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Abstract. Machine learning (ML) is transforming atmo-
spheric chemistry, offering powerful tools to address chal-
lenges in tropospheric ozone research, a critical area for cli-
mate resilience and public health. As in adjacent fields, ML
approaches complement existing research by learning pat-
terns from ever-increasing volumes of atmospheric and en-
vironmental data relevant to ozone. We highlight the rapid
progress made in the field since Phase 1 of the Tropospheric
Ozone Assessment Report (TOAR), focussing particularly
on the most active areas of research, namely short-term
ozone forecasting, emulation of atmospheric chemistry and
the use of remote sensing for ozone estimation. This review

provides a comprehensive synthesis of recent advancements,
highlights critical challenges, and proposes actionable path-
ways to develop ML in ozone research. Further advances
hinge on addressing domain-specific issues such as the de-
pendence of ozone concentrations on several poorly observed
precursor species, as well as making progress on generic ML
challenges such as the definition of suitable benchmarks and
developing robust, explainable models. Reaping the full po-
tential of ML for ozone research and operational applications
will require close collaborations across atmospheric chem-
istry, ML and computational science and vigilant pursuit of
the rapid developments in adjacent fields.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The ML403 working group was established as part of the
second phase of the IGAC Tropospheric Ozone Assessment
Report (TOAR). The group focuses on the application of ma-
chine learning (ML) concepts and methods, promoting di-
alogue between researchers in machine learning and tropo-
spheric ozone communities. The motivation of this group is
to allow the atmospheric chemistry community to capitalize
on the potential of ML and Al techniques that has recently
been demonstrated for weather and climate applications. The
ML tasks that were addressed by the group included identi-
fying complex patterns, interpolating missing values, detect-
ing errors or anomalies, and identifying air pollution regimes.
The working group aimed to contribute to both fundamental
scientific understanding of the processes controlling ozone,
and to improved air quality monitoring and forecasting.

Tropospheric ozone is a harmful atmospheric pollutant
and an important greenhouse gas, contributing to both en-
vironmental and public health issues. Long-term exposure
to elevated ozone levels is linked to hundreds of thousands
of premature deaths globally each year (Malashock et al.,
2022; Malley et al., 2017; Health Effects Institute, 2024).
Short-term exposure can cause serious negative health im-
pacts (Bell et al., 2014) including reduced lung function, par-
ticularly in individuals with pre-existing medical conditions
(EPA, 2020). Beyond its health impacts, tropospheric ozone
significantly damages vegetation in natural ecosystems and
agricultural fields (Mills et al., 2018) and can act as a climate
forcer in the upper troposphere. In addition, ozone plays a
critical role in tropospheric chemistry, both as a source of
oxidants and as a primary oxidant itself (Monks et al., 2015).

Ozone is challenging to simulate accurately (Young et al.,
2018), also for ML models, because it is not directly emit-
ted into the troposphere but is photochemically produced in
the presence of sunlight by reactions involving its precur-
sor gases: carbon monoxide (CO), methane (CHy), volatile
organic compounds (VOCs), and nitrogen oxides (NOj,
NO+NOy). In addition, ozone is transported from the strato-
sphere into the troposphere. The removal of tropospheric
ozone is controlled by chemical loss and deposition to the
surface (Archibald et al., 2020). The lifetime of ozone in
the troposphere ranges from days to weeks, depending on
local chemical and meteorological conditions (Lelieveld and
Dentener, 2000; Monks et al., 2015). This variability allows
ozone and its precursors to be transported over long distances
from their sources (Fiore et al., 2009).

The complex coupling of these chemical and physical pro-
cesses controls the local concentrations of ozone across dif-
ferent spatial and temporal scales, as detailed in Fig. 1. Tradi-
tionally, concentrations of ozone and other chemical species
are calculated using numerical models of the atmosphere
that represent these processes across a wide range of spa-
tial scales, from high-resolution urban models (meter-scale)
to global chemistry-climate models with resolutions ranging
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from tens to hundreds of kilometers (e.g. Morgenstern et al.,
2017).

Despite the success of ozone simulations in air quality
and climate research, large uncertainties still exist in global
model estimates of tropospheric ozone and its trends, al-
though ozone is the longest- and most-measured trace gas
in the observational record. Observations from ground sta-
tions, ozonesondes, and satellites indicate that tropospheric
ozone has generally increased in recent decades (Ziemke
et al., 2019; Young et al., 2018; Gulev et al., 2021). While
global atmospheric chemistry models agree that the global
tropospheric ozone burden has increased from pre-industrial
times to the present day, they vary regarding the spatial dis-
tribution and magnitude of the increase (Skeie et al., 2020;
Christiansen et al., 2022; Fiore et al., 2022). Potential sources
driving this model bias include uncertainties in tropical emis-
sions (Zhang et al., 2021), nonlinear NO,-VOC chemistry
(Shah et al., 2023), stratosphere-troposphere exchange (Neu
et al., 2014), boundary layer mixing (Lu et al., 2019), miss-
ing chemical mechanisms such as halogen chemistry (Wang
et al., 2015), and deposition (Clifton et al., 2020).

The variation of ozone at various scales is shown in Fig. 2.
The figure shows the diurnal and annual cycles of ozone at
four sites from the TOAR database: Mauna Loa Observa-
tory, a Pacific mountain station, based in Hawaii, USA; Mi-
namitorishima, a Pacific island station in Japan; a regional
continental background site, Borken, Germany, and an ur-
ban, roadside site, Marylebone Road, London, UK. There
is little consistency between the diurnal cycles at the vari-
ous sites: the remote Pacific site sees little diurnal variation
in ozone, but a strong seasonal cycle, with levels reaching
a minimum in the summer. In contrast, the continental, rural
background site in Germany has a strong diurnal cycle, peak-
ing in the late afternoon, and a strong seasonal cycle with
a summertime maximum. The observed long-term trends
in ozone, although weak, also vary between the sites, with
both modest increases (London Marylebone Road) and de-
creases (Minamitorishima). The lower panel shows variation
in ozone trends across the globe, ranging between —3 and
3ppbvyr~!, across remote sites. These differences across
ozone monitoring sites result from the complex interactions
between precursor emissions, transport and chemical pro-
cesses, meteorological drivers, and surface characteristics.
Capturing the diversity of daily and seasonal cycles as well
as trends is a key requisite of any ozone model.

Machine learning (ML) approaches, which can learn and
reproduce nonlinear characteristics of a system from data
(Hornik et al., 1989), may provide a valuable complement
to physical models. As the quantity and quality of observa-
tional data on ozone (Schultz et al., 2017) and on the broader
Earth system (Agapiou, 2017; Reichstein et al., 2019) con-
tinue to grow, ML is becoming an increasingly viable tool
for advancing ozone research.

Figure 3 highlights progress in the field of ML as applied
to weather and climate science, which has been rapid since
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Figure 1. Spatial and temporal scales of tropospheric ozone chemistry processes. The x-axis shows timescales, from rapid photochemical
reactions to long-term climate feedbacks, and the y-axis shows spatial scales, from local pollution to global atmospheric transport. Species
lifetimes and relevant data sources and models are displayed to illustrate the range and scales of phenomena and methods used to study ozone

chemistry.

the publication of the first phase of the TOAR assessment. In
their review of the state of the field of weather forecasting,
Bauer et al. (2015) note many areas of progress for the field,
including model throughput, the process-level detail of then
current models, and the use of data assimilation techniques
to improve the fidelity of the model’s initial state. The im-
pact of ML methods was not anticipated. Rasp et al. (2018)
demonstrated the potential for deep learning techniques to
augment existing models in providing an alternative, com-
plementary and physically consistent description of sub-grid
scale processes, such as cloud microphysics. The coupling
of a fast, accurate, data-driven module, trained on finer scale
simulations, to a larger scale host climate model exemplified
one of the potential ways that ML approaches can contribute
to the improvement of climate and weather models. Subse-
quent studies have shown in various ways the advantages of
ML over traditional numerical models, particularly in terms
of computational efficiency and in the ability to learn from
large datasets, as demonstrated by the success of data-driven
nowcasting and weather forecasting models (Bi et al., 2023;
Lam et al., 2023; Price et al., 2024).

Observational data, when integrated with model simula-
tions through data assimilation techniques, have improved
the understanding of emissions and atmospheric chemistry
by reducing uncertainties (Miyazaki et al., 2020). ML can
complement these efforts by combining observational data
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with model outputs, emulating model components, or en-
abling computationally cheaper simulations, thereby effi-
ciently diagnosing sources of error in global atmospheric
models and improving tropospheric ozone estimates. How-
ever, ML also has limitations, such as challenges in gener-
alization, validation, and interpretability. Addressing these
issues may be particularly relevant for the ozone modeling
community where both predictive accuracy and physical un-
derstanding are valued.

In this Perspective, we provide an overview of the state of
ML in tropospheric ozone research, review previous applica-
tions of ML to various problems related to ozone, and discuss
persistent challenges and emerging opportunities. We high-
light three areas where ML for ozone has been most widely
applied: forecasts based on ground-based observations are
reviewed in Sect. 2, methods for complementing or replac-
ing parameterizations in numerical models of atmospheric
chemistry and transport are discussed in Sect. 3, and ML
models that use satellite data or combined data products are
presented in Sect. 4. Section 5 highlights and further details
these cross-cutting issues and limitations with the application
of ML to ozone studies, while Sect. 6 describes future di-
rections for the field, highlighting emerging approaches that
seek to address the cross-cutting challenges.

Geosci. Model Dev., 18, 8777-8800, 2025
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Figure 2. Upper panel: data from the TOAR ozone database for four sites in the northern hemisphere, showing diurnal and seasonal cycles in
ozone, and the long-term ozone trend. MLO, US: Mauna Loa Observatory, US; MNM, JP: Minamitorishima, Japan; LMA, UK: Marylebone
Road, London, UK; BK, DE: Borken, Germany. Lower panel: long-term ozone trends based on monthly anomalies at remote surface sites.
Red and blue indicate positive or negative trends respectively, with different shades giving the statistical significance of the trend at each site.

Data from Cooper et al. (2020) and replotted here.

2 Applications of ML to in-situ ozone observations:
short-term ground level ozone forecasting

2.1 Background

The short-term forecasting of air pollutants including ozone,
i.e. predictions of expected concentrations over 1-4d, is
relevant for public health and scientific questions (Buono-
core et al., 2021; Hahm and Yoon, 2021; Alari et al., 2021;
Saberian et al., 2017). State-of-the-art air quality forecasts,
typically on the timescales of hours to days and up to a few
days ahead, are based on the output of numerical chemical
transport models (CTMs) (Marécal et al., 2015). These mod-
els may be run at higher spatial resolution for the area of
interest (Savage et al., 2013), in order to better represent pro-
cesses controlling air pollution at the local level, and may
be post-processed to more accurately represent observations
(Casciaro et al., 2022). As with other air pollutants, notably
PM, 5 (Feng et al., 2015), ML is increasingly being directly
applied to the task of short-term, ground-level ozone fore-
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casting, and to bias-correct existing air quality forecasting
systems with considerable success. The availability of large
and growing observational datasets has facilitated these ad-
vances (Schultz et al., 2017). However, forecasting ozone
concentrations as time series with ML comes with signifi-
cant challenges: forecasting ozone is a spatiotemporal prob-
lem, and ozone is controlled by processes of varying spatial
and temporal scales as shown in Fig. 1.

Many short-term forecasting studies using ML have fo-
cused on forecasting only at selected observational stations,
using observed ozone and additional chemical species, and
meteorological variables where they are available from indi-
vidual stations or external datasets (Comrie, 1997; Cobourn
et al., 2000; Kolehmainen et al., 2001; Eslami et al., 2020;
Sayeed et al., 2021; Leufen et al., 2023; Hickman et al.,
2023). Furthermore, since it is difficult to downscale a rel-
atively coarse CTM at specific locations, using time series
data from a particular station is an attractive way to make pre-
dictions at particular locations. However, approaches of this
kind do not necessarily provide ozone forecasts across all lo-

https://doi.org/10.5194/gmd-18-8777-2025
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Figure 3. Timeline of a selection of studies using ML in ozone research (top), aligned with a selection of papers using ML in wider weather
and climate modeling research (bottom). In both wider Earth system modeling research, and in ozone research there has been rapid progress
over the last five years, as noted by landmark review papers highlighted in the Figure. The acronyms used are as follows. NN: neural network;

RF: random forest; DL: deep learning; ML: machine learning.

cations that may be of interest, as a gridded model product
model might.

2.2 Progress and State of the Science

As with other fields, the advances in ML-based ozone fore-
casting have been pushed by developments on two axes —
first, increasing quantities of data and second, larger mod-
els with more appropriate inductive biases. The field has a
long history (see Fig. 3), with studies being published even
during the most recent artificial intelligence (Al) “winter”,
beginning with a feed-forward neural network (NN) in 1996
(Yi and Prybutok, 1996). Comrie (1997) illustrated that a
NN could be used to forecast ozone at eight stations in the
USA. This was followed by further feed-forward NN ap-
proaches, often with datasets drawn from a single location
or city (Cobourn et al., 2000; Kolehmainen et al., 2001).
Neural methods were typically evaluated in comparison with
(autoregressive) regression models, often finding that NNs
were better able to forecast ozone concentrations and ex-
trema on test data (Nunnari et al., 1998; Schlink et al., 2003;
Chaloulakou et al., 2003), although the improvement was of-
ten only marginal. Alongside the successes of feed-forward
NN architectures, other work drew attention to methods seen
to be more interpretable, such as fuzzy logic systems and re-
gression trees (Gardner and Dorling, 2000; Heo and Kim,
2004). Further work leveraged methodological advances in
ML architectures designed for temporal data, including the
use of recurrent neural networks (RNNs) and convolutional
neural networks (CNNs) to account for lagged relationships
in the time series data (Eslami et al., 2020; Sayeed et al.,
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2021; Kleinert et al., 2021). Recent work has combined ar-
chitectures to model the relationships that control ozone,
including combining components such as transformers and
CNNs to account for the temporal and spatial information
relevant to forecasting (Chen et al., 2022; Cheng et al., 2022;
Han et al., 2023). However, datasets have typically been lim-
ited to single countries or cities, due to the lack of a com-
bined database of station measurements. The introduction
of the TOAR surface database (Schultz et al., 2017) and
the TOAR-II database have facilitated recent studies on data
drawn from multiple countries (Leufen et al., 2023; Hickman
et al., 2023). The importance of the curation of large datasets
for scientific progress in ML is highlighted in the Outlook
section.

Increasingly, more complex architectures are being used
to enhance the accuracy of ozone forecasts, and more data
are being included as input to the models. The inputs that
are relevant to the physical drivers of ozone concentrations,
such as past observations of ozone and covariates, and nearby
covariates, reflect processes that control ozone observations,
and feasibly contribute to improved ozone forecasting and
infilling. Recently, methods on the scale of the ML architec-
tures and data used for weather forecasting (Bi et al., 2023;
Lam et al., 2023) have been transferred to ozone forecasting
by leveraging very large datasets and models (Bodnar et al.,
2024). In weather studies there is work on forecasting at ob-
servation stations using these methods, and transferring these
methods to forecast ozone at ground-level stations is feasible
(Manshausen et al., 2024).

Geosci. Model Dev., 18, 8777-8800, 2025
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3 Applications of ML methods in atmospheric
chemistry modeling

3.1 Background

Global modeling of atmospheric chemistry is a grand com-
putational challenge due to the high dimensionality of cou-
pled chemical species, the nonlinearity and numerical stiff-
ness of solving chemical mechanisms, and interactions with
transport on all scales. The inclusion of comprehensive at-
mospheric chemistry in Earth system models (ESMs), which
simulate the interactions between the atmosphere, oceans,
land surface, and biosphere, is a priority science frontier (Na-
tional Research Council (U.S.), 2012). Atmospheric chemi-
cal mechanisms are typically implemented in CTMs, which
focus on the distribution and chemical evolution of species
in the atmosphere. For some applications, chemistry-climate
models (CCMs) may also couple chemical processes with
climate dynamics, allowing feedback between chemistry and
climate. Current atmospheric chemistry models integrate the
coupled chemical kinetic equations for mechanism species
over model time steps using high-order implicit numeri-
cal solvers, but these solvers are computationally expensive
(Sandu et al., 1997) and often dominate the cost of an at-
mospheric simulation (Eastham et al., 2018). Such costs put
the inclusion of atmospheric chemistry in tension with other
computationally intensive ESM/CCM priorities such as in-
creased spatial resolution and ensemble simulations. The cur-
rent slowdown in the rate of increase in the speed of com-
puter CPUs — the “end of Moore’s law” — underscores the
need for computationally efficient approaches (Theis and
Wong, 2017).

Chemical solvers in atmospheric models compute the lo-
cal evolution of species concentrations over a chemical time
step that may range from minutes to hours depending on
the model (Brasseur and Jacob, 2017). The chemical mech-
anisms used in regional to global atmospheric models and
ESMs typically include O(100) coupled species with chem-
ical lifetimes ranging from less than a second to much larger
than the model time step. High-order implicit solvers can in-
tegrate this system of stiff coupled differential equations with
high accuracy and fast implementations of these schemes are
available, but they are still extremely costly for atmospheric
models. Atmospheric models may combat that cost by de-
creasing the size of the chemical mechanism, breaking down
the stiffness of the problem, or using lower-order approxi-
mations. However, these methods rarely achieve a speedup
of more than a factor of two (Lin et al., 2023; Shen et al.,
2020) and sometimes lead to loss of accuracy in the model
results. As a consequence, these computational barriers limit
the ability for high-resolution simulations, prevent detailed
uncertainty analyses, and complicate the coupling of atmo-
spheric chemistry into CCMs/ESMs for long-term climate
simulations without significant compute resources.
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ML methods could be transformative in this area for both
reducing the cost of an atmospheric chemistry simulation
and facilitating their incorporation into ESMs. ML methods
seem well-suited to replace chemical solvers in atmospheric
models because the chemical computation is very repetitive,
involving the integration of similar conditions in neighbor-
ing grid cells and successive time steps. However, the large
number of coupled species brings a “curse of dimensional-
ity” to the problem, and ML methods have no check on er-
ror growth, unlike in standard chemical solvers where errors
are dampened by the negative response to perturbations (Le
Chatelier’s principle).

3.2 Progress and State of the Science

Largely, ML methods in atmospheric chemistry modeling
currently involve emulating model components to improve
model parameterizations, reduce computational bottlenecks,
and create simplified, reduced-order models. Here, emulation
refers to an ML model reproducing the same calculations as
a component of a complex physical or simulated system for a
set of inputs. There exists a growing number of studies fore-
casting ozone on short- (hourly) (Yafouz et al., 2022) and
longer-term (Du et al., 2022; Chen et al., 2023) timescales,
spanning from city- (Ojha et al., 2021) to regional-level (Or-
tiz et al., 2021) spatial scales. However, few of these studies
have been implemented in operational settings (i.e., within
CTMs, CCMs) to offer insight beyond that of traditional
model-to-observation comparison methods.

3.2.1 Offline ML and reduced order modeling

Xing et al. (2020) used a hierarchy of ML models contain-
ing a CNN and long short-term memory (LSTM) network to
predict ozone concentrations from CMAQ model output over
7 d forecast periods. Kuo and Fu (2023) investigated how ac-
curately ML models can learn the ozone-NO,-VOC chem-
ical relationships in a chemical mechanism and found that
their ML model produced distorted NO, and VOC-limited
isopleths when only trained on CMAQ model outputs. Kelp
et al. (2020) trained an NN integrator in a photochemical box
model, including an encoder/decoder to decrease dimension-
ality, and a recursive feedback loop over 24 h integration time
to control error growth. They found that they could compress
the 101-species dimension of their mechanism into 16 fea-
tures without significant error penalty and avoid error growth
within a selected time horizon, though error increases beyond
this window. Yang et al. (2024) created an ML surrogate
for a low-dimensional (11 species) chemical box model that
both compresses the dimensionality of the chemical mech-
anism and reduces the numerical stiffness of the problem.
They achieve numerical stability within a 9d training win-
dow but acknowledge that such an approach may be difficult
for more complex and higher-dimensional chemical mecha-
nisms. Liu et al. (2024) employed a Fourier Neural Operator

https://doi.org/10.5194/gmd-18-8777-2025
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with time-embedded attention to calculate chemical concen-
tration changes as a learnable time-dependent process. They
achieved higher accuracy metrics compared to standard neu-
ral operators and U-Nets in simple box model-like simula-
tions.

3.2.2 Online ML within global models

While there is a growing literature on using ML to emulate
and improve the representation of atmospheric processes,
few have implemented these ML models online within CTM-
s/ESMs to evaluate their effectiveness. Keller and Evans
(2019) created a random forest (RF) integrator for the GEOS-
Chem global 3-D CTM driven by re-analyzed meteorologi-
cal data. They achieved successful short-term simulations but
found large error growth after a few weeks. Liu et al. (2022a)
developed a gas-phase NN solver for the CMAQ regional
CTM over China, combining a standard implicit solver for
radicals and oxidants with an ML solver for VOCs. They
achieved an order of magnitude speedup over a 1-month sim-
ulation but with error growth over remote ocean grid cells.
Shen et al. (2022) used an unsupervised ML algorithm (sim-
ulated annealing) to create submechanisms of the full chem-
ical mechanism in GEOS-Chem for which they solve the
coupled kinetic system only for the fast species in the sub-
mechanism. The computational cost of the chemical integra-
tion decreased by 50 % and the relative difference in ozone
was < 0.5 % in the troposphere and < 0.1 % in the strato-
sphere over 8-year simulations. Kelp et al. (2022) imple-
mented the low-dimensional “Super-Fast” chemical mecha-
nism in GEOS-Chem using online training of the ML em-
ulator, achieving stable 1-year simulations for ozone pre-
diction with less than 10 % bias compared to the reference
and reducing computational cost by a factor of five. How-
ever, their ML solver had relatively lower accuracy in pris-
tine marine regimes with lower chemical concentrations. Xia
et al. (2024) implemented a self-attention transformer chem-
ical solver online into the WRF-Chem CTM achieving an
eight-time speedup over the conventional solver with stable
bias metrics for 74 species. Their approach shows promise
for accurate predictions of chemical concentrations with low
overhead when coupling the ML solver to the CTM, but sim-
ulations were only run for 15 d and stability over longer time
scales (> 1 year) remains to be seen.

While ML models are typically trained and deployed us-
ing Python libraries, integration of these models into CTMs
remains limited because CTMs are written in Fortran, which
cannot natively call Python. Current solutions include rewrit-
ing models in neural Fortran (Keller and Evans, 2019), us-
ing the C Foreign Function Interface (CFFI) to create C-style
bindings for Python scripts (Kelp et al., 2022; Zhong et al.,
2023), or packaging ML models as callable static or dynamic
libraries using TorchScript and LibTorch (Xia et al., 2024).
Depending on the architecture and complexity of the coupled
ML model, all coupling methods result in a speedup over the
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conventional reference solver (de Burgh-Day and Leeuwen-
burg, 2023).

3.2.3 ML modeling processes affecting ozone chemistry

A number of ML and data-driven advances have been
made for CTM modeling that are separate from creating an
ML chemical solver. Wiser et al. (2023) and Wang et al.
(2023) created automated chemical mechanism reduction ap-
proaches to reduce the high dimensionality of the VOC pre-
cursors of ozone and secondary organic aerosol. Sturm and
Wexler (2022, 2020) developed methods to enforce mass and
stoichiometric conservation rules in outputs from ML emula-
tors. Anderson et al. (2022) used gradient-boosted regression
trees to develop a parametrization for the OH radical, a key
driver of ozone formation, for CCM models. Similarly, Zhu
et al. (2022) trained an ML model on CTM output param-
eters and satellite observations from OMI to predict urban
OH concentrations. Huang and Seinfeld (2022) created an
NN-assisted Euler integrator to speed up the iterative com-
putations within an implicit solver routine.

There is a growing literature on ML approaches for bias
corrections on existing air quality modeling systems (Neal
etal., 2014; Borrego et al., 2011; Silibello et al., 2015). These
approaches generally learn the error between the output of a
numerical model and some observations and then apply this
error correction to the output of the numerical model. Silva
et al. (2019) developed an ML parameterization for ozone
dry deposition velocities using surface observations that out-
performed those within CTMs for certain locations. Simi-
larly, Ivatt and Evans (2020) created an eXtreme Gradient
Boosting (XGBoost) model trained on ozone surface obser-
vations and data from ozonesonde networks to predict and
correct GEOS-Chem model biases. Liu et al. (2022a) devel-
oped a NN model to correct surface ozone in the UKESM
model, finding that temperature drives biases over North-
ern Hemisphere continental areas while photolysis rates con-
tribute to global ozone biases. Nowack et al. (2018) used a
hierarchy of ML methods to build temperature-based ozone
parameterizations for climate model sensitivity simulations.
Colombi et al. (2023) used RFs to remove the effect of
weather coupled to ozone trends. Gouldsbrough et al. (2024)
used a gradient-boosted tree to downscale ozone model out-
put from the EMEP4UK CTM. Ye et al. (2022) used an RF
model to identify underlying causes of CTM bias in simu-
lating daily surface ozone variability, finding that CTM un-
derestimates in the dry deposition velocity and cloud opti-
cal depth on wet/cloudy days were the primary drivers over
China.

Park et al. (2023) created a prototype ML discretization
for a one-dimensional horizontal passive scalar advection, an
operator component common to all CTMs, and achieved sta-
bility and orders of magnitude computational gain relative
to the reference when coarse-grained. Sturm et al. (2023) de-
veloped a data-driven compression method for chemical trac-
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ers within a CTM and advected the compressed representa-
tion, achieving a computational gain of 1.5x without loss of
accuracy. There have been developments of ML emulators
in box models for organic aerosol mechanisms detailing the
ML models’ accuracy with respect to interactions with ozone
(Mouchel-Vallon and Hodzic, 2023; Schreck et al., 2022).
The photolysis frequencies used to inform ozone concentra-
tions, calculated from the radiative transfer components of
atmospheric models, can themselves be emulated using NNs
(Lagerquist et al., 2021) and have the longest relative history
of ML emulation for atmospheric modeling (Krasnopolsky
et al., 2005, 2008).

The near-term future of integrating ML with 3-D atmo-
spheric chemistry and climate modeling relies on under-
standing the uncertainties and limitations of ML emulation.
Such knowledge is essential for improving or approximating
specific chemical parameterizations rather than attempting to
replace full-scale, multiscale chemistry simulations. Key pri-
orities include incorporating ML models into CTMs, CCMs,
and ESMs, as well as characterizing their behavior over ex-
tended time scales (> 1 year). While short-to-seasonal scale
emulation may be suitable for forecasting horizons, it of-
fers limited applicability for integrating comprehensive at-
mospheric chemistry into climate simulations.

4 Applications of AI/ML methods to satellite
observations

4.1 Background

Satellite measurements provide detailed information on the
spatiotemporal distribution of atmospheric composition and
related parameters, such as those associated with surface air
quality. Satellite measurements have greater spatial and tem-
poral coverage compared to in-situ observations and they can
fill the gaps in those sparse distributions, particularly in re-
mote areas where in-situ observations are not available.
Over the past few decades, multiple satellites have been
launched to measure total ozone columns. However, to-
tal column measurements cannot be used to provide in-
sight into near-surface ozone because the amount of strato-
spheric ozone is much larger than the amount of tropospheric
ozone. Tropospheric ozone information has been directly
retrieved using measurements from nadir-viewing thermal
infrared (TIR) sounders, such as the Tropospheric Emis-
sion Spectrometer (TES) (Bowman et al., 2002) and the In-
frared Atmospheric Sounding Interferometer (IASI) (Boy-
nard et al., 2009), and by combining measurements from
both ultraviolet (UV) and visible (VIS) wavelengths by the
Tropospheric Emissions: Monitoring of Pollution instrument
(Johnson et al., 2018). In addition, the limb-nadir match-
ing method employs stratospheric ozone data from limb-
viewing measurements, such as those from the Microwave
Limb Sounder (MLS), to derive tropospheric columns from
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observed total columns (Ziemke et al., 2019). Recently, mul-
tispectral satellite approaches, such as IASI and the Global
Ozone Monitoring Experiment (GOME) 2 (Cuesta et al.,
2018) and TES and the Ozone Monitoring Instrument (OMI)
(Colombi et al., 2021), have been implemented to derive
tropospheric ozone profiles with increased sensitivity to the
lower troposphere.

Nevertheless, satellite observations of ozone are still lim-
ited in spatial, temporal, and vertical resolution and are not
sufficiently sensitive to ground surface levels. On the other
hand, measurements of precursors, such as NO, and CH,O
from OMI, GOME-2, the Tropospheric Monitoring Instru-
ment (TROPOMI), and the Ozone Mapping and Profiler
Suite, have provided unprecedented information to assess
the formation processes and surface concentrations of pol-
lutants such as ozone and aerosols. Despite these advance-
ments, technical challenges remain in accurately assessing
near-surface air pollutant concentrations from satellite obser-
vations of precursors. ML techniques can be used to fill the
gaps in the information available from satellite observations
and to improve the estimation of surface air pollutants.

4.2 Progress and State of the Science

ML has been widely used in satellite applications, especially
in remote sensing imagery (Maxwell et al., 2018) in the past
and is becoming more widely applied to atmospheric com-
position data. ML has been applied to satellite observations
in two main categories: (1) to generate atmospheric concen-
tration retrievals and blend multi-satellite products, and (2)
to fill gaps in observational information, including surface
concentrations and emissions estimates.

4.2.1 ML models for fast retrievals and multi-satellite

blending

Ozone retrieval is the task of estimating ozone profiles from
spectrometers on satellites, which measure radiance spectra
from the atmosphere. ML-driven retrieval algorithms have
emerged as a powerful tool to improve the processing effi-
ciency of atmospheric composition satellite products. Tra-
ditional physics-based retrievals, which are based on radia-
tive transfer models (RTMs) and solve their inverse problem,
have been widely used to generate satellite profiles of atmo-
spheric composition concentrations — known as level 2 (L2)
products — from observed spectral radiances. They consider
detailed atmospheric processes to retrieve concentrations, but
are computationally expensive. To speed up the retrieval pro-
cesses, numerical inversion schemes have been replaced by
ML algorithms that are trained using RTM inversions. Such
an approach has been applied to satellite measurements to
retrieve ozone (e.g., Miiller et al., 2003), SO, (e.g., Li et al.,
2022), isoprene (e.g., Wells et al., 2022), and CO; (e.g., Xie
et al., 2024).
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In addition, ML techniques have been used to correct for
satellite product bias and blending multiple products. For ex-
ample, Oak et al. (2024) corrected the Geostationary Envi-
ronment Spectrometer operational L2 NO; vertical column
density with a ML model to match more mature TROPOMI
observations, while preserving the GEMS data density. Simi-
larly, Balasus et al. (2023) created a blend of TROPOMI and
Greenhouse Gases Observing Satellite (GOSAT) methane
products obtained by training the ML model to predict dif-
ferences between TROPOMI and GOSAT co-located obser-
vations. Shi et al. (2024) developed an ozone column harmo-
nization method using ConvNeXt (Liu et al., 2022b) to learn
a mapping between OMI and TROPOMI, creating a recon-
structed ozone column product with the long length of OMI
availability and high spatial resolution and accuracy charac-
teristics of TROPOMI. Such bias correction and blending ap-
proaches are powerful for providing accurate and consistent
datasets for various science applications, for example, emis-
sions inversion.

4.2.2 Fill in gaps in observational information

ML can also be used to fill gaps in observational informa-
tion, such as supplementing missing data due to clouds to
provide a continuous spatiotemporal distribution, and pro-
viding surface quantities that cannot be directly measured
by satellites. Satellite observations of ozone and its precur-
sors, combined with additional information such as meteoro-
logical conditions, land-use, population density, and anthro-
pogenic emission inventories, have been used in NN or RF
models to estimate spatiotemporal patterns of surface ozone
concentrations at high spatial resolutions in different regions
of the world (Di et al., 2017; Wang et al., 2022; Zhu et al.,
2022; Kang et al., 2021; Ghahremanloo et al., 2023).

Di et al. (2017) proposed a hybrid NN model using data
from OMI, GEOS-Chem CTM outputs, ozone vertical pro-
files, meteorological variables, land-use terms and other at-
mospheric compounds to predict daily maximum 8 h average
(MDAS8) ozone in the continental United States. XGBoost
was used by Liu et al. (2020) to predict MDAS8 ozone with
similar inputs, while Jung et al. (2024) used XGBoost with
OMI and MODIS products to estimate MDAS at 1 km res-
olution in Taiwan. Ghahremanloo et al. (2023) used a CNN
with TROPOMI data as an input to estimate MDAS in the
United States. Among various ML techniques, Zong et al.
(2024) concluded that Deep Forests perform better than other
tree-based regression models to estimate surface ozone from
satellite ozone products. Similar surface concentration esti-
mations based on NN or RF models have been applied to
satellite NO, products to estimate surface NO, concentra-
tions with high spatial resolution (Kim et al., 2021), and to
satellite aerosol optical depth measurements to estimate sur-
face PM3 s concentrations (Huang et al., 2021; Xiao et al.,
2021) which are useful for exposure estimates.

https://doi.org/10.5194/gmd-18-8777-2025

8785

Emissions estimation using satellite observations of atmo-
spheric composition concentration is another important ML
application. ML techniques have been applied to improve
the computational efficiency and accuracy of emissions esti-
mation at various scales compared to traditional approaches
based on data assimilation and other approaches (Dadheech
et al., 2025; Xing et al., 2022; Tu et al., 2023; Li et al., 2024;
Bruno et al., 2024).

In addition, ML-based anomaly detection methods pin-
point pollution hotspots, such as urban centers and ar-
eas of high industrial activity. For instance, Joyce et al.
(2023) developed a deep NN to identify and quantify point
source emissions of methane from hyperspectral images
from the PRecursore IperSpettrale della Missione Applica-
tiva (PRISMA) satellite with 30 m spatial resolution. ML
models can also identify contributions from various emis-
sion sources (e.g., traffic, industry, wildfires) (Kang and Im,
2024; Finch et al., 2022; Kurchaba et al., 2023; Rollend et al.,
2023).

ML can also be used to characterize key chemical environ-
ments and classify each area into different chemical regimes
based on satellite observations of pollutants and their pre-
cursors. For example, the abundance of OH in urban areas
initiates the removal of pollutants, making it a key species to
describe the urban chemical environment. Despite its impor-
tance, it cannot be measured at the regional scale due to its
very short chemical lifetime (Duncan et al., 2024).

These results indicate that combining satellite observa-
tions with ML approaches can provide important information
for understanding and improving air pollution, including sur-
face ozone and its precursor emissions, which cannot be di-
rectly measured from satellite observations. Further progress
in this area can be expected through careful evaluation and
understanding of the characteristics and quality of satellite
products, selection of effective supplementary information,
and further development of appropriate ML methods.

5 Challenges and Limitations

In this section, we reflect on some common challenges and
limitations of using ML in the context of ozone forecasting,
modeling, and observations (Fig. 4). While we describe many
challenges which are shared with ML for physical model-
ing in general, we also highlight challenges specific to ozone
modeling with ML in the following sections. In particular, we
describe challenges related to the diversity and spatial hetero-
geneity of ozone monitoring datasets, the difficulty of mod-
eling chemical processes operating at different timescales
and with limited data on factors influencing ozone concen-
trations, as well as detailing challenges more generally ap-
plicable to ML for physical modeling. Furthermore, in this
section and the next, we propose concrete next steps to make
progress on those challenges specific to ozone.
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Figure 4. Challenges and future directions described in Sects. 5-6. The middle column represents the categories of challenges described in
further detail in the sections listed. The left column lists specific projects that could be undertaken to address the challenges. The right column
represents general future directions for the ozone AI/ML modeling community to consider. The lines connect categories of challenges with
specific future directions and tasks that could address and resolve those challenges.

5.1 The challenges of data availability and workflow

Central to the success of ML modeling efforts and their
utility are the choice of datasets and workflows, i.e., ML
model choice and training methods. As noted above, in the
field of air pollution and atmospheric composition research,
the use of ML is hampered by the absence of benchmark
datasets suitable for training different model types with vary-
ing sizes and complexity. Such well-defined benchmarks in-
cluding datasets, training objectives, evaluation scores, and
baseline models have been instrumental for the rapid devel-
opment of ML models in other fields (Dueben et al., 2022).
In particular, WeatherBench and WeatherBench?2 (Rasp et al.,
2020, 2024) have been key factors driving the transformation
of ML weather forecasting between 2022 and 2024. A simi-
lar dataset to perform the same function for ozone forecasting
would allow the robust comparison of different methods, and
may guide the field towards more accurate models. Careful
curation and data fusion of the TOAR surface ozone database
with other relevant datasets might provide a robust and repre-
sentative benchmark dataset, building on existing work (Be-
tancourt et al., 2021). Ultimately, a lack of sufficient surface
observations will impact the study of air quality and down-
stream impacts on health or vegetation. Therefore improving
data coverage over poorly monitored areas remains a priority
(Schultz et al., 2017).

The breadth of information available in datasets like
TOAR, GHOST and reanalysis products like Copernicus At-
mosphere Monitoring Service (CAMS) is vast, but these
products provide significant challenges to the development
of ML models for ozone due to heterogeneous data formats
and lack of succinct documentation that focuses on the use
of such data for ML applications. It may be that ML methods
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can also be used for infilling missing data (e.g. cloud-filtered
satellite data, gaps in in-situ observations) for meteorologi-
cal variables (Li et al., 2023) and ozone (Arroyo et al., 2018;
Betancourt et al., 2022). Overall, there is a clear need for a
harmonized benchmark dataset(s) for ozone to further enable
ML models to be developed. These should (as much as possi-
ble) follow the vision outlined by Ebert-Uphoff et al. (2017)
and the principles defined by Dueben et al. (2022).

With regards to model choice and development, it is worth
noting that, in contrast to CTMs and other methods of sim-
ulation, ML models do not a priori require simulation, out-
putting and aggregating of high-resolution time series data
to generate predictions for relevant ozone metrics. Instead,
ML models can be trained to directly generate forecasts of
these metrics (see Sect. 2). In this regard, it is necessary that
ozone ML benchmarks should, where appropriate, include
target objectives both for forecasting concentrations and for
forecasting (a set of) aggregate ozone metrics. See Fleming
et al. (2018) and Lefohn et al. (2018) for a more detailed dis-
cussion on relevant ozone metrics.

With regard to ML model training, there is a wide array
of data-splitting approaches that can answer subtly related
scientific questions. For forecasting it is common practice to
divide the data temporally such that the training data com-
pletely precedes the testing data, such as using the last few
years of a longitudinal dataset for testing. This is commonly
recommended in benchmarking studies (Lam et al., 2023;
Rasp et al., 2020). We emphasize that while these proce-
dures likely make intuitive sense, they do not match the de-
fault setting in ML packages (Schultz et al., 2021), such as
scikit-learn (Pedregosa et al., 2011), where the default cross-
validation procedure will randomly split over individual data
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instances rather than over spatial blocks or temporal blocks.
Without using these correct procedures, performance will be
overestimated and may not reflect real performance when de-
ployed. In practice, it remains a challenge to carefully define
and document the data selection and splitting procedures and
adapt them to the scientific problem at hand.

These challenges of data selection and splitting become
particularly relevant when looking into climate timescales.
Not only can this cause out-of-distribution samples of model
input data (for example higher temperatures), but climate
change may also affect atmospheric chemical and physical
processes so that the mapping between inputs and outputs
may drift. This problem is known as “concept drift”, where
ML predictions become less accurate over time, which can
arise from a non-representative training dataset or an ML
model that lacks expressiveness, for example by being unable
to extrapolate effectively beyond the bounds of the training
data. For the latter, tree-based ML models especially are poor
with respect to extremes and outliers. Here, model architec-
ture may play a role. Exploring generative Al models, such
as Generative Adversarial Networks (GANSs) and transformer
models, holds promise for the next generation of ML-based
atmospheric models. These newer ML architectures can gen-
erate more internally consistent dynamics and require less
training data than classical CNNs, while also demonstrating
improved accuracy and stability over time.

5.2 The challenge of generalization

In addition to appropriate handling of training data, ensur-
ing the trained model is as generally useful as possible, both
in and out of sample, remains an enduring challenge. As is
common in ML tasks, models trained on data from one ge-
ographical region may not necessarily transfer to another re-
gion, even when the underlying task and physics remain the
same. This limitation often arises from variations in spuri-
ous features or unobserved variables specific to each domain,
or differences in emissions and climate in different regions.
Many approaches in the ML literature seek to improve the
performance of ML models across domains, or under do-
main shifts, which are yet to be used for ozone forecasting
(Sagawa et al., 2019), while recent studies suggest that large-
scale weather forecasting models may generalize to unseen
conditions and perturbations (Hakim and Masanam, 2024).
generalization is particularly important for the use of ML
models trained in high-data domains and then deployed in
low-data domains. In this context, it may be useful to ex-
ploit the benefits of probabilistic forecasting (see following
section), using models that report uncertainty in unfamiliar
domains.

In the context of observational data, ML is increasingly
used to derive or enhance geophysical variables from satel-
lite measurements (see Sect. 4). However, a conceptual and
practical challenge lies in the appropriate application of these
ML-derived products across spatio-temporal scales (Di et al.,
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2017; Zhu et al., 2022; Tu et al., 2023) or atmospheric
regimes (Ghahremanloo et al., 2023). There is a need to eval-
uate and document the scale-dependence of such products,
and to guide their use in downstream modeling and analysis
applications accordingly.

5.3 The challenges of extremes and probabilistic
models

A relevant application for ozone forecasting and modeling
is the study of extremes, including both accurate forecast-
ing and attribution. Extreme ozone concentrations or fluxes
can have a large impact on health and vegetation, and are
also referred to as low-likelihood high-impact events. By
definition, extreme events occur rarely and are hence chal-
lenging to accurately represent. There has been some work
on approaches to weight extremes more during model train-
ing (Steininger et al., 2021). The ability of models to repre-
sent extremes is also an important metric that can be used
to evaluate the quality of these models. Extremes can thus
play a role for uncertainty quantification of the predictive
performance of the models (e.g., important for forecast em-
ulators and assessing ML performance on the extremes),
where one can distinguish between epistemic (systematic)
and aleatoric (statistical) performance. This connects with
an increasingly recognized need to evaluate performance in
more rigorous and consistent ways: including the develop-
ment of new benchmark datasets, diagnostics, and metrics
(see above). Progress on ML evaluation include causal evalu-
ation (process-oriented approach) and eXplainable Al (xAl),
for understanding (in)consistencies of the ML algorithms
with physical processes (in other words: whether accurate an-
swers are found for the right reasons). However, such meth-
ods are generally only applicable to relatively small-scale
ML models. Dynamical tests and counterfactual experiments
provide a means to test the credibility of large ML models
(Hakim and Masanam, 2024; Bafio-Medina et al., 2024).
Forecasting of potential extreme events is particularly
challenging because these events are beyond the typical
ozone variability, and naturally, extreme events are rarely and
infrequently represented in data. For data-driven models this
challenge is further exacerbated by (1) the need to forecast
not only the presence of threshold exceedances, but also the
intensity and duration of extreme events; and (2) ozone ex-
treme events are often related to other anomalous mecha-
nisms, such as heatwaves and wildfires, which are difficult
to take into account based on limited extreme information,
also due to the fact that ozone responses to these mecha-
nisms are heterogeneous. Although the extreme value the-
ory is widely adopted, its limitations are frequently acknowl-
edged, including the IID (independent and identically dis-
tributed) assumption and independence between extreme and
non-extreme events. On the other hand, approaches based on
probabilistic forecasting may better characterize the uncer-
tainty and likelihood of extreme events. One solution may
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be to use metrics and data scenarios to evaluate performance
under different types of evaluation scenarios, taking advan-
tage of evaluation metrics in weather forecasting which have
been studied extensively. For example, if a key considera-
tion is the ability of a forecasting model to capture extreme
events, then metrics that capture relevant performance ex-
plicitly on those events should be used. This allows for ro-
bust comparison of both the existing and novel models on
both traditional metrics and metrics focused on extreme event
prediction to more comprehensively evaluate model perfor-
mance. Evaluation of extreme events is limited in the litera-
ture, with recent studies highlighting the lower accuracy of
ML models when forecasting spring and summertime ozone
concentrations (Leufen et al., 2023; Hickman et al., 2023).
In addition to helping with forecasting extreme events, prob-
abilistic forecasting more generally provides a number of ad-
vantages compared to the deterministic forecasting methods
that are currently more common, as outlined in Bodnar et al.
(2024). Furthermore, ML weather forecasting models are in-
creasingly adopting probabilistic and diffusion-based archi-
tectures that are able to produce sharp forecasts and uncer-
tainty estimates. This is a promising line of work, however,
these ML architectures may be challenging to implement for
ozone forecasts due to the uncertainty driven by the meteo-
rological fields themselves.

5.4 The challenge of interpretability and explainability

Interpreting and explaining ML models used to study ozone
remains difficult. While these two terms are often used in-
terchangeably, for this article we follow the distinction that
interpretability focuses on designing and exploring models
that are transparent and have comprehensible internal data
transformations, whereas explainability methods focus on
post-hoc explanations of how black-box models are working
(Rudin, 2019). Models that are directly and trivially inter-
pretable, such as multiple linear regression, are typically not
the most performant, and in the high-data regime, the most
performant ML models are typically variants on deep NNs
that are difficult to interpret or explain. There is some litera-
ture that explores whether PINNs provide more interpretabil-
ity. For example, efforts are underway to enhance the inter-
pretability of ML models in atmospheric sciences by incor-
porating or diagnosing conservation priorities such as mass
and stoichiometry (Sturm and Wexler, 2020, 2022). Addi-
tionally, neural operators are being employed to learn the so-
lution operators of ODEs/PDEs from the chemical training
data (Liu et al., 2024). However, while incorporating chem-
istry and physics constraints has been shown to increase in-
terpretability, there is no guarantee that these methods will
improve the stability of the ML model over time (Sturm et al.,
2023). Often, there is a trade-off between interpretability and
ML model accuracy, especially with more complex models
(Sengupta et al., 2023). While methods to interpret and ex-
plain NNs more generally have been studied widely, mech-
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anistic interpretability of NNs is a challenging task (Nanda
et al., 2023), and only a limited range of XAI methods have
been tested with ML methods developed for ozone forecast-
ing, often focused on sensitivity approaches which look at
the post-hoc explanations where the inputs to models are per-
turbed to see how predictions change (Ivanovs et al., 2021).
Recent studies have investigated the importance of model
input parameters through bootstrapping, i.e. random pertur-
bations of individual inputs (Kleinert et al., 2021). Input
data perturbation experiments are also possible and infor-
mative for very large models as, for example, demonstrated
by Hakim and Masanam (2024) for the Pangu-Weather fore-
cast model. Furthermore, ML approaches are increasingly
employed to develop end-to-end models that process raw in-
put data (e.g., emissions, meteorological fields) and directly
predict outputs such as ozone concentrations. While end-to-
end models bypass the challenges of emulating individual
components, which are less prone to short-term instabilities
and operator splitting issues, they also limit the ability to
track uncertainty metrics tied to physical parameters and pro-
cesses.

5.5 The challenges arising from domain-specific
knowledge

Modeling ozone using ML proves challenging due to the
multitude of sources driving model error (emissions, chem-
istry, transport, deposition) and the nonlinear response of
ozone to these sources. Parameter tuning an appropriate
ozone ML model for a complex, high-dimensional param-
eter space is possible given large computational resources
and adaptive learning on pre-defined metrics. However, such
an approach is largely inefficient given that atmospheric
chemistry data lies on relatively low-dimensional manifolds
with respect to the possible input parameter space. That is,
many ozone-related relationships are structured with indi-
vidual signals often being sparse and low-rank. Here, do-
main knowledge from atmospheric chemistry can help iden-
tify the optimal training dataset and define meaningful loss
functions and targeted timescales (Fig. 1) for the ML model
problem. In particular, domain knowledge of chemical and
physical processes can help explain errors in ML models
at short time scales versus long time scales. For example,
ML models of atmospheric chemistry tend to predict well
fast chemical processes (e.g., seconds to days) but diverge
over longer time scales (e.g., months to years) (Kelp et al.,
2020). In addition, knowledge of slow chemical processes,
such as the role of peroxyacetyl nitrate (PAN) decomposi-
tion for ozone formation over polluted and/or remote areas,
may help define appropriate training targets for ML models.
An emphasis should be placed on emulating chemistry on
longer timescales (> 1 year) as issues of long-range stability
are more challenging than shorter-term accuracy, and are a
necessity for inclusion into CCMs and ESMs.
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On the other hand, a heightened focus on domain knowl-
edge may unintentionally limit the potential of ML models.
Atmospheric chemists typically leverage well-established re-
lationships of the chemical system, such as NOy-limited vs.
VOC-limited regimes, which are easily uncovered by lin-
ear regression or principal component analysis. By invoking
such a strong prior assumption, it may impose constraints
that hinder an ML model’s ability to learn more complex,
non-obvious interactions within the data. This bias toward
known relationships risks overlooking patterns that could be
hidden in the chemical state space that may promote greater
accuracy and stability over longer time scales. Striking a bal-
ance between leveraging domain expertise and allowing ML
models the flexibility to explore complex dynamics is essen-
tial for advancing the predictive capability of ozone model-
ing.

5.6 The challenges of open science and observational
data availability

Although an open data infrastructure such as the TOAR-II
database gives the impression of low barriers to data access,
this might in fact not be true for everyone. Poor internet con-
nectivity from developing countries may limit researchers
from retrieving data and subsequently running a computa-
tionally demanding model (Blanken et al., 2022; Dwivedi
et al., 2022). Furthermore, not all possible data providers
agree with sending their data to an open access database,
which is one important factor that limits global coverage of
surface measurement data. The increasing resolution of satel-
lite products and models is often considered to be an im-
provement, but the larger data size can complicate the pro-
cessing and analysis of data for some researchers (Jain et al.,
2022). Some data services require a registration and compli-
ance with data use policies, which could conflict with institu-
tional policies of researchers or exacerbate language barriers
that non-native English researchers can experience. Finally,
whereas advanced APIs can be ideal for technically skilled
researchers and allow for reproducible workflows, they might
hinder less technical researchers or policy makers that want
to explore data sets.

In particular to developing nations, which may not have
the economic ability to acquire high-resolution satellite prod-
ucts outside of those freely-available, it is imperative to de-
velop high-quality, globally generalizable solutions to ozone
modeling. Data hosting platforms like Google Earth Engine
(GEE) enable users to freely access global data relevant for
ozone modeling studies, ranging from land-use information
from MODIS (Friedl, 2021) to human modification data from
VIIRS nighttime lights (Elvidge et al., 2017), Gridded Popu-
lation of the World (CIESIN, 2018), and more. Recent work
by Kazemi Garajeh et al. (2023) investigated the ability to
detect spatially resolved ozone pollution trends using time-
series Sentinel-5 imagery from GEE, highlighting the qual-
ity of spatial distribution and accuracy available an open-
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source product and platform. This demonstrates the neces-
sity to co-design data services and their hosting platforms to
provide efficient and performant access to high-quality, well-
documented data.

6 Future Directions

While new developments have been made in DL to utilize
the expansive Earth observation data now available (Eyring
et al., 2024), challenges remain regarding the quality, inter-
pretability, and complexity of available data. Also, less work
has been done to exploit atmospheric composition datasets,
where observations are often less dense and more noisy than
weather data. Future research and advancements in observa-
tional products suitable for ML, including efforts to address
uncertainty quantification (e.g., Haynes et al., 2023), will
enhance our understanding, facilitate process-based model
evaluation (Nowack et al., 2020), and enable actionable sci-
ence. Accurate forecasts of extrema in short-term surface
ozone predictions are essential for protecting human health,
while reliable projections of long-term changes in tropo-
spheric ozone abundances are critical for understanding cli-
mate change and its impacts. Leveraging causal- and physics-
constrained data-driven approaches can enhance trust and
interpretability in ML-based modeling efforts (Tesch et al.,
2023; Beucler et al., 2024), and combining causal discov-
ery and XAl methods holds potential for advanced process-
based evaluation (Iglesias-Suarez et al., 2024). There is a
recognized need to evaluate model performance rigorously
and consistently, calling for the development of new bench-
mark datasets, diagnostics, and metrics (Betancourt et al.,
2021, 2022), to enable comprehensive evaluation of ML-
based ozone modeling techniques. To meet society’s needs
facing current environmental challenges by providing action-
able science and maintaining rapid progress in this field, col-
laboration among atmospheric composition communities and
ML communities is essential.

To thrive, the interdisciplinary ozone modeling and fore-
casting community requires open knowledge sharing, re-
sources and research cooperation. Research in the domain
should adhere to the FAIR principles of Findability, Acces-
sibility, Interoperability and Reusability (Wilkinson et al.,
2008) and the CARE principles of Collective, Authority
to control, Responsibility and Ethics (Carroll et al., 2021).
Availability of data is essential for data-driven approaches
and the developed TOAR-II surface ozone database is essen-
tial here through its open data policies and its Application
Programming Interface (API), which allow for automatic ex-
traction of data.

Future work may focus on foundation models to ad-
vance more integrated approaches. These models, trained
on extensive datasets in a self-supervised manner Bom-
masani et al. (2021), have already demonstrated their ca-
pability in fields like weather forecasting and climate sci-
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ence (Lessig et al., 2023; Nguyen et al., 2023; Bodnar et al.,
2024). In the context of tropospheric ozone modeling, foun-
dation models could improve performance by learning from
varied datasets, including observational and numerical mod-
eling data (Mukkavilli et al., 2023). These models are ca-
pable of handling multiple air pollutants simultaneously and
can incorporate meteorological variables, supporting the de-
velopment of more comprehensive, flexible and potentially
robust air quality benchmarks by harmonizing observational
data. Their flexible architectures enable training a single
model with large-scale resources and then fine-tuning it for
multiple tasks, reducing the computational expense of re-
peated model training (Bommasani et al., 2021).

At present, there are underexplored opportunities to merge
the current successes in ML weather and climate model em-
ulation with CTMs and ESMs. Thus far, atmospheric chem-
istry data have been largely excluded from ML weather and
climate applications, as these current supervised learning
frameworks are typically non-extensible, requiring retraining
of the entire ML model when incorporating new chemical in-
formation. In contrast, unsupervised learning model frame-
works, such as pre-trained foundation models, can identify
patterns in data without explicit labels, offering a new fron-
tier for ingesting and potentially improving ML modeling of
atmospheric chemistry. These foundation models can be fine-
tuned on CTM data. For example, the Aurora model (Bodnar
et al., 2024) is fine-tuned on a subset of six criteria pollutants,
including ozone from CAMS (Inness et al., 2019). Fine-
tuning ML weather and climate models enables the addition
of chemical species to an ML model that is already trained
on atmospheric dynamics. This process of fine-tuning, by
training specific decoders for new variables, has also recently
been carried out for hydrological variables (Lehmann et al.,
2025). However, adding chemical species such as VOCs in
the absence of emission inputs (which current models do not
consider) on the ML weather model’s native 6 h forecast time
steps likely presents challenges. Greater emphasis is needed
on understanding the factors influencing ML model perfor-
mance with respect to the specific challenges of atmospheric
composition research and air quality analysis.

While much progress will likely be made by large coor-
dinated efforts to build comprehensive datasets and foun-
dation models (or fine-tune existing foundation models),
progress on important problems specific to ozone may be
achieved without requiring large-scale, compute-intensive
projects (see Fig. 4). First, investigation of the influence
of sparsely observed factors on the skill of ozone forecast-
ing models would be useful. For example, VOCs are not
widely measured, and the impact of including VOCs as in-
puts to an ozone forecasting model could be explored. Sec-
ond, the capacity of models to predict ozone formation in
under-observed regions, after being trained on well-sampled
regions, may also provide information about the general-
izability of ML models. This work could also inform the
importance of largely unobserved variables that influence
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ozone but differ between regions. More generally, a system-
atic exploration of the factors that influence machine learn-
ing model skill in modeling ozone would be useful for the
field. In addition, since much data for model training comes
from CTMs, which often have degraded resolution compared
to the most accurate weather models, improved model accu-
racy may be obtained by combining high resolution weather
models with chemistry data from lower resolution models.
This relates to delineating chemistry and transport in mod-
els. Since ML models do not explicitly transport chemical
tracers, it may be interesting to explore how ML models
perform for tracers with different lifetimes. Furthermore, as
probabilistic machine learning methods are established for
ozone modeling, analyzing the relationship between ensem-
ble spread and ensemble error could be insightful.

7 Conclusions

While modeling ozone accurately remains a challenging
problem across temporal and spatial scales, ML approaches
have made progress in a number of areas. As highlighted in
this Perspective, ML methods are contributing to research in
short-term forecasting, chemistry model emulation, and re-
mote sensing of ozone. Specifically, ML methods are provid-
ing increasingly accurate short-term forecasts of ozone at ob-
servational stations, and making progress toward providing
fast emulators of chemical mechanisms used in chemistry-
climate models. In remote sensing, ML methods have shown
skill in increasing the efficiency of ozone retrieval, and in
making estimates of ozone where there is little satellite cov-
erage.

Similar to many applications of ML to physical model-
ing, for our field to make progress in modeling real-world
ozone faithfully, models should be trained with a synthesis
of high-quality observational datasets and appropriate high-
quality benchmarks must be compiled to evaluate the skill
of different models, and enable the comparison of ML and
numerical models. Furthermore, continued work to mitigate
the ozone-specific challenges faced by existing ML models is
necessary, as highlighted in Sect. 6, which will require close
collaboration between domain experts and ML researchers to
develop models tailored to the particular challenges. Notably
for ozone modeling, recent work illustrates that foundation
models, trained on diverse datasets, are capable of skillful
atmospheric composition modeling. The paradigm of foun-
dation models represents a significant step forward for com-
position modeling, enabling an integrated approach across
multiple scales and tasks, and building on the success of sim-
ilar models for weather forecasting. However, it remains an
open and important question whether ML models can con-
tribute to improved process-level understanding of drivers of
ozone, including quantifying the influence of sparsely ob-
served drivers, and generalize to unseen air pollution and cli-
mate scenarios.
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As ML continues to transform ozone research and ad-
jacent fields, including weather and climate modeling, the
ozone modeling community needs to ensure future research
builds on strong foundations. By developing robust bench-
marks, building productive cross-disciplinary collaborations,
and embracing state-of-the-art techniques, ML-driven ozone
research has the potential to not only advance scientific un-
derstanding but also deliver actionable benefits for climate

resilience and public health.

Appendix A: Glossary

Glossary of terms and abbreviations

Artificial Intelligence (AI)

Copernicus Atmosphere
Monitoring Service (CAMS)
Chemistry-Climate Model (CCM)
Convolutional Neural Network
(CNN)

Chemical Transport Model (CTM)

Deep Forest (DF)
Deep Learning (DL)
Decision Tree (DT)

Earth System Model (ESM)

Feed-forward Neural Network
(FNN)
Foundation Model (FM)

Generative Adversarial Network
(GAN)

General Circulation Model (GCM)
Gradient Boosted Decision Tree
(GBDT)

Large Language Model (LLM)

Long Short-Term Memory network
(LSTM)
Machine Learning (ML)

Neural Network (NN)
Physics-Informed Neural Network
(PINN)

Random Forest (RF)

Recurrent Neural Networks (RNN)

Transformer Model (TM)

U-Net
eXplainable Al (xAI)

A software or model that is capable of performing tasks that typically require human
intelligence.

A service by the EU Earth observation programme to provide comprehensive data on
atmospheric composition and air quality through satellite and ground-based monitoring.

A type of global model focused on the interactions between atmospheric chemistry and climate.
A type of neural network designed for processing data with grid structure, often used for image
processing.

A type of global model designed to simulate the movement and chemical reactions of
atmospheric pollutants.

A deep learning architecture based on decision trees instead of neural networks.

A field of machine learning focused on the development and use of neural networks.

A hierarchical supervised learning algorithm, often used to create classification and regression
models.

A global model that simulates all aspects of the Earth system, including the interactions
between the atmosphere, oceans, land, and biosphere.

A basic type of neural network where data move in one direction without feedback loops, often
used for data classification and recognition.

A machine learning model trained on vast amounts of data, designed to be adapted to a broad
range of tasks.

A type of machine learning technique where two neural networks compete unsupervised to
produce the most accurate result.

A global model that simulates the Earth’s atmospheric dynamics and circulation.

An ensemble machine learning technique that uses the results of multiple decision trees to
improve accuracy and reduce error of the prediction.

A type of foundation model trained on very large text datasets to understand and generate
natural language.

A type of recurrent neural network designed to retain information over longer sequences for
longer periods.

A field of artificial intelligence dedicated to algorithms and models that can learn and make
predictions from the input data without being explicitly programmed to do so.

A machine learning model designed to process data in a similar way as the human brain.

A type of neural network trained to follow known physical laws.

An ensemble machine learning algorithm that combines multiple decision trees during the
training process to improve prediction accuracy and reduce overfitting.

A type of neural network in which data can loop back into the network retaining memory of
previous inputs. It is designed for sequential data processing where context is important, such as
natural language and time series.

A type of deep learning model that converts a given input into a desired output, learning context
and meaning. It is used as a foundation model for large language models as an alternative to
CNNs and RNNs architectures.

A type of convolutional neural network designed for image segmentation and de-noising.

A type of artificial intelligence that provides the information necessary to understand how a
certain output was achieved.
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