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Abstract. MATCRO-Soy is an eco-physiological process-
based crop model for soybean (Glycine max L. (Merr.)). It
was developed by modifying the parameters of MATCRO-
Rice, which integrates crop growth processes with a land
surface model. The original model was modified using data
from the literature and field experiments conducted in coun-
tries around the world. The reliability of the model was ex-
tensively validated by comparing the simulated yields with
observed yields at global, national, and grid-cell levels. Mod-
erate correlations were detected between the yields predicted
by MATCRO-Soy and yield data in the Food and Agricul-
ture Organization’s FAOSTAT database, with correlation co-
efficients of 0.81 (p < 0.001) for the global average yield
and 0.45 (p < 0.01) for the global average detrended yield
over a 34 year period (1981-2014). Furthermore, validation
at the grid-cell level revealed a statistically significant cor-
relation between the MATCRO-Soy simulated yield and the
observed yield in 66 % of the grid cells in the global yield
map. These results highlight the model’s ability to reproduce
soybean yield under different environmental conditions, in-
tegrating soil water availability and nitrogen fertilizer lev-
els. The MATCRO-Soy model may enhance our understand-
ing of crop physiology, especially crop responses to climate

change. Its application may support efforts to reduce uncer-
tainty in projections of the effects of climate change on soy-
bean crops.

1 Introduction

Crop growth models are widely used for estimating yield, op-
timizing agricultural management practices, evaluating the
effects of climate change, and informing decision-making
about food security strategies (Adeboye et al., 2021; Cud-
dington et al., 2013; Hoogenboom, 2000). Given the sig-
nificant impact of weather variability on global crop yields
(Miiller et al., 2017; Ray et al., 2015), process-based models
can predict the effects of long-term climate change on pro-
ductivity by accounting for the effects of key climatic fac-
tors on physiological processes that are represented in the
model (Boote et al., 2013; Cuddington et al., 2013; Fodor
etal.,2017; Jones et al., 2017; Marin et al., 2014; Stockle and
Kemanian, 2020). Process-based models explicitly incorpo-
rate the crucial eco-physiological processes of photosynthe-
sis and stomatal conductance. Thus, the predictive ability
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of these models is improved under varying climate scenar-
ios compared with that of models that focus on the empir-
ical relationship between absorbed radiation and assimila-
tion through radiation use efficiency (Jin et al., 2018). Hence,
crop models are useful for capturing the complexity of soil—
crop—climate interactions for ensuring food security, opti-
mizing yields, promoting sustainability, and planning adapta-
tion strategies (Garcia-Tejero et al., 2011). Global-scale sim-
ulations are crucial for enhancing these efforts because they
reflect the interactions between physiological processes and
environmental factors, thereby supporting adaptive manage-
ment practices and strengthening agricultural resilience.

The Agricultural Model Intercomparison and Improve-
ment Project (AgMIP) has examined the performance of
global gridded crop models (GGCMs) in simulating the po-
tential impact of climate change on crop yields (Miiller et al.,
2017). The AgMIP has demonstrated that the simulated im-
pacts of environmental factors on crop yields using a GGCM
generally align with measured values, and that a model en-
semble reduces uncertainty (Elliott et al., 2015). However,
yield changes under future climate change scenarios show in-
consistent results and greater variability in soybean (Glycine
max L. (Merr.)) than in other crops, because of model dis-
crepancies (Jdgermeyr et al., 2021). Despite being a major
crop, soybean has been studied less extensively than other
crops in terms of its response to changing environments (Ru-
ane et al., 2017; Kothari et al., 2022). Therefore, the devel-
opment of a new soybean model is needed to reduce uncer-
tainties in climate change impact assessments.

It is important to use diverse types of crop models and en-
sure model diversity to understand the uncertainties of sim-
ulations, because relying on a single model can lead to bi-
ased results. To our knowledge, there are only five process-
based models for global-scale soybean yield estimation with
leaf-level photosynthesis and stomatal conductance parame-
ters; namely LPJ-GUESS (Ma et al., 2022), LPJmL (Wirth
et al., 2024), ORCHIDEE-crop (Wu et al., 2016), PRYSBI2
(Sakurai et al., 2014), and JULES (Leung et al., 2020). Sim-
ulations for soybean using process-based models are rela-
tively uncommon. Thus, further development and validation
of process-based models that incorporate leaf-level photo-
synthesis and stomatal conductance parameters are essential.

MATCRO-Rice (Masutomi et al., 2016a, b) is an ecosys-
tem process-based model for crops embedded into the land
surface model of Minimal Advanced Treatments of Surface
Interaction and Runoff (MATSIRO; Takata et al., 2003). The
crop growth model is further explained in Sect. 2. MATCRO-
Rice uses state variables to exchange information (e.g., tem-
perature, soil moisture, transpiration, leaf area index, and
photosynthesis rate) between the land surface model and
crop growth model. The MATCRO-Rice model incorporates
mechanisms related to photosynthesis and stomatal conduc-
tance to assess the impact of greenhouse gases on carbon and
water fluxes on crop yield. Masutomi et al. (2019) described
the implementation of ozone effects as one of these mech-
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anisms, highlighting the model’s capability to account for
environmental stressors. Furthermore, MATCRO-Rice has
been applied at the regional scale, and it has been used to
measure climate impacts, which are important for developing
adaptation strategies (Kinose et al., 2020; Masutomi, et al.,
2016b).

Here, we developed a new process-based model for soy-
bean, MATCRO-Soy v.1, which incorporates diverse bio-
logical processes and environmental interactions that drive
plant growth and adaptation to changing conditions. Adapted
from MATCRO-Rice, the new model was applied to soy-
bean by parameterizing key processes using experimental
data and findings from the literature. The current version of
MATCRO-Soy (v.1) was evaluated in a global-scale simula-
tion, following a calibration process that considered essential
photosynthesis mechanisms. This paper presents the model
description in Sect. 2, the calibration process in Sect. 3, and
the model evaluation in Sects. 4 and 5.

2 Model description

MATCRO-Soy is based on MATCRO-Rice, a process-based
model for rice growth and yield. Here, the MATCRO-Rice
model has been modified for use in soybean. MATCRO-Rice
is a combined land surface and crop growth model used to ex-
plore the land—atmosphere interaction in rice fields. Unlike
MATCRO-Rice v.1, MATCRO-Soy focuses on yield simu-
lation and omits the calculation of sensible and latent heat
fluxes in the energy balance to reduce computational com-
plexity while maintaining accuracy in simulating soybean
growth and yield.

2.1 Overview of MATCRO-Soy

MATCRO-Soy includes three main modules: phenology,
photosynthesis, and carbon partitioning (Fig. 1). The phenol-
ogy module simulates crop phenological development over
time based on heat unit accumulation. The module directs
the progression of carbon assimilation and partitioning by
monitoring plant developmental stages from sowing to har-
vest. The phenology module simulates developmental stages
based on the developmental rate from sowing to harvest. The
developmental stage influences key processes such as glu-
cose production and allocation across plant organs. The pho-
tosynthesis module initially estimates gross primary produc-
tion (GPP) and respiration at the leaf level using the Far-
quhar model (Farquhar et al., 1980), and then extends the
estimation of net primary production (NPP) to the canopy
level, following the concept introduced by de Pury and Far-
quhar (1997). It considers the electron-transport-limited rate
of photosynthesis, Rubisco-limited photosynthesis, and leaf
respiration to estimate NPP at the leaf level.

The photosynthesis and carbon partitioning modules are
closely linked, because carbon assimilated from photosyn-
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Figure 1. Flowchart diagram of soybean yield simulation by the MATCRO-Soy model.

thesis is subsequently allocated to different plant organs. The
NPP is stored in glucose and starch reserves. The carbon par-
titioning module distributes glucose to different organs (i.e.,
leaf, stem, root, and storage organ) using a method derived
from the school of de Wit, which simulates biosynthetic pro-
cesses (de Vries et al., 1989). It also accounts for leaf senes-
cence, which influences nutrient cycling, crop productivity,
and the leaf area index, thereby affecting canopy photosyn-
thesis. Leaf senescence is simulated as a function of crop
developmental stage, as defined by the phenology module.
MATCRO incorporates the amount of nitrogen per leaf area
(specific leaf nitrogen, SLN) as a key determinant of pho-
tosynthetic capacity. Root depth can indirectly affect photo-
synthesis because it influences the plant’s ability to access
water and nutrients from soil layers, further influencing plant
growth within the model framework.

The input data consisted of environmental variables ob-
tained from meteorological forcings, soil type classifications,
nitrogen fertilizer applications, and agricultural management
practices such as irrigation and seed sowing. These inputs
were crucial for setting the initial conditions and boundary
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parameters for the simulations. The output of MATCRO is
crop yield (kgha~!) estimated for both irrigated and rainfed
conditions on the basis of soil-crop interactions. First, we
processed the parameterized growing degree days to maturity
using crop calendar data to estimate the harvest time in the
phenology module (see Sect. 2.2). The photosynthesis mod-
ule includes limiting factors such as nitrogen fertilization
and water stress, as detailed in Sect. 2.3. Then, crop growth
is calculated based on developmental stage (Sect. 2.4). We
conducted a parameterization process including phenolog-
ical development, carbon partitioning, and photosynthesis
limited by water stress and nitrogen uptake. The crop yield
was estimated using the parameterized seed:pod ratio (see
Sect. 2.5). The adjusted parameters in MATCRO-Soy are de-
scribed in Sect. 2.6, where the key dynamic variables were
parameterized over time to ensure a reliable estimate of car-
bon assimilation in soybean. This comprehensive approach
allows MATCRO to account for the complex interactions
among environmental conditions, crop physiology, and man-
agement practices, providing a robust framework for predict-
ing crop yields and assessing agricultural productivity.

Geosci. Model Dev., 18, 8801-8826, 2025
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2.2 Crop phenological development

Phenological development refers to the timing of develop-
mental events in response to environmental inputs. MATCRO
calculates crop developmental stage (DVS) using an index
ranging from 0-1, where DVS = 0 is the sowing time and
DVS =1 is maturity. This index is based on the integral of
the temperature required to exceed the phenological changes.
The module uses a formulation based on Bouman et al.
(2001) as outlined in Egs. (1)—(4) as follows:

GDD
DVS, = : (1)
GDD,,
t
GDD, = / DVRd:' )
0
m
GDD,, = / DVRd¢’ 3)
0
0, Tt < Ty > T
DVR,={ i =T , Ty <Ti<To )
(To —To)(Ih—T) T
’ o < T’t < Th
(Th - To)

where GDD; and GDDy, indicate the growing degree days
(°C days) used to estimate the development of plants during
the growing season at time ¢ and at maturity (m), respec-
tively; DVR represents the developmental rate at ¢; and Tt
represents the temperature at t. The parameters Ty, 7o, and
Ty, (°C) are crop-specific and represent the base, optimum,
and highest temperatures for crop development, respectively.

The impact of temperature on phenological stage can dif-
fer among crop stages, as Boote et al. (1998) observed that
cardinal temperatures (Ty, Ty, T,) may differ between veg-
etative and reproductive stages. We followed de Vries et al.
(1989) for cardinal temperatures during the growing season.
This study parameterized the developmental stages as flow-
ering (DVSy), seed-filling (DVSy), and maturation (DVSy,)
on the basis of mean values calculated from the available
observations for each stage (listed in Table 2). Calculations
for each stage were based only on experiments where cor-
responding data were available. MATCRO uses these DVS
parameters to define the period of leaf dry weight loss due
to leaf senescence and the remobilization of starch reserves
from the stem (Masutomi et al., 2016a). It was assumed that
the corresponding phenological times in soybean are the mid-
dle of the flowering stage and the seed-filling stage, because
leaf loss starts within those periods.

2.3 Carbon assimilation process
In the photosynthesis module of MATCRO-Soy, carbon as-

similation is based on canopy photosynthesis, which is es-
timated from leaf-level photosynthesis calculated in sunlit
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and shaded conditions (Dai et al., 2004). The calculation in-
cludes the stomatal conductance response to relative humid-
ity (Collatz et al., 1991). The net carbon assimilation (Ay) in
MATCRO is calculated using the Farquhar model as further
described in Masutomi et al. (2016a), expressed in Eq. (5) as
given as

Ap = f(PAR, COZleafa Vmax, Pa, RH, Tieat, fWa BB,, BBb) (5)

where A, (mol(CO,)m~2s~1) represents net carbon assim-
ilation contributing to NPP for biomass growth. It is a func-
tion of the intensity of absorbed photosynthetic active radia-
tion (PAR, in mol(photon) m~2s~!), the CO» concentration
in the substomatal chamber (CO7 jeat, in Pa(CO») Pa(Air) 1),
maximum Rubisco capacity per unit leaf area (Vpax, in
mol(CO,)m~2s~ 1), air pressure (P,, in Pa), relative humid-
ity (RH), leaf temperature (Tieqf, in K), water stress factor
(fw» dimensionless), the slope (BB,, in mol(H,0) m~—2 s’l)
and intercept (BBp, in mol(H,O) m~2s~!) of the Ball-Berry
model of the relationship between crop assimilation and
stomatal conductance per unit leaf area, relative humidity at
the leaf surface, and ambient CO, concentration (Ball, 1988).
The leaf temperature is assumed to be the same as the air
temperature to simplify the calculation.

Rubisco activity is a key variable used to assess the rate of
carbon entry into the photosynthetic pathway, because Ru-
bisco catalyzes the crucial initial step of RuBP (ribulose-
1,5-bisphosphate) carboxylation in photosynthetic carbon as-
similation in C3 plants (Sage, 2002; Xu et al., 2022). In
MATCRO, Vnax in Eq. (5) is calculated as follows:

Vinax = Vine fw ©)

mc = Vmc exp(c — AH/RTieaf) o

. Jo™ Vemn (LADALAT N
LAI

where Viax and Vi are, respectively, the maximum Ru-
bisco capacity per unit leaf area with and without the wa-
ter stress factor (fiw); Vmc is determined with a generic tem-
perature response as described by Bernacchi et al. (2001); ¢
and A H represent a scaling constant (¢ = 26.35) and acti-
vation energy (AH = 65.33kImol™") of Rubisco’s activity
response to temperature changes; R is the molar gas con-
stant in kI mol™!; V¢ is the maximum Rubisco capacity av-
eraged over the canopy; and Vimax (LAI) denotes the verti-
cal distribution of the maximum Rubisco capacity through
the canopy, as determined by the vertical nitrogen distribu-
tion (see Egs. 14 and 15). The water stress factor, fy, is
determined based on the root distribution function (f;(i))
multiplied by the water stress function at each soil layer
(fwstress,t (1)). The results are then summed across five soil
layers (depths of 0.05, 0.25, 1, 2, and 4 m below the ground
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surface), as given in Egs. (9)—(13) as follows:

5
fw = Z fr(i)fwstress,t(i) )
i=1
(3 (& —1?)
@) = <§) T (10)
Zr = Min {Zrootmax "root (f — fe)} (1D

where f;(i) is the distribution of roots in soil layer i (with
value of 1-5). Root depth (z;, in m) is calculated based on
the root growth rate (rroot, md~1) in timestep ¢ (day) after
the time of emergence (., in d), and is limited by the max-
imum root depth (Zrootmax, i1 M). Z¢ is assumed to be in the
early developmental stage (0.012 of the growing period). The
function fystress,r represents a simplified version of the re-
lationship between the soybean transpiration ratio and tran-
spirable soil water devised by Ray and Sinclair (1998), given
in Eq. (12).

3<FAW(i) , if FAW(i) <0.5

(12)
1, if FAW(i) > 0.5

fwstress,t (l) =

The value of the water stress function at timestep ¢ ( fwstress,r)

depends on soil water availability at soil layer i (FAW;),

which is the estimated soil water content based on the water

flux between the soil layers during crop growth calculated by
WSL() — WSLyiit

FAW(i) = (13)
WSLEc — WSLyiie

where WSL(i), WSLyii;, and WSLpc represent the water
levels in the soil layer i, at wilting point, and at field capacity,
respectively. A value of fiysiress €qual to 1 indicates no water
stress because the fraction of available soil water is adequate
for crop growth.

Vemax (LAI) is the reference value for maximum Rubisco
activity within the canopy (mol(CO2)m~2s~1) at leaf area
index (LAIL in m®>m~2) depth, limited by the exponential
value of vertical distribution of leaf nitrogen (K;), and the
reference value for maximum Rubisco activity at the top of
canopy (Vetop, in mol(CO3) m~2s~1), calculated as follows:

Vemax (LAD) = Vegop exp(— KnLAI) (14)
Veiop = max(aSLN? + HSLN + ¢, Veropmax) 15)

For soybean, the Vo, photosynthetic rate limited by the SLN
is based on the relationship between Rubisco activity and leaf
nitrogen content, as determined from experiments on soy-
bean at the reproductive stage, summarized by Ainsworth
et al. (2014), and for soybean at the reproductive stage, sum-
marized by Qiang et al. (2022). This relationship is empiri-
cally represented by a polynomial quadratic equation limited
by the maximum value of Rubisco activity at the top canopy
(Vetopmax in mol(CO2) m~2 s_l). a, b, c are the quadratic co-
efficient, linear coefficient, and constant, respectively, from
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the relationship between the two variables based on data dig-
itized using WebPlotDigitizer (Rohatgi, 2023).

MATCRO considers nitrogen fertilization input denoted as
Nrere (unit: kg(N) ha_l). This influences the amount of SLN
(g(N) m~2), particularly under conditions of limited nitrogen
availability (Cafaro La Menza et al., 2023; Thies et al., 1995).
The SLN is determined by nitrogen supply (including biolog-
ical nitrogen fixation, soil mineral nitrogen, and nitrogen fer-
tilizer) and by plant demand. In MATCRO-Soy, the changes
in SLN over the growing period are represented by a function
derived from Cafaro La Menza et al. (2023), who observed
SLN under wide range of low- and high-nitrogen fertiliza-
tion conditions (see Fig. S1 in the Supplement). This func-
tion adjusts the SLN value during the crop growth period,
and higher nitrogen fertilization levels result in a higher leaf
nitrogen content. In the absence of empirical data for initial
growth stages, the model assumes a gradual increase in ni-
trogen content. The simulated SLN under different nitrogen
fertilization treatments is defined by

SLNy; — SLN DVS — SLN
SLNy0+( Y1 ro)( x1) 7

SLNx
if DVS < SLNy

SLNy, — SLN DVS —DVS
SLNys + ( Y2 r1)( £) 7
(DVS¢ —SLNy1)

if SLNx; < DVS < DVS; 16
y o (¥ = SLNy2)(DVS — DVS,) (16)

(DVS; —DVSy)
if DVSf < DVS < DVS;
SLNyo — Y)(DVS —DVS
SLNy0+( vo — ¥)( m)

(DVSy — DVSy)
if DVS, < DVS < DVSp,

SLNy3’h —SLNy3
Nferthigh

SLN =

Y =SLNy3,;+ X Nfert (17)

SLN values vary across different phenological stages, as
the developmental stage (DVS) of soybean plants progresses
from O (at sowing) to 1 (at harvest). DVSt, DVSg, DVSq,
and SLNy are defined as the start of flowering, seed-filling,
and maturity stages, and the point where the SLN pattern
starts to change; with parameterized values of 0.4, 0.659, 1,
and 0.15, respectively. SLNyq, SLNy;, SLNy>, SLNy3 1, and
SLNy3 p represent SLN at the initial stage, early decline, pre-
flowering increase, subsequent decline phases during the re-
productive stage under no (1) and high (h) nitrogen inputs
with values of 0.75, 2.25, 1.7, 0.75, and 1.8, respectively.
Nferthigh Tefers to the high nitrogen fertilizer input used in
the model for parameterization, as described in Table 2. Y
is the observed gap in SLN between high- and low-nitrogen
fertilizer treatments (g(N) m~2) (see Fig. S1 in the Supple-
ment).

The growth stages were parameterized based on experi-
mental datasets and align with those reported by Irmak et al.
(2013), based on the growth stage classifications of Fehr and
Caviness (1977). SLN primarily depends on nitrogen derived
from biological fixation and soil nitrogen, either from natural
sources or applied fertilizers. Nitrogen uptake, including bio-
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logical nitrogen fixation and uptake from soil nitrogen, is im-
plicitly captured through SLN that influences V.max (Egs. 14
and 15), and SLN as affected by applied fertilizers (Egs. 16
and 17).

2.4 Crop growth dynamics

The products of photosynthesis contribute to glucose re-
serves, which provide energy for growth during various de-
velopmental stages. The crop growth dynamics include a car-
bon biomass partitioning module to calculate the dry weight
of each soybean organ (Worgan in kg ha™!; see Eq. 18). This
variable is the cumulative growth rate of dry weight (Gorgan
in kgha™'s~!) during the time from emergence to harvest.
Further details on this module can be found in Masutomi
et al. (2016a).

Worgan = f(Gorgan) (18)

The Wopean is calculated separately for each soybean organ
(i.e., leaf, stem, and pod including the seed, glucose re-
serves, and starch). The growth rate of dry weight (Gorgan
in kgha=!s™1) is calculated based on the parameters of con-
version factor of dry weight from glucose to organ (Fglu-organ
in kgha’1 (kgha’l)*l) for leaf, stem, pod, root, and starch
(listed in Table 1), and the ratio of glucose partitioned to or-
gan (Porgan) for shoot, leaf, and pod (listed in Table 2). Shoot
refers to aboveground biomass parts including the stem, leaf,
and pod. G organ is calculated for each organ and storage frac-
tion (glucose, leaf, stem, pod, root, and starch) as described
by:

Gglu = f(Wleanglus Rglu) (19)

Gleat =G glu Psnoot Pleat F glu-leaf (20

Gstem =G glu Pshoot (Pleat — Ppod) @1
X (I = fstareh) F, glu-stem

Gpod = Gglu Pshoot Ppod Fglu—pod (22)

Groot = Gglu(1 — Pshoot) Felu-root (23)

Gtarch = Gglu Pshoot (Pleat — Ppod) fstarch Fglu-starch (24)

where Gglu (kgha='s™!) is the amount of glucose parti-
tioned to soybean organs and reserves derived from a func-
tion of leaf dry weight (Wi, in kg ha_l), net carbon assim-
ilation in glucose form (Agy in kg(CH,0) ha='s™1), and
glucose remobilized from starch reserves in the stem (Rgy
in kgha_1 s_l); Agly is Aj that has been already converted
from CO, to glucose using the conversion factor 1.08 x 10°
[kgha='h~!(molm~2s~")~!], which is the physical and
chemical constant for the conversion; and Rgy is glucose re-
mobilized from starch reserves in the stem, calculated us-
ing the ratio of the remobilization value. The Rgj, is sub-
tracted from the dry weight of starch reserves (Wgarch)- fstarch
[kgha=!(kgha=1)~!] is the fraction of glucose allocated to
starch reserves, calculated as stem dry weight loss.
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As shown in Egs. (20)~(24), Gorgan Was calculated based
on the conversion factor of dry weight (Fgly-organ) and ratio
of glucose partitioned to that organ (Pyrgan). The calculations
for Porgan are shown in Egs. (25)—(27):

1 — Proot , ifDVS=0
1 — Proot(DVS, —DVS)

DVSh
if 0 < DVS < DVSp,

1, ifDVS>DVSy

Pshoot = ’ (25)

Pieato + ———— (Pleatt — Pleafo) »
leafO DVSleafl( leafl — Pleaf0)

if DVS < DVSieari

Piear? — Pleaf
(Pleat2 — Preaf1) (DVSieata — DVS) . (26)
DVSjeat2 — DVSjeaf]

if DVSieat1 < DVS < DVSiear2
0, if DVS > DVSiear2

0, ifDVS <DVSpoa1
DVS — DVS,0a1

DVSpodZ - DVSpodl ' (27)
if DVS,0d1 < DVS < DVSp0a2

1, ifDVS >DVSpodaz

Piear =

Pieaf —

Ppod=

Pieafo, Pleaf1, Plear2 represent the leaf:shoot glucose parti-
tioning ratio when leaf growth first starts to decline (leaf0),
leaves stop growing (leafl), and at maturity (leaf2), respec-
tively. DVSyoa1and DVSpoq2 indicate the DVS values at
which the pod:shoot glucose partitioning ratio begins to in-
crease and eventually saturates, respectively (Fig. 2). Fig-
ure 2 in Sect. 3.2 visually represents the glucose partitioning
ratio during crop growth as calibrated in this study.

During the calibration process, the glucose partitioned to
each organ was adjusted for each developmental stage on the
basis of experimental data, as further described in Sect. 3.
However, in this module, the leaf dry weight decreases be-
cause of senescence. This is calculated as the loss of leaf dry
weight (Liear in kg ha~! s~1) derived from the calibration of
the ratio of glucose partitioned into the dead leaf (Pgjear in
s~1), as outlined in Eqs. (28) and (29).

0, ifDVS < DVSgeadieafi

Pdleaf(Wleaf + ngu) s (28)
if DVS > DV Sgeadieat1
(DVS — DV Sgeadieaf1)

Pgleat = Pdcadleat2 ~
ca eadlea (1 — DV Sgeadieaf1)

The leaf area index (LAI) represents the leaf surface area rel-
ative to the ground area, calculated using Eq. (30). It directly
influences the plant’s ability to intercept solar radiation for
photosynthesis.

_ Wieat + ngu
- SLw

LAI is calculated from the estimated leaf dry weight (Wieqt,
in kgha~!) and glucose reserves in leaves (W, in kg ha™!)

Lieat =

LAI (30)
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Table 1. Crop-specific parameters used for MATCRO-Soy.
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Parameters  Description Value  Units Source Eq.
Folu-leat conversion factor of dry weight 0.871 kg ha~! (kg ha=1)=1  de Vries et al. (1989) (20)
from glucose to leaf
Felu-stem conversion factor of dry weight 0.810 kg ha~! (kg ha= ")~ de Vries et al. (1989) (21)
from glucose to stem
Felupod conversion factor of dry weight 0.759 kg ha~! (kg ha_l)_1 de Vries et al. (1989) (22)
from glucose to pod
Falu-root conversion factor of dry weight 0.857 kgha—!(kgha—!)~!  de Vries et al. (1989) (23)
from glucose to root
Folustarch  carbon fraction in the dry matter of 09 kg ha~! (kg ha—1)~1 Physical and chemical (24)
starch constant
KN vertical distribution of leaf nitrogen 0.11 - Bonan et al. (2011) (14)
Troot rate of root depth increase 0.03 md! Ordéiiez et al. (2018); (11)
Nakano et al. (2021)
Zrootmax maximum root depth 1.7 m de Vries et al. (1989) (11)
Ty base temperature for crop 10 °C de Vries et al. (1989) 4)
development
Th highest temperature for crop 34 °C de Vries et al. (1989) (@]
development
To optimum temperature for crop 27 °C de Vries et al. (1989) (@]
development
100 (5 1.00
075 075
kel =
= 3
% 050 ® 0.50
g 8
L.‘,’ a
0.25 0.25
0.00 0.00 .
0.00 0.25 0.50 1.00 0.00 0.25 0.50 075 1.00

Developmental Stage (DVS)

[] Piracicaba (Brazil)
O Frederico Westphalen (Brazil) —| Tsukubamirai (Japan) > Ya'an (China)

Site

A Morioka (Japan)

Developmental Stage (DVS)

X Champaign (US)

Figure 2. Glucose partitioning ratio to leaf from shoot (a) and glucose partitioning ratio to pod from shoot (b) during soybean plant develop-
ment [DVS = 0(sowing) — 1(maturity)] at different experimental sites (square: Piracicaba, circle: Frederico Westphalen, triangle: Morioka,
plus: Tsukubamirai, cross: Champaign, diamond: Ya’an. Red lines are segmented lines used for glucose partitioning in MATCRO-Soy.
Dashed lines mark flowering, seed filling, and harvest times averaged across all experimental datasets.
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Table 2. Parameterized variables for soybean in MATCRO.

A. Yusara et al.: Model description and evaluation of MATCRO-Soy

Variables Value  Units Description

a —18.516 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (15)
b 11433 - coefficient at relationship of rubisco activity and leaf nitrogen in Eq. (15)
c —73.336 - constant at relationship of rubisco activity and leaf nitrogen in Eq. (15)
DVSgeadleafl 0.6 - 1st DVS point where the dead leaf ratio pattern changes

DVSgeadieaf? 1 - 2nd DVS point where the dead leaf ratio pattern changes

DVS¢ 04 - developmental stage on initial flowering stage

DVSieafi 025 - 1st DVS point where the leaf partitioning pattern changes

DVSiear2 0.659 - 2nd DVS point where the leaf partitioning pattern changes

DVSm 1 - developmental stage at maturity time

DVSpod1 048 - Ist DVS point where the pod partitioning pattern changes

DVSpod2 0.72 - 2nd DVS point where the pod partitioning pattern changes

DVSq 0.659 - developmental stage to start seed filling stage

DVSsinNi 0.15 - 1st DVS point where the specific leaf nitrogen changes along with DVS
DVSsi N2 04 - 2nd DVS point where the specific leaf nitrogen changes along with DVS
DVSsinN3 0.659 - 3rd DVS point where the specific leaf nitrogen changes along with DVS
Sstarch 0.18 - fraction of glucose allocated to starch reserves

SR 0.68 - seed : pod ratio (SR) accounting harvest index from storage organ
Nferthigh 300 ngha_1 nitrogen fertilizer value used in high nitrogen fertilizer in Cafaro La Menza et al. (2023)
Pieafo 038 - glucose partitioning ratio of leaf toward shoot in the initial DVS point
Pearfl 0.6 - glucose partitioning ratio of leaf toward shoot in the 1st DVS point
Plearr 0 - glucose partitioning ratio of leaf toward shoot in the 2nd DVS point
Pieadleafl 0 ! dead leaf ratio value in the 1st DVS point

Pieadleaf? 0.000001 s~! dead leaf ratio value the 2nd DVS point

SLNyq 0.75 gN m—2 initial specific leaf nitrogen

SLNy 2.25 gNm_2 specific leaf nitrogen value in the 1st DVS point

SLNy» 1.7 gNm_2 specific leaf nitrogen value in the 2nd DVS point

SLNy3 p, 2.25 gNm_2 specific leaf nitrogen value in the 3rd DVS point when using high nitrogen fertilizer
SLNy3 1.8 gNm_2 specific leaf nitrogen value in the 3rd DVS point when using low nitrogen fertilizer
SLWmax 550 kg ha=! maximum specific leaf weight

SLWmin 250 kg ha~! minimum specific leaf weight

SLWy 25 - exponential slope of specific leaf weight to the developmental stage
Vetopmax 103 x 10 mol(CO») m—2s~!  maximum Rubisco capacity at the canopy top in Eq. (15)

divided by the specific leaf weight (SLW, in kgha™!). Glu-
cose reserves are added to the leaf dry weight as a buffer, and
affect leaf growth by storing carbohydrates that are not im-
mediately required. SLW is the leaf dry weight per unit leaf
area. The value of SLW dynamically changes during devel-
opment according to the following exponential relationship:

SLW =SLW pax + (SLWpin — SLWax)

(€29
x exp(—SLW,DVS)

where SLW ax, SLWnin, and SLW,, represent the maximum,
minimum, and slope parameters, respectively, that define the
values observed in the exponential relationship based on the
experimental dataset summarized in Table 3.

Geosci. Model Dev., 18, 8801-8826, 2025

2.5 Soybean yield estimation

Soybean yield is calculated from the pod dry weight at har-
vest (Wpodharvest in kg ha_l) multiplied by the seed ratio pa-
rameter (SR), as given in Eq. (32).

Yield = Wiodharvest X SR (32)

SR was derived from experimental datasets summarized in
Table 3 and represents the ratio of yield (seed, kgha™!) to
Whpodharvest at harvest time.

2.6 Soybean-specific parameters

MATCRO-Soy shares several parameters with MATCRO-
Rice because both plants are C3 species. However, unlike
cereal crops, soybean plants can fix nitrogen. This charac-
teristic is represented through changes in SLN during crop
growth, as described in Egs. (16) and (17). The crop-specific
parameters reflect the unique physiological and chemical
processes involved in soybean growth, but still align with

https://doi.org/10.5194/gmd-18-8801-2025



A. Yusara et al.: Model description and evaluation of MATCRO-Soy

8809

Table 3. Information about field experiments: Location, crop season, soybean variety and maturity group, water management, and nitrogen
fertilizer, as well as the number of experiments for calibrating glucose partitioning ratio and evaluating soybean yield simulations.

Location Crop season Variety Date of planting Water management, Experiments (n)  Reference
(RMG*) Nitrogen fertilizer
(gNm~2), Plant
Density (plantm’z)
Brazil (Frederico 2013 BRS284 (6) 1, 18 October; 8, 25 November, 12 Rainfed, 0, 26-28 5 Battisti et al. (2017)
Westphalen) December (2013)
Brazil 2013-2014 BRS284 (6) 18 October, 14 November (2013); Irrigated and Rainfed, 6 Battisti et al. (2017)
(Piracicaba) 8 Jan (2014) 0, 16-37
China (Ya’an) 2014 11 cultivars 11 June (2014) Trrigated, NA, 10 15 Wu et al. (2019)
(5-8)
2014-2016 Texuanl3 (7), 15 June (2014); 18 June (2015); 18 9
Jiuyuehang (5),  June (2016)
Nandoul2 (6)
United States 2002, 2004-2007  Pioneer93B15 1 June (2002); 28 May (2004); 25 Rainfed, 0, 25-53 8 Morgan et al. (2005);
(Champaign) 3) May (2005, 2006); 22 May (2007) Ainsworth et al. (2007)
Japan 2013-2015 Enrei (2), 12 June, 31 July (2013); 17 June, Rainfed, 25-27, 9.5 16 Nakano et al. (2021)
(Tsukubamirai) Fukuyutaka 17 July (2014); 4, 30 June (2015)
(4), Ryuhou (2)
Japan (Morioka) 20132016 Ryuhou (2) 13, 28 May (2013); 16, 30 May Rainfed, 25-30, 9.5 10 Kumagai, (2018);

(2014); 5, 14, 25, 29 May (2015);

Kumagai, (2021)

30 May, and 6, 27 June (2016)

* Relative maturity group.

the general framework of MATCRO-Rice. Key parameter
adjustments are outlined in Table 1, where MATCRO em-
ploys a set of specific parameters to simulate crop growth and
yield. These parameters include factors related to carbon al-
location, root growth characteristics, and crop development
based on cardinal temperatures. By accurately representing
the unique physiological and biochemical characteristics of
soybean plants, these parameters improve the precision of the
model in predicting soybean yield.

MATCRO-Soy is intended for use in global-scale simu-
lations; hence, it uses a single global parameterization as a
standardized set of parameters applied worldwide. It uses a
unified approach for modelling crop behaviour across differ-
ent regions. It is assumed that the parameter values from the
different treatments and cultivars are independent. Table 2
lists variables parameterized within the model, including glu-
cose partitioning, nitrogen, and photosynthetic capacity vari-
ables. Through the parameterization of these variables, the
model can be adapted for various growing conditions and
employed to assess the sensitivity of crop performance to dif-
ferent factors. These parameters are commonly used to eval-
uate the crop model’s sensitivity to environmental changes
and require further fine-tuning, as highlighted by simulations
using other crop models (Battisti et al., 2018a).

3 Model calibration
The model’s parameters were tuned using observed val-

ues for phenology and seasonality of biomass development.
Once calibration was complete, the model continued to simu-
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late crop growth, which encompasses phenological develop-
ment, carbon assimilation, assimilate partitioning, and crop
yield. We conducted calibrations to include various environ-
mental conditions and soybean varieties documented in pre-
vious experimental studies as detailed in Sect. 3.1 and Ta-
ble 3. The model calibration included parameterizing the
dynamic biomass growth partitioning ratio for each organ
(Porgan), leaf senescence, and specific leaf’ weight at each
DVS. Other calibrations using the experimental dataset in-
cluded the phenological stage, and the seed:pod ratio (SR).
The crucial phenological stages (e.g., flowering and seed-
filling) were calculated as the average value of the reported
values in the experimental dataset. MATCRO applies this
crop growth module following the method of the school of
de Wit, comparing biomass growth with the observed values
at various developmental stages. Shifts in partitioning and
growth patterns were identified and used as reference points
in the parameterization.

3.1 Description of site data used for calibration

The calibration process used experimental datasets reported
in previous studies. The data were collected in field ex-
periments across six different sites in four countries: Fred-
erico Westphalen and Piracicaba (Brazil), Ya’an (China),
Champaign (United States of America, US), Morioka and
Tsukubamirai (Japan) (Table 3). The soybean -cultivars
grown at these experimental sites represented different ma-
turity groups. A variety of management practices related to
water management and nutrients were used in the field exper-

Geosci. Model Dev., 18, 8801-8826, 2025
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iments. The farming practices differed among countries. The
soybean plants were cultivated with a low planting density
in China and Japan, but typically at higher planting densi-
ties in the US and Brazil. Nitrogen fertilizers were applied
at most sites, but the mineral nitrogen content in soil at sites
in Brazil and the US was sufficient to support crop growth.
Soybean crops were planted between May and June in the
US, China, and Japan, but in October or November in Brazil.

Weather data were derived from the records at the me-
teorological station nearest to the experimental site. The
climatic conditions at the respective sites were as fol-
lows: daily mean air temperature ranges during the grow-
ing season of 18-30°C in Frederico Westphalen (Brazil),
19-31 °C in Piracicaba (Brazil), 17-27 °C in Tsukubamirai
(Japan), 14-25°C in Morioka (Japan), 18-26 °C in Ya’an
(China), and 15-28 °C in Champaign (US). The seasonal
precipitation (mm) was 1669 mm in Frederico Westphalen
(Brazil), 679 mm in Piracicaba (Brazil), 453 mm in Morioka
(Japan), 865 mm in Tsukubamirai (Japan), 1012 mm in Ya’an
(China), and 787 mm in Champaign (US). The amount of
solar radiation also differed among the experimental sites;
China received the least solar radiation and Brazil received
the most during the experimental period (Fig. S2 in the Sup-
plement). These data represent the diverse climatic condi-
tions in soybean-producing countries. The field data used
for calibration were collected across multiple crop seasons,
specifically from 2002, 2003-2007 and from 2013-2016.
These time periods were expected to capture the current cli-
matic and environmental variability.

3.2 Biomass partitioning and specific leaf weight

The MATCRO-Soy model represents carbon assimilation by
incorporating the carbon fraction in dry matter and that in
glucose allocated to various plant organs. The glucose ratio
for each organ was parameterized based on measurements of
leaf weight, leaf senescence, stem weight, pod weight, and
specific leaf weight across different developmental stages. To
simulate glucose partitioning, we used Egs. (25)—(29) to fit
the segmented linear functions to the experimental dataset
(Figs. 2 and 4) and the parameter values as shown in Ta-
ble 2, as this value is used to obtain the average value of soy-
bean partitioning behaviour. The segmented linear functions
for glucose partitioning were manually determined by visual
inspections of the plot. This approach was chosen because
of the challenges in applying nonlinear optimization. Break-
points in the developmental stage were determined based on
assumed growth characteristics, such as the decrease in leaf
development after the seed-filling stage and the start of pod
formation after flowering. We assumed an increasing trend
of glucose allocation to leaf and shoot development during
the early stage when data were unavailable, with subsequent
segments aligned with observed data trends. The calibrated
glucose partitioning ratio varied across the varieties and envi-
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ronmental conditions and was derived by converting biomass
growth into glucose allocation as outlined in Egs. (19)—(24).

The parameterization reflected the observed data, as well
as the linear growth of leaves and pods during the develop-
mental stages. It was used for seed: pod ratio and phenol-
ogy parameterization. The dashed lines in Figs. 2 and 3 indi-
cate the estimated flowering and seed-filling stages, as deter-
mined by calculating the average time of phenological stages
across all the experimental datasets. The independent dataset
was used for evaluating the calibrated model at the point-
scale level. After removing the calibration data, the simulated
yield at the site scale showed a correlation coefficient of 0.68
and significant consistency (p-value < 0.001) with observed
data (Fig. S3 in the Supplement). The simulated data were
also consistent with observed data for aboveground biomass
weight, pod weight, and leaf area index, with correlation co-
efficients of 0.60-0.90.

Assimilated carbon is subsequently allocated to other parts
of the plant. Compared with varieties grown at other sites,
the soybean varieties grown in Tsukubamirai (Japan) tended
to have lower partitioning to the stem during the vegeta-
tive stage. The ratio of glucose to leaves in Sichuan (China)
was unexpectedly high near maturity in 2016, resulting in a
low level of partitioning to pods because of low temperature
and drought conditions. The storage organ biomass increases
during the reproductive stage to produce pods and seeds,
whereas the shoot senesces at the end of the maturity period.
Hence, yield is estimated using seed weight (as determined
by storage organ weight) and the parameterized seed:pod ra-
tio. In Champaign (US), pod partitioning tended to occur
early during pod initiation in early maturing varieties. It is
also observed in another study as the dry weight of pods be-
fore the seed filling stage was relatively high in early ma-
turing varieties (Kawasaki et al., 2018). Early pod initiation
occurred in the soybean variety “Ryuhou” in Tsukubamirai
in 2013 (Nakano et al., 2021). The dead leaf ratio parameter
indicates the degree of leaf senescence after the seed-filling
stage (Fig. 3), as calculated from the amount of leaf loss ob-
served during the growing season.

Specific leaf weight (SLW) is a significant parameter in
crop growth parameterization and was calibrated to follow
the measured data shown in Fig. 4. We used the measured
leaf weight and leaf area index data from the experimental
datasets described in 2.4 and Eq. (30) to calculate the ratio
of leaf weight to leaf area (SLW) during different phenolog-
ical stages. These ratios change over time, and vary among
growing seasons and cultivars (Thompson et al., 1996; Slat-
tery et al., 2017). In the figure, SLW from Champaign (US)
was excluded because of discrepancies in the timing of leaf
area and leaf weight biomass measurements. While the SLW
varied among the sites, we fitted the model of SLW assum-
ing a saturating exponential function of developmental stage
(red line in Fig. 4). This pattern aligned well with the biolog-
ical process, i.e., the SLW initially increases because of rapid
biomass accumulation but saturates as the leaves mature.

https://doi.org/10.5194/gmd-18-8801-2025



A. Yusara et al.: Model description and evaluation of MATCRO-Soy 8811

9e-07

6e-07

Dead leaf ratio (s“)

3e-07

0e+00

Site

L] Piracicaba (Brazil)

2 Frederico Westphalen (Brazil)
Morioka (Japan)
— Tsukubamirai (Japan)

X Champalgn (US)

<> Ya'an (China)

Developmental Stage (DVS)

0.00 0.25 0.50 0.75

Figure 3. Dead leaf ratio (s~1) during soybean plant development (DVS = 0 — 1). Abbreviations and symbols are the same as in Fig. 2.
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4 Model evaluation setup

MATCRO was developed in FORTRAN and coupled with
the global climate model’s output, simulated at a spatial res-
olution of 0.5° x 0.5° and hourly—daily temporal resolution.
The output of the model is gridded crop yield (kgha™') as
stored in netCDF file format in a global map with one harvest
simulated per year. We evaluated the model’s performance at
global, country, and grid-cell levels for 34 years (1981-2014)
at 0.5° spatial resolution with yearly harvested yield output.
The accuracy of the simulated yield was assessed by compar-
ison with reference global and country-level data from the
Food and Agriculture Organization (FAOSTAT, 2024). The
simulated grid-cell level yield was compared with Global
Dataset of Historical Yield (GDHY) data, which are derived
from statistical records, FAO data, and remote sensing data
(Iizumi, 2019).

https://doi.org/10.5194/gmd-18-8801-2025

4.1 Simulation settings and data inputs

The parameters were set as shown in Table 4, covering
the period of sowing years from 1980-2014, with various
planting times across different regions. The model incorpo-
rated global daily climate data (86400 s) as input data. Al-
though the simulation framework was that of the established
MATCRO-Rice v.1 (Masutomi et al., 2016b), several modi-
fications were made to enhance its applicability at a global
scale. Notably, the temporal resolution was adjusted from
half-hourly (1800 s) to hourly (3600 s), allowing the model to
maintain consistency in capturing critical processes such as
diurnal variations in photosynthesis and transpiration, while
optimizing computational efficiency. These adjustments en-
sured that the model was suitable for large-scale simulations
while preserving essential physiological processes.

Geosci. Model Dev., 18, 8801-8826, 2025
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Table 4. Parameter settings for simulation.

Variable Value  Unit Description

Yeargow varied  Year

year of sowing day

DOYsow varied Day of Year (DOY) day of year of sowing day

REStime 3600 s time resolution for simulation

RES limate 86400 s time resolution for climate forcing data

RESye/mns 0.5 degree spatial resolution north to south or west to east

Soil layer 5.0 - number of simulated soil layer to calculate soil water content
WSL 1.0 - soil water content at emergence

Wieato 1.0 kg ha~! dry weight of leaf at emergence

Wstem0 1.0 kg ha~1 dry weight of stem at emergence

Wroot0 1.0 kg ha~! dry weight of root at emergence

Weluo 0.5 kg ha~! dry weight of glucose reserve at emergence

Za 3.0 m reference height at which wind speed is observed

Zmax 4.0 m depth of soil layer

Zt 0.05 m depth of topsoil layer

Zy 2.0 m depth from the soil surface to the upper bound of the most bottom layer of soil

The model simulates soybean yield using input data as de-
scribed in Table 5. It uses the following global input data:
crop calendar from the Global Gridded Crop Model Inter-
comparison (GGCMI), which separates rainfed and irrigated
systems; atmospheric CO; and climate data from the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP),
which provides bias-adjusted climate input data for histori-
cal data (GSWP3-W5ES5 v2.0); soil classifications from the
Harmonized World Soil Database (HWSD v1.2); and nitro-
gen fertilization for C3 fixing crops of the ISIMIP, which is
derived from the land use dataset (Hurtt et al., 2020). ISIMIP
bias-adjusted data are used to maintain uniformity in the cli-
mate impact data across sectors and scales in the framework.
This dataset, which is provided by ISIMIP, has a spatial reso-
lution of 0.5° . To determine the growing degree days for ma-
turity, we considered the phenological maturity time from the
GGCMI crop calendar for harvest time and global ISIMIP
climate data over 10 years (2000-2010) to capture the shifts
in variability across the current evaluation years.

4.2 Global yield evaluation methods

In this study, we assessed the statistical relationship between
simulated yields and observed or reference data using the
common metrics of Pearson’s correlation coefficient (corr)
as calculated using Eq. (33) with significance level (p-value),
agreement between the simulated and observed results using
root mean square error (RMSE) as calculated using Eq. (34),
and relative bias, as calculated using Eq. (35), for time-series
yield data as follows:
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where X; and Y; indicated simulated and observed values for
each measurement; X and Y denote the mean of simulated
and observed values for the harvested year annually; and i
and n are the ith data point and total number of data, respec-
tively. We used n = 34 year for global-scale data, while the
output after calibration was evaluated at the point-scale us-
ing n = 14 — 122 of the available experimental datasets.

Detrended yield represents the time-series yield data for
both simulated and observed values after removing the lin-
ear trend by subtracting the slope and intercept of the fit-
ted linear regression (long-term yield trend). This approach
enables the separation of short-term yield fluctuations from
systemic long-term shifts. To provide a clear interpretation of
the model’s evaluation errors, yield fluctuations were evalu-
ated separately for the long-term and detrended data using
mean squared deviation (MSD) and its components (Gauch
et al., 2003; Kobayashi and Salam, 2000), as outlined in
Eq. (36):

MSDy = SBy + SDSDy, +LCS, (36)

where MSDy, is the square of RMSE for each long-term
yield trend or detrended yield. Its components include mean
squared bias (SBy), difference in the magnitude of fluc-
tuation, namely the squared difference between standard
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Table 5. Data input for MATCRO simulation.

8813

Variable Unit

Data source Spatial resolution

Daily time-step

Precipitation kgm™“s GSWP3-WS5ES (Kim, 2017; Cucchi et al., 0.5° % 0.5°
2020; Lange, 2019; Lange et al., 2021)

Near-surface specific humidity kg kg_1 0.5° x 0.5°

Maximum, minimum, and mean temperature ~ Kelvin 0.5° x 0.5°

Surface downwelling shortwave radiation Wm—2 0.5° x 0.5°

Near-surface wind speed ms~! 0.5° x 0.5°

Surface air pressure Pa 0.5° x 0.5°

Yearly time-step

Atmospheric CO; concentration ppm ISIMIP (Biichner and Reyer, 2022) -

Nitrogen fertilizer kg ha~! ISIMIP (Volkholz and Ostberg, 2022) 0.5° x 0.5°

Constants

Latitude and longitude ° - -

Agricultural management Irrigated or rainfed MIRCA2000 (Portmann et al., 2010) 0.5° x 0.5°

Sowing time, Harvest time DOY GGCMI (Jagermeyr et al., 2021) 0.5° x 0.5°

Growing degree days for harvest time °Cd Parameterized in this study 0.5° x 0.5°

Soil type - HWSD (Volkholz and Miiller, 2020) 0.5°x 0.5°

deviations (SDSDy), and the lack of positive correlation
weighted by the standard deviations (LCSy) as proposed by
Kobayashi and Salam (2000). These terms were calculated
using Eqgs. (37)—(41), as follows:

2

SB, = (X - 7) @37

SDSDy = (SDx — SDy)? (38)

SDy = 12()(,» -X) (39)
\ it

Dy = [+3 (% -7) (40)
N E

LCSy = SDxSDy (I — corr) 1)

Higher SBy, SDSDy, and LCSy indicate that model failed
to simulate the mean of the measured yield, magnitude of
fluctuation around the mean yield, and pattern of fluctuation
in yield across n measurements, respectively. SDy and SDy
denote the standard deviation of simulated (X) and observed
values (Y), respectively, and LCSy depends on the correlation
coefficient (corr).

5 Evaluation of model performance

We calculated soybean yield with a global-scale map based
on the gridded data of irrigated and rainfed area from the
MIRCA2000 dataset, which represents global agricultural
land use around the year 2000 (Portmann et al., 2010), to
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get the actual yield value. We evaluated yield during the pe-
riod of 1981-2014 because the MIRCA dataset was available
within that period. The simulated yield at the global scale,
and at the country scale for regional comparison, was de-
termined by aggregating grid cell data to compute the mean
soybean harvested area within each country grid as described
below in Eq. (42):

Yieldregion =
Yo [(Yields); (Areas); + (Yieldir); (Areayr); ] (42)
Yo [(Arear); + (Areay);]

where Yieldregion is the aggregated yield in a given region
(country or global-scale) in kgha™! from the grid cell num-
ber (i) ranging from 1 to n (total number of grid cells in the
region); Yield,r and Yield;; are estimated yield under rainfed
and irrigated conditions,and Yield;, respectively; and Area,s
and Areaj; are the soybean rainfed and irrigated area (ha),
and Area;; respectively.

5.1 Model output yield as evaluated at the global and
national scales

Figure 5a shows a time-series comparison from 1981-2014
between the global mean yields reported by FAOSTAT and
those simulated by MATCRO-Soy. The results show that
the model captured the upwards trend in yields over the pe-
riod with a shallower slope compared with that of the re-
ported yield data. The correlation coefficient was 0.81, and
was significant (p < 0.01); and the errors were RMSE of
298 kgha™! and relative bias of 0.12. Notably, the simulated
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linear increase contributed to the higher correlation coeffi-
cient for the yield trends.

Figure 5b compares the detrended global mean yield ob-
served by FAOSTAT and the simulated value by MATCRO-
Soy after removing the long-term linear trend across the
study period. The detrended yield is the value after the long-
term trend is subtracted from the original yield data. It iso-
lates the variability primarily driven by climate fluctuations
to evaluate interannual variability independent of long-term
trends. However, it also removes longer-term signals (e.g., ef-
fects of technological improvements or increasing CO, con-
centrations). The correlation coefficient for the detrended
yield data decreased to 0.446 (p < 0.01). The model re-
produced the interannual variations well with an RMSE of
137kgha~'. Specifically, according to observed data, there
were significant yield reductions in the years 1983, 1988,
2009, and 2012. Among these, the model successfully repro-
duced the yield reductions in three years (1983, 1988, and
2012), excluding 2009. Severe droughts occurred in those
years, and the model’s ability to capture these events is note-
worthy.

We evaluated the model’s performance for 10 major
soybean-producing countries; Argentina, Brazil, China, In-
dia, Paraguay, the US, Italy, Russia, Bolivia, and Canada,
which together account for 96 % of global soybean produc-
tion (based on total average production from 2012-2021 re-
ported in FAOSTAT). Figure 6 compares the simulated aver-
age yields per country and the reported average yields per
country as reported in FAOSTAT for 1981-2014 with the
ellipsoids indicating the distribution of the simulated yield
values within the 90 % confidence range. The model repro-
duced the national average yield levels well for the top 10
producing countries, as indicated by a correlation coefficient
of 0.519 (p <0.001) and an RMSE of 1085kgha~!. The
correlation coefficients were significant for six countries;
Argentina, Brazil, India, Italy, Paraguay, and the US (see
Fig. S4 in the Supplement for further evaluation of these six
countries). Focusing on the US, Brazil, and Argentina, which
together account for 69 % of global soybean production, the
model’s accuracy showed a correlation coefficient of 0.645
(p < 0.001) and an RMSE of 916 kgha™!, although soybean
production in Brazil was underestimated. When all 10 coun-
tries were considered, the correlation coefficient decreased to
0.291, although it remained statistically significant. These re-
sults demonstrate that the model performs reasonably well in
capturing yield variations in major producing countries and
achieves particularly lower bias in some countries (e.g., the
US, Italy, and Canada).

A time series comparison of average yields for each of the
10 major soybean-producing countries is shown in Fig. 7.
An evaluation of the long-term trends (Fig. 7a) revealed that
MATCRO-Soy effectively captured the trends of increas-
ing soybean production. The modelled and observed trends
showed the strongest agreement in Brazil (0.91), followed
by Argentina (0.62) and the US (0.64). The detrended yields
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revealed interannual variability (Fig. 7b). For these data, the
modelled and observed data had the highest correlation co-
efficient in Paraguay (0.61), followed by the US (0.57) and
Brazil (0.49), and the lowest correlation coefficients in China
(0.18) and Bolivia (—0.32). These findings suggest that the
model tends to perform with greater accuracy for countries
with higher production levels, even in time series compar-
isons at the national level.

5.2 Temporal trends and variability

The model’s performance was further assessed with the MSD
components for yield, separated into yield, long-term yield
trend, and detrended yield for both the global (Table S1 in the
Supplement) and country scales (Tables S2—-S4 in the Sup-
plement). We separated the MSD into SB, SDSD, and LCS,
which reflect errors in mean yield, magnitude of yield vari-
ability, and the pattern of year-to-year fluctuations, respec-
tively. The greatest contributor to error at the global scale
was SB, contributing approximately 71 % and 77 % of total
MSD for yield and detrended yield, respectively (Table S1).

Figure 8 shows MSD components in the top six soybean-
producing countries. In most countries, SB was the primary
source of error. The highest MSD was in Paraguay, and was
largely driven by SB, with a notable contribution from LCS.
This indicates that the model simulated variability well but
poorly captured the mean yield. The low MSD in the US
was also driven by SB, but LCS also contributed to year-
to-year variability. Meanwhile, LCS was the greatest con-
tributor to yield error in Canada and Italy (Table S2) be-
cause of pronounced discrepancies in the simulated interan-
nual variability. SDSD contributed to error only in Brazil,
where the model underestimated the mean yield and the de-
viation. These results highlight that the mean yield bias is
main source of error at the global and country scales, while
LCS and SDSD contribute notably in specific regions where
the model fails to capture the variability or the temporal pat-
tern.

5.3 Model performance at the grid-cell level

We evaluated MATCRO-Soy at the grid-cell level by com-
paring simulated yields with observed ones from the GDHY
dataset reported by lizumi (2019). Figure 9a and b show the
simulated and observed yields averaged over 34 years, and
Fig. 9c shows relative bias between them. Figure 10 shows
the interannual correlation between simulated and observed
yields for 34 years. The simulated yield was calculated for
soybean-growing areas from the MIRCA2000 dataset, which
offers broad spatial coverage where yield data for certain re-
gions, including Canada, Russia, Australia, and many Euro-
pean and Asian countries, are missing in the GDHY dataset
(lizumi and Sakai, 2020). The density plot of the simulated
yield showed more variability than did the GDHY data in
Fig. 9. However, both datasets exhibited a density peak of
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shows 90 % confidence range of annual yield.

approximately 2000-3000kgha~! and the simulated yield
mostly overestimated the higher yield value. Figure 9a—c also
show the distribution of simulated and observed yields.

The relative bias map (Fig. 9c) highlights that overesti-
mation was prominent in parts of South America (particu-
larly Argentina), Russia, and China. In contrast, the model
tended to underestimate yields in South Africa, India, and
Brazil. Most of the grid cells in Brazil showed low yields,
likely due to shorter growing periods in the input data com-
pared with those in the field experimental data. These results
aligned with the trends observed at the national scale, which
were influenced by the aggregation process. During aggrega-
tion, the national-scale results represent the average perfor-
mance across all grid cells, weighted by the number of grids
within each region. Most grids had a relative bias of —0.2
to 0.2, accounting for 37 % of the total grid area. For areas
shown in grey, the correlation was statistically insignificant.
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The density plot of simulated yield showed more variabil-
ity compared with the GDHY data. However, both datasets
exhibited a density peak at approximately 3000 kgha~!, and
the simulated yield mostly overestimated the observed yield.
Correlation coefficients were calculated for each grid cell be-
tween the simulated yield and the GDHY dataset after re-
moving the moving-average to reveal interannual variation
(Fig. 10). The correlation was significant in 66 % of the grid
cells (p < 0.05).

Figure 11 presents the relative RMSE (RMSE value com-
pared with the observation value) between the simulated
yields and GDHY datasets for detrended yield at the grid-
scale. The RMSE values were relatively higher in some parts
of Africa (particularly in Nigeria), the US, India, and China,
and relatively lower in Brazil and Argentina. India and the
US showed low RMSEs at the national-level, but some grid
cells within both countries had higher relative RMSEs at the
grid-cell level. Detailed information on the spatial variation
in error and its components is provided in Fig. S6 in the Sup-
plement for the long-term yield trend and Fig. S7 in the Sup-
plement for the detrended yield.

5.4 Model performance at the leaf-level

We simulated the leaf-level variation in V.pnax at the site-
scale for Champaign, US (the country with the highest soy-
bean production), for the 2002 growing season. The global
parameterization of MATCRO-Soy was used for this simula-
tion (Fig. 12). The leaf-level simulated Vimax values aligned
closely with the measured data reported by Bernacchi et al.
(2005) during the vegetative stage, but showed some devia-
tions during the flowering to seed-filling stages (dotted line in
Fig. 12). This alignment highlighted the ability of the model
to represent essential photosynthetic processes influenced by
leaf nitrogen content.

Geosci. Model Dev., 18, 8801-8826, 2025
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Figure 8. Mean squared deviation (MSD) components of squared
bias (SB), sum of difference in standard deviation (SDSD), and
lack of positive correlation (LCS) for yield error in top six soybean-
producing countries.

6 Discussion
6.1 Validation of MATCRO-Soy

In prior studies, soybean yield predictions often faced chal-
lenges in capturing crop responses to climatic variables. Our

Geosci. Model Dev., 18, 8801-8826, 2025

results show that the MATCRO-Soy model effectively cap-
tures the linear trend in soybean yields, with higher accuracy
for long-term trends (corr = 0.812) than for detrended yields
(corr = 0.446) (Fig. 5). This result for the global detrended
yield improves upon that of the benchmark study of Miiller
et al. (2017), indicating that there is less variation in process-
based models based on their statistical correlations. Another
crop model, PRYSBI2, reached a significant correlation of
0.57 (p < 0.050) based on long-term trends. However, model
accuracy is enhanced when site-specific parameters are used.
This has been demonstrated in regional-scale evaluations in
previous studies, which were used for parameterization in
this global simulation (Battisti et al., 2017; Kumagai, 2018,
2021; Morgan et al., 2005; Nakano et al., 2021; Wu et al.,
2019). Those studies showed that integrating factors such as
cultivar differences, ensembles of multiple crop models, ni-
trogen content, and more accurate measurement methods al-
low for a more reliable representation of local growing con-
ditions and climate variability.

We examined the model’s performance in predicting soy-
bean yields for the 10 largest soybean-producing countries.
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each density plot distribution. In (c), areas in grey are those where the correlation between simulated and observed yields was non-significant

(p > 0.05).

As shown in Fig. 6, the RMSE was 1085kgha™! (average
yield over 34 years). This value is similar to that reported
in another study using the LPJ-GUESS model incorporat-
ing a biological nitrogen fixation module (Ma et al., 2022),
where the RMSE was approximately 800kgha™! (average
yield over 10 years). Evaluation of MATCRO-Soy’s perfor-
mance at the grid-cell level, as shown in Fig. 9, revealed that
the correlation between simulated and observed yields was
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significant (p < 0.05) in 66 % of the grid cells, with the value
in most grid cells within the range of 0.2-0.6. These find-
ings align with those of the benchmark study of Miiller et al.
(2017), who found that time-series correlations in GGCM-
simulated soybean yields ranged from 0.25-0.65 because of
various discrepancies in the data. These correlations were
calculated using detrended values, which is a useful strategy
for evaluating interannual variability and the model’s sensi-
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Figure 11. Relative RMSE calculation between simulated and observed yield for detrended yield at the grid-cell level.

tivity to climate fluctuations. However, detrending removes
important long-term signals related to genetic improvements,
cultivar and management changes, and/or increased CO; lev-
els.

Analyses of the correlations between yield and detrended
yield (Figs. 5 and 6) indicate that the model performed bet-
ter (i.e., a higher correlation coefficient) when predicting
long-term yield trends. MATCRO-Soy was able to capture
the trend of increased atmospheric CO, and nitrogen fer-
tilizer inputs, despite the interannual variability in climate
conditions. Analyses of MSD and its components revealed
that the lack of positive correlation was the major contribu-
tor to error in Canada and Italy among the 10 top soybean-
producing countries (Table S2). The SB values were small for
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both Canada and Italy, suggesting that MATCRO-Soy accu-
rately represents the average productivity despite its inability
to capture the variability or amplitude of the yield trend over
time within those regions. Factors such as changes in sow-
ing date, land use, pest management, cultivar maturity group,
and planting density may contribute to discrepancies in soy-
bean yield under climate change (Battisti et al., 2018a; Marin
et al., 2022). Hence, there is a need for improved parameteri-
zation to better represent the dynamics of yield variability in
countries such as Canada and Italy.

The high yields in Argentina and Paraguay reflect the con-
sistency of favourable growing conditions in those coun-
tries (Fig. 7a), particularly the alignment of daily tempera-
tures and seasonal precipitation with critical growth stages.

https://doi.org/10.5194/gmd-18-8801-2025



A. Yusara et al.: Model description and evaluation of MATCRO-Soy 8819

o
I, 125
Y
£ 100
S
o 7 !
= ‘ -
S 4 : Seed Filling
i Flowering
~ :
3 25
€
>
O L L
152 182 212 242 272
Day of Year

Figure 12. Maximum carboxylation capacity of Rubisco
(umol(COz)m_2 ) during the growing period in Cham-
paign (US) in 2002 as simulated using MATCRO-Soy (black line)
and as measured (grey dots) by Bernacchi et al. (2005).

This result suggests that these regions are less susceptible
to interannual variability, as well as being located in areas
that receive more radiation for photosynthesis. The compar-
ison of simulated and observed yields at the grid-cell level
(Fig. 10) revealed weak correlations with no statistical sig-
nificance in high-latitude countries with a low number of grid
cells (e.g., Canada and Russia). Models that do not include
daylength have a higher level of uncertainty (Battisti et al.,
2018b). Moreover, the low simulated yield in India, which
has a hot climate characterized by high mean daily temper-
atures of 27-28 °C (Fig. S5 in the Supplement) and low soil
moisture during the growing season, highlights the capac-
ity of the model to capture regional climatic challenges that
impact productivity. These climatic challenges likely exacer-
bate heat stress during critical phenological stages, such as
flowering and pod development, leading to reduced yields
(Sinclair, 1986; Egli and Bruening, 2004). The contrasting
regions of high and low soybean yields underscore the abil-
ity of the model to capture the complex interplay between
climate and crop yields across diverse agroecological zones.

6.2 Model strength and application

MATCRO-Soy v.1 was developed as a process-based eco-
physiological model that uses the Farquhar equation to sim-
ulate leaf-level photosynthesis. The Farquhar equation is a
widely recognized framework in plant physiology that sim-
ulates the biochemical mechanisms of photosynthesis by de-
scribing the relationships among light intensity, CO, assim-
ilation, and Rubisco activity (Farquhar et al., 1980; Scafaro
et al., 2023). Through the integration of this equation into a
gridded global crop model, MATCRO-Soy enhances the sim-
ulation of soybean growth and productivity under environ-
mental changes in atmospheric CO; levels, temperature, and
water availability. These factors are important for predicting
and understanding how climate changes affect productivity.
The calibration of MATCRO-Soy successfully represented
the response of soybean plant growth to a wide range of cli-
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matic conditions, resulting in reliable global yield simula-
tions using a single parameterization. While simplification
may introduce errors, global tuning effectively minimizes
these discrepancies in specific regions. This conclusion was
also observed in Smith et al. (2014).

Improving photosynthetic efficiency is a key goal for crop
improvement, particularly through enhancing stomatal con-
ductance and modifying Rubisco, the enzyme responsible for
carbon fixation (Xu et al., 2022). We used Vcmax as a photo-
synthetic parameter because it quantifies the activity of Ru-
bisco, which catalyzes the conversion of CO; into organic
compounds. The peak Rubisco activity during the reproduc-
tive stage corresponds with trends in SLN, and is implicitly
affected by additional nitrogen fertilizer (Cafaro La Menza
et al., 2023). It is also important to consider nitrogen fixa-
tion, because it is reduced under adverse environmental con-
ditions such as flooding, water deficit, and low temperatures
(Santachiara et al., 2019).

Prior to the global scale evaluation, the yield, LAI, above-
ground biomass, and pod biomass simulated by MATCRO-
Soy were further compared at the point-scale level with ex-
perimental datasets, with distinct datasets used for each step
of calibration and evaluation (Fig. S3). While point-scale
simulations employed the unified global parameters, the re-
sults demonstrated reasonable agreement with p < 0.01 and
bias of 30 %—63 % for harvested yield, seasonal LAI, above-
ground biomass, and pod biomass. The highest bias was ob-
served for seasonal LAI, which aligns with the underestima-
tion of Vemax during critical growth stages. Thus, MATCRO-
Soy can reproduce photosynthesis parameters comparable to
those of observed data at the site scale, although it overesti-
mates these parameters at the reproductive stage (Fig. 12).

MATCRO-Soy uses high-quality data related to climatic
factors, soil, and nitrogen fertilization to capture biophysi-
cal processes involved in soybean growth and yield forma-
tion. Its flexibility in terms of spatial resolution allows it to
be applied across various scales, from grid-level to country
to global. Moreover, MATCRO is easily coupled with cli-
mate and atmospheric CO, models to increase the accuracy
of yield predictions through high-quality data inputs. This
adaptability also enables integration with other land models,
making it a valuable tool in both ecological and agricultural
research. MATCRO-Soy can be continuously refined with
new data and plant physiological knowledge, ensuring that
it remains robust and adaptable. This adaptability makes it a
valuable tool for researchers and policy-makers working to-
wards sustainable agriculture and global food security.

The strength of MATCRO-Soy lies in its ability to sim-
ulate key physiological processes of soybean growth (e.g.,
photosynthesis, phenology, and biomass partitioning) under
varying climatic conditions. Its process-based structure al-
lows for sensitivity analysis for evaluation of further environ-
mental impacts, such as effects of elevated CO; and temper-
ature stress. MATCRO-Soy reasonably captures the temporal
dynamics of yield formation. Fluctuations in yield are influ-
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enced not only by climatic conditions, but also by advances
in technology, evolving agricultural practices, and modifica-
tions to crop management approaches. Although these im-
pacts are outside the scope of model, their inclusion can fur-
ther improve accuracy at the local scale. For example, in-
cluding pest and crop interactions may enhance the model’s
capability to reflect local yield responses to climate-driven
pest dynamics (Chen and Mccarl, 2001). The integration of
crop models with remote sensing data will enhance their ca-
pability for monitoring and predicting crop productivity at
finer spatial scales (Basso et al., 2001). However, it is im-
portant to acknowledge the limitations of the MATCRO-Soy
model, particularly its ability to predict yield variations under
extreme or rapidly changing climatic conditions. Continuous
updates of the experimental dataset are necessary to main-
tain its relevance and accuracy in predicting future soybean
yields.

6.3 Model challenges and future directions

In the evaluation process, we observed considerable interan-
nual variability and spatial variability. In Brazil, there were
many grid cells with a low, non-significant correlation be-
tween simulated and observed soybean yields (Fig. 9), but
the correlation at the national-scale level was high (Fig. 7).
This means that local climatic factors affect soybean yield
in Brazil. However, MATCRO-Soy recognizes broader re-
gional trends, fulfilling its aim to represent yield behaviour
(Fig. 11). These findings highlight that the number of grid
cells significantly influences the model’s performance, with
regions containing fewer grids being more sensitive to lo-
calized factors and spatial heterogeneity during aggregation.
This emphasizes the importance of considering spatial res-
olution and representation when evaluating model perfor-
mance.

Uncertainty in MATCRO-Soy is reflected by the chal-
lenges in evaluating the model at a global scale, particularly
due to its assumption of globally homogeneous crop cul-
tivars and the upscaling processes due to limited observed
data. This means it is unrealistic to reproduce variability at
the regional scale with high accuracy (Miiller et al., 2017;
Zaehle and Friend, 2010). This uncertainty is notably pro-
nounced in the global aggregation of yield simulations at the
grid-cell scale. Global aggregation can escalate substantially
for specific combinations of aggregation units, crop model
limitations, and years (Porwollik et al., 2017). Future assess-
ments of models and projections of crop yields will require
careful consideration of the significant contrast between dif-
ferent aggregation approaches used for individual countries
or regions. To address this, we used harmonized ISIMIP data
to minimize methodological bias, and developed the model
with sufficient flexibility to reduce uncertainty (Yin, 2013).

Comparison of soybean yields simulated using bias-
corrected climate data with FAO data revealed a large under-
estimation in 2002 and an overestimation in 2009 (Fig. 5).
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One possibility for these discrepancies in interannual vari-
ability is the influence of not accounted for extreme climatic
events. Climatic events indicated by the Oceanic Nifio in-
dex, a three-month running mean of SST anomalies in the
Nifio 3.4 region, show that La Nifia was present at the end of
2002 and that El Nifio occurred at the end of 2009 (NOAA/-
Climate Prediction Center, 2024). Some regions within ma-
jor soybean-producing countries are significantly affected by
El Nifio events, further influencing yield variability (Ander-
son et al., 2017; lizumi et al., 2014). Another reason why
MATCRO-Soy tends to overestimate long-term yield trend is
that its carbon assimilation module is sensitive to changes in
the atmospheric CO; concentration.

While nitrogen fixation and uptake are implicitly con-
strained by the SLN parameter, the carbon cost economic
approach explicitly represents the respiratory cost due to
different nitrogen uptake pathways (Fisher et al., 2010).
MATCRO-Soy simplifies the nitrogen fixation mechanism,
and this may have contributed to yield overestimation in
countries with low nitrogen inputs (e.g., Bolivia and Rus-
sia). However, the model still showed a relatively small bias
in countries with high nitrogen fertilizer application (e.g.,
China), as well as in countries with low nitrogen fertilizer
input (e.g., the US). This highlights an opportunity for future
model development to incorporate a variable for the respira-
tory costs of biological nitrogen fixation. There are limited
empirical data across cultivars, environments, and manage-
ment systems, and this poses a challenge for yield predic-
tions at the global scale. Further experiments on the respi-
ratory costs of nitrogen fixation would improve our under-
standing of the physiological mechanisms of soybean plants
under nitrogen-limited conditions.

Simulated yield increases throughout the year driven by
the positive effects of increased atmospheric CO», a phe-
nomenon known as the CO, fertilization effect, were re-
ported in studies by Long et al. (2005) and Sakurai et al.
(2014). The CO; fertilization response may become a more
prominent source of overestimation in future projections if
the model overestimates the crop response to elevated CO5.
Compared with simulations using statistical radiation use ef-
ficiency (Ai and Hanasaki, 2023), process-based models have
this tendency because of the greater effect of CO, on photo-
synthesis. Therefore, further investigation is needed to fine-
tune the CO» sensitivity of MATCRO-Soy and other process-
based models, because photosynthesis is known to be down-
regulated under elevated CO» (Ainsworth et al., 2002; Zheng
etal., 2019). This is especially important for adaptation stud-
ies, as reliable yield projections are critical for designing ef-
fective adaptation strategies under future climate scenarios.

Analyses of MATCRO-Soy simulation errors showed that
the MSD component SB was the dominant contributor to
errors in yield prediction at the global and country scales.
This indicates that the bias was in the over- or underesti-
mation of average yield, rather than in yield variability or
the year-to-year yield pattern (Fig. 8). These results high-
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light the model’s uncertainty in simulating mean yield in
major soybean-producing countries with large cultivation ar-
eas. The model overestimated the long-term yield trend in
some countries. Inaccurate representation of CO, fertiliza-
tion effect may have contributed to the mean yield bias.
Other factors that may contribute to this bias are the sim-
plified assumption of no respiratory costs for symbiotic ni-
trogen fixation and insufficient representation of water stress
responses. The accuracy of data inputs may partly reflect the
inherent gap between field experiment data and national aver-
age yields, which are influenced by local farming practices.
While these discrepancies between the country and global
levels are insightful, it provides a valuable opportunity for
model improvement.

The simulated yield was compared with that of the GDHY
dataset at the grid-cell level. The GDHY dataset is derived
from census and remote sensing data, and may have intro-
duced uncertainties into the evaluation results. Comparative
studies with other soybean models and refining MATCRO-
Soy on the basis of these findings will contribute to a more
comprehensive understanding of its capabilities and limita-
tions. Incorporating additional datasets will further enhance
the MATCRO-Soy model’s representation of real-world con-
ditions. McCormick et al. (2021) suggested that integrating
machine learning models will improve accuracy through the
calibration process with numerous datasets. However, the use
of mechanistic models embedded in MATCRO to simplify
the process has proven valuable for understanding and pre-
dicting the impacts of environmental factors on agricultural
systems. This model can be used to identify potential adapta-
tion strategies, such as changes in planting dates or the devel-
opment of new crop varieties, to mitigate the adverse effects
of climate change on soybean production. However, the ap-
plication of this model at the field-scale requires high-quality
data inputs and local parameter data.

7 Conclusions

We used MATCRO, which incorporates carbon assimila-
tion modules based on C3 photosynthesis of the Farquhar
model, to simulate global soybean yield. The inputs were
eco-physiological integrated gridded data related to climate,
soil type, and nitrogen fertilization. Experimental datasets
and information from previous studies were used to re-
fine MATCRO-Soy so that it represents soybean growth un-
der various environmental conditions. An evaluation of the
global mean yields revealed a statistical correlation of 0.81
(p < 0.001) between the simulated yields and yields reported
by FAOSTAT without subtracting the long-term yield trend.
The correlation value was lower between simulated yields
and detrended yield data. On the basis of comparisons of
modelled and observed yields over a 34 year period (1981—
2014), the correlation coefficients were 0.45 (p < 0.050) on
the global scale and 0.52 (p < 0.001) for the top 10 soybean-
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producing countries. At the grid-cell level, the correlation
between modelled and observed yields were significant in
66 % of grid cells. Therefore, the model successfully cap-
tured long-term trends and interannual variability, demon-
strating its capacity to reflect the impacts of climate factors.
Moreover, MATCRO-Soy also modelled reasonable photo-
synthetic processes at the site-scale, demonstrating its ability
to represent temporal variations. This result highlights the
model’s reliability and adaptability as a tool for understand-
ing soybean growth and yield dynamics.

While MATCRO-Soy presents a valuable framework for
understanding the impacts of climate change on global soy-
bean production, many localized factors that influence soy-
bean yield resulting from shifts in climate (e.g., pests and
diseases) can lead to discrepancies in yield prediction. This
highlights the need for high-quality data inputs. The inte-
gration of CO, dynamics in MATCRO enhances crop re-
sponse modelling because it includes the carbon fertilization
effect. This warrants further investigation, along with anal-
yses of the effects of other greenhouse gases. The model
may benefit from further refinement, particularly in its treat-
ment of temperature extremes, transpirable soil water, and ni-
trogen uptake during the photosynthesis process. Integrating
MATCRO with other environmental models will enhance its
applicability in agricultural management, although we em-
phasize the necessity for field-scale calibration to improve
its reliability. MATCRO-Soy provides an opportunity to es-
timate changes in global soybean production under future
land-use or climate change scenarios to address the complex-
ities of climate interactions with agricultural systems. Over-
all, MATCRO-Soy has proven to be useful in understanding
eco-physiological processes at the global, country, and grid-
cell levels, providing valuable insights for agricultural man-
agement and climate change adaptation.

Code and data availability. The latest version of
the MATCRO-Soy model is publicly available at
https://doi.org/10.5281/zenodo.14881385 (Yusara et al., 2025)
under an open-access license. The specific version used in
this study, along with input data and analysis scripts needed
to reproduce the simulations, is archived at the same DOI
(https://doi.org/10.5281/zenodo.14881385, Yusara et al., 2025).
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