ICON can be scaled well
over multiple nodes by increasing the horizontal resolution.
The wall clock time per model time step is almost constant
as long as the number of grid cells per node is kept constant.
Such fine weak scaling is observed for CPU, GPU, and vec-
tor systems. It should be noted, however, that a doubling of
the horizontal grid resolution requires a doubling of the num-
ber of time steps according to the Courant–Friedrichs–Lewy
condition.
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Strong-scaling limits, on the other hand, set an upper
boundary on the maximum throughput that can be achieved
on a particular architecture when using high numbers of
nodes. ICON’s strong scaling is analysed in the following us-
ing an R2B7 global grid (20 km global horizontal grid spac-
ing, 1 310 720 cells) and a regional grid in the nested domain
(10 km spacing, 212 760 cells). This resolution is chosen so
that MPI communication is required on all architectures as
ICON requires more memory than available in a single GPU
or vector engine.

For any given number of compute units, the latest NEC
VE30A computes the solution the fastest (Fig. 2). However,
when comparing among the older generation of hardware,
and if a smaller number of nodes is sufficient to run a simu-
lation in a given time limit (typical case for NWP ensemble
predictions), then NVIDIA’s A100 outperforms the VE10AE
and EPYC 7763. In climate applications however, long peri-
ods are simulated. Here, the fastest time to solution or high-
est SDPD (simulated days per day) matters. Among the older
generation of hardware, the VE10AE performs best, with up
to 256 vector engines. The CPU system can outperform the
VE10AE only slightly when using 1024 CPU sockets; how-
ever such a setup would be much more costly in terms of
hardware and power.

The strong-scaling limit can be explained by the number
of cells computed by each compute process. When more and
more nodes are used for the same problem sizes, the num-
ber of cells per compute process decreases. In a nested setup
the size of global as well as the nest domain matters as both
domains are distributed equally over all compute processes.
As the nest is about 8 times smaller than the global domain,
the number of nest cells per compute process limits the scal-
ing for the nested setup. Therefore, the performance degrades
earlier with nesting than without nesting. For example, the
GPU setup without nesting does gain very little speedup
when using more than 64 GPUs. With 64 GPUs there are
on average 20480 prognostic cells per GPU (Fig. 3). This
means that each of the 3456 double processing units on an
A100 handles only no more than 6 cells a horizontal loop/k-
ernel over all cells. With even more GPUs, there is less com-
putation within each kernel that could hide memory access
latency. A similar argument can be made for the VE10AE
vector engines which saturate at about 512 VEs. In that case
there are about 320 cells per process. This hardly fills the
vector length of 256 more than once. The peak throughput of
the VE30A system is at about 250 VEs, which relates to the
same ratio of number of cells to vector length as the VE30A
has twice as many vector units as the VE10AE but also runs
twice as many MPI processes.

Almost perfect scaling can be seen for all architectures
when just a few nodes are used. The GPU setup scales well
up to 8 GPUs with and without nesting. The vector engine
setup scales well at 16 and 32 vector engines with and with-
out nesting, respectively. The CPU setup scales well up to
32 CPU sockets with nesting and 128 CPU sockets with-

out nesting. These results are transferable to other resolution
by scaling the number of resources linearly with the number
of grid cells due to the good weak scaling of ICON (Gior-
getta et al., 2022). The total running time of MPI-parallel
programs mainly consists of the time for calculations and
the MPI communication overhead. Furthermore, the time for
computations is affected by workload imbalance. With in-
creasing number of nodes the overhead is increased, which
means that both strong scaling and weak scaling have limits
(Neumann et al., 2019). Thus, overall performance improve-
ments can be achieved by single-node optimizations.

4 Single-node performance

The investigation of the single-node performance is based on
the architectures with their theoretical performance metrics
as described in Sect. 2.1. The investigation will be divided
into two parts. First, the results of the LINPACK and HPCG
(High Performance Conjugate Gradients) benchmarks will
be compared, and the performance of characteristic numer-
ical kernels of the climate code ICON on the different ar-
chitectures will be examined subsequently. The purpose is
to compare the difference between the promised theoretical
performance benefit of an architecture and the actual perfor-
mance gain in a real application.

The performance evaluation is based on the roofline model
(Williams et al., 2009). The roofline model often serves as
a visual method for evaluating the performance of high-
performance computing systems. The model uses the peak
floating-point performance (or arithmetic performance) and
the peak memory bandwidth of the hardware as boundaries.
The achieved compute performance and compute intensity of
an application are set in relation with its theoretical bounds.
The roofline model helps to recognize hardware limits and
to determine if an application is compute bound or mem-
ory bound. The horizontal axis represents compute intensity
(FLOP / byte), and the vertical axis shows performance in
FLOP s−1. The bandwidth limit of the hardware is calcu-
lated as the product of the architectures peak memory band-
width and the operational intensity, serving as an upper per-
formance bound for memory-bound applications. The hori-
zontal ceiling of the roofline model is given by the theoret-
ical maximum computing power. For the slanted bandwidth
limit, we use both the theoretical limit and the value of the
stream benchmark (see Fig. 5).

For the measurements, the executables are generated with
different compilers and compiler options. Compilers and op-
tions are selected in such a way that the best possible perfor-
mance is achieved on one full node for each specific hard-
ware. Table 4 shows the possible compilers for the respective
architecture, the selected compilers are marked with an as-
terisk.
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Figure 2. Strong scaling. Based on runs with global domain (R2B7, 20 km grid spacing with 1 310 720 cells) without nesting and runs
with the global and a nested domain (10 km, 212 760 cells). Time step: 2 min, radiation (ecRad) called every 16 min on a globally balanced
horizontally reduced grid.

Figure 3. Number of ICON grid cells in each domain per MPI process. Each NVIDIA A100 accelerates 1 process with its 3456 double-
precision processing units. The NEC VE10AE and VE30A run 8 and 16 processes per engines, respectively, and each process uses 1 core
with a vector length of 256. Each AMD EPYC 7763 socket runs 16 MPI processes with 8 OMP threads each using hyper-threading in
configurations with less than 512 sockets and 8 MPI processes with 8 OMP threads each in the 512- and 1024-socket configurations (no
hyper-threading).

Table 4. Compiler architecture matrix: the asterisks mark the choice
with the best performance.

ifort gcc crayftn nec pgfortran nvfortran

CPU X* X X X
GPU X X*
NEC X*

4.1 HPL and HPCG

The configurations for the HPL (high-performance LIN-
PACK) and HPCG tests performed on the various architec-
tures are shown in Table 5.

The NVIDIA HPC-Benchmark 21.4 containers were used
to perform the HPL and HPCG benchmarks on a GPU node.
The scripts hpl.sh and hpcg.sh had to be adjusted within
the containers to make both run efficiently on a full GPU
node. The results are summarized in Table 6.
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Table 5. Settings of HPL and HPCG tests. T/V : wall time / encoded
variant. N : order of the coefficient matrix A. NB: partitioning
blocking factor. P : number of process rows. Q: number of process
columns.

HPL T/V N NB P Q

CPU WR00L2L2 114 688 128 8 16
GPU WR00L2L2 131 072 288 2 2
VE10AE WR13R4R16 207 132 246 2 8
VE30A WR13R4R16 292 986 246 2 16

HPCG Domain Process grid Duration [s]

CPU 128 × 128 × 128 8 × 4 × 4 1800
GPU 256 × 256 × 256 2 × 2 × 1 1800
VE10AE 384 × 576 × 1504 4 × 4 × 4 1800
VE30A 768 × 576 × 1504 8 × 4 × 4 1800

A huge performance difference between HPL and HPCG
is obvious (see Table 6). The performance loss on the CPU
is a factor of 77, on the GPU it is a factor of 33.61, and on
the NEC VE10AE it is a factor of 18.1 (VE30A: 16.9). These
measurements and the observed efficiencies are in line with a
comparison based on single devices (Takahashi et al., 2023).
The performance difference between HPL and HPCG shows
the impact of irregular memory access patterns that are used
in the HPCG benchmark. It should also be noted that the HPL
benchmark simply aims to measure the maximum floating-
point execution rate of the architecture by solving a dense
system of linear equations, whereas the HPCG benchmark
uses sparse matrix–vector multiplication. The memory ac-
cess patterns of many real-world applications like the climate
and weather prediction model ICON come closer to the pat-
tern of the HPCG benchmark. This will be further confirmed
in the measurements in Sect. 4.2.2.

4.2 Principle analysis of ICON kernels on different
HPC architectures

Section 3 assesses the strong scaling of ICON on multiple
nodes. The experiments revealed that GPUs potentially per-
form better and result in lower runtimes, compared to hard-
ware of the same age, as long as the parallel capabilities of
the GPUs can be fully exploited, i.e. as long as there are
enough grid cells per MPI process. In this section, we want
to answer the question of how much the architectures exploit
their potential in the single-node case and which performance
characteristics such as bandwidth or compute intensity are
responsible for the performance. For this we use the roofline
model, which is a fairly simple but often very suitable per-
formance model for HPC systems and associated software.

4.2.1 Measurements

CPU

The measurements are performed with LIKWID (Treibig
et al., 2010), although it was only used to read
the corresponding hardware counters. The ICON timers
were used for the runtime measurements and the met-
rics were calculated accordingly. For the FLOPS, the
RETIRED_SSE_AVX_FLOPS_ALL event of the perfor-
mance monitoring counter (PMC) was measured, and
the FLOPS were calculated as described in the per-
formance group FLOPS_DP. For the bandwidth, the
DRAM_CHANNEL_0:7 event of the DFC (data frequency
counter) was summarized and the bandwidth calculated as
described in the groups MEM1 or MEM2. Note that the mem-
ory measurements of the DRAM channels 1–7 required two
different runs, as there are only four channels to measure
the counters on. For the compute intensity, the quotient of
FLOPS and memory bandwidth was used. The ICON bi-
nary was built using the Intel® Fortran Compiler 2021.5.0
20211109 with the performance optimization flag -O3. The
application runs with hybrid MPI and OpenMP. A small pa-
rameter study showed the best performance for 32 MPI ranks
with 4 OpenMP processes each and a nproma value of 8.
The value of the runtime tuning the nproma parameter rep-
resents a blocking length for array dimensioning and ideally
achieves better memory access (cache blocking). It is there-
fore dependent on the architecture, and a typical value for
the AMD CPU used in this study is 8; for vector processors
it depends on the length of the vector registers and is much
larger. Multithreading was disabled for better performance,
and the tasks were distributed across the cores using SLURM
via plane distribution. The plane size was also 8. The stream
benchmark for the roofline ceiling resulted in a value of about
340 GB s−1 for the triad benchmark.

GPU

To evaluate the performance of the A100 GPUs, two
NVIDIA tools are used, Nsight Systems and Nsight Com-
pute. Nsight Systems reports which kernels are launched
in which ICON timer region (see also Fig. 4). Typically,
multiple kernels are launched within even small timer re-
gions, but the actual kernel computations do not necessarily
end (or even start) in a given timer region as most kernels
are launched asynchronously. The assignment of kernels to
timers, their ratio compared to the overall kernel computa-
tion of kernels launched in that interval, and the overall timer
duration itself are obtained from the Nsight System profile.

The performance and computational intensity of each indi-
vidual kernel are obtained by a second run with Nsight Com-
pute. Since the overhead to a normal experiment run is quite
substantial, and the current setup requires a single GPU run
at the moment, only the first invocation of each kernel is in-
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Table 6. Results of HPL and HPCG benchmarks in TFLOP s−1.

Benchmark CPU GPU VE10AE VE30A
[TFLOP s−1] [TFLOP s−1] [TFLOP s−1] [TFLOP s−1]

HPL 3.08 37.98 17.78 35.32
HPCG 0.04 1.13 0.98 2.09

vestigated. It is also assumed that the computation paths and
number of data for all other invocations are comparable.

For each investigated timer, the kernel performance is re-
lated to the duration from the first kernel start to the last ker-
nel end of all kernels launched in that timer region. The com-
puted GPU compute intensity does not include the time loss
due to the first kernel launch overhead. Using B1 from Fig. 4
as an example, this is the difference between the start of K31
and the start of B1.

Vector engine

For the NEC SX-Aurora TSUBASA, ICON has been used
in a “hybrid MPI” mode with initialization and I/O processes
running on the x86 vector host CPU, while the computational
processes were launched on the vector engines (VEs). The
VE executable has been built using NEC MPI 3.5.0 and NEC
compilers 5.1.0; OpenMP has not been enabled.

Performance data for the experiment
ICON_09_R2B6N7_oper_EPS_noIAU have been
collected from jobs using eight VEs (8 cores each) with an
nproma value of 752. NEC’s performance analysis tool
ftrace can provide data like computational performance
or byte / FLOP ratios for a whole program or specific code
regions.

It should be noted that the number of floating point opera-
tions reported by ftrace differs from the numbers reported
by LIKWID or Nsight if conditional code is involved: for a
loop containing an IF/ELSE construct, the vector processor
executes both branches for all iterations and uses a logical
mask to assign only the necessary results to the respective
variable; i.e. more floating point operations than necessary
are executed, and this number is used by ftrace to calcu-
late, for example, the performance in FLOP s−1. As the time
used in this calculation is the sum of the time to calculate the
necessary results and the time to calculate the unused results,
we assume that the FLOP s−1 numbers shown by ftrace
are also representative of the necessary part only and there-
fore can be used in comparison to results from other tools that
only use the number of necessary floating point operations.

4.2.2 Single-node comparison of the architectures

In this section we will analyse typical ICON components
using the roofline model. The ICON kernels under con-
sideration are the non-hydrostatic solver (nh_solve), the
radiation (nwp_radiation), and the transport schemes

(transport). Figure 5a shows the achieved computational
performance (in GFLOP s−1) together with the arithmetic in-
tensity (in flop / byte) for these kernels and the same data
for the HPCG benchmark (Dongarra et al., 2016) on the dif-
ferent processor types. With a considerably low arithmetic
intensity, all of the data points are situated in the area be-
low the bandwidth ceiling of all processor types (the solid
diagonal lines show the theoretical maximum memory band-
width, and the dashed lines show the bandwidth of the triad
operation of the STREAM benchmark (McCalpin, 1995) for
each architecture). This means that the possible maximum
performance of the kernels is limited by the memory ac-
cesses inherent to the used algorithms, not by the theoret-
ical peak computational performance of the processor. The
very similar performance of the HPCG benchmark (which is
intended to test the effect of memory limitations on compu-
tational performance) further corroborates this. It should be
noted that the HPCG benchmark’s performance is based on
the value calculated in the benchmark and not the measured
value as described above for the ICON kernels. The achieved
computational performance is close to the respective band-
width ceiling for all architectures, which means that there
is little potential for further optimization in these code parts
(see Sect. 2.2.1 for a discussion of code adaptations for the
different architectures).

Yet it is to be noted that none of the analysed kernels sat-
urates the theoretical memory bandwidth limit given their
arithmetic intensity, and most of the kernels do not even quite
reach the benchmarked memory bandwidth bound. This can
be explained partly by the fact that the memory access pat-
terns of the respective algorithms are not ideal. Variables
in ICON are stored in contiguous memory for each phys-
ical quantity. Most operators use multiple variables which
leads to jumps in memory access. Cache misses are even
more frequent in operators that operate on horizontal neigh-
bours. As ICON uses an unstructured icosahedral grid, hor-
izontal neighbour relations cannot be exploited in the mem-
ory layout. Despite that, the achievable performance would
still benefit from a higher peak memory bandwidth of the
architecture of course. Another reason is that due to the de-
composition of the simulation domain, each of these large
code regions contains a certain amount of MPI communica-
tion, which reduces the arithmetic intensity. To separate its
influence on the performance data shown in Fig. 5a from
the computational performance, Figs. 5b and 6b show the
performance and arithmetic intensity for sub-regions of the
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Figure 4. Exemplary output of Nsight showing kernel activity in the upper row, CUDA kernel launches in the second row, and custom timer
regions in the bottom row. To evaluate the GPU performance in one region like B1, the respective kernel performances within that region are
obtained by all kernel performances of kernels launches in that region (e.g. kernels K31 and K41).

Figure 5. Roofline model for selected ICON kernels and HPCG benchmark (a) and the ICON kernels below solve_nh (b) in a single-node
comparison. The dashed lines represent the memory bandwidth (triad) calculated with the STREAM benchmark.

nh_solve and transport kernels, which do not contain
as much communication, so with this communication time
partially excluded, both values are higher for the nh_solve
sub-kernels, but their computational intensity still character-
izes them as memory bound (Fig. 5b).

This can also be seen in Fig. 6b where the vertical advec-
tion flux calculation (adv_vflux) demonstrates better per-
formance than the horizontal one (adv_hflx) as the hori-
zontal advection code still includes some MPI communica-

tion. We observe that the position of (adv_vflux) is further
to the right and therefore higher on the plot. This analysis un-
derscores the importance of fast memory access in enhancing
the performance of these kernels. The transport kernel
comprises both adv_vflux and adv_hflux and is also
affected by the MPI communication.

The roofline plot shown in Fig. 6a reveals that the
nwp_radiation (ecRad) kernel exhibits very low perfor-
mance, being still far away from the bandwidth ceiling. This
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is possibly due to factors like different loop ordering or vec-
tor lengths. The CPU performs relatively well for its limits
compared to the strong under-performance of the GPU and
the VE.

In all rooflines we see that GPUs and VE30A have the
highest peak performance ceiling. However this cannot be
utilized because of the low computational intensity of the
ICON kernels. The hardware with the highest memory band-
width is the NEC, as seen by the corresponding ceiling in the
roofline, and all kernels on this architecture show the best
actual compute performance. The same holds for the dif-
ferent parts inside the kernels. This is highlighting that for
ICON, maximum bandwidth limit is more crucial than com-
putational peak performance.

To fully exploit the A100 memory bandwidth, the num-
ber of parallel computations, basically the number of grid
points, has to be multiple of the number of available process-
ing units. The streaming multiprocessor can hide memory ac-
cess latency by swiftly switching the stream from one that is
waiting for input to another that is ready for computation;
this effectively was also evident in Sect. 3.

Overall this means that the ICON software offers too few
calculations compared to the necessary data transfers; there-
fore the computational power of the processing units can-
not be exploited in an optimal way. The speedup over the
CPU observed in GPUs for many of the investigated kernels
is therefore mostly to be attributed more to high bandwidth
memory (HBM) than computational peak performance. Due
to this, the actual speedup for the ICON kernels falls short
of what would have been expected from the theoretical per-
formance values or the results of the HPL benchmarks (see
Table 6). It is important to recognize that we can also achieve
better performance by raising the achieved compute inten-
sity, which is primarily software-driven and varies with code
porting to a specific hardware.

5 Outlook

ICON is not the only model that is currently on the way
to using current and upcoming Exascale systems for high-
resolution simulations. The simple cloud-resolving E3SM at-
mosphere model for example achieved a performance of 1.26
simulated years per day (SYPD), running a setup with a hori-
zontal resolution of 3.25 km and 128 vertical levels on the en-
tire Frontier system (no. 1 in the current TOP500 list (https:
//top500.org/lists/top500/list/2023/11/, last access: 11 Febru-
ary 2025); see Taylor et al., 2023). Frontier is the only ex-
aflop system in the TOP500 list. It delivers a theoretical peak
performance (Rpeak) of 1.7 EFLOP s−1, and the maximal
LINPACK performance (Rmax) is at 1.19 EFLOP s−1. How-
ever, the power consumption is at 22.7 MW.

For ICON within Destination Earth, the situation is simi-
lar. Running a coupled atmosphere–ocean setup with a hori-
zontal resolution of 5 km and 90 vertical levels on 158 GPU

nodes of the LUMI system results in a throughput of about
100 simulated days per day. LUMI is the first European sys-
tem in the pre-exascale era and delivers a theoretical peak
performance of 0.53 EFLOP s−1 and a maximum LINPACK
performance of 0.38 EFLOP s−1 at a power consumption of
7.1 MW. The above figures show that with the current setup,
1 SYPD at 5 km resolution is still achievable on a fraction of
LUMI (estimated 580 nodes), while for the 2.5 km setup fur-
ther optimizations may be needed, as halving the horizontal
resolution results in an 8-fold increase in resources.

Based on our principal analysis of the ICON kernels and
the fact that ICON is memory bound, one can estimate that
a global coupled atmosphere–ocean simulation using ICON
at 1 km resolution and 1 SYPD performance would certainly
also require almost the full scale of future exaflop supercom-
puters. This means that energy efficiency becomes a crucial
aspect, both in terms of making the costs of such simulations
affordable and in terms of the carbon footprint.

While it is undisputed that GPU-based systems are very
well-suited for dense computing and, in particular, machine
learning applications, the tide is turning for sparse comput-
ing. This can be seen to some extent in the HPCG list, where
systems such as Fugaku or SX-Aurora TSUBASA-based ma-
chines occupy top positions – even if the associated energy
consumption is unfortunately not specified. Figure 7 shows
a comparison of the power efficiency of ICON on two such
architectures, a system equipped with NVIDIA A100 GPUs
and a NEC Aurora system. The x axis shows the time re-
quired for a simulated day in seconds, while the y axis shows
the energy required in watt hours (W h) per simulated day.

When the number of processing units (GPUs or vector
engines) used is between 6 and 16, which is the case in
low-resolution simulations, then the ratio of energy to per-
formance is better on GPUs (see the right part of Fig. 7).
This observation changes by almost a factor of 2 when us-
ing the latest VE30A system, but an adequate comparison
should then be drawn to the latest Nvidia Hopper system.
However, when the number of computing units exceeds 64,
it is on the one hand remarkable how exponentially the en-
ergy consumption increases. On the other hand, it shows that
an architecture that is suitable for the problem (in this case
the NEC Aurora system) outperforms the prevailing opinion
on GPUs in terms of energy efficiency.

High-resolution climate simulations at the 1 km scale will
in any case require significant high-performance computing
resources. Energy efficiency will be a key concern to ensure
that resource utilization does not lead to exorbitant energy
consumption. This means that future work should look not
only at runtime but also at energy metrics such as energy to
solution. The ICON model, with its various computational
kernels, is primarily memory bound as shown, but the per-
formance benefits of graphics processing units (GPUs) and
vector processing systems vary significantly between differ-
ent kernels. And in some cases (when, for example, memory
access is highly scattered), even a CPU-based implementa-
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Figure 6. Roofline model for the ICON kernel nwp_radiation (a) and the kernels adv_hflx and adv_vlfx of the transport
scheme (b) in a single-node comparison. The dashed lines represent the memory bandwidth (triad) calculated with STREAM benchmark.

Figure 7. Throughput and energy used for time loop. Global R2B7
with nest. Electrical power reported by nvidia-smi (NVIDIA)
and veda-smi and vecmd (NEC), both excluding the host CPU.

tion (possibly relying on HBM) might outperform the rest.
For this reason, ARM architectures (such as the A64FX or
Neoverse) will increasingly have to be analysed for their suit-
ability for ICON in the future. This variance underscores the
importance of code refactoring, a process that is critical to
optimizing resource allocation. By disentangling code, it is
possible to achieve a more flexible and efficient use of HPC
resources, balancing the need for computational power with
the need for energy efficiency.

6 Conclusions

From Sect. 2 we conclude that the monolithic software de-
sign of ICON is poorly suited to the variety of heterogeneous
architectures that exist in modern high-performance com-
puting systems. Even the portability of individual code seg-
ments to all possible architectures has been practically diffi-
cult to achieve. This limitation underlines the importance of
code modularization, which is being addressed, for example,
in the WarmWorld project (see https://www.warmworld.de/,
last access: 11 February 2025).

In Sect. 3, it becomes evident that the scalability of ICON
on various architectures encounters a limit relatively early.
Merely adding more processing units (PUs) as a “brute
force” approach fails to significantly enhance speedup, lead-
ing to a point where there are too few cells per PU. This
necessitates extracting more from single-node performance,
as simply increasing the number of nodes also constitutes
energy waste if the performance of each single node is not
optimally utilized. From the multi-node scaling analysis we
can conclude furthermore that VE30 computes the solution
the fastest. The NVIDIA A100 is faster than VE10, as long
as there are enough grid cells per MPI task. The GPU and
both of the vector engine architectures show an expected
speedup compared to the CPUs. However, not all compo-
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nents of ICON are ported to OpenACC or optimized for vec-
tor architectures yet.

The single-node investigations in Sect. 4 show a clear drop
in maximum performance from the theoretical manufacturer
specifications to the HPL benchmark, the HPCG benchmark,
and the ICON kernels, respectively. The measurements and
the comparison with the performance achieved in the HPCG
benchmark indicate that this benchmark is a far more rep-
resentative way of assessing the achievable performance for
ICON on an HPC system than, for example, the HPL. This
means that looking at the exascale systems on the TOP500
list does not show any suitable system for exascale perfor-
mance with ICON yet. Since the computational peak per-
formance limit is still far away given the compute intensity
in the single-node measurements, it is reasonable to assume
that ICON benefits more from architectures that enable more
throughput and less from architectures that benefit from a
strong computational peak performance alone.

Finally, the energy efficiency of individual HPC systems
for the ICON kernels under consideration also supports this
observation. Since the main requirement is not computational
power but memory bandwidth, GPU systems are often not
necessarily the most energy efficient solution for the ICON
model, contrary to the usual trends in the Green500.
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