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Abstract. Projections of future climate are key to soci-
ety’s adaptation and mitigation plans in response to climate
change. Numerical climate models provide projections, but
the large dispersion between them makes future climate very
uncertain. To refine them, approaches called observational
constraints (OCs) have been developed. They constrain an
ensemble of climate projections using some real-world ob-
servations. However, there are many difficulties in dealing
with the large literature on OC: the methods are diverse,
the mathematical formulation and underlying assumptions
are not always clear, and the methods are often limited to
the use of the observations of only one variable. To ad-
dress these challenges, this article proposes a new statisti-
cal model called ClimLocol.0, which stands for “CLimate
variable confidence Interval of Multivariate Linear Observa-
tional COnstraint”. It describes, in a rigorous way, the confi-
dence interval of a projected variable (its best guess associ-
ated with an uncertainty at a confidence level) obtained us-
ing a multivariate linear OC. The article is built up in in-
creasing complexity by expressing three different cases —
the last one being ClimLocol.0, the confidence interval of
a projected variable: unconstrained, constrained by multiple
real-world observations assumed to be noiseless, and con-
strained by multiple real-world observations assumed to be
noisy. ClimLocol.0 thus accounts for observational noise
(instrumental error and climate-internal variability), which
is sometimes neglected in the literature but is important as
it reduces the impact of the OC. Furthermore, ClimLoco1.0
accounts for uncertainty rigorously by taking into account
the quality of the estimators, which depends, for example,
on the number of climate models considered. In addition to
providing an interpretation of the mathematical results, this

article proposes graphical interpretations based on synthetic
data. ClimLocol.0 is compared to some methods from the
literature at the end of the article and is used in a real case
study in the appendix.

1 Introduction

Numerical climate models are no exception to the often
quoted statement “all models are wrong, but some are use-
ful” from Box (1976). Indeed, their climate projections
(simulated responses to a scenario of greenhouse gas and
aerosol emissions) are useful to assess future climate change,
but they vary widely from one climate model to another
(e.g. Fig. 4.2 in IPCC in: Lee et al., 2021; Bellomo et al.,
2021). There are now several dozen climate models around
the world.

To assess the future value of a climate variable, such as
global temperature in 2100, a traditional approach is to ex-
amine the distribution of projections of the variable simu-
lated by an ensemble of climate models. The climate vari-
able projected by climate models is hereafter referred to as
the projected variable. The mean and standard deviation,
which characterise the distribution of the projected variable,
are usually used to define the so-called best guess and uncer-
tainty of the projected variable, respectively (Collins et al.,
2013). However, this uncertainty is generally high, and the
best guess may be biased. To incorporate knowledge of real-
world observations, statistical methods called observational
constraints (OCs) or emergent constraints (Brunner et al.,
2020a; O’Reilly et al., 2024) examine the distribution of the
projected variable given real-world observations of an ob-
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servable variable to obtain a constrained distribution. Such
OC approaches are now used in the reports of the Inter-
governmental Panel on Climate Change (IPCC) from 2021.
They have huge implications for our society. The literature
on OC methods is flourishing, but there are many difficulties
in using them.

Firstly, the large number of existing OC methods makes
it very difficult to choose one. Some methods average the
projections of climate models, with weights that depend on
the ability of the models to reproduce real-world observa-
tions of a given observable variable (Brunner et al., 2020;
Giorgi and Mearns, 2002; Olson et al., 2018). Some methods
use climate models to learn a relationship between the pro-
jected variable and a related observable variable and use this
relationship and a real-world observation of that observable
variable to predict the value of the projected variable. This
relationship may be linear (Cox et al., 2018; Weijer et al.,
2020; Bracegirdle and Stephenson, 2012; Karpechko et al.,
2013) or non-linear (Schlund et al., 2020; Li et al., 2021;
Forzieri et al., 2021). Other methods statistically provide the
constrained distribution as the probability density function of
the projected variable given the real-world observation of an
observable variable (Bowman et al., 2018; Ribes et al., 2021).
This diversity illustrates the lack of consensus on which ap-
proach to use. Methods are developed individually and need
to be compared to better understand their differences and
similarities, as done, for example, in Brunner et al. (2020a).

Secondly, the approaches and assumptions used to com-
pute the constrained distribution can vary widely between ar-
ticles and are not always reported. For example, their calcula-
tion does not always take into account the instrumental error
associated with the real-world observation. Some papers pro-
vide clarification, e.g. Williamson and Sansom (2019), which
proposed a comprehensive review of the underlying assump-
tions and uncertainty calculation in OC methods based on
linear regression. However, some elements are still missing
from the literature. For example, the terms “very likely”, “un-
likely” etc. used by the IPCC (Mastrandrea et al., 2011) come
from an underlying statistical model that provides a confi-
dence interval, i.e. an interval that contains the projected
variable value with a given confidence level. OC methods
rarely use or describe a confidence interval. There is there-
fore a need for a proper statistical description of the theoret-
ical basis of OCs, including confidence intervals, and a full
description of the underlying statistical assumptions (Hegerl
et al., 2021).

Thirdly, OC articles often use a univariate framework,
i.e. they constrain the projected variable using only one ob-
servable variable. This may be surprising given the complex-
ity of the climate system, which suggests that the spread
between climate model projections may be related to mul-
tiple processes. For example, Cox et al. (2018) constrained
the equilibrium climate sensitivity (ECS) using a measure
of temperature variability. A few studies, particularly those
using non-linear regression, employed a multivariate frame-
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work, but these are still rare. For example, Schlund et al.
(2020) constrained future spatio-temporal gross primary pro-
duction (GPP) by past spatio-temporal GPP and temperature.

To address these challenges, this article proposes a sta-
tistical model called ClimLocol.0, which stands for “CLi-
mate variable confidence Interval of Multivariate Linear Ob-
servational COnstraint”. ClimLocol.0 expresses the confi-
dence interval of a climate variable constrained using a lin-
ear multivariate observational constraint that takes into ac-
count observational noise. ClimLocol.0 can also be used
in univariate as well as multivariate form. This is the first
version, 1.0, calling for further improvements to better ac-
count for all uncertainties. This article builds ClimLocol.0 in
progressively increasing complexity by expressing the confi-
dence interval of the projected variable as (Sect. 2) uncon-
strained, (Sect. 3) as constrained by noiseless real-world ob-
servations, and (Sect. 4) as constrained by a noisy real-world
observation, as represented in Fig. 1. The latter corresponds
to ClimLoco1.0. Since the devil can be hidden in the details,
the article presents the statistical procedure in a rigorous and
clear manner, based on mathematical demonstrations. More-
over, the use of this complex statistical procedure is justified
by illustrations of the underestimation of the uncertainty usu-
ally made in the literature by not using rigorous Cls. These
results are then compared with some of the most widely used
methods in the literature (Sect. 5): statistical methods as in
Bowman et al. (2018) or Ribes et al. (2021) and methods
based on linear regression as in Cox et al. (2018). Finally,
the assumptions are summarised and discussed (Sect. 6).

In addition to providing the mathematical demonstrations,
the appendices supply three valuable pieces of information.
(i) A summary of the mathematical results in Tables Al
and A2. (ii) A section that explains all the key statistical
concepts useful for understanding all the details of the ar-
ticle (Appendix B). (iii) A case study, illustrating the use of
ClimLocol.0 and testing its sensitivity to some parameters
(Appendix I). The (Python) code and data that accompany
the article are provided, as well as a user-friendly, simple ex-
ample to replicate ClimLocol.0.

2 Confidence interval of Y unconstrained

In order to anticipate society’s adaptation and mitigation
plans in response to climate change, it is necessary to esti-
mate the value of a future variable called the projected vari-
able and denoted Y, e.g. the global temperature in 2100. A
common approach is to use an ensemble of climate model
projections, e.g. CMIP6 (Coupled Model Intercomparison
project version 6), which give different values of Y. Y is
therefore a random variable; the dispersion between the cli-
mate model projections results from the randomness of Y.
To properly estimate the value of Y, this section defines
the confidence interval (CI) of Y. It provides a best guess of
Y value (centre of the interval) and an associated uncertainty
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Figure 1. Flowchart of the study. ClimLoco1.0 is built in increasing complexity through three different sections: no observational con-
straint (OC), the OC neglecting the observational noise, and finally the OC considering the observational noise. Each section is also built
in increasing complexity: neglecting the uncertainty due to the limited sample size (probability interval), then considering it (confidence

interval).

(width of the interval) at a given confidence level. This sec-
tion gradually builds up the CI of Y in increasing complexity.
Firstly, it defines the probability interval (PI) of Y obtained
assuming that the theoretical distribution of Y is known. Sec-
ondly, it defines the CI of Y obtained using this distribution
estimated based on an ensemble of climate models. These
two types of intervals are illustrated and interpreted using a
synthetic example.

As stated above, the PI of Y is built using the theoreti-
cal distribution of Y. Here, this distribution is assumed to
be Gaussian: ¥ ~ N (uy, a%), where py and a% are respec-
tively the expectation and variance of Y. The PI of Y is the
interval that contains Y values with a probability of 1 — «:

IP(uy —zoy <Y < py+zoy)=1—aq, (H

where z is the quantile of order 1 —«/2 of a distribution
N (0, 1). For example, the 90 % PI (o = 0.1) is obtained with
z = 1.65. In the IPCC, this 90 % probability corresponds to
the term “very likely”, while “likely” stands for the 66 %
probability, etc. The level of probability, i.e. 1 —«, is a choice
of the user. In the following, the PI of Y associated with a
probability of 1 — « described in Eq. (1) is denoted:

Pl _o(Y) = [y £zoy]. @

In fact, the expectation py and the standard deviation oy
are unknown. The PI described by Eq. (2) is therefore un-
known. However, uy and oy can be estimated from an en-
semble of climate model projections chosen by the user, for
example, from CMIP6. This ensemble of M climate model
projections yields a sample of M random variables, denoted
(Y1, ...,Yuy). These random variables are assumed to be in-
dependent and to follow the same law as Y, which is assumed
to be N(uy, a%). As a reminder, all the assumptions used
in the article are summarised and discussed later in a dedi-
cated section (Sect. 6). The classical estimators of the expec-

tation py and variance o)% are:
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The literature usually replaces wy and oy with their esti-
mators iy and &y to estimate the PI [y +zoy], which gives
the interval [ty = z6y]. This interval has no clear statisti-
cal meaning. In fact, fiy and 6y are random variables that
depend on M, the number of climate models used. The qual-
ity of these two estimators affects the quality of the interval.
It can be shown (see Appendix C) that using these estima-
tors [ty and Gy, the values of Y are contained in the following
interval with a probability of 1 — a:

1P ﬁ,y—l‘Mﬁl&Y 1+l<Y</:LY
\/ g ==
+tM—lay,/1+i =1l—a (5)
M 9

where M~ is the quantile of a Student distribution with
M — 1 degrees of freedom associated with the probability
1—«. For example, with a confidence level of 90 % (a = 0.1),
30 =1.70 and 1> = 2.02.

A subtle point is that this interval described in Eq. (5) is not
a probability interval (PI) but a so-called confidence inter-
val (CI). For example, the 90 % PI of Y is an interval that has
a 90 % probability of containing Y values. It has determin-
istic bounds that frame a random variable. The CI of Y has
random bounds, which also frame a random variable. In fact,
the CI of Y described in Eq. (5) has random bounds because
fy and 6y are random variables. Thus, different sample re-
alisations, e.g. from different ensembles of climate models,
will lead to different realisations of this CI. There is a con-
fidence of 90 % that one realisation of the CI contains Y. In
other words, out of 100 realisations of the 90 % CI, 90 should
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contain the value of the random variable Y. This is illustrated
in Fig. 2, which shows 100 realisations of this CI of Y (error
bars) at a 90 % confidence level, as well as 100 realisations
of Y (red dots). This specific type of CI is also often called a
prediction interval.

The CI of Y associated with a confidence level of 1 — « is
then denoted:

N M—1~ 1
Cli_o(Y)= |:/,Ly:|:l Oy4/ 1 +M:| (6)

Now that the CI of Y is defined, it allows us to study
the effect of the number of climate models considered (M)
on this CI. Throughout the paper, the same synthetic exam-
ple is used, defined in Appendix D. It provides the theoret-
ical PI of Y, which is unknown in reality and estimated by
the CI of Y. It also provides one realisation of the CI of Y
using a small (M = 5) sample (Y1,..., Yy), and another us-
ing a large sample (M = 30). These different samples can,
for example, represent different ensembles of climate mod-
els (CMIP5, CMIP6, HighResMIP,...). Figure 3 shows the
probability interval of Y, PIj_,(Y) defined in Eq. (2), and
the realisations of the two CI of Y (M =5 and M = 30),
Cl1_(Y) defined in Eq. (6). In reality, the PI is unknown.
This synthetic example allows us to compare the estimates
with the truth.

There are two important remarks about the CI of Y de-
scribed in Eq. (6). Firstly, it converges in probability to the PI
of Y described in Eq. (2) as M, the number of climate mod-
els considered, increases. Indeed, as M becomes large, the
estimates [ty and oy (Egs. 3 and 4) converge (in probabil-
ity) to uy and oy, and the Student quantile converges to a
Gaussian quantile. This is illustrated in Fig. 3, by compar-
ing the PI of Y (left error bar) with the realisations of the CI
of Y (middle and right error bars). Indeed, the large sample
gives a CI of Y (right interval, at CI = [0.1 £ 1.9]) closer to
the PI of Y (left interval, at PI = [0 & 1.6]) than the small
sample (middle interval, at CI = [—0.8 +2.2]). To accurately
estimate both the centre and the width of the CI of Y, which
represent the best guess and the uncertainty, respectively, it
is therefore necessary to have as large a sample as possible.
Secondly, the fewer the models, the larger the CI of Y. It is
intuitive that estimating the CI of Y with less data will give a
more uncertain result. Indeed, in Eq. (6), the terms tM=1 and

1+ % are larger when M is smaller. These two aspects
highlight the importance of having as many climate models
as possible. However, the climate models considered must
be independent, and the simulated variables must follow the
same distribution as the real variables — two assumptions nec-
essary for the calculation that are not fully satisfied (Knutti
et al., 2017).

In the literature, the PI of Y, ie. [uy £zoy], is of-
ten estimated as the empirical interval [ty & z6y]. How-
ever, as seen previously, this interval has no statistical ba-
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sis, whereas CI|_4(Y) = [,&y + tM_léy,/ 1+ %i| contains

Y values with a given probability. The relative error of the in-
terval width caused by using the wrong interval [y £ z6y]
instead of the CI is therefore quantified as relative error in
the width of this wrong interval (zoy) compared to the width

of the CI (tM]&y,/ 1+ %)

M-—1 1
z—1 1+M

Ej— . )
M-t 1 L

This relative error, which depends on the sample size (M)
and the confidence level (1 — &) controlling z and ¢, is plot-
ted as a function of these two parameters in Fig. 4. For typi-
cal sample sizes of ensembles of climate models, between 5
and 50, the relative error is between 3 % and 30 %. For exam-
ple, with a confidence level of 68 % (z = 1, “likely” in IPCC
language) and a sample size of 20 climate models, the rel-
ative error is 5 %. Since the width of the interval represents
the uncertainty, this means that the uncertainty is underesti-
mated by 5 %, which is even higher for smaller sample sizes
or higher confidence levels. This highlights the importance of
using the rigorous formula provided in this article to express
uncertainty more accurately.

Without even mentioning observational constraints, this
section provides statistically sound formulae for estimat-
ing an interval that contains the value of a future variable
from the projections of an ensemble of M climate models
at a given confidence level, using confidence intervals. This
brings a rigorous insight to climate science, where the simple
mean and standard deviation are commonly used. The next
part applies the same methodology to a linear observational
constraint.

3 Confidence interval of Y constrained by a noiseless
observation

Observational constraint (OC) methods have been developed
to estimate more accurately the value of a projected vari-
able Y. These methods “constrain” the distribution of ¥ by a
“real-world” observation, denoted x, of an observable vari-
able X. X has to be chosen by the user, as well as the observa-
tional dataset providing xo. In this section, the real-world ob-
servation is assumed to be noiseless (no observational noise,
e.g. due to instrumental errors). This assumption is relaxed in
the next section which defines ClimLoco1.0. The general for-
mulation presented in this article can be applied to the choice
of any arbitrary variables X and Y. The variable Y con-
strained by the observation xo of X is written as Y| X = xg.
As mentioned in the Introduction, many articles in the
literature use univariate OCs, i.e. only one observable vari-
able X is used to constrain Y. This can be very limiting, es-
pecially when Y depends on many processes, which is often
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Figure 2. 100 random realisations of the 90 % CI (confidence interval) of Y, Clggg,(Y) described in Eq. (6), and 100 realisations of the
random variable Y (red dots). Each realisation of the CI comes from a sample of M = 10 random realisations of Y. Since the confidence
level is 90 %), it is expected that 90 out of 100 CI realisations contain the realisation of ¥, which is the case in this figure. The 10 ClIs that did

not contain the realisation of Y are shown in red.

y
A
O One climate model

o

8

(¢] (¢]

One realisation of
Clgo%(Y)
(sample size: 30)

One realisation of
Cloo%(Y)
(sample size: 5)

Plgos(Y)

Figure 3. Synthetic example comparing the 90 % PI (probability
interval) of Y (left), described in Eq. (2), with two realisations of
the 90 % CI (confidence interval) of ¥ (middle and right), described
in Eq. (6). The first realisation is obtained from the small sample
of M =5 climate models, while the second is obtained from the
large sample of M = 30. We compare the realisations of CI with
the PI, the truth that is unknown in reality. The details of the data
simulation are given in Appendix D.

the case in climate science. Therefore, an important contribu-
tion of this article is to give the formulation in a multivariate
form, i.e. X € R” with p the number of observable variables.
However, for the sake of clarity, only the results for the uni-
variate formulations are presented in the main part of the ar-
ticle. The multivariate formulations are given in Table Al.

This section gradually builds up the CI of Y|X = x¢ in
increasing complexity. Firstly, it defines the probability in-
terval (PI) of Y built using the theoretical distribution of
Y|X = x¢ by assuming that this distribution is known. Sec-
ondly, it defines the CI of Y |X = x( obtained using this dis-
tribution estimated based on an ensemble of climate models.
These two types of intervals are illustrated and interpreted
using a synthetic example.

As stated above, the PI of Y| X = xq is build using the the-
oretical distribution of Y|X = x¢. Here, this distribution is
assumed to be Gaussian: Y |X = xg ~ /\/’(,uy|X:xO, U%\szo)’
where [y x=x, and O;I x—y, ar€, respectively, the expecta-
tion and variance of Y |X = x¢. In the following, the PI of
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Figure 4. Uncertainty quantification errors caused by using the
wrong interval instead of the correct one, that is, [,&y :I:z&y] in-

stead of | iy £:M 16y, /1 + ﬁ] This relative error is described

in Eq. (7). The contours correspond to relative errors of 30 %, 20 %,
10 %, 5 %, and 3 %.

Y| X = x¢ associated with a probability of 1 — « is denoted
as:

PIi_o (Y|X = x0) = [1y|x=xo £ 20¥|x=x, ] (®)

where z is the quantile of order 1 —«/2 of a distribution
N (0, 1). In order to express the terms fiy|x=yx, and a%l X=xo
in Eq. (8), a linear regression framework is used:

Y =E[Y|X]+ &,
where E[Y|X]=ao+a1X,e ~ N (0,0,). 9)

The coefficients ag and a; are the intercept and the slope of
the linear regression of Y on X, respectively, and ¢ is a ran-
dom variable representing the regression error with o, its
standard deviation. Using this linear regression model, it
can be shown (see the proof in Appendix E) that the terms
Hy|x=x, and GI%I X=x, Can be expressed as:
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Hy|X=xo = @0 + a1Xo (10)
=w+p;’—§<xo—m), (11)
OF | X—xy = 0% (12)
= (1—,02)0)%, (13)

where wy and py are the expectations of X and Y, oy and
oy are the standard deviations of X and Y, and p is the linear
correlation between X and Y. The PI of Y constrained by
X = xg described by Eq. (8) can then be rewritten as:

Pl o (Y| X = x0) = [ao + a1x0 £ z0¢]. (14)

To illustrate this, the same synthetic case study as before is
used, detailed in Appendix D. The PI of Y constrained is
shown in Fig. 5a and b (in red) and is compared with the
PI of Y unconstrained (in black) in Fig. 5b. The constraint
on Y has two effects: (a) it changes the best guess (centre of
the interval) and (b) it reduces the uncertainty (width of the
interval).

a. When Y is constrained (PI(Y|X = xg)), it has a dif-
ferent best guess (centre of interval) than when it is
unconstrained (PI(Y)). We interpret this in two differ-
ent ways, using Eqs. (10) and (11). The first equation
gives a graphical interpretation: the constrained expec-
tation of Y is directly the real-world observation fed
into the regression. This is illustrated in Fig. 5a. The
second equation is useful to understand the correction
between the best guess of Y constrained and uncon-
strained: py|x=x, — Uy = pg—;(xo — ). It depends on
two terms: the regression slope pg—;, which depends
in particular on the correlation between X and Y, and
the difference between the real-world observation and
the theoretical centre of the climate models distribution
on X. It is called here (xg — wx) the theoretical multi-
model bias. In other words, the constrained best guess
of ¥ (y|x=x,) is a corrected version on the uncon-
strained best guess of Y (uy), knowing the theoretical
multi-model bias of X (xo — px) and the relationship

between X and Y (pg—;) In the example of Fig. 5a,

there is a positive theoretical multi-model bias associ-
ated with a positive relationship between X and Y, thus
a correction to a higher best guess (uy|x=x, > ty). Ob-
servational constraints are generally used to reduce un-
certainty, but the correction of the best guess between
constrained and unconstrained is very important and
should not be forgotten, as it allows for correcting the
multi-model bias.

b. When Y is constrained, it has a lower uncertainty (width
of PI(Y|X = xg)) than when it is unconstrained (width
of PI(Y)). We interpret this in two different ways, using
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Egs. (12) and (13). Equation (12) provides a graphical
interpretation: the uncertainty of ¥ when constrained is
directly the regression error. The 90 % regression error
is represented by the red tube in Fig. 5a. Equation (13)
expresses the variance of Y| X = xq as the variance of ¥
multiplied by 1 — p?, which is between 0 and 1. The
uncertainty of Y constrained by observation is there-
fore smaller than the uncertainty of Y unconstrained:
this is the desired reduction in uncertainty. The stronger
the correlation between X and Y, the greater the reduc-
tion in uncertainty. In the example shown in Fig. 5b, the
strong correlation (0.85) between X and Y reduces the
uncertainty well; the red interval is narrower than the
black one.

The use of the PI of Y constrained, Eq. (14), requires knowl-
edge of the theoretical parameters ag, a1, and 0., which are
unknown in reality. To estimate them, an ensemble of M cli-
mate models chosen by the user, e.g. CMIP6, HighResMIP,
(etc.) is used. It is written (X1, Y1), ..., (Xum, Yur) as asample
of M pairs of random variables (X, Y). They are assumed to
be independent and to follow the same law as (X, Y), which
is assumed to be bivariate Gaussian. This sample allows to
define the estimators dg, di, and 6, of ag, ai, and o, (see
formulas in Table A2). To estimate PI(Y|X = x¢), one may
want to replace the theoretical parameters by the estimated
ones, which gives the following interval: [dg + a;xo + 265 .
However, as seen in the previous section, this interval has no
statistical meaning. Instead, it is shown in Appendix F that
the estimated parameters lead to the following confidence in-
terval (CI) of Y| X = xo:

Cli—o (Y|X = x) = [do +a1xo

N 2
oL o ix)

+:M-25, —
M Moy

15)

The corresponding expression when X is multivariate is
given in Table Al. The definitions of the estimators are pro-
vided in Table A2.

To illustrate these mathematical results, Fig. 6 uses the
same synthetic case study as before. It shows the realisations
of two samples (X1, Y1),...,(Xum, Yam): one of size M =5
and the other of size M = 30. The realisation of each sample
corresponds to each row. As shown in Fig. 6a, these two dif-
ferent sample realisations lead to two different realisations of
the estimated linear relationship y = ag + a;x (red line) and
the constrained confidence intervals (red interval). The red
shading represents the Clggq,(Y|X = xo) obtained for dif-
ferent positions of the observation xg. Figure 6b compares
the realisations of the CI of Y unconstrained Clggg,(Y) and
constrained Clggg, (Y |X = xg) and the PI of Y constrained
Plgo g (Y| X = xp).

On the one hand, there are two similarities between the
CI of Y constrained (Y|X = xg) and unconstrained (Y).
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Figure 5. (a) Example showing the 90 % probability interval (PI) of the projected variable Y constrained by the observation xy of an
observable variable X, as described by Eq. (14). (b) Comparison between the 90 % PI of Y constrained (red) and unconstrained (black) as
described by Egs. (14) and (2), respectively. The values of means, variances, etc. are given in Appendix D.

(a) Constrained prediction interval
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(b) Comparison

>
L

Sample [yjx = x,
of size 30

>
>

> X >

O One climate model
—— One realisation of y = 49 + a1 x
I One realisation of the Clgge(Y|X = Xo)

Realisation  Realisation Plgge,(Y|X = Xo)
of the of the
Cloo%(Y)  Claoe(Y|X = Xo)

Figure 6. Synthetic example showing (a) the first column, two realisations of the 90 % confidence interval (CI) of Y constrained by the
observation xg of X, described in Eq. (15). The two realisations come from two different samples (X1, Y1),...,(Xp, Ypr) of size M =5
and M =30 (black circles) and correspond to the two rows of the figure. The estimated linear regression and its 90 % error are shown as
the red line and shading, respectively. (b) The second column compares, in red, the confidence (middle) and probability (right) intervals of
the constrained Y. The larger sample (second row) gives a better CI than the smaller one (first row), which is closer to the PI. Panel (b) also
compares the CI of Y constrained (middle) and unconstrained (left, in black). The details of the data simulation are given in Appendix D.
fix and fty are the unconstrained means of X and Y, while fly|x—y, is the constrained mean of Y. The observation xg is assumed to be

noiseless.

Firstly, the CI of Y constrained described by Eq. (15) con-
verges (in probability) to the PI of Y constrained described
by Eq. (8) as the sample size M increases. Consequently,
the CI obtained from a large sample (second panel) is closer
to the PI than the one obtained from a small sample (first
panel), as shown in Fig. 6b. Secondly, the CI of Y |X = xq is

https://doi.org/10.5194/gmd-18-9015-2025

larger when the sample size M is smaller, due to the term

M2 14 g+

(o—f1x)?
Mé&}
two similarities between the unconstrained and constrained
cases: a larger sample leads to a more correct and precise

estimate of Y.

in Eq. (15). To summarise these
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On the other hand, there are two important differences be-
tween the CI of Y constrained and unconstrained. Firstly,
the centre of the CI(Y|X = xq) is the observation fed into
the regression, as described in Eq. (15). Using the previous
equations, the difference between the centre (best guess) of
the CI of Y constrained and unconstrained can be expressed
as fly|x=x, — fby = d1(xo — fix). This correction of the best
guess depends on the estimated slope between X and Y, ay,
and on what is called here the multi-model mean bias at X,
(x0 — [1x). In other words, the constraint corrects the multi-
model bias on Y, knowing the multi-model bias on X and the
relationship between X and Y. This is illustrated in Fig. 6.
Secondly, there is a difference in the square root term be-
tween the CI of Y constrained and unconstrained. The CI of
Y constrained is larger by the amount (xo — jix)?/M 6)2(. If
the observation is far from the samples, this quantity is large,
which makes the interval width (uncertainty) larger. In other
words, the linear relationship is more uncertain away from
the samples, in unknown territory. Furthermore, the latter
term is multiplied by 1/M, which means that the linear re-
lationship is more certain when obtained from a large sample
size. This is illustrated in Fig. 6a on the small sample (first
row): the constrained confidence interval grows rapidly as
one moves away from the samples (black circles).

In summary, the equations and figures show the two ben-
efits of OC: there is a correction to the best guess and a re-
duction in uncertainty, between the CI of Y unconstrained
and constrained. To maximise the reduction in uncertainty,
there is a need for as many (independent) climate models as
possible.

As seen previously, to get a real estimate of the
PI of Y constrained, namely [ag+ ajxo =+ zoe], the cor-
rect approach is to use the CI of Y constrained, namely

|:&o+&1xo:ttM2c?g\/1+ + (xo “X) . However, the

literature sometimes uses [dodixg £ z&g], which has no sta-
tistical basis. The relative error in the interval width caused
by using the wrong one instead of the correct one is therefore
quantified as:

z—th\/l-i- T (Xo /LX) ‘

Ey = —. (16)
M-2 1, (ro—fix)

t \/1 + it 62

This relative error described by Eq. (16) depends on three
parameters: (i) the sample size, M, (ii) the confidence level,
1 — o, which controls z and ¢, and (iii) the standardised real-
()60—121)()2

world observation, . The relative error is shown in

X
Fig. 7 for a fixed confidence level of 68 %, as a function of M
~ 2
(x-axis) and (XO;—’;X) (y-axis). With a typical sample size of

climate model ensembles between 5 and 50, the relative error
is between 3 % and 30 %. In other words, using the wrong in-
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Relative error (in percent)
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M
Figure 7. Uncertainty quantification error when con-
straining Y by using the wrong interval instead of
the correct one, that is, [dg+djxg+zde| instead of

[&0+&1Tx0it e /14 4 +M]. This error is
described in Eq. (16). The error values are shown by the contours
ranging from 3 % to 30 %. They are given as a function of the
sample size (x-axis) and the distance between the observation and
the multi-model ensemble. The confidence level is fixed at 68 %

(i.e. z = 1), a value often used in the literature.

terval instead of the correct one implies an underestimation
of the uncertainty between 3 % and 30 %. For example, us-
ing an ensemble of M = 20 climate models, the error starts at
5 % and can easily exceed 10% if the observation is far from
the ensemble of climate models (y-axis). This highlights the
need to rigorously consider the performance of the estima-
tors in order to correctly estimate the uncertainty using the
rigorous CI defined in this article.

4 ClimLocol.0

The previous results were obtained under the assumption that
the real-world observation xg is not noisy. In reality, xq is af-
fected by observational noise, which is taken into account
in this section, inspired by the theory of measurement er-
ror models (Fuller, 2009). Some papers define observational
noise as internal variability (e.g. Brunner et al., 2020), oth-
ers as measurement error (e.g. Hall et al., 2019), and others
as both (e.g. Ribes et al., 2021). We argue here that both in-
ternal variability and measurement error should be taken into
account, as both affect the real-world observation. Let XV be
the noisy version of X, linked by the noise model defined in
Bowman et al. (2018):

XV = X+ N, with N ~ N(o, a,%,) and N LLX, (17)

where N is a random variable representing the observation
noise, assumed to be Gaussian, centred, and independent

of X. Its variance 0]%, is assumed to be known. The projected
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variable Y constrained by the observation xév of XV affected
by the observation noise is denoted Y| XV = xév .

This section constructs ClimLocol.0, which is the confi-
dence interval of Y| XV = x(l)v , in increasing complexity, fol-
lowing the same steps as in the previous two sections. Firstly,
it defines the probability interval (PT) of Y|XV —xo ob-
tained using the theoretical distribution of Y|X N — xO by
assuming that the distribution of Y| X"V = xO is known. Sec-
ondly, it defines the CI of Y|X" = x’ obtained using this
distribution estimated based on an ensemble of climate mod-
els. These two types of intervals are illustrated and inter-
preted using a synthetic example. These different steps that
construct ClimLocol.0 are crucial to define and understand
with rigour the best guess and uncertainty of any variable
constrained by a noisy observation.

As stated above, the PI of Y|XVN = x(])v is built us-
ing the theoretical distribution of Y |XV —xo Here, this
distribution is assumed to be Gaussian: Y|XV = xév

2
N(/“LYIXN:xéV’Oy|XN N) where iy yn_,n and Gy|xN -

are respectively, the expectation and variance of Y XN =
xo The following 1nterval is the PI of Y| X N — xo , l.e. it
contains Y |XV = xO values with a probability of 1 —«:

Pl (YIXY =5') = [iyppnmy 220y i ] (8)

where z is the quantile of order 1 —«/2 of a distribution
N (0, 1). This interval contains realisations of ¥ with a given
confidence 1 —« controlling z. To express the parameters

oy | xN =y and ay‘xN o a linear regression framework is

used, as in the previous sect10n.

Y =E[Y| XV +¢&V
where E[Y|X"]=bo+ b1 XY, eV ~ N (0,0.v), (19)

and where bg and b are the intercept and slope of the lin-
ear model, respectively, and " is a random variable repre-
senting the regression error with o~ its standard deviation.
This linear regression is the regression of ¥ on X". How-
ever, climate models do not suffer from observational noise
(instrumental error and internal variability): they provide re-
alisations of X, not XV . In fact, climate models do not suffer
from instrumental error, but they can be affected by internal
variability. However, the impact of internal variability can be
reduced, for example, by averaging the members of a given
climate model (different realisations run from different ini-
tial conditions). As climate models provide realisations of X
and not XV, it can be difficult to express the linear coeffi-
cients bg and b1. However, using the model noise described
by Eq. (17), which relates XV to X, it is possible to ob-
tain the expressions of bo and b; and hence the expression
of Iy xN=x and o2 . In fact, it can be shown (see

Appendix G) that:

Y|XN=x

https://doi.org/10.5194/gmd-18-9015-2025
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Iy xN=x = bo +bxlY (20)
Oy 1 N
= uy + ——( - ) 21
T 1+ 1/SNR? Hx @
e
2

p 2
—(1-—" o2, 23
( H—l/SNRz)UY 23)

where p is the correlation between X and Y and SNR =
ox/on is the signal-to-noise ratio (where X is the signal
and N is the noise). Using correlation and signal-to-noise
ratio to express the equations is inspired by Bowman et al.
(2018). Equations (21) and (23) are very useful because they
use parameters related to X, not X N The parameters by,
by, and 0'82,\, can thus be computed using the sample of X,
which is noiseless. This formalisation is possible because of
the theory of measurement error models developed by Fuller
(2009). Using Egs. (20) and (22), the PI of Y| XV = x(l)v de-
scribed Eq. (18) can be rewritten:

PI, a<Y|XN_x0> [b0+b1x0 tz0 N] 4)

These results are interpreted mathematically and graphically
using the same synthetic case study as before, detailed in
Appendix D. Figure 8a shows the PI of Y constrained by
a noisy observation, PI; _ (Y| X" = =X My (green interval). It
also shows how it is constructed by plotting the linear re-
gression y = bo + b1x (green line) and its error o v (green
shading). For comparison, it also shows the linear regression
and its error obtained when the observational noise is ne-
glected, as in the previous section, in red. Figure 8b compares
PI, o (Y|X" =x}) (green) with the PI of ¥ constrained by
a noiseless observation (red) and unconstrained (black), re-
spectively, PIj_o (Y| X = x¢) and PI;_, (Y).

The expression of the PI of Y constrained by a noisy obser-
vation (PL(Y | XN = x(l)v )) has a form close to that in which the
observational noise was neglected, as in the previous section
(PI(Y|X = x¢)). As before, the expectation of ¥ constrained
is directly the real-world observation fed into the regression
(see Eq. 20), and the variance of Y constrained is the variance
of the regression error (see Eq. 22). The constraint corrects
the expectation (see Eq. 21) and reduces the variance (see
Eq. 23). However, the difference between including or not
including the observational noise (difference between green
and red in Fig. 8) lies in a term called here the attenuation
coefficient: 1/(1 4 1/SNR?). The slope considering the ob-
servational noise, by, is attenuated compared to the slope ne-
glecting the observational noise, a1: b = a; /(14 1/SNR?).
The larger the observational noise, the greater the attenua-
tion. This is illustrated in Fig. 8a, where the linear relation-
ship is stronger when the observational noise is neglected
(red) than when it is included (green). In this example, there
is as much signal as noise (SNR = 1). The attenuation coef-
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Figure 8. (a) Example showing, in green and bold, the 90 % probability interval (PI) of the projected variable Y constrained by the noisy
observation x(l)v , as described by Eq. (24). The green colour (bold line) corresponds to the case where the observation is noisy, while the
red colour (non-bold line) corresponds to the case where the observation is considered noiseless, as in the previous section. (b) Comparison
between the 90 % PI of Y unconstrained (black, on the left), constrained by a noisy observation (green, in the middle), and constrained by a
noiseless observation (red, on the right) corresponding, respectively, to Eq. (2), Eq. (24), and Eq. (14). The values of the means, variances,

etc. are given in Appendix D.

ficient is therefore 50 %. In reality, depending on the appli-
cation, the observational noise can be very small, although it
is difficult to estimate, especially for low-frequency internal
variability, which can lead to serious overconfidence (Bonnet
et al., 2021). This attenuation coefficient, 1/(1 + 1/ SNRz),
weakens both the expectation correction and the variance re-
duction, as described in Eqgs. (21) and (23), respectively. This
highlights the need to account for observational noise; other-
wise the PI of Y constrained will be overconfident, with too
strong an expectation correction.

The use of the PLof Y| XV = x(l)v described by Eq. (24) re-
quires knowledge of the parameters by, b1, and o,~, which
are unknown in reality. As in the previous section, an ensem-
ble of M climate model projections is used to estimate them.
The estimators of ag, a1, and o~ are given in Table A2. Us-
ing them, it is shown in Appendix H that the confidence in-
terval (CI) of Y constrained by a noisy observation is:

Cl_, <Y|XN =xév> = [50—}—1;1)66\/ ﬂ:tM_z&EN

L —ax)”

1 -
+ M M(63+0})

(25)

When X is multivariate, its expression is:

Cli—¢ <Y|XN = X(])v> = I:I;() —{—f){XO :EtM_l_pa'gN

T(Zx—I—EN

-1
i ) (Xo—ﬂx) . (26)

1 .
1 o7+ (%o — i)

where p is the number of features in X and Xy and
¥ y are the variance-covariance matrices of X and N, respec-
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tively. The confidence interval of Y constrained by a noisy
observation (CIj_,(Y|X N = xév )) described in Eq. (26)
is the statistical model called “CLimate variable confi-
dence Interval of Multivariate Linear Observational COn-
straint” (ClimLoco1.0). To illustrate these mathematical re-
sults, Fig. 9 shows two realisations of ClimLocol.0: one re-
alisation from the sample (X1, Y1),...,(Xnm, Yu) of size
M =5 and one realisation from the sample of size M = 30,
taken from the same synthetic example as before. In Fig. 9a,
each sample realisation gives a different realisation of the
linear relationship y = bo+ byx (green line) and a realisa-
tion of the confidence interval constrained by a noisy ob-
servation described in Eq. (25) (green interval). The green
shading represents the Clgg ¢, (Y | X N = xév ) obtained for dif-
ferent positions of the observation x(l)v . For comparison, this
Fig. 9a shows in red the Clgg ¢ (Y |X = x¢) for different po-
sitions of x¢ (red shading). This enables us to compare the
difference in the width and centre of the intervals, whether
the observational noise is considered or neglected. Fig. 9b
compares the CI of Y: unconstrained (Clgg¢ (Y), in black),
constrained by a noiseless observation (Clgg 4, (Y| X = xp), in
red), and constrained by a noisy observation (ClimLocol.0,
Clogo (Y| XN = xév), in green).

When comparing the CI of Y constrained by a noisy
vs. noiseless observation (green vs. red in Fig. 9b), the same
conclusions are reached as when comparing PI of Y con-
strained by noisy vs. noiseless observation; there is a de-
crease in the reduction of uncertainty (interval width) and
in the correction of the best guess (interval centre). In other
words, observational noise weakens the constraint. When
comparing the two rows of Fig. 9, corresponding to a small
(first row) and a large sample (second row), the large sam-
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Figure 9. Synthetic example showing (a) the first column with two realisations of the confidence interval (CI) of Y constrained by noisy
and noiseless observations, shown in green (bold) and red (non-bold), respectively, at a 90 % confidence level. The shadings correspond to
the intervals obtained from different positions of the observation. The first and second rows correspond to a realisation of a sample of size
M =5 and M = 30, respectively. (b) The second column compares the Cls of ¥ unconstrained (black, on the left), constrained by a noiseless
observation (red, on the right), and constrained by a noisy observation (green, in the middle) corresponding, respectively, to Eq. (6), Eq. (25),
and Eq. (15). The details of the data simulation are given in Appendix D.

ple leads to narrower CI. The CI is more precise when esti-
mated from more data. This is visible in all three expressions
of the CI discussed in this article through the effect of the
term M. Moreover, this synthetic example uses strong obser-
vational noise (SN R = 1). Combined with a small sample
(first row of Fig. 9) this tends to make the CI(Y|X N = xév )
large, meaning that the uncertainty is large. Therefore, the
ClY|xXN = x(])v) is larger than the CI(Y) in the second row:
the constraint has not reduced the uncertainty, which is sur-
prising. However, this is an extreme case, combining both
high observational noise and small sample size. In summary,
low observational noise combined with a high correlation be-
tween X and Y leads to a strong constraint, which means a
strong best guess correction (centre of the confidence inter-
val) and a strong uncertainty reduction (width of the confi-
dence interval). Uncertainty is also affected by the sample
size: the larger the sample size, the greater the uncertainty
reduction. The best guess correction is also affected by the
distance between the observation and the multi-model mean
(xo — fix), which is called in this article the “multi-model
bias”. The larger the bias, the greater the correction.

The main contributions of this section are to provide the
statistical model ClimLoco1.0, the confidence interval of the
projected variable constrained by a noisy observation, to ex-
press and illustrate it graphically as an attenuated linear re-
gression, and to highlight the need to take this observational
noise into account and to have a sample size as large as pos-
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sible. Figure 10 is proposed as an illustrative summary of a
comparing the CI of Y unconstrained, of Y constrained by
a noiseless observation, and of Y constrained by a noisy ob-
servation. This figure is built using synthetic data detailed in
Appendix D.

5 Comparison with the literature

In this section, the results of this article are compared with
those of some of the most widely used approaches in the ob-
servational constraint literature: (a) Ribes et al. (2021) and
Bowman et al. (2018) and (b) Cox et al. (2018).

a. Both Ribes et al. (2021) and Bowman et al. (2018) use
statistical approaches to constrain Y by real-world ob-
servations. One can demonstrate (not shown here) that
these two articles yield equivalent expressions for the
expectation and variance of ¥|X" = x}'. The main dif-
ference between them is that the first article considers
the variables X and Y as univariate and the second as
multivariate, respectively. It can be seen that these arti-
cles have the same expressions for the expectation and
variance of Y| XN = xév as those obtained in Egs. (21)
and (23). This means that the approaches of both Ribes
et al. (2021) and Bowman et al. (2018) are equivalent to
using a linear regression model (multivariate and uni-
variate, respectively). As seen in the previous section,

Geosci. Model Dev., 18, 9015-9038, 2025
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Figure 10. Graphical representation of the effect of considering observational noise in a linear observational constraint (OC). (i) In red
(non-bold), the observational noise is neglected. (ii) In green (bold), the observational noise is considered, which is more rigorous. The
latter confidence interval (CI) corresponds to the statistical model ClimLoco1.0, presented in this article. (i) When observational noise is
neglected, a linear relationship is defined between a past observable variable X and a future variable Y using an ensemble of climate models
(black circles). The slope and error of the relationship between X and Y are shown as the red line and shading, respectively. A real-world
observation of X is then fed into the linear relationship to obtain the CI of Y constrained (red interval, non-bold). Compared with the CI of
Y unconstrained (black interval, with the large tails), the CI of Y constrained (red interval, non-bold) has a reduced uncertainty (interval width)
and a corrected best guess (interval centre). The intensity of the best guess correction (between unconstrained and constrained) depends on
the slope between X and Y and the difference between the multi-model mean and the observation (the “multi-model bias”). (ii) However, it
does not take into account the uncertainty associated with the real-world observation. When taken into account, observational noise reduces
the slope (green line, in bold) of the linear relationship and increases its error (green shading). Consequently, the CI of Y constrained by a
noisy observation (green interval, bold) has less uncertainty reduction and a smaller best guess correction than the CI of Y constrained by a
noiseless observation (red interval, non-bold). All three CIs use a 90 % confidence level.

this regression is corrected for the observational noise.
This is an important result for interpreting these meth-
ods using linear regression, as is done in our article.
Furthermore, an important caveat to this equivalence is
that there is a well-known risk of overfitting when us-
ing multivariate linear regression, i.e. learning incorrect
relationships between features by over-fitting the data.
This risk is greater when the number of variables is large
and the number of climate models used to learn the re-
gression is small. The multivariate method developed
by Ribes et al. (2021) therefore presents a risk of over-
learning.

Furthermore, the articles by Bowman et al. (2018) and
Ribes et al. (2021) only gave the theoretical expressions
for the expectation and variance of ¥ |XV = xév . These
theoretical values are in reality unknown. They did not
provide details of the exact expression of the estimates,
which — as previously seen using confidence intervals
— leads to a higher uncertainty due to the limited sam-
ple size. This can be neglected when the sample size
is very large, but it becomes very important when the
sample size is small, as shown in the previous section

Geosci. Model Dev., 18, 9015-9038, 2025

(see Eq. 6). In climate science, sample sizes are usu-
ally small (especially when considering high-resolution
models; Bauer et al., 2021), so that we argue here that
this uncertainty must be included in the estimates.

. When referring to observational constraints, an often

quoted figure comes from Eyring et al. (2019), Box 1.
This method is used in several papers, e.g. Bracegir-
dle and Stephenson (2012), Brient (2020). This figure
is interpreted here using the well-known paper by Cox
et al. (2018). Our approach leads to a different expres-
sion for the expectation and variance of Y constrained
by a noisy observation than the approach of Cox et al.
(2018), for which we argue our disagreement here. Cox
et al. (2018) studies the distribution of ¥ using the law
of total probability (see Eq. 15 in Cox et al., 2018).
Written differently, using the laws of total expectation
and variance, the expectation and variance of this distri-
bution can be expressed as:

E[Y]=E[E[Y]X]], 27)
V) =E[V[Y|X]]+ VIE[Y[X]]. (28)

https://doi.org/10.5194/gmd-18-9015-2025



V. Portmann et al.: ClimLoco1.0

Using a linear regression between Y and X, noted ¥ =
ap+ a1 X + ¢, it gives:

E[Y] = a0+ a1 E[X], (29)
V(Y) = V(e) +a?V(X). (30)

Cox et al. (2018) assumes that X follows a distribu-
tion centred around the observation (E[X] = xév ) and
with a variance equal to the observational noise variance
WV(X) = a]%,). Consequently,

E[Y]=ao+a1x), 3D
V(Y)=V(e)+aloy. (32)

This corresponds to the figure in Eyring et al. (2019),
Box 1: the best guess is directly the observation fed into
the regression (ag + a1xg), and the total uncertainty is
the sum of regression uncertainty (V(g)) and the obser-
vational uncertainty propagated through the regression
(afol%,).

We suggest that there are two main problems with this ap-
proach. Firstly, Cox et al. (2018) use two different distribu-
tions of the same variable X: one from the climate models to
learn the linear relationship ¥ = ag + a1 X + ¢ and one from
the noisy observation. However, the climate models have a
different X distribution from the observation: E[X] = uyx #
x(l)v and V(X) = 0’)2( #+ ‘71%/- The variable X cannot have two
different expectations or two different variances; therefore,
Egs. (31) and (32) written above are incorrect from our point
of view. It is necessary to distinguish the variable X, whose
distribution is given by the climate models, and the vari-
able XV, which is observed from the real world with obser-
vational noise, as is done in this article. Secondly, the con-
strained variable should be denoted Y| XV = xév , not just Y.
This has a major effect on the resulting equations. Indeed,
Egs. (29) and (30) are correct, but they do not constrain ei-
ther the expectation or the variance of Y.

This conclusion is consistent with Hall et al. (2019), who
states that “care must be taken to characterise the uncertainty
in the observational values of the X variable. The translation
of observed X-values into predicted Y-values is not trivial.
It is certainly not as simple as finding the intersection of the
most likely value of observed X and the regression line relat-
ing Y to X and ‘reading’ the predicted Y value. Instead, both
observed X and predicted Y must be treated statistically”.
The clarification proposed here may help to move in this di-
rection.

A key feature of this article is the use of multiple observ-
able variables simultaneously (i.e. a multivariate approach).
Most approaches in the literature are univariate. However,
we identified some multivariate approaches. As mentioned
in this section, Ribes et al. (2021) use a linear multivariate
approach. The other approaches in the literature are mainly
non-linear, making use of the large amount of information
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provided by multiple variables in more complex regression
models. However, due to the non-linearity, it is not possible
to formulate an analytical expression for the confidence in-
terval. For instance, Schlund et al. (2020) constrain future
gross primary production (GPP) using a regression model
based on random forest (gradient-boosted regression trees)
that takes into account past GPP, temperature, precipitation,
etc. To estimate uncertainty, the non-linear model is locally
approximated by a linear one.

6 Discussion of the assumptions

The different assumptions used to obtain ClimLocol.0 are all
compiled in the following list. Climate models are supposed
to be (i) random and independent realisations of the same
(ii) Gaussian distributions as (iii) reality. (iv) The observa-
tions are noisy realisations of reality, with additive Gaussian
noise that is independent of X. Its covariance is assumed
to be known. Each assumption is detailed below. If possi-
ble, we evaluate its impact on the results and provide in-
sights into how it could be addressed in the next version of
ClimLocol.0.

i. ClimLocol.0 assumes that climate models are indepen-
dent and equally plausible. This assumption is used by
most OC methods, except those that assign weights
to climate models (e.g. Brunner et al., 2019). How-
ever, defining confidence intervals using weighted sam-
ples without these assumptions is challenging, and this
is an area in which ClimLocol.0 could be improved.
In ClimLocol.0, these assumptions virtually give too
much importance to dependent climate models, as if
there were duplicates in the data. Groups of dependent
climate models are closer together in the (X, Y) space,
as observed for climate models belonging to the same
institute, for example. Groups of models that are close
together pull the best guess towards them and reduce
the inter-model spread, leading an underestimation of
the uncertainty.

ii. The assumption that the distributions are Gaussian is
clearly recognised as potentially questionable, e.g. in re-
gard to precipitation. If the distribution is not centred,
the confidence interval should not be centred either. If
the distribution has significant tails, the limits of the
confidence interval must be further apart. The greater
the difference between the distribution and a Gaussian
distribution, the less accurate ClimLoco1.0 will be in es-
timating the limits of the confidence interval. However,
we did not estimate here whether this impact is signifi-
cant or negligible. To address this issue in future devel-
opments of ClimLocol.0 using non-Gaussian distribu-
tions, we recommend employing a bootstrap method to
empirically derive a confidence interval. Bootstrapping
involves repeatedly resampling the dataset with replace-
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ment to create different sub-datasets. Each sub-dataset
yields a different observational constraint result. These
distributions are then used to compute a confidence in-
terval. However, in this case, no analytical expression of
the confidence interval can be derived, as this remains
an empirical approach.

iii. It is necessary to assume that climate models have the
same distributions as reality; otherwise, they cannot be
used to predict the future. However, as mentioned in
Sanderson et al. (2021), the relationship between x and
y emerging from climate models may be due to shared
errors and may not actually exist. Therefore, multiple
lines of evidence must be used to validate this relation-
ship before it can be applied. Employing an incorrect
relationship will lead to an incorrect confidence inter-
val.

iv. It also seems reasonable to assume that the observa-
tional noise has a centred distribution, as the instru-
ment error and internal variability are expected to be
centred. In many cases, the Gaussianity of the distribu-
tion of the observations may also be a reasonable as-
sumption. This is demonstrated in our case study using
HadCRUT 5 (see Sect. I). Assuming that the observa-
tional noise is independent of the climate model distri-
bution is also reasonable, since the instrumental error
and real-world internal variability are not related to cli-
mate models. However, by assuming that the covariance
of the observational noise is known, we neglect the un-
certainty arising from its estimation. In our case study,
we use HadCRUT 5 to estimate the covariance matrix
of the observational noise. As it provides 200 ensemble
members, the estimation error of the covariance matrix
should be very low. Finally, internal variability is con-
sidered only for the observations in ClimLocol.0, even
though it is also present in climate models. Depending
on the climate variable used, this could slightly increase
the uncertainty. One promising approach is to consider
the distribution of values from each climate model, as
outlined in Olson et al. (2018).

7 Conclusions

A confidence interval for future climate, i.e. a best guess
of the future climate with uncertainty given at a confi-
dence level, can be obtained from an ensemble of climate
model projections. However, the large dispersion between
climate model projections makes this interval large, and con-
sequently the future climate very uncertain. To refine it,
methods called observational constraints (OCs) combine cli-
mate model projections with some real-world observations
(cf. Lee et al. (2021)). These methods are now increasingly
used (O’Reilly et al., 2024), even by potential stakeholders
at the national level (e.g. Ribes et al., 2022). They there-
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fore deserve to be rigorously described in their assumptions
and mathematical description. However, there are many chal-
lenges in dealing with the literature of OC. There is a wide
variety of OC methods, which are sometimes difficult to re-
produce and may lack mathematical detail, which are usually
limited to the use of a single observable variable to constrain,
and which do not strictly use confidence intervals, which are
essential to correctly define uncertainty.

To address these challenges, this article proposes a
new (1.0) statistical method, ClimLoco, which stands for
“CLimate variable confidence Interval of Multivariate Lin-
ear Observational COnstraint”. ClimLocol.0 describes the
confidence interval of a projected variable constrained by a
noisy observation using a linear multivariate framework. It
is inspired by the theory of measurement error models from
Fuller (2009). We found that constraining a projected vari-
able has two effects: it corrects the best guess of the projected
variable according to the multi-model bias (the difference be-
tween the multi-model mean and the real-world observation)
and reduces the associated uncertainty.

Compared with the existing literature, ClimLocol.0 pro-
vides a more rigorous expression of uncertainty through the
use of confidence intervals. This takes into account the qual-
ity of the estimators of the best guess and the uncertainty of a
projected variable, which depends in particular on the num-
ber of climate models used. We have therefore emphasised
the need to have as large an ensemble of models as possible,
in order to obtain the most accurate estimates. In addition,
ClimLocol.0 takes into account the observational noise in
a rigorous framework, which is important to correctly esti-
mate the uncertainty. We find a new graphical interpretation
(cf. Fig. 10), of the effect of observational noise, which weak-
ens the constraint (less reduction of uncertainty and a smaller
change in the best guess). This article is intended to be didac-
tic, building the statistical model ClimLocol.0 step by step,
from the unconstrained case to the case constrained by noisy
observations, and illustrating each step with univariate exam-
ples.

In addition, the results are compared with some of the most
commonly used methods in the literature: “statistical” meth-
ods (e.g. Bowman et al., 2018; Ribes et al., 2021) and “linear
regression” methods (e.g. Cox et al., 2018). There are strong
similarities between the statistical methods of Bowman et al.
(2018) and Ribes et al. (2021) and the multivariate linear re-
gression OC developed in this article. We argue that there
is an equivalence between their methods and a multiple lin-
ear regression. This implies that the methods are subject to
the risk of overfitting (i.e. learning incorrect relationships be-
tween features by over-fitting the data). The use of methods
to limit overfitting, such as ridge regression, seems to be a
promising perspective in this respect. However, since Bow-
man et al. (2018) and Ribes et al. (2021) did not use con-
fidence intervals, they neglect the quality of the estimators,
which depends on the number of climate models considered.
They therefore underestimate the uncertainty. There is a ma-
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jor discrepancy between our method and that of Cox et al.
(2018), which is now widely used for linear regression OCs.
We highlight problems in the underlying mathematics and
propose a new figure (Fig. 10), which may be more appropri-
ate than Fig. 1 from Eyring et al. (2019), to describe exactly
how linear OC works in a geometric sense.

The statistical model ClimLocol.0 is an effort to better
account for uncertainties and bring more clarity to OC meth-
ods. However, there are still some challenges to overcome,
for example, considering non-Gaussian distributions, depen-
dence between climate models, non-linear regression, etc.
These are interesting perspectives to build more advanced
versions of ClimLocol.0. Finally, finding equivalences be-
tween OC methods, as performed here, can be very useful to
bring more clarity to the large literature of OC methods. For
example, Karpechko et al. (2013) succeeded in converting a
linear regression into climate model weights, but neglected
the observational noise.

As an extension of this article, Appendix I illustrates the
use of ClimLocol.0 in a real case study and performs some
sensitivity tests. The Python code and data, along with a sim-
ple, user-friendly example to replicate ClimLocol.0, are pro-
vided via the “Code and data availability” section.

Appendix A: Summary
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Table A1l. Confidence intervals (CI) of Y unconstrained, constrained by a noiseless observation, and constrained by a noisy observation.
Within each case, the results when X is univariate (X € IR) and when X is multivariate (X € IR?) are both given. Since the first case does
not depend on X, it is the same whether X is univariate or multivariate. The different estimators are listed in Table A2 and described in the

main part of the article.

Y unconstrained ay £tM=16y 1+ ﬁ:|

Clj_o(Y) i

r 2
Y constrained by a g+ ayxo £tM=25, /l—l—ﬁ—k(xoﬂzi‘fzx)] ifXeR
ox

noiseless observation ap + ﬁlTXO + zM_l_P&g\/l + ﬁ + (xo - fLX)T

Clj_q (YX = x0)

1

R‘x V

(xo0 —ﬁx)} if X € R?

Mo . 2
Y constrained by a by + byxo £ 1M=26 \/1+i+(x057“x)] if X eR
S S VM T M)
B . -1
~ ~ Yx+Xy
noisy observation bo—l—blTXo:i:zM_l_P&gN\/l—l—Al,l-i-(xo—ﬁX)T( M) (xo—fy) | iIf XeRP

Cl_y, (Y\XN - x{)V)
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Table A2. Definition of the estimators used in this article, when X is univariate (X € IR) and when X is multivariate (X € IRP).

X univariate

‘ X multivariate

Appendix B: Key statistical concepts

This section outlines the key statistical concepts required to
grasp the construction of ClimLoco1.0. The demonstrations
and formulas can be found in the article.

Y is a variable representing, for example, the global mean
surface air temperature (GSAT) in 2100. Its actual value is
unknown, but we assume that its distribution — also known as
a probability density function (PDF) — is known. For exam-
ple, Y can follow a Gaussian PDF, as illustrated in Fig. Bla.
Y is called a random variable because it takes random values
that follow the probability given by its PDF. These random
values are called realisations of Y. This PDF can be used to
compute a probability interval, i.e. an interval containing the
actual value of Y with a given probability. The 90 % proba-
bility interval of Y is shown in Fig. Bla, where a probabil-
ity level of 90 % corresponds to 90% of the area under the
PDF (shown in grey). In this example, the GSAT anomaly
in 2100 lies within the interval [2.9, 4.1 °C] with a proba-
bility of 90 %. The probability level, denoted 1 —« in our
article, is a user-selectable parameter. A higher probability
level would give a wider interval as there is a greater chance
that it will contain the actual value. It is common to use a
probability level of 68 %, as this corresponds to & 1 standard
deviation for a Gaussian PDF.

However, in a real case, the parameters of the PDF of Y
are unknown. In climate science, we use climate models to
estimate these parameters. Each climate model simulates Y,
producing a variable called Y;. Running a climate model

Geosci. Model Dev., 18, 9015-9038, 2025

produces a realisation, denoted by y;. Assuming that each
Y; follows the same PDF as Y, the M climate models yield
a sample of M random variables, denoted by (Y1,,..., Ya).
The realisation of this sample is denoted as (y1, ..., yp). The
expectation and standard deviation can be estimated using
this sample to estimate the PDF. However, the estimators of
the expectation and standard deviation introduce errors due
to the limited sample size (M). Therefore, we cannot simply
take the probability interval of this estimated PDF, as is often
seen in the literature. When these errors are considered, the
resulting interval is wider and is associated with a Student’s
t-distribution with M —1 degrees of freedom. The number of
degrees of freedom of a Student’s ¢-distribution controls its
shape, making it closer to a Gaussian PDF when it is small
and with a higher spread when it is large. As different reali-
sations of the sample give different intervals, the term “con-
fidence interval” is used instead of “probability interval”. A
confidence interval is sometimes also called a prediction in-
terval. Using the previous example of the 2100 anomaly of
GSAT, the 90 % confidence interval is [2.8, 4.2 °C], as illus-
trated in Fig. B1b.

To obtain a refined interval, we can use the PDF of Y given
the observation xg of a random variable X, denoted Y|X =
xo- As before, the parameters of the PDF of Y| X = x( are un-
known but can be estimated using a sample of climate mod-
els. As demonstrated in this article, this can be represented
by a linear relationship between X and Y: Y =ap+a1 X +¢,
where aq is the intercept, aj is the slope, and ¢ is the re-
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(a) Probability interval of Y (b) Confidence interval of Y

9031

(c) Confidence interval of Y|X = x¢
(3.0-3.7)
y A
454 O climate models
—E= confidence interval
—— y=apt+aix o
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Figure B1. Example of a 90 % probability and confidence interval of Y (a, b) and a confidence interval of Y|X = xq (c). Y is the global
mean surface air temperature (GSAT), averaged over the period 2081-2100 and expressed in degrees Celsius (°C). X is the GSAT average
in 2015-2024, also in °C. Here, 15 climate models are considered. For more information, see Sect. L.

gression error. The confidence interval and the linear rela-
tionship are illustrated in Fig. Blc, using the same exam-
ple as before. In this example, the 90 % confidence interval
of Y|X = xg is [3.0, 3.7 °C]. This is smaller than the con-
fidence interval of Y, owing to the additional information
provided by the observation x¢. Finally, when X is multi-
variate, this is equivalent to multivariate linear regression:
Y=ap+ alTX + ¢, where a; is a p-dimensional vector and
X is a matrix with p columns (and M rows), with p denoting
the number of variables.

Appendix C: Confidence interval of Y

The goal of this appendix is to find the confidence inter-
val of Y. For this purpose, it is assumed that ¥ follows a
Gaussian distribution: ¥ ~ N (uy, a}%). To estimate ny and
o%, it uses a sample of M random variables, denoted by
(Y1,...,Ynm), given by an ensemble of M climate models.
These random variables are assumed to be independent and
to follow the same law as Y. The classical estimators of the
expectation and variance are:

N 1 M A2 1 M A \2
MY:M;Yi andayzﬁZ(Yi—,uy) .

. e 1
On the one hand, E [fy]= —ZE[Y;-] = MZMY = Uy

<

https://doi.org/10.5194/gmd-18-9015-2025

1
Y—jy~N(0,62(1+—

Y — i
= ) O ~ N(,1)
oy 1+%
| M
On the other hand, &)% =1 Z(Y,- - ﬂy)z
i=1
~D M A \2
o) Yi — iy
=>(M—1)—§=Z—( L )
Y =l o
Yi— i
AS(‘—MY)NN(O’ D
oy
~2
then (M — 1)—= ~ x~(M — 1)
o
Y
Or
U’\'/\g(O,l)
V ~ x<(n) = ——— ~ St(n),
ULlLv VVin

with L | as the sign of independence and St(n) as the stu-
dent distribution with n degrees of freedom. Consequently,

~ ~2
by noting U = 4 and V = (M —1)Z%, this implies
oe 1+ﬁ 9y
that: U = Yoy St(M —1).
I = G, Tk

The confidence interval is thus: |:;ly +M-15y 1+ %],

where t¥~! is the quantile of a Student with M — 1 degrees
of freedom.
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Appendix D: Simulation of the synthetic example

To illustrate the mathematical results, the same synthetic ex-
ample is used throughout the article. It is simulated from
two different realisations coming from two samples (X1,
Y,....,(Xup, Yy): one with M =30 and the other with
M =5. The random variables X and Y have a centred
reduced normal distribution (ux = uy =0, ox = oy = 1).
The correlation between X and Y is chosen as p =0.85.
The linear relation between Y and X is therefore defined
by Y =ap+a; X + ¢ with ap =0 and a; = 0.85. It is sim-
ulated from a realisation of the sample (X1,...,.X») and a
realisation of the sample (g1,...,ey) with M = 30 values.
Then a sample of (Y7, ..., Yys) is obtained using the relation
Y = ap+ a1 X + ¢. This gives the realisation of the first sam-
ple of size M = 30. The realisation of the second sample of
size M =5 is obtained by taking the first five values. For
the observation, the value xo = 2.2 is used, and the observa-
tional noise standard deviation is chosen as oy = ox =1 (a
signal-to-noise ratio of 1). For the sake of illustration, Fig. 10
uses the same data with two different parameters: xo = 3 and
p=0.9.

Appendix E: Probability interval of Y|X = x¢

The goal of this section is to find the probability interval (PI)
of Y constrained by the observation x¢ of X. It is denoted by
PI;_, (Y| X = x0) and contains the values of Y |X = xo with
a given probability 1 — «. To obtain this interval, the follow-
ing Gaussian assumption is used: Y| X = xg NN(,uyp(:xO,
O’%‘ X:XO). Under this assumption, the PI of Y constrained can
be written as:

PIi_o (Y]X = x0) = [y |x=x £ 20¥|X=x, | (E1)

where z is the quantile of order 1 — «/2 of a centred reduced
normal distribution. To obtain the expressions of the parame-
ters [Ly|x—=x, and oy|x—y,, a multiple linear regression frame-
work is used:

Y=E[Y|X]+¢

with E[Y|X]=ap+a] X (E2)
with Y € IR, X € IR?, qg € IR, and a; € IR? being the co-
efficients of the regression of ¥ on X and e € IR be-
ing the regression error. Using the latter equation, it is
established (solution of the least square) that ¢ L1 X,
Ele] =0, al = Zyxy', and ag = uy —al ux. The terms

Uyix=xo = E[Y|X = x0] and ag‘X:xo =V(Y|X = xq) are
then expressed using this multiple linear regression.

E[Y|X = xo] = ap +al xo (E3)

= py +aj (xo— px) because ag = jty —aj px

= E[Y|X =x0]l = puy + Zyx Sy (xo — px)
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because alr = EYXE;(I
V(Y |X = x¢) =V<(a0+alTX+8) | X =xo)

=V (e|lX = xo)
=V|X =x9) =V(e)because e L1 X

=V<Y—a0—alTX>

=V¥)+V (—alTX) +2Cov (Y, —alTX)

=V(Y) +al V(X)a —2Cov(Y, X)a

=0} +al Txa—2%yxa

=0} +Tyx Ty Tx By Bxy —28yx Ty Sxy
because alT = EYXE;1

= V(Y|X =x0) =07 — ZyxZy Sxv
When X is univariate (p = 1), the results can be written:
Oy
E[Y]|X =xol = uy + p— (x0 — tx)
ox
ey 2\ 2
V(Y|X = x0) = (1 —0 )aY

with p = w as the correlation between X and Y. The

PI can consequently be noted:
Pl (VX = xo) = [ao +alxg+ zag]
or else:

Pli—a (Y1X = x0) = [ 1y + ErxZx (x0 = x)

:EZ\/O'I% — nylezxy:| .

Appendix F: Confidence interval of Y|X = x¢

The goal of this appendix is to find the confidence interval
of Y given an observation xg of X, named CI(Y|X = xp),
using an ensemble of M climate models. This ensemble
yields a sample of M pairs of random variables, denoted (X1,
Y1),...,(Xm, Yu). They are assumed to be independent and
to follow the same law as (X, Y), which is assumed to be
Gaussian. The relationship between X and Y is assumed to
be linear:

Y =E[Y|X]+e¢

with E[Y|X] =ap +al X (F1)
with Y € IR, X € IR?. gqp € IR and a; € IR? are the coef-
ficients of the regression of ¥ on X and ¢ € IR is the re-
gression error. The estimators of ag, aj, etc. detailed in Ta-

ble A2 are used. The properties of the estimators @y and
ap are well established: E[ag] = ag, E[a1]=a1, V(ag) =
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The confidence interval of Y constrained is consequently:

Clia (Y1X = x0) = | iy £ 1171775,

1 ~ \T Xl ~
14+ — — X _
\/ +47 (0= ix)" = = (xo—fix)
In univariate (p = 1), this gives:

Cliog (VX = x0) = | rixes £ 726

1 (w0 —pix)?
14— 4= =27
TmT Mé3

Appendix G: Probability interval of Y| XV = xév

The goal of this section is to find the probability interval (PI)
of Y constrained by the n01sy observation xo of XN Tt is
denoted by Pl _o(Y|XN = =X M) and contains the values of
Y| XN = xO with a given probability 1 —«. To obtain this
1nterval the following Gauss1an assumption is used: Y| XV =

N(,quXN_xN, YIXN=x N). Under this assumption, the

PI of Y constrained can be ertten as:
P o (Y1X = 0) = [y £ 20y 00|,

where 7 is the quantile of order 1 — «/2 of a centred reduced
normal distribution. To obtain the expressions of the param-
eters iy, XN.=X(1)V and oy, XN=y)l> @ multiple linear regression
framework is used:

Y =E[Y|XV]+¢V,
with E[Y|XV] = by + bT XV, (G1)

with Y € IR, XVIRP?, by € IR, and b € IR? being the coef-
ficients of the regression of ¥ on X" and " € IR being the
regression error. Using the same methodology as in Sect. E,
it can be demonstrated that:

E[Y1XY = x| =bo+b] 5
= jy + Zyxv gy (%0 — i)
V<Y|XN=x(§V)=V(eN)
=0y — Zyxn S u Sxny-

To link XV and X, the noisy and noiseless versions of X,
the noise model defined in Bowman et al. (2018) is used:

XN =X+ N, with N ~N (0, Zp).

As the observational noise N is unrelated to the climate mod-
els, N is independent of X and Y. Consequently, Xy~ =
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Yx+XZyand Xy yv =Cov(Y, X+ N) =Cov(Y, X) = Zyyx.
Thus, the previous equations can be written as:

E[YIXN ZXO] =y +Zyx(Tx + Zy) ! (x(/)v _“X)
V(Y|XN :x0> =0} — Dyx(Sx + 2 ' Sxy

In univariate (p = 1), this gives:

COV(Y,X)( N X)

IE[Y|XN:x0]:,uy+ X
J)z(—i—a]%, 0
Cov*(Y, X
V(Y|XN:x0>:0,%——O\2/ ( 2).
GX+0N
Cov(Y,X)

Using the correlation p =
tio SNR = 7% this gives:
N

X0 and the signal-to-noise ra-

Oy 1

—_— PR — N_
Prixv=l =B 0 SR (' = 10x)

2 p’ 2
TyixN=x) = (1 I 1/SNR2) o
The prediction interval of ¥ constrained by a noisy observa-
tion can thus be written as:

Pl _, (Y|XN = x(l)v) = [bo + blTxo + ZO'SN]
or else:

Pl (Y1XY =) = [y + Syx(Sx + 2w

(xo — px) :*:Z\/GI% —Xyx(Zx + EN)_IEXY] .

Appendix H: Confidence interval of Y| XV = xf)v

The goal of this appendix is to find the confidence inter-
val of Y given an observation xév of XV, CI(Y|XN = xév),
using an ensemble of M climate models. This ensemble
yields a sample of M pairs of random variables, denoted (X1,
Y1),....(Xy, Yu). They are assumed to be independent and
to follow the same law as (X, Y), which is assumed to be
Gaussian. The relationship between XV and Y is assumed to
be linear:

Y =E[Y| XV +¢eV

with E[Y|XN] = by + b] XV (H1)
with ¥ € IR, XV € IR”. by € IR and b; € IR? are the coef-
ficients of the regression of ¥ on X" and ¢V € IR is the re-
gression error. Based on the same methodology as previously

used (see Appendix F), the confidence interval of Y con-
strained by a noisy observation is:

Cli_q <Y|XN - xév> - [130 b xg £ M1r6

-1
TE N

(XO - llxN)

e
+M+()C0—MxN)
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Using the noise model that links X Nio X (Bowman et al.,
2018): XN =X+ N , with N~N(0,Zy) and N L1 X,
then jiy~n = fix and E;}V = 2;1 + 2;,]. The confidence in-
terval of Y| XV = x{)v can therefore be written:

Cly_g (Y|XN :xg’) - [éo b xg M 1P6

1 . x4+ Xyt .
\/1+M+(XO_MX)T%(XO_MX)

The estimators of bg, by, etc. are detailed in Table A2.
In univariate (p = 1), the confidence interval of Y| XV = xév

can be written as:

Clj_qy (Y|XN =x(])v) = I:éo —i—é{xo :ttM_za'sN

1 (xo—ix)

14+ — 4 -~ 777
T u M (6% +oy)

Appendix I: Case study and sensitivity tests

ClimLoco1.0 is used here to constrain the future (2081-2100
mean) global mean surface air temperature (GSAT). This
demonstrates how ClimLocol.0 can be used, which should
make it easier to understand, replicate, and adapt. It is also
used to perform sensitivity and comparison tests. (1) The
sensitivity of the results to the choice of observed variable
is tested, as well as the value of using multiple observed
variables. (2) The results of ClimLoco1.0 are compared with
those of two methods from the literature. (3) The assumption
that the distributions are Gaussian is tested.

I1 Sensitivity to the choice of the observed variable(s)

In order to constrain the variable Y, the user must select one
or more observable variables X. This section compares the
results of ClimLocol.0 when constraining Y, the 2081-2100
mean global mean surface air temperature (GSAT), relative
to 1850-1900, by three different sets of observed variables:

1. X; the 2015-2024 mean of GSAT, relative to 1850—
1900,

2. X, the 1970-2014 trend of GSAT, relative to 1850—
1900,

3. X =(Xq, Xp).

We use the projections of 32 CMIP6 climate models, us-
ing the SSP2-4.5 scenario. The observations are taken from
HadCRUTS, which provides 200 members. The correspond-
ing code and data are provided with the article (see “code
and data availability”). The periods 2015-2024 for the mean
and 1970-2014 for the trend have been chosen because they
produce high inter-model correlations with Y.

https://doi.org/10.5194/gmd-18-9015-2025
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Table I1. ClimLoco1.0 results using different choices of X to con-
strain Y, the mean anomaly of GSAT for the period 2081-2100. The
reference period is 1850-1900. X is the mean anomaly of GSAT
for the period 2015-2024. X» is the 1970-2014 trend anomaly of
GSAT.

90 % confidence  Uncertainty

interval of Y reduction

Unconstrained 3.05£1.17 0%
Constrained by X 3.01£0.74 37 %
Constrained by X, 2.84+0.86 26 %
Constrained by X1 and X» 2.91+£0.66 44 %

Figure I1 illustrates the first two cases. The values of the
90 % confidence intervals obtained in the three cases are
given in Table I1.

Compared with the case with no constraints, both X and
X» help to reduce the uncertainty by 37 % and 26 %, re-
spectively (see Table I1), due to their high inter-model cor-
relations with Y (0.78 and 0.68, respectively). The differ-
ence in uncertainty reduction is mainly due to the differ-
ence in correlation. There is also a difference in the con-
strained guess obtained using X or X». This is due to the
difference between the observation and multi-model mean,
which is smaller for X than for X5, see Fig. I1. In summary,
ClimLocol.0 is sensitive to the choice of X. This influences
the results depending on the correlation between X and Y, as
well as the difference between the multi-model mean and the
observation of X.

Using both X and X, to constrain Y results in an even
stronger uncertainty reduction (44 %) and the constrained
guess lies between those obtained using only X and X» indi-
vidually. This illustrates the advantage of using a multivariate
approach: the additional information gained helps to reduce
uncertainty further and obtain a more balanced result by con-
sidering more data.

I2 Comparison with the literature

The main part of the article compares two types of approach
to ClimLoco1.0 from a mathematical point of view. The first
is based on the work of Bowman et al. (2018) and the sec-
ond on that of Cox et al. (2018). We compare ClimLoco1.0
and these two methods when Y is constrained by X; (see
the previous section). The resulting confidence intervals are
shown in the first row of Table I12. Because there are many cli-
mate models and a high signal-to-noise ratio (i.e. low obser-
vational noise), there are few differences between the three
results. To demonstrate the advantages of our method of rig-
orously accounting for uncertainty arising from the limited
number of climate models and observational noise, we re-
duce the number of climate models considered (second row)
and increase the observational noise (third row).

https://doi.org/10.5194/gmd-18-9015-2025

9035

Compared with ClimLocol.0, Bowman et al. (2018)
method does not consider uncertainties arising from the
limited number of climate models. Consequently, its total
uncertainty is always lower than the total uncertainty in
ClimLocol.0 (column 1 vs. 2 in Table 12), especially when
there are few climate models (second row).

When the observational noise is 10 times stronger than the
inter-model spread (SNR =0.1), as in the third row of Ta-
ble 12, the observation is very poorly used in ClimLocol.0.
Indeed, the constrained result is very close to the uncon-
strained one (3.13 £ 1.16 vs. 3.05 & 1.17, respectively). The
constraint is attenuated by the observational noise, as ex-
plained in the main text Sect. 4. The method from Cox
et al. (2018) does not attenuate the constraint by the ob-
servational noise. It considers the observation the same re-
gardless of whether it is of good or bad quality. In this high
observational-noise case, it results in a very strong uncer-
tainty (3.09 £ 8.76).

To summarise, this test illustrates what is demonstrated in
the mathematical comparison of methods (Sect. 5). When the
number of climate models is low and/or the observational
noise is high, it is important to rigorously consider the uncer-
tainties arising from these two sources.

I3 Test if the distributions are Gaussian

One of the assumptions used in the article is that the distribu-
tions are Gaussian. Figure 12 shows the density histograms
for the realisations of X, X», and Y. These are compared
with Gaussian distributions with the same mean and vari-
ance. The histograms of the 200 members of HadCRUT 5
are close to Gaussian distributions for these variables. How-
ever, this is not the case for the histograms of climate mod-
els. The Gaussian assumption does not appear to be verified
here, resulting in deformed confidence intervals. Improving
ClimLoco to enable consideration of other distributions is a
promising perspective.

Geosci. Model Dev., 18, 9015-9038, 2025
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Table I2. The 90 % confidence interval of Y, the mean anomaly of GSAT between 2081 and 2100, is constrained by X, the mean anomaly
of GSAT between 2015 and 2024. The reference period is 1850-1900. The columns correspond to the various methods employed to estimate
the confidence interval. The first row was obtained using the original data. The second row uses a subset of five climate models selected from
the original 32. The third row virtually increases the observational noise variance (by decreasing the signal-to-noise ratio, SNR). The bold
values in each column highlight the impact of the dataset on each method in term of uncertainties.

ClimLocol.0 Bowman method Cox method

32 climate models SNR =7.6 3.094+0.79 3.0940.75 3.094+0.76
5 climate models SNR =7.6 3.214+0.90 3.214+0.56 3.234+0.62
32 climate models SNR = 1.0 3.13+1.16 3.13+1.11 3.09+8.76
(a) Unconstrained (b) Constrained by X; (c) Constrained by X3
Ya Ya Ya
54 - -
P
S8 |
I
4o 4] ]
o W
2%
==
= 34T -
T
£l
o
£ 21— 1 :
© i v obs )Sz
1.0 1.5 2.0 0.02 0.03
GSAT mean in 2015-2024 (°C)  GSAT trend in 1970-2014 (*C/yr)
relative to 1850-1900 relative to 1850-1900
Confidence interval of Y:
JF_ unconstrained T constrained O climate models ——- multi-model-mean

Figure I1. Illustration of different constraints on the future global mean surface air temperature (GSAT). Y, the GSAT 2081-2100 mean
anomaly, is either (a) unconstrained, (b) constrained by the GSAT 2015-2024 mean anomaly, or (c¢) constrained by the GSAT 1970-2014
trend anomaly. The confidence intervals are displayed at a confidence level of 90 %.

(@)Y (b) X, (c) X5
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Figure I2. Comparison between the histograms and Gaussian distributions for different variables. Y is the 2081-2100 mean GSAT anomaly.
The reference period is 1850-1900. X is the 2015-2024 mean GSAT anomaly. X is the 1970-2014 trend of GSAT anomaly. The blue
histograms show the results from the 32 climate models. The green histograms show the results from 200 members of the HadCRUTS
reanalysis.
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Code and data availability. The package containing the data and
Python code (Jupyter notebooks) of ClimLocol.0 is available at
https://doi.org/10.5281/zenodo.14679875 (Portmann, 2025). It con-
tains a notebook with a user-friendly example, a notebook that pro-
duces the figures of the main article, and a notebook that produces
the case study (in the Appendix).
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