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Abstract. Tracers/markers/particles are commonly used in
geodynamical models to track composition and sometimes
other quantities throughout the domain. A common problem
is that over time, gaps in the tracer distribution can develop,
often resulting in cells with no tracers as well as bunching
of tracers. These arise when tracer advection does not per-
fectly respect the mass conservation equation, so here this
equation is used to derive a correction method that perturbs
or “nudges” the positions of tracers in such a way as to
close gaps and eliminate bunching. Test results show that
this tracer nudging method is highly effective. Starting from
an extremely heterogeneous tracer distribution with large re-
gions of the domain devoid of tracers, it can produce an
even distribution in only a few nudge iterations. In a time-
stepping situation with a nudge every time-step, the ampli-
tudes of the nudges are small yet sufficient to prevent gaps
and bunches, allowing a low-order tracer advection method
to be used while maintaining a tracer distribution that is more
even than that obtained using higher-order advection meth-
ods alone. The computational cost is small — slightly larger
than that of a first-order tracer advection step alone - because
the method simply requires solving a Poisson equation. If an
accuracy threshold is applied, a nudge correction may be nec-
essary in only a fraction of time steps, with tests indicating
that it is fastest to use low order advection with more frequent
nudges than high order advection with less frequent nudges.

1 Introduction

Tracers, alternatively named markers or particles, are com-
monly used in geodynamical models to track composition
and sometimes temperature and other quantities, typically in

the framework of a so-called “marker-and-cell” or “particle-
in-cell” method, in which velocity and pressure are calcu-
lated on a fixed Eulerian grid while various other quantities
are advected on Lagrangian tracers/markers/particles (e.g.
Harlow and Welch, 1965; Tackley and King, 2003; Gerya
and Yuen, 2007), because the latter has some advantages to
grid-based advection methods, such as lack of numerical dif-
fusion or dispersion and the possibility of representing sub-
grid-scale features. All of the major geodynamical modelling
codes include this option, including CitcomS (Moresi et al.,
2014), Aspect (Heister et al., 2017), Stag3D/StagY'Y (Tack-
ley and King, 2003; Tackley, 2008), TERRA (e.g. Panton et
al., 2025), LaMEM (Kaus et al., 2016), and I3ELVIS (Gerya
et al., 2015).

This method relies on many tracers (e.g. 5-50) being
present in each cell. Thus, it is problematic that over time,
gaps in the tracer distribution typically develop, often result-
ing in cells containing no tracers. At the same time, bunching
of tracers builds up. Such gaps and bunches typically develop
when tracer advection does not respect the mass conservation
equation, which can be due to (i) interpolation of velocities
from grid points to tracer points not respecting conservation
of mass (Pusok et al., 2017) and/or (ii) inaccurate advec-
tion of tracers in regions with large velocity gradients even
with perfect velocities. The development of such gaps and
bunches can be minimized by an optimal choice of tracer ad-
vection method (Pusok et al., 2017; Gerya et al., 2021) but
apparently not eliminated, particularly since geodynamical
simulations spanning the age of the Earth may require mil-
lions of time steps, giving small inaccuracies plenty of time
to build up. Thus, some remedy, preferably one that is based
on the equations being solved, is required. One remedy is to
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create new tracers to fill the gaps (Gerya, 2019), but this is
unphysical.

Here, the mass conservation equation is used to correct
non-conservation errors introduced during tracer advection
by perturbing or “nudging” the positions of tracers. If per-
formed frequently, such as every time step, the amplitudes of
the nudges are small yet prevent large-scale gaps and bunches
from building up. The method also works well when starting
from an extremely uneven tracer distribution with large frac-
tions of the domain initially devoid of tracers.

Irregularities in the spatial distribution of tracers can be
quantified in terms of the number of tracers per unit volume
(i.e. number density) calculated on a cell-by-cell basis. Al-
ternatively, if tracers are considered to each have a mass (e.g.
equal to the total mass of the domain divided by the num-
ber of tracers, although they could have different masses),
then this can be thought of as a density, i.e. mass of tracers
per unit volume. In the latter usage, the goal of this method
is to nudge tracer positions in order to achieve, throughout
the model domain, a tracer density that matches the correct
physical density, which could vary with position if compress-
ibility is included. The latter usage of “tracer density” is what
the subsequent theory will mainly focus on.

In subsequent sections the mathematical theory is pre-
sented, followed by various tests of its effectiveness using
the accompanying MATLAB program in two and three di-
mensions.

2 Mathematical Theory

As the goal is to achieve the correct tracer density every-
where, the first step is to calculate the current tracer density
pi(x,y,z) on a cell-by-cell basis. Tracer density can be de-
fined either as the mass of tracers per unit volume or (if trac-
ers are massless) the number of tracers per unit volume. It
can be dimensional (kgm™> or m~3, respectively) or nondi-
mensional, as in the example MATLAB program. It is impor-
tant that o, changes smoothly as tracers move around, which
it does not if one simply counts the number of tracers in
each cell, because a tracer crossing a cell boundary causes an
abrupt change in the densities of the two cells. Therefore, lin-
ear averaging of tracers to cells is important — termed ““shape
function” averaging by Tackley and King (2003) and widely
recommended (e.g. Gerya, 2019; Ismail-Zadeh and Tackley,
2012). In this, each tracer contributes to the mass in 4 (in
2-D) or 8 (in 3-D) cells, linearly dependent on its distance
from the cell centres using bilinear (in 2-D) or trilinear (in
3-D) functions analogous to the shape functions used in the
finite element method. Once the tracer-based density in each
cell is known, the tracer density error can then be calculated
as

Ape = py — pc, (D
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where p. is the correct density (e.g. of rock). This can in gen-

eral vary with position, making the method applicable with-
out modification to compressible flows, but for the purposes
of the tests in this paper p. is assumed to be constant.

The required perturbation (“nudging”) of tracer positions
can be derived starting with the equation expressing conser-
vation of mass:
ap
5 = V- (pv), 2
where p is the density field, v is the velocity field and ¢ is
time. Multiplying Eq. (2) by a finite time interval and substi-
tuting Ax = vAr leads to an approximate equation relating
a finite change in density to a finite perturbation in position
Ax, which is here applied to the tracer density p:

Ap~ =V - (pAx). 3)

Ax can conveniently be expressed as the gradient of a mass
flux potential ¢ (with units kgm~! if p, has units of kgm™3
or m~! if has units of m—?):

pAX =V. “4)

Substituting Eq. (4) into Eq. (3) leads to a Poisson equation
for ¢:

Ap = —V2%p. %)

The desired change in density A p; is minus the density error,
A pe, therefore the equation to solve is

V2 = Ape. (6)

This can easily and efficiently be solved using standard meth-
ods such as multigrid. Assuming that the domain boundaries
are impermeable, the appropriate boundary condition for ¢
is zero gradient perpendicular to the boundary; for other ve-
locity boundary conditions Eq. (4) can be used to derive the
appropriate condition on ¢.

It is noted that another possible expression for Ax is

Ax =V %)

where ¢ is a displacement potential (with units m?), leading
to

Ap =V - (o Vo), (®)

which is slightly more difficult to solve and problematic in ar-
eas where p; = 0, if such areas exist. Equation (4) also seems
problematic in areas where p; = O but as there are no tracers
in these areas, there is no problem in practice.

This method does not achieve a perfectly uniform tracer
distribution in a single nudge because p; changes (towards
the correct density p.) during the displacement of tracers:
Eq. (2) is an approximation. In areas of too-high p; (decreas-
ing during the correction step), Eq. (4) underpredicts the dis-
placement, whereas in areas of too-low p; (increasing during
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the correction step), Eq. (4) overpredicts the displacement.
Thus, when calculating the displacement from Eq. (4) it is
best to use an average of the initial density and the correct
density, rather than only the initial density. Tests indicate that
a geometric average gives slightly better convergence than an
arithmetic average, but both perform considerably better than
using just the starting o. In summary, when calculating dis-
placement, Eq. (4) is replaced by:

_ V¢
~ V(o)

A single application of this algorithm achieves a considerable
reduction of the density error (quantified using the L1 or L2
norm), which is sufficient during a time-stepping situation.
If, however, starting from an extremely non-uniform tracer
distribution with large portions of the domain being devoid
of tracers, several iterations of the algorithm may be needed,
as documented in Sect. 4.

Ax

©))

3 Accompanying MATLAB scripts

This method is implemented in two and three dimensions
in the accompanying MATLAB scripts (Tackley and ETH
Zurich, 2025) (main program NUDGE.m), which can run the
various test cases documented and discussed in Sect. 4. MAT-
LAB scripts have the advantage of being easy to translate into
other science and engineering-oriented high-level languages
that include multi-dimensional arrays and array algebra, such
as Julia (Bezanson et al., 2017) or modern Fortran (Metcalf et
al., 2024). Indeed, the method has already been implemented
in the Fortran geodynamical modelling code StagY'Y (Tack-
ley, 2008) and is in regular use.

The accompanying program uses a multigrid solver to ob-
tain the displacement potential field. This is highly efficient
but does require that the number of cells be a power-of-
2 in each direction, or a power-of-2 times a small integer.
Resolution is set by the number of cells in each direction
nx, ny and nz, and the number of tracers by tracers_per_
cell. Two-dimensional cases can be run by setting the num-
ber of y-points ny = 1. Densities are calculated at cell cen-
tres, while displacements and velocities are defined at cell
boundaries in the standard staggered-grid finite volume ar-
rangement (e.g. Harlow and Welch 1965; Patankar, 1980) as
used by many codes in the geodynamical modelling com-
munity (e.g. Ogawa et al., 1991; Tackley, 1993; Trompert
and Hansen, 1996; Gerya and Yuen, 2007; Kameyama et al.,
2008; Tackley, 2008; Kaus et al., 2016). Domain boundaries
are coincident with the perpendicular displacement/velocity
points. Tracer positions are initialised either on a regular grid
(with a smaller grid spacing than that on which the veloci-
ties/displacements are calculated), on a regular grid with ran-
dom perturbations of up to half a grid spacing, or completely
randomly. Initialising tracers on a regular grid causes arte-
facts with tracer alignment when they are advected, so regu-
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lar 4 random is optimal. Completely random positions cause

a density error that is typically a factor of 2 larger than regu-

lar 4+ random, as shown later. The domain depth is assumed

to be 1.0 and the grid spacing is the same in all three physi-

cal directions, meaning that the domain width in the x and y

directions is given by (nx/nz) and (ny/nz), respectively.
The MATLAB m-files are:

— NUDGE.m. The main program that runs and plots indi-
vidual tests or test suites.

— correct_tracer_density.m. Performs the “nudging” algo-
rithm detailed in Sect. 2.

— tracer_density.m. Calculates the cell-based tracer den-
sity field.

— Poisson_solve.m. Solves Poisson equation in 2-D or 3-D
assuming zero-gradient boundary conditions.

— advect_tracers.m. Performs 1st-order Euler, 2nd-order
or 4th-order Runge-Kutta tracer advection.

The core of the nudging
rect_tracer_density.m is compact,
four lines (Fig. 1).

algorithm in cor-
consisting of only

4 Tests

Four test cases are presented. The first starts with various
extremely non-uniform tracer distributions and tests how
rapidly (in terms of number of nudging iterations) the method
can create a uniform tracer distribution. The other three test
cases involve time stepping, with the first two of these using
analytical flow fields (cellular flow and shear flow along an
interface) but the third being full thermal convection. After
these, timings of the various routines are presented. Finally,
adaptive use of the nudge correction (i.e. using when needed
rather than once every time step) is tested.

4.1 Highly non-uniform tracer distribution tests
Various idealized initial tracer distributions are tested:
i. Half-empty. Half of the domain is empty of tracers.

ii. Rectangular hole. A rectangular region in the middle of
the domain is empty of tracers.

iii. Spherical hole. A spherical region in the centre of the
domain is empty of tracers.

iv. Sphere. All tracers are in a sphere in the centre of the
domain, the rest being empty.

v. Random. Tracers are placed randomly in the entire do-
main.

Geosci. Model Dev., 18, 8651-8662, 2025
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dens = tracer_density(tra,nx,ny,nz);

phi =

displ = displacement (phi,dens);

tra = advect_tracers(tra,displ,1,true,L);

P. J. Tackley: The tracer nudging method

% calculate tracer density

Poisson_solve (dens-mean(dens,"all™)); % calculate displacement potential

| % calculate displacement field
% nudge tracers

Figure 1. MATLAB implementation of the algorithm in Sect. 2, in file correct_tracer_density.m.

Figure 2 (top row) shows these initial conditions and Fig. 2
(rows 2-5) shows the results of the first four correction
nudges. After two nudges (a “nudge-nudge”; Fig. 2 mid-
dle row) tracers fill the domain; the subsequent nudge-nudge
evens them out further. The evenness of the tracer distribu-
tion is quantified by tracer density plots in Fig. 3. After one
nudge-nudge there is still significant unevenness, but this be-
comes difficult to discern after a further nudge-nudge. Ran-
dom initial tracer positions (right column) lead to substantial
initial unevenness in tracer density.

Figure 4 shows how the L1 norm of tracer density error de-
creases with number of nudges for the 2-D tests (Figs. 2 and
3) and for 3-D versions of the tests. For highly non-uniform
initial conditions the reduction in tracer density error is more
than an order of magnitude after 2 nudges, then becomes
less rapid. Again, the random initial condition has substantial
tracer density error approaching 0.2. 3-D cases are similar but
with slightly slower convergence for the “sphere” case.

A problem in initial tests of the “sphere” case was that
many tracers were nudged through the domain boundaries.
This is due to the extreme nature of this test and is not a
problem in a normal time-stepping application, but neverthe-
less a solution has been found. An approach that does not
work is to place these tracers at the closest point inside the
domain, although this does work for normal tracer advection
by a velocity field that does not cross the boundaries. How-
ever, in this application the displacement field can substan-
tially cross the boundaries, leading to a build-up of tracers at
the boundaries, tracers that are not easily nudged away from
there (close to the boundaries the perpendicular displacement
is 0). What does work is to detect tracers that are nudged be-
yond external boundaries and instead apply only a fraction of
the displacement to them. A fraction of 70 % was found to be
optimal. That is, tracers that are initially calculated as cross-
ing boundaries are instead moved only 70 % of the calculated
distance.

4.2 Time-stepping cellular-flow test

The goal in this test is to determine whether the tracer nudg-
ing method can prevent gaps and bunches from building up
in a time-stepping situation, as this is what is typically used
in geodynamical simulations. Tracers are advected according
to an analytically defined velocity field given by the curl of a
two-dimensional stream function S(x, z):

v = —— (10)
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The resulting flow field is divergence-free for any S. In the
presented tests, S is defined by

S(x,z) = %sin(n%) sin(n%) (11)

where L, is the length of the domain in the x-direction and
L. is the length of the domain in the z-direction. This gives a
one-cell circulation pattern with no flow through the bound-
aries and velocities given by:

1 . X Z
vy = —sin| 7 — Jcos| 7 —
L, L, L,
1 X . z
v, =——cos|T— }sin| T — (12)
L, L, L,

In order to maximize the challenge of maintaining a uniform
tracer distribution, tracers are advected using the first order
forward Euler method, which usually makes them spiral out-
wards and concentrate towards the outside of the domain.
This combination (Euler advection, 1 nudge per time step)
is compared to three advection methods without any nudg-
ing: Euler, 2nd-oder Runge-Kutta and 4th-order Runge-Kutta
methods. Velocities at the staggered grid points are calcu-
lated using Eq. (12) and linearly interpolated to tracer posi-
tions. Tracers are initialized on a (regular+random) grid as
discussed earlier, except in an additional (Euler advection,
1 nudge per time step) case with tracers initialized in com-
pletely random positions, to test what difference that makes.

Figure 5 shows tracer distributions and density error fields
after 100 time-steps of nondimensional time 0.05 on a 32x 32
grid with an average of 10 tracers per cell. As the maximum
velocity given by Eq. (12) is 1, tracers move a maximum
distance of 0.05 in one step. As expected, the Euler method
(1st column) is quite inaccurate, with tracers spiraling out-
wards and building up towards the domain boundaries and
corners. With the addition of a single nudge per step (right
two columns), however, the tracer distribution remains even
and negligible tracer density error is visible. The 2nd- and
4th-order Runge-Kutta methods produce similar results to
each other, with significant unevenness visible in the tracer
density error field.

The time-evolution of tracer density error is quantified in
Fig. 6, which shows the L1-norm versus time step. The “Eu-
ler” case rapidly develops a large density error, whereas in
both Runge-Kutta cases the error increases steadily from the
initial condition, surprisingly at a similar rate for the 2nd-
and 4th-order schemes. Adding a single nudge per step to
Euler advection causes a reduction of density error to a low
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P. J. Tackley: The tracer nudging method

sphere

half

0 0.5 1

sphere
L

0 0.5 1

half sphere

.
0.8
0.6
0.4

0.2

0 i
0 0.5 1 0 0.5 1

8655

boxhole

0.8

0.6

0.4

0.2

0 0.5 1

boxhole

0.8
0.6
0.4 S8
0.2
0 -
0 0.5 1

boxhole

0.8
0.6
0.4 S0

0.2

boxhole

random

0.8 0.8 18
0.6 0.6 8
0.4 0.4 B8
0.2 0.2}
. 1
0 0.5 1 0 0.5 1

boxhole

Figure 2. Tracer positions in the five highly nonuniform tests performed in 2-D with 32 x 32 cells and 10 tracers per cell on average. Each
column is one test case and each blue dot is a tracer. Shown are (top row) the initial condition and (rows 2-5) nudges 1-4.

value, which is subsequently maintained. A completely ran-
dom initial condition has a density error of ~ a factor of 4
higher than (even + random), indicating that the latter initial
condition is much better. Even so, adding a nudge correction
per step rapidly reduces the error.
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4.3 Opposing flow on an interface test

Pusok et al. (2017) thoroughly tested many marker advec-
tion methods using four different tests, of which arguably the
most challenging was the first one, in which two rigid blocks
move in opposite directions along an interface oriented at 45°

Geosci. Model Dev., 18, 8651-8662, 2025
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Figure 3. Tracer density error fields for the tracer distributions shown in Fig. 2. The colour bar is the same for all frames.

to the grid, mimicing to a subduction interface, for example.
Material above the interface has a velocity (vx,vz) = (1, 1)
while material below the interface has a velocity of (—1, —1),
thus creating a large (shear) velocity change over one grid
spacing. Tracers advected out of the domain are wrapped
around at the appropriate place on a 45° line from where they
left the domain. The advection methods tested in Pusok et al.
(2017) almost all created a gap along the interface. It is here
tested whether the nudge correction can avoid the gap along
the interface.

Geosci. Model Dev., 18, 8651-8662, 2025

Figure 7 shows the tracers and tracer density error fields
using Euler, Runge-Kutta 2nd-order or Runge-Kutta advec-
tion, either on their own or with a single nudge correction per
time step. Euler or 2nd-order Runge-Kutta methods indeed
create a gap, while with the 4th-order Runge-Kutta method
there is a band of tracers inside the gap. Away from the inter-
face, the initial relative positions of tracers are preserved.

With one nudge correction each time step, tracer density
error maps are greatly improved by eliminating the gap as
well as reducing errors away from the gap. However, exam-
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Figure 4. L1 norm of tracer density error versus number of nudges for the 5 initial tracer distributions in (left) 2-D 32 x 32 cells and (right)

3-D 32 x 32 x 32 cells, in both cases with 10 tracers per cell on average.

RK 2nd order

5 10 15 20 25 30

RK 4th order

0 0.2 0.4 0.6 0.8 1

Euler+nudge:random Euler+nudge

Figure 5. Tracer distributions (top row) and associated density error fields (bottom row) for the 4 advection methods on a 32 x 32 grid with
an average of 10 tracers per cell. The right-most combination (Euler advection plus nudge correction) is performed with both completely
random initial tracer positions (4th column) as well as the default positions. The colour bar is the same for all density error fields.

ination of tracer positions does show artifacts around the in-
terface. The Euler and 2nd-order Runge-Kutta cases now dis-
play a series of small gaps oriented at 45° instead of one big
gap. These are sub-grid-scale features that do not affect the
cell-based tracer density field and so are not eliminated by
tracer nudging. It could be that the rather artificial 45° angle
of the interface allows these features to persist. The 4th-order
Runge-Kutta test is much better. This is the only test in this
study in which the 4th-order Runge-Kutta shows a distinct
advantage over 2nd-order Runge-Kutta.

Graphs of tracer density error vs. time for advection
(Fig. 8) show a rapid increase in error to begin with, subse-
quently stabilising and increasing only slowly. In the nudge-
corrected cases, the error decreases then stabilises at a value

https://doi.org/10.5194/gmd-18-8651-2025

roughly an order of magnitude lower than that of the uncor-
rected cases.

4.4 Thermal convection test

The final test setup is that of thermal convection in an infinite
Prandtl number fluid with strongly temperature-dependent
viscosity and is thus representative of an actual geodynam-
ical simulation. The Boussinesq approximation is assumed,
with the fluid heated from below (nondimensional tempera-
ture 7 = 1.0), cooled from above (T = 0), having no inter-
nal heating and an exponentially varying viscosity n(T) =
exp[—13.8155(T — 0.5)], which gives a factor of 10° vis-
cosity variation. The Rayleigh number (at T = 0.5) is 10°

Geosci. Model Dev., 18, 8651-8662, 2025
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Figure 6. L1-norm of tracer density error versus time step for the tests in Fig. 5.
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Figure 7. Tracer positions (blue) and tracer density error fields for the opposing flow on an interface test after 500 time steps and a 32 x 32
grid. See Pusok et al. (2017) for details of this test and comparisons with additional advection methods.

and the mechanical boundary conditions are all free slip. The
initial condition has

T(x) = 0.5+0.01sin <71 (%HL%)) (13)

which leads to the formation of two hot plumes from the
lower thermal boundary layer, as shown in Fig. 9. Flow is
more rapid in these plumes due to their low viscosity. The
time step is limited by the Courant condition because a finite-
volume scheme is used for temperature advection and for
thermal diffusion. The test is run for 500 time steps on a
32 x 32 grid with an average of 10 tracers per cell.

Geosci. Model Dev., 18, 8651-8662, 2025

Tracer positions and density errors (Fig. 10) show large
artifacts for the Euler advection method, which are much re-
duced by using Runge-Kutta advection. With one nudge iter-
ation per time step, tracer density errors are greatly reduced
for all three advection schemes.

The L1-norm of density error (Fig. 11) shows a rapid and
continuing increase for the Euler scheme, but a much less
rapid increase for the Runge-Kutta schemes. 4th order and
2nd order schemes give almost the same result, as is also vis-
ible by comparing the tracer distributions in Fig. 10. With a
single nudge iteration per step, tracer density error is reduced
to a much lower value than that of the initial condition, where

https://doi.org/10.5194/gmd-18-8651-2025
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Density Error versus Time Step
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Figure 8. L1 norm of the tracer density error versus time step for the tests in Fig. 7.
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Figure 9. Non-dimensional temperature and viscosity fields for the thermal convection test after 500 time steps. They are the same regardless

of tracer advection method because tracers are purely passive.

it remains stable at around an order of magnitude lower than
the Runge-Kutta advection schemes. The error has the same
magnitude for Euler and Runge-Kutta schemes. Thus, for
pure advection there is no advantage to using 4th order in-
stead of 2nd order, while with a nudge correction each step
there is no advantage to using Runge-Kutta instead of Euler.

4.5 Timing analysis

Table 1 lists the CPU time taken for various order tracer ad-
vection steps, compared to one nudge correction and a 2D
Stokes (v,p) solve. The increase in CPU time from Ist or-
der (Euler) to 2nd-order Runge-Kutta to 4th-order Runge-
Kutta is notable, with the latter taking about three times as

https://doi.org/10.5194/gmd-18-8651-2025

long as first-order Euler. A nudge correction takes slightly
more CPU time than an Euler advection step, indicating that
moving the tracers dominates the time; calculating the dis-
placement field is relatively fast. The Stokes solve (see Mat-
lab script direct_solve_Stokes_2D.m) solves for (vx, vy, p)
on a staggered grid using Matlab’s built-in “\” sparse direct
solver, which uses UMFPACK. While the Stokes solve here
seems fast compared to tracer advection, it is important to
note that this is using a compiled, highly optimised solver
while the tracer routines here use interpreted Matlab — if im-
plemented in a compiled language like C, Fortran or Julia
than they would likely be much faster, while the Stokes solve
would not be.

Geosci. Model Dev., 18, 8651-8662, 2025
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Figure 10. Tracer distributions (top row) and associated density error fields (bottom row) for the three advection methods without (left 3
columns) or with (right 3 columns) a nudge correction each time step.
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Figure 11. L1 norm of the tracer density error versus time step for the tests in Fig. 10. The RK 4th order curves mostly overlie the RK 2nd
order curves, which are therefore not visible.

Comparing the two different resolutions indicates that, as 4.6 Adaptive nudging
expected, the time taken for tracer operations scales in pro-
portion to the number of tracers: the higher resolution has 32
times as many tracers and requires proportionally more time.
In contrast (also as expected) the time required for the Stokes
solve increases more rapidly than the number of unknowns:
the higher resolution has 16 times as many unknowns but
takes 22 times longer.

Instead of making one nudge correction every time step, an-
other idea is to specify the required level of accuracy (in
terms of L1 norm of tracer density error) and make a cor-
rection only when needed, or multiple iterations per step if
a particularly low error is desired. This approach has been
tested using the cellular advection test and the convection
test, with results listed in Table 2. The error of 3.5 x 1072
corresponds to the tracer density error associated with the
initial condition (i.e., tracers initialised on a grid plus ran-
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P. J. Tackley: The tracer nudging method

Table 1. For the thermal convection test, timings (in milliseconds)
for first-order Euler tracer advection, 2nd- and 4th-order Runge-
Kutta tracer advection, a nudge correction, and a 2-D Stokes (v, p)
solve, at two different resolutions: 32 x 32 cells with 10 tracers/cell
and 128 x 128 cells with 20 tracers/cell. Measured on a single core
of a 3.8 GHz Intel Core i5 in a 2017 iMac, averaged over 100 time
steps.

Euler RK2 RK4 Nudge Stokes

solve

32 x 32 10/cell 43.08 69.35 1242  50.66 16.4
128 x 128 20/cell 1187 2057 3935 1384  360.1

Table 2. Average number of nudge corrections per time step re-
quired to keep tracer density error below a specified threshold, and
total execution time of tracer operations for all time steps (in sec-
onds), for the cell test with three different accuracies and the con-
vection test with one accuracy. Timed on an Apple M4 Pro CPU
(MacBook Pro Nov 2024).

Euler RK2 RK4

Cell; dr = 0.05; 100 steps; error = 5.0 x 10~2

Nudges/step 38 % 25 % 25 %
trotal (S) 6.298 8.218 13.48

Cell; dr = 0.05; 100 steps; error = 3.5 x 10—2

Nudges/step 82 % 70 % 67 %
tiotal (8) 8.614 11.13 15.94
Cell; dr = 0.05; 100 steps; error = 2.0 x 10~2

Nudges/step  292%  291% 291 %
tiotal (8) 19.48 22.07 29.86

Convection; df = Courant; 500 steps; error = 3.5 x 10~2

148% 13.8% 13.8%
7.170 11.02 18.47

Nudges/step
ftotal ()

dom perturbations), which therefore seems like a reasonable
value to stay below. For the cellular advection test with this
choice, a nudge needs to be made in 82 % of time steps with
1st order (Euler) advection, dropping to 70 % then 67 % for
2nd- and 4th-order Runge Kutta, respectively. If the error cri-
terion is relaxed to 5.0 x 1072 then the required number of
nudges drops considerably (38 %, 25 %, 25 %), whereas if it
is made stricter at 2.0 x 1072, then almost three nudges are
required per time step regardless of the advection method.
Thus, there is a trade-off between increasing accuracy of
advection and decreasing frequency of needed nudge cor-
rections. In terms of execution time, however, it is in every
case fastest overall to use the lowest advection accuracy (Eu-
ler) with somewhat more frequent nudge corrections. The
increase in advection accuracy from 2nd-order to 4th-order
Runge-Kutta is not justified, because the total execution time
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rises considerably but the frequency of nudges remains al-
most the same.

In the convection test (Table 2 lowest section), nudges are
needed considerably less often (in 14.8 %—13.8 % of steps)
than in the cellular advection test with the same error crite-
rion of 3.5 x 1072, despite the increased complexity of the
flow. This is because the time step is smaller in the con-
vection test: it is limited by the Courant condition such that
the advection distance is a maximum of half a grid spacing,
whereas in the cell test there is no such limitation and a time
step of 0.05 is used, during which tracers may be advected
several grid spacings (up to 1.6 for nz = 32).

In summary, the results of these tests indicate that signif-
icant execution time can be saved by taking a nudge only
when needed, and that the fastest approach is to use first-
order advection, even though nudge corrections are needed
slightly more frequently.

5 Conclusions

The tracer nudging method presented here is an effective way
of eliminating and preventing gaps and bunching of tracers
in geodynamical models/simulations. It uses the mass con-
servation equation to calculate tracer position perturbations
(“nudges”) that correct mass conservation errors introduced
by tracer advection. Starting from an extremely heteroge-
neous distribution with large regions of the domain devoid
of tracers, it can produce an even distribution in only a few
nudge iterations. In a time-stepping situation it allows a low-
order tracer advection method to be used while maintaining
a tracer distribution that is more even than that obtained us-
ing high-order advection methods alone. The computational
cost is small and dominated by performing a first-order tracer
advection operation, because the other part simply involves
solving a Poisson equation. A nudge correction may not be
needed every time step, which further reduces computational
cost. It is more time-efficient to use nudge corrections in
conjunction with low order tracer advection rather than high
order tracer advection, even though the latter reduces the
needed frequency of corrections.

Code and data availability. The exact version of the MATLAB
code used to produce the results and figures used in this
paper is archived on Zenodo under the MIT license un-
der https://doi.org/10.5281/zenodo.17058894 (Tackley and ETH
Zurich, 2025). No input data or additional scripts are required. The
data plotted in the figures can be generated by running the code.
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