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Abstract. Estimating the hydrologic response of watersheds
to precipitation events is key to understanding streamflow
generation processes. Impulse Response Functions, com-
monly referred to as the Instantaneous Unit Hydrograph
(IUH) in hydrology, have been used for over 50 years to
predict stormflow and compare catchment behaviors. These
response functions are often strongly affected by modelers’
choices of parameters and data preprocessing procedures,
limiting their diagnostic utility and generalizability across
different sites and time periods. With the increasing availabil-
ity of compiled rainfall-runoff series, there is now a grow-
ing opportunity to develop new approaches that fully exploit
such datasets. This paper introduces GAMCR, a novel data-
driven approach that employs Generalized Additive Mod-
els (GAM) to estimate time-dependent Catchment Responses
(CR). GAMCR is designed to capture the complex, non-
linear relationships between precipitation and runoff, offer-
ing a flexible and interpretable framework for the system-
atic analysis of hydrological responses. The model is suc-
cessfully validated on synthetic data, where the true re-
sponse functions are known. Additionally, we demonstrate
the model’s potential using observed data from six Swiss
basins with distinct hydrological behaviors. Results are fully
consistent with those obtained from ERRA, another recent
data-driven approach with a very different architecture, as

well as with the climate and physical properties of the sites.
Overall, GAMCR is a modern and effective tool for lever-
aging rainfall-runoff datasets to investigate the controls on
hydrologic responses in small to midsize basins under con-
ditions similar to those studied here, and it provides a frame-
work that can be further explored in other climatic and phys-
iographic settings in future research.

1 Introduction

Precipitation is generally the main water input to a landscape
and the fundamental driver of streamflow generation. Quan-
tifying how much streamflow is produced after a rain event is
essential for water resources management and flood preven-
tion, and is also useful to characterize watershed behavior.
The hydrologic response (or runoff response) is usually de-
fined as the change in streamflow induced by a given input of
precipitation (Ponce, 1995; Kirchner, 2022; Kirchner et al.,
2023). Years of tracer studies have clarified that, apart from
rare exceptions, such a response does not primarily consist
of water that fell as precipitation during the same event, but
rather by water already existing in the landscape (in the form
of soil water and groundwater) that is quickly mobilized dur-
ing the storm (Kirchner et al., 2000; McGuire and McDon-
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nell, 2006; Botter et al., 2010; van der Velde et al., 2012;
Kirchner, 2003; Knapp et al., 2025). The hydrologic response
can be interpreted as reflecting the celerity with which in-
creases in hydraulic potentials, induced by the new precip-
itation, propagate through the subsurface (McDonnell and
Beven, 2014). Thus, stream water is generally much ”older”
than the most recent rainfall (McDonnell et al., 2010), al-
though it may respond within minutes after the onset of pre-
cipitation.

The hydrologic response is a fundamental catchment sig-
nature, but its estimation is not straightforward, because
catchment behavior is often nonlinear and nonstationary,
meaning that the effects of precipitation inputs are not sim-
ply additive, and the same rain can generate different hy-
drological responses, depending on when it falls (Kirchner,
2024; Beven, 2001). The first approaches to characterize the
hydrologic response came from the need to make stream-
flow predictions for engineering design. These approaches
were based on instantaneous unit hydrographs (IUH, Sher-
man, 1932), analogous to the concepts of impulse response
functions or transfer functions in signal processing, which
are probability density functions describing how impulses of
precipitation are transformed into runoff. The IUH has been
typically modeled as a parametric curve like a Gamma or
Weibull distribution. To cope with the complexities of runoff
generation processes, the classic IUH approaches rely heav-
ily on the concept of effective rainfall (or rainfall excess,
Je), which is the fraction of rainfall that effectively mobi-
lizes runoff. The effective rainfall is typically modeled as
a (nonlinear) function of antecedent wetness (e.g. through
the popular SCS Curve Number approach, Soil Conserva-
tion Service, 1985) and acts as a filter that separates the rain-
fall volumes that effectively produce runoff from those that
evaporate or that recharge subsurface storage. The IUH is
then assumed to be linear and time-invariant, enabling the
use of standard convolution approaches to compute stream-
flow Q from an effective precipitation time series. The IUH
theory, pioneered by the work of Sherman (1932) and fur-
ther developed by Snyder (1955) and by Bruen and Dooge
(1992), provided an effective and structured way to represent
the relationship between (effective) rainfall and runoff. Sev-
eral advances to IUH theory have been made over the years,
including linking the IUH shape with basins’ geomorpholog-
ical properties (see Rigon et al., 2016). The IUH approach is
also popular for teaching the rainfall-runoff transformation
in many engineering programs (Mays, 2019).

Although IUH approaches are often successful at repro-
ducing stormflow hydrographs, they typically require pre-
processing steps to estimate effective precipitation, and to
separate the hydrograph into stormflow vs. baseflow. These
pre-processing steps limit the diagnostic capability of the
IUH and its generality for comparing different sites and
time periods. Rainfall-runoff data from hundreds of water-
sheds worldwide is increasingly available in harmonized
databases that facilitate modeling and cross-site comparisons

(e.g. Kratzert et al., 2023; do Nascimento et al., 2024). These
emerging datasets create the possibility to characterize hy-
drological responses from many diverse watersheds, and thus
to better understand their controlling factors. To character-
ize hydrological response without the constraints inherent in
the IUH approach, Kirchner (2022) proposed a data-driven
approach for estimating impulse response functions that ac-
count for nonlinear, nonstationary and heterogeneous system
behavior. This approach was further developed for rainfall-
runoff data and termed ensemble rainfall-runoff analysis,
or ERRA (Kirchner, 2024). Although the ERRA approach
shows considerable promise (e.g. Gao et al. (2025)), it is
worth considering whether other approaches can be devel-
oped to exploit the power of machine learning for innovative
explorations of hydrological response.

Building on these advancements and on the widespread
availability of rainfall-runoff data, here we introduce
GAMCR, a data-driven approach that employs Generalized
Additive Models (GAM) to estimate time-dependent Catch-
ment Responses (CR). We present the general model ar-
chitecture and provide a series of synthetic and observed
data examples to: (1) validate GAMCR and compare its per-
formance with the ERRA approach, and (2) showcase the
model’s potential to estimate hydrological response at di-
verse watersheds, characterized by diverse properties and
behaviors. Differently from ERRA, GAMCR aims to esti-
mate the hydrologic response to each individual precipitation
event using combinations of spline basis functions, with co-
efficients determined through machine learning techniques.
This approach, though requiring to fit Generalized Additive
Models, allows for greater flexibility since additional infor-
mation (e.g., temperature, dam operations, or site-specific
characteristics) can be incorporated into the model. The goal
of GAMCR is to facilitate systematic comparisons of hydro-
logical responses across sites where precipitation-runoff time
series are available.

2 Model development

2.1 General convolution model

According to the classic convolution integral, streamflow Q

is computed as the convolution of precipitation J with the
stationary hydrologic response IUH, which in continuous
time is expressed as:

Q(t)=

∞∫
0

J (t − τ) IUH(τ )dτ (1)

Here we use a discrete-time approximation to Eq. (1), gen-
eralized to allow the IUH to vary with time:

yt =

Tmax∑
T=0

xt−T ht−T (T )1T (2)
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where y is the output flux (i.e., streamflow) at time t , x is the
input flux (i.e., precipitation) T time steps earlier (i.e., at time
t − T ), and ht−T (T ) is a time-variable and non-unitary re-
sponse function that reflects the streamflow response to pre-
cipitation falling at time t − T , as a function of lag time T .
The dependence of h on the precipitation time t−T incorpo-
rates any dependence on internal and external forcings, such
as precipitation intensity and wetness conditions at the time
that rain falls.

At this stage we make very few assumptions about the
shape that h can take. It is not a probability density function,
meaning that its area can be smaller or larger than one. While
in principle h can take negative values (if this is what the
system under consideration does, and is reflected in its data),
we will assume that h is always non-negative (see Sect. 2.2).
By design, h refers to the response to precipitation falling
over a specific time step t−T . Any two time steps are gener-
ally expected to initiate different responses, but Eq. (2) is ob-
viously ill-posed because the array ht−T (T ) contains many
more unknowns than can be constrained by the vectors yt and
xt−T . Thus it is necessary to evaluate ht−T (T ) as an average
over one or more ensembles of time steps (for example dur-
ing which the precipitation intensity or antecedent wetness is
within a given range). In particular, the ensemble responses
introduced by Kirchner (2024) can be readily obtained in a
post-processing step. Given an ensemble of time points E ,
the Runoff Response Distribution (RRD, units of 1/T ) is the
average response weighted by precipitation intensity h over
the selected time points E :

RRDE (T ) :=

∑
t ′∈E xt ′ht ′(T )∑

t ′∈E xt ′
, (3)

(where t ′ = t−T represents the time that precipitation falls),
while the Nonlinear Response Function (NRF, units L/T2) is
the average response multiplied by the corresponding precip-
itation intensity:

NRFE (T ) :=
1
|E |
∑
t ′∈E

xt ′ht ′(T ). (4)

2.2 GAMCR model

GAMCR is a machine learning model that estimates transfer
functions from flux data. GAMCR models the catchment’s
response to any single precipitation event as a weighted sum
of spline basis functions. The time-varying coefficients of
these basis functions are estimated using machine learning
techniques, specifically Generalized Additive Models. As a
result, we use more technical language in this section and the
next, drawing terminology from the data science literature.

The problem of learning time-dependent transfer functions
from rainfall-runoff data is ill-posed, meaning that consider-
ing a too large model class might result in zero training loss
but with poor test error. In the machine learning community,
the standard approach to cope with such badly conditioned

inverse problems is to exploit prior knowledge on the struc-
ture of the studied system to either shrink the class of target
functions or to regularize the optimization problem (Arridge
et al., 2019). Following this approach, GAMCR is built on
three core principles.

1. First, GAMCR specifies a set of features that are as-
sumed to be the main drivers of the catchment response
to a given precipitation event. These features can be
modified by the user if needed and should typically in-
clude information characterizing the catchment condi-
tion and the precipitation event considered.

2. Second, we assume that the catchment response to a pre-
cipitation event will vary smoothly as a function of this
feature vector, a structural assumption similar to the one
implicitly used in the approach by Kirchner (2022). This
means we expect similar feature vectors to produce sim-
ilar hydrologic responses.

3. Third, we expect the transfer functions, T 7−→ ht ′(T ),
to exhibit sharp peaks for short time lags, that progres-
sively smooth out as the lag time T increases.

With these guiding principles, we model the transfer func-
tions as follows:

ht ′(T )=

L∑
`=1

g`(zt ′)b`(T ), (5)

where (b`)`∈[L] are B-splines constructed by considering an
irregular spacing of knots, z′t is a feature vector describing
both the catchment conditions and the precipitation event at
time t ′ and g` is a GAM. The basis functions (b`)`∈[L] are il-
lustrated in Fig. 1, highlighting that the knot density is much
higher for shorter lags, while the knots become more spaced
out for longer lags. This design enables the model to cap-
ture the large variability of the transfer functions at short
lags, while still accounting for potentially long recessions.
The feature vectors zt ′ used in GAMCR are the intensity
of the precipitation event at time t ′, the weighted averages
of both the past precipitation and the past evapotranspiration
over different time windows, and the sine and cosine of the
fractional year.

Since we model the functions (g`)`∈[L] using GAMs, one
can write

g`(zt ′)= ξ
>

t ′ γ `, (6)

where (ξ>t ′ )t ′ is the design matrix of the GAM. Each entry of
ξ t ′ corresponds to one of the spline basis functions evaluated
at a given feature (i.e. a specific entry of zt ′ ). We have:

yt =

L∑
`=1

(
Tmax∑
T=0

xt ′b`(T )ξ t ′

)>

γ ` =

L∑
`=1

Wt,`,:γ ` =
→
w
>

t

→
γ , (7)
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Figure 1. Overview of GAMCR. Given some precipitation event
of interest occurring at time t ′, GAMCR computes a feature vector
zt ′ including information on the system up to time t ′. The response
function is expressed as a weighted sum of spline basis functions,(
b`
)
`∈[L]

, where the weights are derived from zt ′ throughL distinct
Generalized Additive Models

(
g`(·)

)
`∈[L]

.

where
→
γ := vec(γ `, ` ∈ [L]) and

→
w t := vec(Wt,`,:, ` ∈ [L])

given by W ∈ Rn×L×ds such that:

Wt,`,: =

Tmax∑
T=0

xt ′b`(T )ξ t ′ . (8)

Here, ds is the number of features resulting from the GAM
formulation.

2.3 Model training

With GAMs we can encode prior knowledge and control
overfitting by using penalties and constraints during training.
In our case, we consider two smoothness-inducing penalties.
The first one promotes the smoothness of the functions g` by
penalizing the second order derivative, as commonly done in
the GAM literature (see Hastie et al., 2017). This penalty en-
sures that the coefficients of the transfer functions in the basis
(b`)` smoothly evolve with respect to the catchment features
zt ′ . This penalty acts on the L time-dependent coefficients of
the transfer functions in the basis (b`)` independently. The
second regularization term promotes the smoothness of the
transfer functions globally by adding a similar penalty on the
model coefficients.

The final optimization problem considered is:

min(
γ `

)
`∈[L]
≥0

1
n

n∑
t=1

(
yt −

L∑
`=1

Wt,`,:γ `
)2

+ λ1

L∑
`=1

γ>` P 1γ `+ λ2
∑

1≤`,k≤L

1
n

n∑
t ′=1

(ξ>t ′ γ `)
[
P 2
]
`,k
(ξ>t ′ γ k), (9)

which can be equivalently written using a vectorized formu-
lation as:

min
→
γ ≥0

1
n

n∑
t=1

(
yt −

→
w
>

t

→
γ
)2
+
→
γ
> [
λ1P

′

1+ λ2P
′

2
]→
γ , (10)

where, denoting by ⊗ the Kronecker product between two
matrices we have defined

P ′1 := IdL⊗P 1, and P ′2 := P 2⊗

(
1
n

n∑
t ′=1

ξ t ′ξ
>

t ′

)
(11)

Provided that the hyperparameters λ1 and λ2 are not both
zero, the optimization problem Eq. (10) has a strongly con-
vex objective function with convex constraints. As a result, it
admits a unique optimal solution, and the projected gradient
descent algorithm is guaranteed to converge to this solution
provided that the learning rate is set small enough (cf. Boyd,
2004). For all experiments, we used λ1 = 10−3 and λ2 = 1
(we refer to Sect. 3.3 for further details). In practice, the pa-
rameters

→
γ are initialized by solving the unconstrained ver-

sion of the problem, which involves computing the minimum
L2-norm solution via the pseudoinverse of a matrix. This ini-
tial solution is then projected onto the positive orthant, after
which the projected gradient descent algorithm is applied.
The learning rate starts at a large value (namely 10−1) and is
gradually and adaptively reduced throughout the iterations to
ensure a strict decrease in training loss at each step.

The matrix W is precomputed offline prior to running the
projected gradient descent algorithm, and parallel computa-
tion can be employed to obtain W quickly. This precompu-
tation significantly accelerates the training process by elimi-
nating redundant calculations.

2.4 Software GAMCR v1.0 description

The model developed in Sect. 2.2 has been implemented
in the Python language as the software GAMCR v1.0. The
code is publicly available on Zenodo (Duchemin, 2025), and
a detailed online tutorial https://quentin-duchemin.github.io/
GAMCR/tutorials/ (last access: 30 September 2025) is pro-
vided to guide users through usage and reproducibility steps.
To use GAMCR, the user must provide time series of pre-
cipitation, streamflow, potential evapotranspiration and the
corresponding dates and times at equally spaced time inter-
vals. The software operates in a series of steps to ensure
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accurate and efficient analysis. First, users can use a pre-
defined notebook to ensure that their data has the proper for-
mat (e.g. column names that conform to the software’s re-
quirements). Next, a predefined script is run to perform key
precomputations, including the calculation of the matrix W,
which significantly enhance the efficiency of the model train-
ing process. These precomputations are completed within a
few seconds to a few minutes on a standard laptop for a
decade of hourly data. Once these precomputations are com-
pleted, users can proceed to train the GAMCR model on their
dataset. Let us stress once again that the number of basis
functions L used by the model is automatically computed
based on the maximum lag Tmax. With Tmax = 5, 10 or 15 d
the model uses 6, 7 or 8 basis functions, respectively. After
the model has been trained, users can launch another prede-
fined script to compute key statistics of interest, such as the
NRFs over predefined ensembles (such as different precipita-
tion quantiles) and the RRD. These results are automatically
saved for further analysis. A detailed tutorial is provided in
the online documentation of the GAMCR package, where
users can reproduce the results of this paper for the Euthal
catchment. The tutorial offers a step-by-step explanation of
each stage, equipping users with the necessary tools to apply
GAMCR effectively to their own datasets. Overall, GAMCR
can be efficiently used on personal laptops, with model train-
ing on 20 years of hourly data typically taking around 30 min
for Tmax = 10 d.

3 Model testing

Developing strategies to rigorously quantify the performance
of trained machine learning models is essential. In the case
of the hydrologic response, the evaluation step is particu-
larly important because impulse response functions cannot
be measured directly, and the model is trained on streamflow
data only (Gupta et al., 2008; McDonnell and Beven, 2014;
Kirchner, 2022).

Below, we describe two datasets that serve two different
purposes. A synthetic dataset (Sect. 3.1) is used to validate
the model, because the estimated response can be compared
against the benchmark “ground truth” response, which is ex-
actly known (unlike in real-world catchments). An observed
dataset (Sect. 3.2), which includes measurements from six
diverse catchments across Switzerland, is used to showcase
how the model can be used to estimate the hydrologic re-
sponse at different locations.

3.1 Synthetic data and model validation strategy

3.1.1 Generation of Synthetic Data

The synthetic dataset was generated using precipitation and
air temperature measurements available from the Federal
Office of Meteorology and Climatology (MeteoSwiss) for
the station of Lugano, along with streamflow data from the

nearby gauging station Chiasso, Ponte di Polenta, on the
Breggia River. These measurements were used to calibrate
a lumped nonlinear and nonstationary conceptual model
(Sect. S2), allowing us to create a synthetic streamflow time
series (40 years at hourly resolution) that realistically reflects
observed dynamics (case A) without aiming for exact repli-
cation. To explore different hydrological responses, we ad-
justed the model parameters to represent both a more damped
(case B) and a more flashy (case C) hydrologic system. By
working with these synthetic yet realistic datasets, we can
rigorously assess the model’s performance, because the un-
derlying mechanisms are exactly known and the data are free
from disturbances such as dams, hydropeaking, or leakages.
Details of the approach employed in the model and the pa-
rameters used are provided in Sect. S2.

The generated synthetic time series are shown in Fig. 2
over an example 4-month period. The figure shows clearly
that, compared to the reference streamflow series (case A),
the damped series (case B) has lower peaks and longer reces-
sions, while the flashy series (case C) has higher peaks and
similar recessions. The data also clearly show the nonlinear-
ity and nonstationarity of hydrologic systems, as some pre-
cipitation events cause almost no streamflow response (e.g.
in June 2010) while others may cause a sharp response (e.g.
in late August 2010).

To compute the response functions for the synthetic data
(ground-truth response), we simply ran the lumped hydro-
logical model as many time as there were time steps with
nonzero precipitation. In every simulation, we masked a dif-
ferent time step by setting its precipitation to zero. The hy-
drologic response to precipitation occurring on a specific
time step was then computed as the difference between the
modeled series with and without precipitation over that time
step. This approach provides responses for each event indi-
vidually, which can be aggregated to compute ensemble re-
sponses over e.g. particular periods, precipitation events or
antecedent conditions.

3.1.2 Model validation strategy

For each of the three synthetic study cases, GAMCR was
trained, and hydrologic responses were computed from the
trained model as NRFs aggregated over six precipitation-
intensity quantiles. Validation was performed by compar-
ing the GAMCR predictions the corresponding aggregated
ground-truth NRFs from the synthetic datasets. We also com-
pared our estimates with those derived from ERRA. Detailed
results of the validation are presented in Sect. 4.1.

3.2 Real-world data

We compiled a 15-year record (2005–2019) of measured,
hourly precipitation-runoff data from six Swiss watersheds
(Fig. 3). The data from the first 13 years were used for
model training, while the final two years of data (2018
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Figure 2. Example of the synthetic streamflow time series (for snow-free months in 2010): case A is the reference (orange curve); case B is a
more damped response (purple curve), with lower peaks and longer recessions; case C is a flashier response with higher peaks (green curve).
Additionally, the Lugano precipitation time series is shown (light blue curve) with an inverted y axis for comparison.

and 2019) served as the test period. Streamflow time series
were provided by the Federal Office for the Environment
(FOEN). Precipitation data were sourced from the ‘Com-
biPrecip’ product, developed by MeteoSwiss (MeteoSwiss
CombiPrecip, 2005). Potential evapotranspiration time series
were computed based on air temperatures provided by Me-
teoSwiss, through the Hargreaves method from Hargreaves
and Samani (1985) (implemented through the Python Pyeto
package https://github.com/woodcrafty/PyETo, last access:
30 September 2025) and then uniformly distributed across
each day at hourly intervals. At each site we also extracted
key catchment attributes and hydrological statistics (Ta-
bles 1 and 2) and computed the mean monthly precipitation,
streamflow, potential evapotranspiration over the study pe-
riod (Fig. 4), and the flow duration curve for the snow-free
period (Fig. 5). We selected these sites because of their di-
versity in hydrological regimes, elevation and soil depths,
which we expect will be reflected in substantially different
hydrologic responses. Additional criteria included minimal
glacier influence, natural flow regimes (no dams or major
abstractions), and complete, reliable data records. The sites
have comparable size (between 34–185 km2), which classi-
fies them as small to small/medium basins. Further catch-
ment characteristic analyses appear in Sect. S1 in the Sup-
plement.

As snow introduces complexities in catchment response,
such as delayed runoff generation and temperature-driven
melt rates, we focused our analysis on snow-free periods
only. We considered as snow-free periods the months from
May to October, inclusive, except for two basins at the high-
est altitudes (Euthal and Lavertezzo, with maximum and
mean elevations above 2200 and 1300 m a.s.l., respectively),
for which we assumed that first snow-free month is June
(Fig. 4).

Figure 5 shows the Flow Duration Curves (FDCs) of
streamflow during the snow-free months. The curves high-
light clear contrasts among catchments: Chiasso and Salm-
sach are dominated by low flows typical of pluvial regimes,
while Lavertezzo and Euthal display broader distributions
with higher discharges, reflecting steep topography and rapid
runoff. Magliaso and Sonceboz fall in between, balancing
frequent low flows with moderate events. These patterns con-
firm that the selected basins capture a meaningful gradient
of hydrological responses, even when snow-driven processes
are excluded.

Key hydrological statistics (Table 2) further quantify these
differences. Q10–Q90 ranges emphasize the variability be-
tween rainfall-dominated and more responsive basins, with
Chiasso and Salmsach showing low median flows and narrow
ranges, and Lavertezzo and Euthal displaying much higher
values. Runoff ratios vary widely (0.30–0.82), while the cen-
ter of timing (CT) spans from day 184 to 221, marking ear-
lier peaks in pluvial catchments and later ones in higher-
elevation sites. Together, these indicators confirm the diver-
sity of regimes and support the suitability of these basins for
testing the proposed methodology.

3.3 Implementation details

While our model is designed to estimate the hydrologic re-
sponse to each precipitation event, we are primarily inter-
ested in the model’s ability to reproduce the ensemble re-
sponses (RRD or NRF) over given conditions of precipitation
intensity or antecedent wetness. Therefore, the model will
be tested over ensemble responses. This also offers the op-
portunity to estimate the hydrologic response – and its main
statistics – with ERRA and assess the consistency between
GAMCR and ERRA.

We tested the need for optimization of the hyperparame-
ters λ1 and λ2 through initial (and computationally expen-
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Figure 3. Map of Switzerland showing the six catchments analyzed, along with their corresponding gauging stations (listed on the left with
the river names in brackets). Each catchment is displayed in a separate plot for a detailed view of its dimensions and elevation ranges.
Numbers mark the catchments’ locations within Switzerland and can be seen on the map in the center. The sixth gauging station (Chiasso,
Ponte di Polenta) also provided the streamflow time series used to create the synthetic dataset with precipitation data from Lugano.

Table 1. Overview of the gauging stations and their catchment features: associated river; mean elevation; mean slope; area; mean soil depth;
mean permeability.

Station River Mean Alt. Mean Slope Area Mean soil Mean permeability
(m a.s.l.) (°) (km2) depth (cm) (cm d−1)

Sonceboz Suze 1036.95 14.77 127.25 49.12 72.09
Euthal, Rüti Minster 1346.91 22.20 59.13 33.87 54.27
Salmsach, Hungerbühl Aach 472.47 3.42 47.38 69.57 52.22
Lavertezzo, Campiòi Verzasca 1655.71 38.49 185.12 17.16 81.56
Magliaso Magliasina 928.25 28.44 34.38 29.44 96.77
Chiasso, Ponte di Polenta Breggia 934.40 33.21 47.10 20.87 75.98

sive) cross-validation experiments. Since we obtained only
minor improvements over the default values λ1 = 10−3, λ2 =

1, we consistently used the defaults across all applications.
Since we are only interested in the evaluation of the hydro-
logic response up to a few days after precipitation, we kept
the hyperparameter Tmax = 24× 10 h. The positions of the
knots to get the B-splines basis functions b` follow an ex-
ponentially increasing sequence, starting at 0 with an initial
step of 1. After each step, the step size doubles, leading to
a pattern where knots are densely spaced at the beginning
and become increasingly sparse as values grow. Following

this procedure, the value of Tmax automatically sets the num-
ber of basis functions to L= 7 in our case. All models were
trained for the full set of predefined epochs using gradient
descent with adaptive learning rate, ensuring a strictly de-
creasing training loss.

In the observed data series, the response to very small rain-
fall events may be easily hidden by measurement noise and
other processes. While these events are not particularly rele-
vant for the hydrologic response, they may corrupt the train-
ing phase. Hence it is convenient to set a precipitation in-
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Table 2. Overview of the gauging stations, their hydrological regime type, and key hydrological statistics: snow-free months considered in
the study; 10th, 50th, and 90th percentiles of snow-free streamflow (Q10, Q50, Q90); runoff ratio (RR); and center of timing (CT, expressed
as the Julian day when 50 % of the snow-free discharge has occurred)

Station Regime Snow-free Q10 Q50 Q90 RR CT (day
type months (mm h−1) (mm h−1) (mm h −1) (–) of year)

Sonceboz Jura-nivopluvial May–Oct 0.020 0.053 0.174 0.437 194
Euthal, Rüti Transition nival Jun–Oct 0.025 0.077 0.435 0.808 221
Salmsach, Hungerbühl Pluvial May–Oct 0.009 0.021 0.092 0.317 211
Lavertezzo, Campiòi Southern nivo-pluvial Jun–Oct 0.051 0.106 0.429 0.823 218
Magliaso Southern pluvio-nival May–Oct 0.018 0.056 0.211 0.524 187
Chiasso, Ponte di Polenta Southern pluvio-nival May–Oct 0.003 0.014 0.111 0.296 184

tensity threshold Jth and train the model only for events that
exceed Jth. We trained GAMCR using Jth = 0.05 mm h−1.

The results from ERRA were obtained using the
R scripts accessible at the following repository:
https://doi.org/10.16904/envidat.529, as specified in Kirch-
ner (2024). The RRD curves were computed considering a
maximum lag of 40 h. Initial estimates of precipitation bins
were automatically generated by the algorithm, invoking
six approximately even ranges, while ensuring a minimum
threshold of 40 nonzero values in each precipitation bin. To
improve comparability across models, the same precipitation
ensembles were used to average the true transfer functions
and the GAMCR estimates. Using a coarser input data
resolution is beneficial to ERRA when the hydrologic
response is long relative to the input temporal resolution
(because in such cases, it can be difficult to separate the
overprinted effects of input signals at closely spaced lag
times). Using a coarser time step helps clarify these impacts.
For this reason, after some initial testing, the flashy, base,
and damped synthetic input time series are aggregated into
2, 3, and 6 h time steps, respectively.

4 Results

4.1 Model validation

The model was trained (Sect. 2.3) on the synthetic data
(Sect. 3.1), which consists of three cases: the reference re-
sponse, a flashier response, and a more damped response.
We validate the model by first computing the hydrologic re-
sponse in the form of NRF over six quantiles of precipitation
intensity, and comparing it against the ERRA estimates and
the benchmark generated directly from the model Fig. 6.

As a result of the different aggregation of the input time se-
ries for the three synthetic data sets, their precipitation inten-
sities (and thus the bins used in Fig. 6a–c) appear different,
although the original hourly input data are the same.

Figure 6 shows that GAMCR accurately estimates the
transfer functions on synthetic data, particularly in the flashy
and damped scenarios, where their curves nearly overlap

with the benchmark. In the base case, (panel a) the peak value
and tail of the response are well captured, but the peak timing
is systematically early compared to the benchmark. Overall,
in these three cases characterized by very different responses
(Fig. 6d) ERRA and GAMCR provide generally consistent
estimates.

We also computed the peak height, peak lag and runoff
volume of the NRF, and explored their relationship with pre-
cipitation intensity (Fig. 7). The results highlight GAMCR’s
ability to accurately estimate key quantities related to the
magnitude of the catchment’s response (peak height and
runoff volume). These statistics are also very consistent with
those estimated by ERRA. For both approaches, the flashy
case remains the most sensitive for estimation, with GAMCR
underestimating runoff volume for intermediate precipitation
values (from 10 to 25 mm h−1) but accurately capturing peak
height. In the base case, GAMCR slightly underestimates
runoff volume while maintaining accurate peak height esti-
mates. For the damped scenario, it closely matches ground
truth values for peak height and produces nearly overlapping
runoff volume estimates. Overall, both approaches show a
strong consistency in their peak height and runoff volume
estimates across different scenarios.

Despite the models’ strong performance in estimating the
magnitude of the catchment response, both face challenges in
predicting peak lag, though in opposite ways. ERRA tends
to produce more variability across the NRFs (as shown by
dashed lines with triangles in all the right panels). By con-
trast, GAMCR tends to produce lag values that are much
less variable than the benchmark across different precipita-
tion ranges.

4.2 Estimation of catchment hydrological responses

When applying GAMCR to observed data it is not possible to
validate its accuracy in estimating hydrologic response, be-
cause the true response is not known. However, it is instruc-
tive to compare the modeled vs measured streamflow series,
for both the training and test periods. Since the model was
not developed for the purpose of reproducing streamflow, its
performance should not be compared to hydrologic models
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Figure 4. Hydrological regimes, in terms of monthly mean precip-
itation (a), streamflow (b), and potential evapotranspiration (c) for
the six sites. The time series were averaged over the complete pe-
riod of study (2005–2019). The light grey shadowed areas indicate
what we considered as snowy periods with potential snow-melt ef-
fects on streamflow, including also May for Lavertezzo and Euthal
(dotted grey shadowed band).

that are designed to maximize fit, but the simulated hydro-
graph serves as a valuable diagnostic tool. For example, pe-
riods where the modeled hydrograph deviates significantly
from the measurements could be flagged as unreliable and
excluded from the analysis. To support this evaluation, Fig. 8
shows the streamflow predictions generated by GAMCR.

Figure 5. Flow Duration Curves (FDCs) for the six sites during
the snow-free period (June–October for Euthal and Lavertezzo and
May–October for the other basins).

The agreement between training and test set results varies
across basins. Sonceboz and Magliaso show the strongest
consistency, with only minor over- or underestimations.
Lavertezzo follows a similar pattern but has some overesti-
mated values on training points. Salmsach and Chiasso, by
contrast exhibit considerable dispersion and overestimation
on the test set, suggesting lower predictive performance. Per-
formance at Euthal is intermediate between these two groups,
with overestimation of low test streamflow values. These
results suggest that the performance of GAMCR in repro-
ducing streamflow is not directly correlated with the hydro-
logical characteristics of the basins. This is even more visi-
ble when looking at the model performance aggregated over
streamflow quantiles (Fig. S2), where the fit is consistently
good across sites and only a minor underestimation of the
lowest flow conditions stands out. Timeseries plots for the
test period (Fig. S3) indicate that the temporal dynamics of
the predicted hydrograph are appropriate and there are no pe-
riods that should be flagged and removed from the analysis.

Figure 9 presents the weighted average RRDs and the peak
heights of the NRFs estimated by ERRA and GAMCR for
the six sites in the observed dataset. Computations consider
all events whose precipitation intensity exceeds 0.5 mm h−1.
The differences in basin response are also evident in the
range of runoff coefficients derived from ERRA, which vary
from 0.10 in Sonceboz to 0.64 in Euthal. The results align
well with the hydrological regimes and characteristics of
the basins (see Table 1 and Figs. 3 and 4). The Sonceboz
basin, in particular, shows a very flat runoff-response dis-
tribution, which is consistent with the relatively low mean
slope, large area, and elongated shape of its basin. These
features, along with its moderate permeability and location
in the Jura’s pluvio-nival region, contribute to the basin’s
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Figure 6. NRFs averaged across different precipitation intensity ensembles from GAMCR, ERRA and the ground truth, for the base (a),
damped (b), and flashy (c) synthetic time series. Readers should note the different scales of NRFs between flashy, base and damped scenarios.
Panel (d) combines the overall average NRFs for the three cases in a single plot .

very damped runoff response, reflected in the low runoff co-
efficient (0.10). A slightly flashier response is observed in
the Salmsach basin, which has low mean slope, low perme-
ability, and a pluvial hydrological regime. This results in a
damped response, though less damped than Sonceboz’s, con-
sistent with its higher runoff coefficient (0.19). The Chiasso
and Magliaso basins exhibit similar peak values, but with dif-
ferent response shapes. Despite similarities in altitude and
mean slope, Chiasso is larger than Magliaso and has lower
permeability, consistent with the larger area under its RRD
(i.e. the runoff coefficient, 0.26 versus 0.23 for Magliaso).
The flashier response in Magliaso is consistent with its high
mean slope, in common with Lavertezzo and Euthal, where
the flashiest responses (at least for GAMCR) are observed.
Lavertezzo and Euthal are characterized by the highest al-
titudes, highest annual precipitation and lowest annual po-
tential evapotranspiration. The higher RRD peak for Euthal
compared to Lavertezzo is consistent with the lower perme-
ability in the Euthal basin and is also reflected in its larger

runoff coefficient (0.64 versus 0.40). Overall, the weighted
average RRDs provided by both GAMCR and ERRA are
broadly consistent with the distinctive characteristics of each
basin. The results shown in Fig. 9 demonstrate the general
consistency between the GAMCR and ERRA approaches
across the different sites. Only two basins exhibit some dis-
crepancy: the Chiasso and Lavertezzo basins (purple and
brown curves, respectively). In both these cases, GAMCR
estimates a more pronounced RRD peak than ERRA within
the first 7 h, and a slightly lower tail after 10 h. The esti-
mated NRF peaks for different precipitation intensities for
these sites (Fig. 9d and f) are consistent between ERRA and
GAMCR for most precipitation bins, but deviate slightly for
the highest one. Overall, the responses estimated by GAMCR
and ERRA are broadly similar, and since the models work
very differently, consistency in their estimates increases our
confidence in both approaches.
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Figure 7. Different statistics computed on NRFs obtained from either GAMCR, ERRA, or the ground truth averaged across different pre-
cipitation intensity ensembles for the flashy, base, and damped datasets. Figures (a), (b) and (c) respectively depict the NRF runoff volume,
NRF peak height and the peak lag.

4.3 Effects of precipitation intensity and antecedent
wetness

GAMCR can be used to investigate how variations in precip-
itation intensity and antecedent wetness affect the hydrologic
response. Here we explore such effects at the six study sites.
To characterize precipitation intensity, we use the same six
precipitation intervals defined in Sect. 4.2 above. As a proxy
for antecedent wetness, we use the values of streamflow dur-
ing the timestep prior to the precipitation event under con-
sideration, which we separate into five ranges. We then ag-
gregate the individual response (RRD curves) over each class

of precipitation intensity or antecedent wetness. Results are
shown in Fig. 10, where we plot the RRD peak height (not
to be confused with the peak of the NRF shown in Fig. 9)
against precipitation intensity and antecedent wetness.

As Fig. 10a shows, the RRD peak heights do not vary sys-
tematically with precipitation intensity. By contrast, Fig. 10b
demonstrates clear increasing trends in RRD peak heights
with increasing antecedent wetness. Nearly all sites exhibit
at least a threefold increase in peak heights across antecedent
wetness levels, with the exception of Lavertezzo, which
shows a rise in peak heights just for only the last two bins of
antecedent wetness. Chiasso, in particular, displays the high-
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Figure 8. Fitted streamflow estimated through GAMCR for the six investigated sites. The larger light blue dots show measured and fitted
discharges during the 2005–2017 snow-free seasons (training set); The smaller dark blue dots indicate measured and predicted discharges
during 2018 and 2019 snow-free seasons (test set). 1 : 1 lines are shown in grey.

est variability, with peak heights spanning almost an order of
magnitude (from 0.006 to 0.05 h−1). Notably, for each site,
the highest two antecedent wetness levels are widely sepa-
rated, leading to a marked increase in RRD peak heights.
These findings highlight a clear nonstationary response of
the six catchments, strongly influenced by their antecedent
wetness.

5 Discussion and Conclusions

We introduced a model based on GAMs to estimate the
hydrologic response of watersheds based on precipitation-
runoff data. The model was validated against three bench-
mark synthetic datasets and showed excellent agreement with
the response curves of the underlying benchmark model,
based only on its input and output time series (Fig. 6).
While the accurate reproduction of the individual responses
goes beyond the scope of the model, the ensemble responses
(RRD and NRF curves) proved accurate. Closer inspection of
the statistics of the responses (Fig. 7) showed that GAMCR

accurately estimated NRF peak height and volume across dif-
ferent precipitation bins. By contrast, the timing of the NRF
peak was generally not very accurate, with GAMCR system-
atically underestimating the peak lag. While this behavior
can likely be improved through a different organization of the
basis functions that form the core of the response (Sect. 2.2),
GAMCR should currently not be used to estimate the timing
of the hydrologic response. Comparisons between GAMCR
and ERRA highlight that these two models, despite their very
different architectures, provide similar hydrologic responses
that closely match the (synthetic) ground truth.

Additionally, we analyzed the runoff response during
snow-free periods for six Swiss catchments with diverse cli-
matic and physical characteristics (Sect. 4.2). As the hydro-
logic response of a catchment is not directly measurable, ver-
ifying it in physical basins is challenging. Among the diag-
nostic tools that help build confidence on the results (beyond
the benchmark tests of Sect. 4.1), we verified that the mod-
eled streamflow was generally realistic for both training and
test data (Fig. 8) and compared GAMCR’s RRD and NRF
statistics with those obtained from ERRA (Fig. 9). GAMCR
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Figure 9. Hydrologic responses and their relationship with precipitation intensity for GAMCR and ERRA. Panels (a), (c) and (e): Weighted
average RRD, where we keep time points with precipitation intensity above 0.5 mm h−1. Panel (b), (d) and (f): NRF peak heights against
precipitation intensity.

produced results that were closely aligned with ERRA and
consistent with the properties of the catchments. For exam-
ple, the Salmsach catchment, with flatter topography and
deeper soils than Euthal, had a slower and less marked av-
erage response to rainfall. We conclude that GAMCR is a ro-
bust tool to study runoff response behavior in catchments. As
such, it enables advanced data-based analyses such as quan-

tifying the effects of precipitation intensity and antecedent
wetness on the average response peak (Fig. 10).

Since we have often referred to the ERRA approach
(Kirchner, 2024) in our analyses, it is worthwhile to clar-
ify the differences and similarities between ERRA and
GAMCR. Both methods aim to estimate runoff response to
precipitation based on time series data, and they both can

https://doi.org/10.5194/gmd-18-8663-2025 Geosci. Model Dev., 18, 8663–8678, 2025



8676 Q. Duchemin et al.: Data-driven estimation of watershed response

Figure 10. Peak height of RRDs when stratifying with respect to precipitation intensity (a) or antecedent wetness (b).

quantify nonlinear and nonstationary runoff responses to pre-
cipitation. Both methods also implicitly assume that pre-
cipitation intensity and catchment conditions are the main
controls on the catchment response. However, the two ap-
proaches achieve their (common) objective in radically dif-
ferent ways. ERRA fundamentally works on ensemble re-
sponses rather than single events. It extracts information
from the entire precipitation-runoff time series or from por-
tions of it that are selected to investigate different periods or
conditions (provided that each portion has sufficient data).
In contrast, GAMCR estimates the hydrologic response to
each individual precipitation event using combinations of
spline basis functions, with coefficients determined through
machine learning techniques (Sect. 2.2–2.3). These individ-
ual responses can then be aggregated to ensemble responses.
These different starting points result in different ways to run
the models. GAMCR is based on a single training phase to
estimate all the responses. Then, users can simply aggregate
such responses in various ways as a post-processing phase.
Instead, ERRA runs instantly but any sub-setting of the time
series (for periods or conditions of particular interest, for ex-
ample) needs to be specified a priori and the code is re-run for
each analysis. The way ERRA and GAMCR are parameter-
ized limits the types of transfer functions they can estimate,
embedding specific assumptions about their shape. ERRA
produces piecewise linear transfer functions, which might
take negative values, especially when the water balance in the
data is not maintained. In contrast, GAMCR ensures strictly
positive transfer functions and promotes smoothness by re-
lying on smooth basis functions. Other minor operational
differences between ERRA and GAMCR include the poten-
tial need to aggregate the temporal resolution of the data
to improve the estimate (ERRA) and the need for potential
evapotranspiration series, along with precipitation and runoff
(GAMCR, although in the absence of potential evapotranspi-
ration data the user may simply change the default set of fea-
tures of GAMCR by removing the ones based on PET). Fi-
nally, ERRA not only estimates statistics and responses but

also quantifies their uncertainty through standard errors. In
contrast, GAMCR currently lacks this capability, highlight-
ing the need for future integration of uncertainty quantifica-
tion.

These first applications of GAMCR to synthetic and ob-
served data help us identify some current model limitations
and encourage further model development. While the peak
value and area of the aggregated response functions proved
accurate, the timing of the response was not, systematically
underestimating the peak lag (Fig. 7). Predicting peak lag
is statistically challenging because small changes in lag of-
ten cause only minor variations in discharge, making estima-
tion difficult. While larger training datasets can help, model
architecture – particularly the choice of basis functions –
is crucial. GAMCR’s reliance on unimodal basis functions
(namely B-splines with irregular knots) may introduce am-
biguity, as dense placement at short lags can bias peak se-
lection due to identifiability issues. Future work could focus
on learning basis functions directly from data under suitable
constraints, allowing models to adapt flexibly to watershed
characteristics while preserving meaningful inductive biases.

We also stress that while the model simulates the response
to every time step with precipitation, it was only evaluated
on its capacity to reproduce ensemble behavior and so we do
not recommend using it to evaluate individual responses or
predict streamflow time series. Additional features that could
be implemented in the future include an uncertainty estima-
tion tool capable of providing accurate uncertainty bounds
in the response, and the opportunity to integrate additional
data (e.g. soil moisture series from sensors or remote sensing
products) while training the model.

Catchments’ capacity to mobilize water after storm events
is a distinctive feature that is relevant for water resources
management and useful to characterize catchment behav-
ior. Quantifying the runoff response to precipitation using
data-driven approaches is challenging due to the nonlinear
and nonstationary nature of streamflow generation processes.
GAMCR addresses these challenges by introducing a ro-
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bust and flexible framework that leverages spline basis func-
tions and Generalized Additive Models to learn the model’s
time-variable coefficients. Overall, GAMCR is a modern and
effective tool for using the increasingly available rainfall-
runoff series to investigate controls on hydrologic responses.
Although testing and validation were performed in Swiss
catchments, the basins studied span a gradient of physical
properties and hydrologic regimes that result in different hy-
drologic responses. Broader testing of the approach in other
climatic regions is a key next step for future research.

Code and data availability. The GAMCR code is avail-
able on the Zenodo archive: Duchemin (2025) with
https://doi.org/10.5281/zenodo.15180816. Both the synthetic
and real data are available on the Zenodo archive: Duchemin et al.
(2025) with DOI https://doi.org/10.5281/zenodo.15180911. All the
material is published on the FAIR-compliant Zenodo repository:
https://doi.org/10.5281/zenodo.15180911 (Duchemin et al., 2025).
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