
Geosci. Model Dev., 18, 863–883, 2025
https://doi.org/10.5194/gmd-18-863-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperSatellite-based modeling of wetland methane emissions on a global
scale (SatWetCH4 1.0)
Juliette Bernard1,2, Elodie Salmon1, Marielle Saunois1, Shushi Peng3, Penélope Serrano-Ortiz4, Antoine Berchet1,
Palingamoorthy Gnanamoorthy5,6, Joachim Jansen7, and Philippe Ciais1

1Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
2LERMA, Paris Observatory, CNRS, PSL, Paris, France
3College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
4Department of Ecology, Andalusian Institute for Earth System Research (CEAMA-IISTA),
University of Granada, Granada, Spain
5CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden,
Chinese Academy of Sciences, Menglun, China
6Coastal Systems Research, M. S. Swaminathan Research Foundation, Chennai, India
7Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden

Correspondence: Juliette Bernard (juliette.bernard@obspm.fr)

Received: 4 May 2024 – Discussion started: 24 May 2024
Revised: 16 December 2024 – Accepted: 17 December 2024 – Published: 14 February 2025

Abstract. Wetlands are major contributors to global methane
emissions. However, their budget and temporal variability
remain subject to large uncertainties. This study develops
the Satellite-based Wetland CH4 model (SatWetCH4), which
simulates global wetland methane emissions at 0.25°× 0.25°
and monthly temporal resolution, relying mainly on remote-
sensing products. In particular, a new approach is derived
to assess the substrate availability, based on Moderate-
Resolution Imaging Spectroradiometer (MODIS) data. The
model is calibrated using eddy covariance flux data from 58
sites, allowing for independence from other estimates. At
the site level, the model effectively reproduces the magni-
tude and seasonality of the fluxes in the boreal and temper-
ate regions but shows limitations in capturing the seasonal-
ity of tropical sites. Despite its simplicity, the model pro-
vides global simulations over decades and produces consis-
tent spatial patterns and seasonal variations comparable to
more complex land surface models (LSMs). Such an inde-
pendent data-driven approach based on remote-sensing prod-
ucts is intended to allow for future studies of intra-annual
variations in wetland methane emissions. In addition, our
study highlights uncertainties and issues in wetland extent
datasets and the need for new seamless satellite-based wet-
land extent products. In the future, there is potential to inte-

grate this one-step model into atmospheric inversion frame-
works, thereby allowing for the optimization of the model pa-
rameters using atmospheric methane concentrations as con-
straints and hopefully better estimates of wetland emissions.

1 Introduction

Article 1.1 of the Ramsar Convention (1971) defines wet-
lands as “areas of marsh, fen, peatland, or water, whether
natural or artificial, permanent or temporary, with water that
is static or flowing, fresh, brackish, or salt, including marine
water areas the depth of which at low tide does not exceed six
meters”. Each wetland exhibits very specific local conditions,
such as the water source (ombrotrophic or minerotrophic
source) and quantity (groundwater level and soil moisture),
vegetation (types and density), and soil properties (pH, car-
bon content, and microbial communities). These areas har-
bor a rich biodiversity of flora and fauna and play a signif-
icant role in regulating water resources, water purification,
and flood prevention (Denny, 1994; Meli et al., 2014).

Wetlands are also a crucial element for climate. On the
one hand, waterlogged conditions in wetlands lead to a re-
duction in the rate of decomposition of soil organic car-
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bon (SOC) and thus to a significant accumulation of car-
bon, such as in peatlands. This wetland SOC stock has been
estimated to be around 520 to 710 PgC worldwide (Poulter
et al., 2021). On the other hand, anaerobic conditions favor
the production of methane (Torres-Alvarado et al., 2005), a
powerful greenhouse gas with a global warming potential
of 80± 26 over 20 years (Forster et al., 2021, Assessment
Report 6 (AR6), Chap. 7, Table 7.15). In the last Global
Methane Budget (GMB) (Saunois et al., 2020), it has been
estimated that methane emissions from wetlands contribute
approximately 12 % to 36 % of the total methane sources.
These estimates have been established from bottom-up (102–
182 Tg CH4 yr−1, 12 %–31 % of total annual sources) and
top-down approaches (159–200 Tg CH4 yr−1, 27 %–36 % of
total annual sources).

Top-down approaches rely on a prior estimate of the en-
semble of methane fluxes, including prior knowledge of wet-
land emissions, and are therefore dependent on bottom-up es-
timates. Bottom-up approaches estimate methane fluxes from
wetlands using formulations ranging from the simplest to
the most complex, such as in land surface models (LSMs).
LSMs represent the budgets of water, energy, and carbon un-
der some meteorological constraints. They account for soil
processes in a series of successive steps that explicitly sim-
ulate part or all of the following processes: methane pro-
duction; oxidation; and transport by diffusion, ebullition, or
higher plants (Riley et al., 2011; Morel et al., 2019; Salmon
et al., 2022).

In the context of climate change, understanding past and
predicting future trends in global wetland methane emissions
are key issues, but these trends are still uncertain (Jackson
et al., 2020). Although they try to represent complex path-
ways involved in methane emissions, LSMs still lead to sig-
nificant uncertainties in terms of global total emissions, sea-
sonal cycle and spatial patterns (Melton et al., 2013; Saunois
et al., 2020). In particular, the internal wetland surface area
varies considerably from one LSM to another (Melton et al.,
2013). Moreover, a large part of the studies (Zhu et al., 2013;
Bohn et al., 2015; Guimberteau et al., 2018; Peltola et al.,
2019; Qiu et al., 2019; Salmon et al., 2022; Tenkanen et al.,
2021; Kuhn et al., 2021; Rößger et al., 2010) focus only
on boreal and temperate regions. In fact, the boreal regions
are of great interest because temperatures there are rising
faster than the global average (England et al., 2021; Post
et al., 2019; Previdi et al., 2021), and permafrost is thaw-
ing, which could lead to large increases in carbon dioxide
and methane emissions (Schuur et al., 2022). However, about
three-quarters of global wetland methane emissions actually
occur in tropical regions (Saunois et al., 2020), where wet-
land methane emissions are still poorly understood (Meng
et al., 2015), partly due to the scarcity of measurements in
tropical wetlands compared to boreal and temperate regions
(Delwiche et al., 2021).

Simpler formulations than LSMs, operating on a global
scale (Gedney, 2004; Bloom et al., 2017; Albuhaisi et al.,

2023), implicitly represent soil processes in a one-step ap-
proach between soil organic carbon content, which is the
main substrate for methanogenesis, and CH4 emissions.
While these models may not provide greater accuracy com-
pared to LSMs, they have the advantage of operating faster
(within a few seconds) and relying on only a few param-
eters and variables. They provide quick estimates and can
be valuable for sensitivity testing or trend analysis. Typi-
cally, the variables considered in the different models are
the wetland area, the soil temperature, a proxy for carbon
substrate, and sometimes a local water variable (water table
depth, WTD, or soil water content, SWC). The differences
between these simple models depend on the equation formu-
lation, the choice of datasets used to constrain the variables,
and the calibration method.

Methanogenic bacteria use organic carbon from litter-
fall, root exudates, dead plants, and dissolved organic car-
bon that has already been broken down to low-molecular-
weight molecules by other microorganisms (Nzotungicim-
paye et al., 2021; Torres-Alvarado et al., 2005; Bridgham
et al., 2013). Quantifying the organic matter available for
methanogenesis is not trivial as it cannot be measured di-
rectly. Many proxies are used in the literature without a con-
sensus being found (Wania et al., 2013; Melton et al., 2013):
Some models use net primary productivity (NPP) as a proxy
(e.g., UW-Vic, Walter and Heimann, 2000), while others con-
sider that methane production could be derived by multi-
plying heterotrophic respiration by a CO2 : CH4 ratio (e.g.,
LPJ, CLM4Me, and SDGVM). Other models use SOC as
a proxy for carbon available for methanogenesis (Gedney,
2004). However, not all SOC can be used for respiration by
methanogenic bacteria. Carbon pool models are embedded
in some LSMs such as ORCHIDEE (Ringeval et al., 2010;
Salmon et al., 2022) to distinguish readily available SOC
from recalcitrant SOC.

In the absence of global data on substrate availability,
Gedney (2004) proposed a simple equation based on wet-
land fraction, temperature, and total soil carbon. These three
variables were modeled using the Met Office climate model
(Gordon et al., 2000) coupled with the land surface scheme
MOSES-LSH (Gedney and Cox, 2003), and their model was
run for the period from 1990–1998. Bloom et al. (2017)
also used a simplified approach based on an equation re-
lying on wetland fraction, soil temperature, and soil het-
erotrophic respiration and fed with different datasets, form-
ing the WetCHARTs 1.0 ensemble for 2001–2015. The het-
erotrophic respiration data were derived by terrestrial bio-
sphere models. In general, the proxies used in these studies
are derived from models (LSMs, hydrological models, etc.)
and in some rare cases from remote-sensing data. Recently,
Albuhaisi et al. (2023) proposed a methane emission formu-
lation fed only by satellite and satellite-derived datasets for
soil moisture and SOC. However, this approach was carried
out only in the boreal region for the period from 2015–2021.
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The calibration methods of these approaches have var-
ied in recent years due to important changes in the avail-
able data. The first attempt by Gedney (2004) assumed that
the global atmospheric concentration anomalies were solely
due to wetlands. This approximation is highly questionable
according to current estimates of anthropogenic and natu-
ral methane emission trends (Jackson et al., 2020). Too few
flux data measurements were available in the early 2000s
to be used for calibration. In WetCHARTs (Bloom et al.,
2017), the model calibration was performed by constrain-
ing total wetland methane emissions to the GMB ensemble
mean (Saunois et al., 2016) and as such was not indepen-
dent of other LSM approaches. However, recent efforts by
the FLUXNET community (Delwiche et al., 2021) have led
to the construction of a unified database of methane fluxes
measured by eddy covariance worldwide, offering the possi-
bility of new independent calibration methods. The eddy co-
variance method provides stable and continuous in situ flux
measurements over relatively large areas (> 100 m2) with
limited environmental disturbance (Baldocchi et al., 2001;
Kumar et al., 2017). The FLUXNET-CH4 database includes
some ancillary data such as soil temperature, gross primary
productivity, WTD, or SWC, but not for all sites. An impor-
tant issue is still the inhomogeneous distribution of flux tow-
ers across the globe, with sites mainly located in temperate
and boreal regions. Albuhaisi et al. (2023) used 12 flux sta-
tions available between 2015 and 2018 from the FLUXNET-
CH4 database to calibrate the scaling parameter of their bo-
real emission models, but the two other parameters (Q10 and
T0) were set according to literature values.

In addition to this improvement in available methane flux
data, new dynamic estimates of wetland area have emerged
since the studies of Gedney (2004) and Bloom et al. (2017).
These estimates are based on either satellite observations or
hydrological models. The Wetland Area and Dynamics for
Methane Modeling (WAD2M) product, published by Zhang
et al. (2021a), provides a complete dynamic map of wetlands,
including peatlands. It is partly based on satellite data and
is widely used in the community, especially for the GMB
(Saunois et al., 2020). Xi et al. (2022) produced an ensem-
ble of 28 wetland extent products derived from TOPography-
based hydrological MODEL (TOPMODEL), a hydrological
model.

Recently, McNicol et al. (2023) developed a random forest
framework (UpcH4) to predict CH4 fluxes based on 43 wet-
land sites from the FLUXNET-CH4 database. This approach
combined with WAD2M wetland surface estimates allowed
them to provide independent global data-driven empirical up-
scaling of wetland CH4 emissions.

Our study aims to revise the simplified process-based
modeling approach for wetland methane emissions proposed
by Gedney (2004), taking advantage of recent developments.
The objective is to develop a model framework capable of
assessing the main features of wetland methane emissions
(annual budget, seasonal cycle, and spatial distribution) on

a global scale with a resolution of 0.25°× 0.25°, with a fo-
cus on methane flux inter-annual variability. The Satellite-
based Wetland CH4 model (SatWetCH4) is based on a data-
driven approach, mostly fed with satellite-derived datasets, to
allow for fast and easy sensitivity calculations. SatWetCH4
provides an independent estimate and uses in situ eddy co-
variance data for model calibration. Particular attention has
been paid to the proxy for available carbon. As methanogenic
activity has been shown to be related to plant productivity
(Bridgham et al., 2013), here we use a Moderate-Resolution
Imaging Spectroradiometer (MODIS) plant photosynthesis
product to derive a Csubstrate dataset to assess the organic mat-
ter available for methanogenesis, as described in Sect. 2.1.
The aim of deriving the Csubstrate product is to obtain a car-
bon product that (1) best represents the carbon available for
methanogenesis, (2) is dynamic, (3) is based on satellite data,
and (4) is independent of LSMs.

Section 2 presents the materials and methods, including
the model, the satellite-based input datasets, and the cal-
ibration procedure. Optimization results are presented in
Sect. 3.1, followed by a site-level evaluation of the model
in Sect. 3.2. The global-scale results for the period from
2003–2020 are presented in Sect. 3.3. Section 4 examines
the model’s limitations and prospects for improvement given
the current state of modeling.

2 Materials and methods

2.1 Model description

We estimate the methane flux using the following formula-
tion similar to that of Gedney (2004):

FCH4 = kfwCsubstrateQ10(T )(T−T0)/10, (1)

where k is a scaling factor, fw the wetland fraction of
the pixel, Csubstrate the carbon content that is available for
methanogenesis, and T the soil temperature. Q10(T ) de-
pends on Q0

10, the temperature sensitivity of methanogen-
esis, and T . It is defined by Q10(T )=Q0

10
T 0/T . T 0 is set

to 273.15 K, resulting in low emissions for frozen or near-
frozen soils. Consequently, Q0

10 and k are the two parameters
to be calibrated.

The substrate available in the soil for methanogenesis,
Csubstrate, is calculated independently, upstream of the model.
It is constructed as a litter pool model scheme and depends on
temperature and net primary productivity (NPP) and varies
with time. This Csubstrate is computed using the following
equation:

dCsubstrate

dt
= NPP−K(T )Csubstrate. (2)

In this scheme, the available substrate is assumed to orig-
inate mainly from photosynthesis, which is approximated as
the NPP. The second term represents the carbon loss due to
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soil heterotrophic respiration, which depends on a turnover

rate function K(T )=K refQ
(T−T ref

K )/10
10 K . K ref reflects the ref-

erence turnover time, Q10 K the temperature sensitivity co-
efficient of respiration, and T ref

K the reference temperature.
Incubation experiments (Parton et al., 1987; Khvorostyanov
et al., 2008; Schädel et al., 2014) provided estimates of K be-
tween 0.2 and 2.5 yr−1, corresponding to a residence time of
carbon in soils between 0.4 and 5.5 years. Therefore, to ob-
tain a consistent K , the model parameters are set to K ref

=

1/(2 years)= 0.5yr−1, T ref
K = 303.15 K, and Q10 K = 2.

The global estimate of Csubstrate is established in advance
by discretizing Eq. (2) at monthly time steps. The Csubstrate
was primarily run for 100 years to reach an equilibrium stage,
constrained with 2001 NPP values obtained from remote-
sensing data (Zhang et al., 2017) detailed in Sect. 2.3. NPP
data between 2003 and 2020 were then used to estimate
Csubstrate over the same period on a monthly scale.

2.2 In situ data

Eddy covariance time series of methane fluxes from differ-
ent databases were combined in order to use robust, continu-
ous, and longest methane flux monitoring period recorded
at each site. In situ data from 58 wetland sites were col-
lected from FLUXNET-CH4 (Delwiche et al., 2021), Amer-
iFlux (Baldocchi et al., 2001), and EURO FLUX (Valen-
tini, 2003). In addition, data for the BW-Gum and BW-Nxr
sites were obtained from the UK Centre for Ecology & Hy-
drology website, and IN-Pic data were provided through
personal exchanges with the principal investigator, Paling-
amoorthy Gnanamoorthy. Some ancillary variables of inter-
est for methane emission modeling (e.g., soil temperatures,
WTD, SWC, and precipitation) are available at some of the
sites. Links to the sources used are given in Table S1 in the
Supplement, and the full list of sites and details is given in
Table S2 in the Supplement.

The length of the time series, wetland types, and location
of the sites are presented in Fig. 1. Despite the construction of
the most comprehensive database from recent literature, the
global distribution of methane eddy covariance tower sites
shows significant heterogeneity. The majority of sites, that is,
46 of them, are located at latitudes greater than 30° N, with
36 sites in North America and 10 sites in Europe. Only 11
sites (19 %) are located in the tropical band, 30° S–30° N, in-
cluding, for example, only 2 sites on the entire African conti-
nent, which are only a few kilometers apart, and 2 sites in
South America. In addition, Fig. 1a highlights the hetero-
geneity in measurement duration, with tropical sites having
a median measurement duration of 1.6 years, as contrasted
with 2.7 and 3.2 years for boreal and temperate sites, respec-
tively. It is also important to note that sites can be very close
to each other (within a few kilometers). This uneven distri-
bution of sites introduces a bias in the global calibration of
the model. In particular, tropical wetlands are severely under-
represented, although they are expected to account for about

∼ 75 % of global wetland methane emissions (Saunois et al.,
2020).

To ensure a homogeneous dataset, the same data process-
ing was applied to the raw data. The 30 min raw data points
were extracted, and the variable units were unified. Outliers
are removed for all variables, including ancillary data, no-
tably for methane fluxes, for each site and day, data out-
side of FCH4 day± 5SDFCH4 day are excluded. Finally, daily
averages are calculated for all variables, and monthly aver-
ages are only calculated if more than 4 d of data are avail-
able in a given month. A monthly timescale was chosen for
this study because it effectively captures seasonal variations
while minimizing the influence of variables that operate at
shorter time intervals, such as daily or multi-day changes in
atmospheric pressure or diurnal cycles in vegetation and tem-
perature (Knox et al., 2021). Furthermore, as our model is a
one-step model without differentiation between production
and emissions, the monthly timescale also mitigates poten-
tial errors due to time lags between methane production and
transport (Ueyama et al., 2023).

This results in a dataset of 2354 monthly mean methane
fluxes associated with their available ancillary data.

2.3 Global forcing datasets

2.3.1 MODIS PsnNet data

To derive Csubstrate estimates, as defined in Eq. (2) in
Sect. 2.1, we use PsnNet from the MODIS MOD17A2HGF
v6.1 dataset (Running et al., 2021). The PsnNet dataset rep-
resents NPP, except that it excludes growth and maintenance
respiration costs. This product is based on the satellite frac-
tion of photosynthetically active radiation (FPAR) data, a re-
analysis meteorological dataset, and a land cover classifica-
tion.

The data cover the period from 2000 to the current year,
but data for 2002 are not available, so only the period from
2003 to 2020 has been used in this study. The PsnNet prod-
uct has been regridded from the native 500 m resolution to
a 0.05° product used for model optimization at the site level
and to a 0.25° resolution product used for the global simula-
tion. In terms of the timescale, monthly averages were esti-
mated from the initial 8 d product.

2.3.2 ERA5-Land soil temperature

For the soil temperature variable, monthly averaged data
from ERA5-Land (Muñoz-Sabater et al., 2021), available
at https://cds.climate.copernicus.eu/ (last access: 10 January
2023), are used. The temperature in the 7–28 cm soil layer is
selected, denoted as lay2. These data are available for the pe-
riod from 1950 to the present with a resolution of 0.1°× 0.1°.
A comparison of in situ soil temperature measurements with
the monthly ERA5-Land lay2 closest 0.1° pixel is detailed
in Fig. S2 in the Supplement, showing good agreement be-
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Figure 1. Sites distribution per (a) length of available observation period, (b) wetland type, and (c) geographic location. In the map in
panel (c), because of their close location (a few kilometers), some sites overlap. Site color depends on (a, b) site latitude – boreal (55–90° N),
temperate (30–55° N or ° S), or tropical (30° S–30° N) – and (c) wetland type.

tween in situ and ERA5-Land soil temperatures, with, in par-
ticular, a high temporal correlation (r > 0.9) and low root
mean square deviation (RMSD; < 2 K) for 37 of the 42 sites
equipped with temperature probes.

2.3.3 Global wetland extent datasets

Two wetland areas are used to estimate global methane emis-
sions. The Wetland Area and Dynamics for Methane Mod-
eling (WAD2M) version 2.0 (Zhang et al., 2021a) prod-
uct describes the fraction of wetlands per pixel globally
at a resolution of 0.25°× 0.25° for the period from 2000–
2018 with a monthly time step. The dynamics of WAD2M
are driven by the Surface Water Microwave Product Series
(SWAMPS) (Jensen and Mcdonald, 2019), which relies on
passive and active microwave satellite observations. Sev-
eral static datasets are used to add non-inundated wetlands,
such as peatlands, and to remove lakes, irrigated rice pad-
dies (Zhang et al., 2021b). The second wetland map used
is based on the TOPography-based hydrological MODEL
(TOPMODEL). Xi et al. (2022) built an ensemble of 28 maps
describing globally the fraction of wetlands per pixel at a
resolution of 0.25°× 0.25° for the period from 1980–2020
at a monthly time step (Xi et al., 2021). A combination of
seven different soil moisture reanalysis datasets and four dif-

ferent surface wetland extent products was used to calibrate
the model. Among the 28 products, we select here the ver-
sion calibrated with ERA5-Land soil moisture data and the
GIEMS-2 (Prigent et al., 2020) long-term maximum as it
shows the highest correlations of wetland area with the orig-
inal wetland product (Xi et al., 2022).

2.4 Calibration method

The in situ methane fluxes at the sites were used to calibrate
the SatWetCH4 model parameters k and Q0

10. Model cali-
bration at the site level implies that each site is considered
to be completely covered by wetland, resulting in a wetland
fraction of 1 (fw = 1). The flux equation to be optimized
at site level is then FCH4 = kCsubstrateQ10(T )(T−T0)/10. The
Csubstrate product (described in Sect. 2.1) and ERA5-Land
soil temperature (described in Sect. 2.3) are used as input
variables by selecting the pixels nearest to the sites, at 0.05°
for Csubstrate and 0.1° for ERA5-Land soil temperature, re-
spectively.

Least-squares regression is performed simultaneously on
all sites using the Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (Byrd et al., 1995). For sites with less than 12 months
of data, a weight proportional to the number of monthly mea-
surements is assigned to the site data. Sites with more than
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12 months of data are given equal weights. The minimized
cost function is

J =
∑
sites

wsiteMSDsite =
∑
sites

wsite(FCH4 obs−FCH4 sim)2
site, (3)

where wsite is the site weight, MSD is the mean square de-
viation, FCH4 obs is the in situ methane flux observed at the
sites, and FCH4 sim is the methane fluxes simulated by the
model. If the number of monthly methane flux measurements
at the site, nsite, is greater than or equal to 12, wsite = 1;
otherwise wsite =

nsite
12 . Different initial parameter sets for

kfirst guess (0.01, 0.1, 1, and 10) and Q0
10first guess (1.5, 2.5,

3, and 4) are tested to evaluate the influence of the calibra-
tion initialization and to ensure the global nature of the found
minimum.

3 Results

3.1 Optimized model parameters

The calibration is performed according to the method de-
scribed in Sect. 2.4. The minimum cost function is found
for Q0

10,opt = 2.99 and kopt = 3.097×10−2 µg CH4 m−2 s−1.
The value of kopt has no numerical meaning as it is highly de-
pendent on the units and order of magnitude of the substrate
proxy we use. The Q10(T ) formulation obtained from this
calibration is compared with the literature values in Fig. 2a.
Figure 2b shows the influence of Q10(T ) expressions when
inserted in the temperature formulation Q10(T )(T−T0)/10.

Walter and Heimann (2000) used a Q10 value of 6 based
on the observations range available at the time. Nzotungicim-
paye et al. (2021) in WETMETH proposed a Q10(T ) for-
mulation such that, when incorporated into the variable
Q10(T )(T−T0)/10, it indicates an optimal temperature range
for methanogenesis of around 25–30 °C. Although we at-
tempted a similar approach to formulate Q10(T ), it resulted
in minimal changes in the flux outcomes while increasing the
complexity of the formulation and hindering the convergence
of the cost function. Albuhaisi et al. (2023) used a fixed value
of Q10 = 3, with a value reduced to Q10 = 2 for temperatures
above 5 °C or above 30 °C to account for an optimal range.
However, this results in abrupt transitions at these tempera-
ture thresholds (Fig. 2.b). This implementation may not be
appropriate for global analysis as tropical wetlands experi-
ence temperatures above 30 °C, and such sudden changes do
not reflect of physical reality.

Therefore, the Gedney (2004) formulation, Q10(T )=

Q0
10,opt

T0/T , was used in SatWetCH4, resulting in Q10(T )

from 3.12 (−10 °C) to 2.60 (40 °C), which is slightly lower
than the Gedney (2004) value (from 3.89 at −10 °C to 3.13
at 40 °C). Our Q10(T ) value contrasts that of Walter and
Heimann (2000) (Q10 = 6.0, no temperature dependence)
but closely matches the value chosen by Albuhaisi et al.
(2023) for the 5–30 °C range (Q10 = 3.1 for T between 5

and 30 °C and Q10 = 2.0 below 5 °C or above 30 °C). Con-
sequently, similar Q10(T )(T−T0)/10 curves are observed in
Fig. 2b between our estimate and those of Gedney (2004)
and the 5–30 °C range of Albuhaisi et al. (2023), although
our formulation exhibits slightly lower values. This would
result in a slightly lower increase in methane fluxes with soil
temperature. The Q10(T ) found in this study is also in agree-
ment with the meta analysis of Q10 defined from in situ data,
e.g., 2.8 in Kuhn et al. (2021) and 2.57 in Delwiche et al.
(2021).

3.2 Evaluation of the model performance at site scale

To evaluate the SatWetCH4 model, we run it at the site scale
with the optimized parameters, setting fw = 1 in Eq. (1) and
using the variables values from the pixels closest to the site,
i.e., at 0.05° for Csubstrate and at a 0.1° resolution for ERA5-
Land temperature (resulting monthly estimates can be found
in Fig. S1 in the Supplement). Note that the difference in spa-
tial resolution between the site level, i.e., the footprint of the
flux towers (up to 1 km2), and the resolution of the available
substrate (0.05°× 0.05°≈ 25 km2) limits the comparison.
The temperature is more homogeneous, and its aggregation
at 0.1° is less problematic. Figure 3 compares the in situ flux
data with the modeled site-level output. Figure 3a shows the
root mean square deviation (RMSD) and the temporal cor-
relation (r) between the observations and the simulated flux.
It indicates a generally lower average RMSD in the boreal
zones (average RMSD of 0.23 µg CH4 s−1 m−2) compared to
the temperate zones (average RMSD of 0.8 µg CH4 s−1 m−2)
and the tropics (average RMSD of 1.1 µg CH4 s−1 m−2). It
shows that the model captures the seasonality of emissions
well for boreal sites (r > 0.7 for 16 out of 22 boreal sites),
less well for temperate sites (r > 0.7 for 11 out of 25 sites),
and poorly for tropical sites (r > 0.7 for 4 out of 11 sites,
with 5 out of 11 sites having r < 0). Figure 3b and c display
the amplitude variations (standard deviation) and mean val-
ues of the observed and modeled fluxes. The mean fluxes are
consistent with the in situ values (Fig. 3c), while the stan-
dard deviation (SD), which represents the amplitude of the
seasonal variation, is underestimated for fluxes with an SD
greater than 1 µg CH4 s−1 m−2 (Fig. 3b).

Thus, the model reproduces boreal fluxes better than tem-
perate and tropical fluxes. This results in higher RMSD val-
ues for tropical and temperate zones, as shown in Fig. 3a.,
although these higher RMSD values are also due to generally
larger fluxes in the tropics. The underestimation of fluxes in
the tropics is partly due to the sampling bias mentioned in
Sect. 2.2: only a small proportion (19 %) of the sites are lo-
cated between 30° S and 30° N, and they have shorter moni-
toring periods, resulting in a cumulative weight of 18.5 % in
the cost function, J (boreal sites weight 38 % and temperate
sites 43 %). Furthermore, the mechanisms driving the tem-
poral variations in tropical methane flux are certainly poorly
represented in the model, as discussed in Sect. 4.
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Figure 2. (a) Comparison of Q10(T ) formulation with Walter and Heimann (2000), Gedney (2004), WETMETH (Nzotungicimpaye et al.,
2021), and Albuhaisi et al. (2023). (b) Effect of the different Q10(T ) formulations when incorporated in the temperature dependency function.

Figure 3. Comparison of methane fluxes modeled at site level with observations. Each site is represented by a point and its location by a
different color, while the site number of measurements is represented by point sizes. (a) Temporal correlation (r) and RMSD between the
model and observations. (b) The standard deviation (SD) of model fluxes functioning as the standard deviation of observations. (c) Average
model fluxes versus average flux observations.

3.3 Methane emissions from wetlands on a global scale

After calibrating kopt and Q0
10,opt, we run the SatWetCH4

model (Eq. 1) on a global scale for the period from
2003–2020 at a resolution of 0.25°× 0.25° with forcing
dataset Csubstrate, ERA5-Land soil temperature, and either the
WAD2M or the TOPMODEL product for wetland extent at
the same resolution. In the following, we compare the wet-
land emissions derived from SatWetCH4 in terms of total

global methane emissions, spatial distribution, and tempo-
ral variations with Bloom et al. (2017), UpCH4 (McNicol
et al., 2023), and ensemble mean of the GMB (Saunois et al.,
2020).

3.3.1 Comparison of the spatial distribution of the
wetland extents

For both products, the monthly average of surface extent
served to derive a mean annual mean (MAmean) and mean
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annual maximum (MAmax) by selecting for each 0.25° pixel
the mean or maximum of the typical 12-month seasonal-
ity. The maps of MAmean of both wetland extent products
are presented in Fig. 4. WAD2M has a global MAmean
of 4.21 million km2 (Mkm2) and a MAmax of 6.76 Mkm2

over 2003–2020, while TOPMODEL is lower at 3.04 and
5.12 Mkm2, respectively.

This discrepancy in the value of the total area is mainly
due to the methodology employed to construct the products.
First, WAD2M is known to overestimate coastal areas due
to ocean contamination by nearby ocean pixels in the orig-
inal SWAMPS data (Pham-Duc et al., 2017; Bernard et al.,
2024a). Second, WAD2M includes non-inundated wetlands,
such as peatlands, whereas TOPMODEL represents only in-
undated wetlands. Indeed, Xu et al. (2018) estimate that peat-
lands cover around 4.23 Mkm2. In fact, the WAD2M wetland
fraction over peatland areas (e.g., Hudson Bay, the Congo,
Siberian lowlands, and Amazon floodplain) is larger than in
TOPMODEL (Fig. 4). Note that some boreal peatlands in
WAD2M are masked by snow cover in winter, which ex-
plains the lower MAmean than the global peatland extent.
There are other large spatial differences between the two
datasets. Of concern in WAD2M is the substantial detection
of water over Australia, a predominantly desert and semi-
arid region, and subequatorial Africa (Sahel). Wetlands and
deserts have similar microwave signatures, explaining the
possible confusion (Pham-Duc et al., 2017). Finally, TOP-
MODEL shows higher scattered extents over North America,
India, and China than WAD2M.

3.3.2 Csubstrate spatial distribution

The 2003–2020 mean map of the Csubstrate product is shown
in Fig. 5. This product is used as a representation of the soil
carbon substrate available for methanogenesis. It should be
noted that there are no analogous products for evaluation.
We suggest a comparison with global estimates of 0–100 cm
SOC stocks derived from the World Soil Database (HWSD)
(Wieder, 2014) and SoilGrids (Hengl et al., 2017) to see dif-
ferences between our proxy for available substrate compared
to total organic carbon stocks. The latitudinal distribution and
the latitudinal distribution normalized by the latitudinal max-
imum of the three products are shown on the right side of the
figure.

The numerical values of Csubstrate tend to be consistently
lower than those of the SOC estimates, differing by about
an order of magnitude. This observation aligns with the fact
that elevated SOC values, which are particularly common in
peatlands, do not translate to a proportionally increased pro-
duction of CO2 or CH4 emissions. In fact, the slow decom-
position of organic matter in peatlands leads to carbon se-
questration in soils over millennia (Clymo et al., 1998). It is
important to emphasize that the order of magnitude of the
numerical value of Csubstrate is of limited significance since
the calibration of the k factor is used for the methane flux

calculation. The critical focus is on the spatial variations and
temporal dynamics of Csubstrate for accurate methane flux as-
sessments.

The Csubstrate product shows a small seasonal variation
(about 5 % on global and basin scales), implying that its con-
tribution is mainly of spatial nature. Indeed, we observe a
different spatial distribution between the three products. Soil-
Grids and HSWD tend to show more localized high carbon
values in regions where peatlands are abundant, such as in the
western Siberian lowlands or the northern part of America,
or, for SoilGrids, in Indonesia. Csubstrate presents a more ho-
mogeneous distribution, with moderate values in boreal and
temperate regions. It consistently shows no or low available
substrate values over bare soil regions (Sahara, Australia). In
light of these considerations, Csubstrate appears to be a valu-
able candidate for estimating soil carbon availability.

3.3.3 Spatial variations in methane emissions

The methane fluxes derived from SatWetCH4 are strongly
influenced by the spatial patterns of the wetland extent used:
the differences between WAD2M and TOPMODEL men-
tioned in Sect. 3.3.1 are partly reflected in the output fluxes
(Fig. 6a and b). In fact, the parameter fw is directly a multi-
plicative coefficient in the flux calculation in Eq. (1). In par-
ticular, peatland regions emit more in the WAD2M version,
and the Ganges and Yangtze basins show much more intense
methane emissions when TOPMODEL is used.

We assess the sensitivity of SatWetCH4 model to the
Csubstrate product derived from the NPP (Eq. 2) by comparing
the results from a SatWetCH4 reference run (with Csubstrate)
and a run that considers a uniform substrate (Csubstrate = 1
over the globe). Note that to do this, we had to calibrate
the model parameters k and Q0

10 using the same method de-
scribed in Sect. 2.4, resulting in a lower Q0

10,opt (1.83 in-
stead of 2.99). The spatial distribution is then very differ-
ent (Fig. 6c and d), depending only on the wetland extent
dataset and weighted by temperature. In particular, emissions
are significantly higher in subequatorial Africa (Sahel) with
both wetland datasets when no substrate product is included
in the model. In fact, Csubstrate is small over this region due to
a small value of the MODIS PsnNet input (Fig. 5). Over Aus-
tralia, we observe significantly higher fluxes with WAD2M
when Csubstrate is not considered. This shows an overestima-
tion of WAD2M wetland detection in the Australian desert,
which is mitigated by the small Csubstrate over this region
when Csubstrate is considered instead of the uniform substrate
(Fig. 5).

The ensemble mean of the GMB LSM simulations
(Saunois et al., 2020) is shown in Fig. 6e. Detailed maps
of the individual model outputs are provided in Fig. S4 in
the Supplement, together with the LSM output standard de-
viation map. Comparison is made with GMB LSM runs in
diagnostic mode, i.e., all LSMs were run with the same wet-
land area WAD2M standardized to the same 1°× 1° grid for
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Figure 4. Wetland fraction 2003–2020 annual mean of (a) WAD2M and (b) the model TOPMODEL.

Figure 5. Derived Csubstrate product (a) and the 2003–2020 mean alongside two SOC databases (d, e) for the 0–100 cm layer: HWSD
(Wieder, 2014) and SoilGrids (Hengl et al., 2017). The corresponding latitudinal and normalized latitudinal profiles are displayed in panels
(b) and (c). Normalization is achieved by dividing by the latitudinal maximum for each product.

consistency. In addition, Fig. 6f shows the model mean of
the WetCHARTs ensemble (Bloom et al., 2017), which con-
siders different wetland extent products but not WAD2M. In
the WetCHARTs ensemble, three scaling factors are tested
to amount to a global mean annual flux of 124.5, 166, or
207.5 Tg CH4 yr−1 (Saunois et al., 2016; lower, mean, and
upper estimates). Here we have selected only those mem-
bers of the ensemble that were calibrated to the mean budget
(166 Tg CH4 yr−1). The standard deviation map of methane

emissions from the WetCHARTs ensemble is also included
in Fig. S4 in the Supplement. Figure 6g shows the flux es-
timates of UpCH4 (McNicol et al., 2023). The UpCH4 es-
timate is defined using the WAD2M wetland extent and is
independent of the GMB LSMs.

The spatial distribution of the SatWetCH4 emissions run
with WAD2M is similar to the average of the LSM ensemble
runs with the same wetland extent over America, Australia,
and Europe. However, there is considerable variability in the
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Figure 6. SatWetCH4 modeled mean methane emissions (a) using WAD2M and (b) TOPMODEL wetland surfaces and with a uniform
substrate (i.e., Csubstrate = 1) (c) using WAD2M and (d) using TOPMODEL. Emissions obtained by (e) the mean of GMB diagnostic
models, (f) the mean of WetCHARTs ensemble, and (g) the UpCH4 upscaling.

spatial emissions between models in some regions, includ-
ing the Siberian lowlands (Ob), Australia, India, and sube-
quatorial Africa, even though the same water surface map is
prescribed.

In subequatorial Africa (Sahel), emissions are highly un-
certain between models. The different diagnostic outputs of
the GMB LSMs (run with WAD2M) show a wide range of
emissions (Fig. S4 in the Supplement). Four of the diagnos-
tic LSMs have low emissions (< 0.1 g CH4 m−2 per month),
while the other nine have moderate to high emissions (0.1
to 0.5 g CH4 m−2 per month). Like the first group of diag-
nostic LSMs, the ensemble mean of WetCHARTs (which
is based on a different wetland extent than WAD2M) and
the SatWetCH4 model predict almost negligible emissions
(< 0.05 g CH4 m−2 per month). The GMB LSMs are also
run in prognostic mode (Saunois et al., 2020), i.e., using their
own calculation of wetland extent (not shown here). Prognos-
tic results from 10 out of the 11 GMB LSMs show insignif-
icant emissions over Sahel (< 0.05 g CH4 m−2 per month).
The UpCH4 estimates, which are established with WAD2M,

predict very high fluxes over the Sahel (> 0.5 g CH4 m−2 per
month). Therefore, it appears that this emission overestima-
tion in the Sahel region might be due to the wetland extent,
WAD2M, that is employed for the GMB model intercompar-
ison study and UpCH4. This wetland detection in the Sahel
is due to desert contamination in this region (see Sect. 3.3.1).
In SatWetCH4, there is a compensation between the high
wetland fraction, fw, defined using WAD2M, and the low
Csubstrate value for the Sahel area. As the PsnNet parameter
of the MODIS parameter is low in this zone, the Csubstrate
dataset estimates a very low amount of available carbon.
The number of measurements available to evaluate the dif-
ferent methane emission simulations in the Sahel region, and
in general over the tropics, is limited (difficult-to-access ar-
eas, no flux towers, no in situ flux or concentration measure-
ments).

In Australia, desert areas are also mistaken for inun-
dated area in WAD2M. Most diagnostic LSM outputs show
Australia with low emissions. However, some models pro-
duce surprising spatial patterns in Australia, especially in
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desert regions for LPJ-GUESS and TEM-MDM. UpCH4
also presents high fluxes in most of the country. However,
other models, including ours, certainly mitigate this issue by
reducing emissions due to other parameters such as vegeta-
tion cover or hydrological settings, thereby compensating for
the problem of the misclassification of wetlands.

Northern India also exhibits lower emissions in
SatWetCH4 when run with WAD2M compared to the
GMB average. Figure S4 in the Supplement indicates that
this elevated average is mainly due to one model, DLEM,
with very high emissions in this region, while the other
models show emissions similar to ours. This discrepancy
raises questions about the representation of rice paddies
in the DLEM model despite the forcing of water surface
dynamics.

Overall, the spatial distribution of SatWetCH4 run with
WAD2M globally aligns with the ensemble of LSMs,
WetCHARTs, and UpCH4 and their uncertainties. We have
discussed that when SatWetCH4 is run with TOPMODEL,
different spatial patterns emerge, which are no less surprising
when compared to the variations observed within the GMB
LSM ensemble, WetCHARTs ensemble, and UpCH4 simu-
lations.

3.3.4 Total methane emissions and latitudinal and
seasonal variation in methane emissions

Figure 7 shows the latitudinal distribution per season for
SatWetCH4 run with WAD2M and TOPMODEL as well as
the GMB LSMs, WetCHARTs ensemble, and UpCH4 es-
timates. The monthly variation for emission estimates and
wetland extent per latitudinal band is shown in Fig. 8. Note
that the WetCHARTs models are calibrated to the GMB an-
nual budget and are therefore not independent in terms of
methane emission amplitude. SatWetCH4 is in the lower
range of the GMB LSMs (grey areas) or even slightly
below this range, in the 30° S–30° N band. The total an-
nual budget of SatWetCH4 wetland emission estimate aver-
ages 85.6 Tg CH4 yr−1 with WAD2M (respectively 70.3 with
TOPMODEL), which is lower than the range of the GMB
LSM estimates (102 to 182 Tg CH4 yr−1) and the UpCH4 es-
timates (146 Tg CH4 yr−1) even if the same wetland extent is
used. This discrepancy can be explained by (1) an underesti-
mation of methane fluxes by SatWetCH4 of tropical fluxes in
particular (discussed in Sect. 3.2 and in the following para-
graph) and (2) the consideration by WAD2M of desert re-
gions as inundated areas, leading to methane flux overesti-
mation in Australia and Sahel in UpCH4 and some diagnostic
LSMs (see Sect. 3.3.3, Figs. 6, 7, and S4). Indeed, the Sahel
and Australia represent 33.4 out of the 146 Tg CH4 yr−1 es-
timated by UpCH4 using WAD2M, while these regions rep-
resent 4.5 Tg CH4 yr−1 in SatWetCH4 using WAD2M.

The scarcity of site-level data in tropical regions, cou-
pled with the absence of tropical peatlands and floodplain
sites, has undoubtedly contributed to the uncertainty asso-

ciated with the calibration of parameters. Furthermore, the
use of site-level calibration for tropical wetland emission
may result in an underestimation at the regional or global
scale. This is due to the fact that dynamic wetland mapping
products account for saturated or inundated areas, whereas
site-level measurements conducted during the dry season
are likely to underrepresent the emission intensity of sat-
urated areas. Consequently, the parameters calibrated from
dry-season measurements may underestimate emission in-
tensity when multiplied by the area of saturated wetlands.
This is a less significant issue in temperate and Arctic re-
gions, where the wet seasons occur in summer and there is
minimal emission in winter. As the number of tropical sites
increases, future studies could consider refining the calibra-
tion for the tropics, for example, by only using wet-season
measurements for calibration.

Note that this difference in total emissions could be easily
resolved by calibrating the k parameter to the total emissions
of the mean GMB LSMs if we need to constrain total emis-
sions as it has been done previously by Bloom et al. (2017)
and Gedney et al. (2019).

SatWetCH4 simulation with TOPMODEL estimates lower
emissions in the tropical and boreal bands compared to the
simulation with WAD2M (Fig. 7). This is consistent with
the smallest wetland extent of TOPMODEL over these re-
gions as non-inundated peatlands are not considered in TOP-
MODEL. Also note the higher fluxes obtained in the sim-
ulation with TOPMODEL than with WAD2M around 25–
30° N due to the larger wetland extent of TOPMODEL over
Asia. The latitudinal distribution of SatWetCH4 (Fig. 7) is
consistent with the distribution of the LSMs ensemble, ex-
cept for the Sahel band mentioned earlier. SatWetCH4 repro-
duces similar seasonal changes as the GMB LSMs (Fig. 7),
while the latitudinal distribution of the WetCHARTs ensem-
ble presents larger emissions in the 10° S–5° N band in the
DJF, MAM, and SON seasons (mainly due to high emissions
in the Congo region, visible in Fig. 6). UpCH4 presents a dif-
ferent latitudinal distribution, with higher fluxes in the 15° N
and 15–35° S bands. These are, respectively, due to the Sahel
and Australia artifacts mentioned above. UpCH4 has lower
fluxes in the tropical 10° S–5° N band (due to the Amazon
and the Congo basins).

This different seasonal cycle in the tropical band (30° S–
30° N) for the WetCHARTs ensemble is also visible in Fig. 8,
while there is an absence of a pronounced seasonal pattern
both in terms of emissions and in terms of wetland extent for
our model and the GMB models. This difference in the trop-
ical seasonal cycle could be due to the wetland extent used
in WetCHARTs. For the boreal region (55–90° N), we find
that the seasonal variation in the simulated emissions from
our model is close to that of most GMB LSMs as it is in
the northern temperate band (30–55° N). However, the wet-
land extents of WAD2M and TOPMODEL show very differ-
ent seasonality, particularly in the northern temperate band
(30–55° N), where WAD2M has a more stable wetland extent
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Figure 7. Latitudinal distribution depending on the season of wetland methane emissions from SatWetCH4 run with WAD2M (red) or TOP-
MODEL (orange), from LSMs (shaded grey) with the LSM average (black), from WetCHARTs models calibrated with a 166 Tg CH4 yr−1

budget (shaded green) with the ensemble average (green), and from UpCH4 (violet). WAD2M and TOPMODEL wetland extent seasonal
means are also presented in bottom-right box inserts (blue solid and dashed lines, respectively). LSM estimates are those contributing to the
GMB (Saunois et al., 2020), all run with the same wetland extent product (WAD2M). All representations are 2003–2020 seasonal means.

than TOPMODEL. Indeed, the methane emission seasonal-
ity in the boreal and temperate regions is mainly driven by
temperature, which explains these similar seasonal cycles in
emissions, although the seasonal cycles in the wetland extent
are different. For the southern temperate band (60–30° S),
WAD2M and TOPMODEL exhibit contrasting seasonality in
wetland extent, but the simulated seasonal variations in emis-
sions are close because, as expected, the temperature drives
the variability in methane fluxes in this temperate region.

3.3.5 Inter-annual variability in methane emissions at
the basin scale

Figure 9 depicts the SatWetCH4 model, GMB LSMs, and
UpCH4 emissions simulated with WAD2M and their anoma-
lies for three basins: the Amazon, the Ob, and the Congo.
Also shown are wetland areas and their anomalies over these
basins.

In the Amazon and Congo basins, notable amplitude irreg-
ularities were observed when using WAD2M in SatWetCH4
or UpCH4. Two regime changes are observed in the WAD2M
extent around 2009 and 2014, probably due to inter-

calibration problems caused by satellite changes in the orig-
inal SWAMPS surface water product. Surprisingly, the av-
erage of the LSMs is less affected even though the LSMs
are forced with the same water surface. However, on closer
examination of individual LSMs (see Fig. S5 in the Supple-
ment), we see that some LSMs are as affected as SatWetCH4
by these inconsistent water surface changes, while others are
less affected. We deduce that these models, which are not
affected by the WAD2M temporal changes, must have pa-
rameters that interfere with the consideration of the wetland
surface. TOPMODEL suggests more consistent time series in
terms of wetland extent (softer variations), which also allows
for more realistic variations in terms of emissions.

4 Model limitations and outlook

The simplified approach used here as a one-step model al-
lows for some quick and easy simulations, representing ma-
jor first-order phenomena affecting methane emissions from
wetlands. While presenting a smaller annual budget, due to a
possible underestimation of the magnitude of emissions, we
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Figure 8. CH4 emission mean per month per latitudinal band for 2003–2020 from SatWetCH4 run with WAD2M (red) or TOPMODEL
(orange), from LSMs (shaded grey) with the LSM average (black), from WetCHARTs models calibrated with a 166 Tg CH4 yr−1 budget
(shaded green) with the ensemble average (green), and from UpCH4 (violet). WAD2M and TOPMODEL monthly wetland extent 2003–
2020 means are presented in blue. LSM estimates are those contributing to the GMB (Saunois et al., 2020), all run with the same wetland
extent product (WAD2M).

found that this formulation presents realistic spatial and tem-
poral variations when compared to other more complex and
computationally intensive models. By scaling the k factor to
a target estimate, the discrepancy in global emissions could
be easily resolved.

Some refinements could be considered to improve the ac-
curacy of the model. We found that the simulated temporal
variability is captured less well at tropical sites than at tem-
perate and boreal sites as temperature does not drive season-
ality in these regions. In fact, some studies (Kuhn et al., 2021;
Knox et al., 2021) suggest that methane emissions in tropi-
cal regions are influenced by WTD. To investigate the flux
dependence on a local water parameter, we calculated resid-
uals from the single-site calibration presented in Sect. 3.2.
A residual is the difference between observed and predicted
methane fluxes and thus represents the error of the model at
a given site at a given time. Figure 10 illustrates the corre-
lation of different hydrological variables with the residuals.
In the tropics, the missing variability appears to be strongly
linked to soil water variations: two out of two (MY-MLM and
ID-Pag) tropical sites monitoring SWC show a strong tempo-
ral correlation (r > 0.75) of residuals with locally measured
SWC, and three out of four sites monitoring WTD (HK-
MPM, MY-MLM, ID-Pag, and BR-Npw) show a strong tem-
poral correlation (r > 0.75) of residuals with locally mea-
sured WTD.

To test whether this site-level correlation could be used
in the SatWetCH4 model, we repeat this experiment us-
ing global datasets at 0.25° of SWC and WTD. For each
site, we selected the nearest 0.25° pixel of the ERA5-
Land monthly averaged SWC dataset (available at https:
//cds.climate.copernicus.eu/, last access: 4 June 2024) and
the nearest pixel of the WTD from Fan et al. (2013) ag-
gregated at 0.25° (as only one typical year is provided, this
year is replicated for all years of the in situ flux measure-
ment period). Figure 10c and d show the resulting correla-
tion of these two variables at 0.25° with the residuals. None
of the 11 tropical sites show an r > 0.75 between residuals
and ERA5-Land SWC, and only one site (PE-QR) shows an
r > 0.75 between residuals and 0.25° WTD. This is due to
the fact that these 0.25° datasets poorly represent the tem-
poral variations measured in situ, as shown in Fig. S3 in the
Supplement for the ERA5-Land SWC. SWC and WTD in
wetlands have very spatially localized specificities and varia-
tions. Furthermore, the small number of sites available in the
tropics (11) makes it even more difficult to find an empirical
relationship with a water variable. We were unable to include
this important parameter at SatWetCH4 model resolution of
0.25°. The 100 m satellite-derived SWC obtained by Planet
(De Jeu et al., 2014) could be examined and the model run
at a finer resolution. In fact, Albuhaisi et al. (2023) found an
improvement in their model for the boreal region when us-
ing this high-resolution product. Further research could be
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Figure 9. Methane emissions for different basins: the Ob, the Amazon, and the Congo. The maps show the spatial pattern of methane
emissions from the GMB LSM means, UpCH4 run with WAD2M, and SatWetCH4 simulations with WAD2M or TOPMODEL. The lower
panels represent the sum of methane emission time series and deseasonalized anomalies over the basins of the SatWetCH4 simulations with
WAD2M (red) or TOPMODEL (orange), LSM diagnostic mean (black), and UpCH4 simulation with WAD2M (violet). All LSMs were run
with the same WAD2M wetland extent. WetCHARTs ensemble is excluded here because its methane emission estimates are rescaled to the
average values of the GMB LSM estimates.

conducted to see if similar results are obtained in the tropics,
where this parameter is the most needed. Unfortunately, this
product is not freely available.

It is worth noting that the site-level comparison of mod-
eled fluxes with observations assumes that the sites are all
wetlands (fw = 1) without any temporal variation. However,
when the SatWetCH4 model is run, this wetland fraction is

dynamic, introducing seasonality due to water and partially
compensating for the lack of a local water parameter.

Another limitation is that the consistency of the time se-
ries of methane emission estimates at the catchment scale
is strongly affected by errors in the WAD2M database. This
makes it difficult to study inter-annual variability or trends.
The TOPMODEL time evolution does not have these ma-
jor temporal inconsistencies, but it is based on a hydrolog-
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Figure 10. Correlation of residuals (observation–prediction) with (a) in situ WTD, (b) in situ SWC, (c) 0.25° ERA5-Land SWC, and (d) 0.25°
WTD (Fan et al., 2013). These residuals are calculated for a single-site calibration of SatWetCH4 in order to remove the seasonal cycle that
the model can capture through its variables (soil temperature and substrate availability). The grey background represents an r > 0.75.

ical model and not on satellite observations. It also does
not include non-inundated peatlands. An improved satellite-
derived dynamic wetland surface map would be crucial to
address these issues while maintaining observational data in
our data-driven approach.

The simplified SatWetCH4 model we have developed
makes important approximations that imply important short-
cuts. In particular, no distinction is made between methane
production and emissions. This supposes that SatWetCH4
one-step equation includes production, oxidation, and trans-
port in a single formulation, which are sometimes distin-
guished in some of the more complex LSMs (Wania et al.,
2013; Morel et al., 2019; Salmon et al., 2022). Among the
three pathways of methane transport in wetlands, includ-
ing diffusion, ebullition, and plant-mediated transport, plant-
mediated transport is the dominant one (Ge et al., 2024). Ge
et al. (2024) have recently published a comprehensive review
of the role of plants in methane fluxes, showing their influ-
ence on not only methane transport but also methane pro-
duction and oxidation. Feron et al. (2024) also show that
trends in methane flux changes at the site level depend on
the ecosystem and vegetation type. Accounting for the dif-
ferent vegetation classes therefore appears to be a possible
improvement to our simplified approach.

A simple way to account for this in the SatWetCH4 model
at the first order would be to fit the scaling factor k and/or
Q0

10 as a function of the vegetation class or wetland type. In-
deed, Q10 was found to depend on ecosystems (Chang et al.,
2021). We performed such calibration tests, taking into ac-

count the wetland classification. However, the cost function
either did not converge due to the small number of sites
per category or displayed a result that was highly depen-
dent on few sites, thus overfitting results. In fact, eddy co-
variance flux towers measuring methane emissions are not
evenly distributed around the globe, and their distribution is
highly skewed, as discussed in Sect. 2.2. Some wetland cat-
egories are poorly represented, for example, there are only
two mangrove sites. This scarcity of data makes this type
of calibration highly uncertain. However, we can expect an
improvement in the coming years as in situ methane mea-
surement is a rapidly growing field, as shown by the increas-
ing number of flux towers along the years in Table S1 in
the Supplement. Future data, especially in the tropics, will
be essential to better constrain the models and to take more
processes into account. Some refinement of the Q10 func-
tion (here Q10(T )=Q0

10
T 0/T according to Gedney, 2004)

could be envisioned, such as the incorporation of a hysteresis
(Chang et al., 2021).

Despite the impossibility of analyzing temporal variation
due to WAD2M issues, Fig. 9 informs us that the temporal
variations of SatWetCH4 are more similar to GMB LSMs
than UpCH4. This is consistent with the fact that SatWetCH4
is a – highly simplified – process-based equation, whereas
UpCH4 relies on empirical flux upscaling using random for-
est. SatWetCH4 and UpCH4 approaches both provide new
independent estimates of wetland emissions, while offer-
ing distinct perspectives. A deeper comparison of the fluxes
modeled by SatWetCH4 and UpCH4 at the site level could
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serve understanding differences between the simplification
of complex processes represented by a fixed process equation
(SatWetCH4) versus a pure machine learning data-driven ap-
proach (UpCH4). In addition, running both SatWetCH4 and
UpCH4 with another wetland extent database would also
serve to assess uncertainties and errors associated with the
WAD2M product and a better comparison of global methane
emission trends estimated by SatWetCH4 and UpCH4. Both
methods are currently limited by the scarcity of eddy covari-
ance flux data (McNicol et al., 2023), especially over impor-
tant wetland methane-emitting regions of the world, e.g., in
the tropics (the Congo, the Sudd, and the Amazon) and Rus-
sia (Siberian lowlands).

5 Conclusions

SatWetCH4 model was developed to simulate global wetland
methane emissions at 0.25°× 0.25° with a monthly time res-
olution. This data-driven approach was calibrated with 58
sites of eddy covariance flux data, allowing for an approach
independent of other estimates. Most of SatWetCH4 model
input variables are derived from satellite observational prod-
ucts. In particular, a new estimate of the substrate availability
was derived using MODIS-derived NPP. This product, called
Csubstrate, appears to be a more realistic approach than in pre-
vious studies that considered all SOC to be available carbon.

At the site level, the SatWetCH4 calibration reproduces
the boreal fluxes and most of the temperate fluxes well but
reproduces the emissions seasonality of the tropical sites
poorly. This could possibly be improved in future studies by
adding high-resolution information on local water availabil-
ity (SWC). Another important improvement would be a cal-
ibration per the wetland type, which would allow for the in-
fluence of vegetation to be taken into account as major trans-
port pathways. For this, more eddy covariance flux measure-
ments in the tropics are essential to gain a deeper insight into
the processes governing temporal variations in this latitudi-
nal band and to develop and calibrate this one-step model.

SatWetCH4’s simple formulation allows for fast global
simulations (within a few seconds) over decades using satel-
lite observations as input data. Although the total methane
emission estimates from SatWetCH4 are lower than those re-
ported in the literature (Saunois et al., 2020; McNicol et al.,
2023), SatWetCH4 shows that it is able to reproduce large
spatio-temporal variations at 0.25°, which makes it a useful
tool to study methane emission inter-annual trends. Thus, the
SatWetCH4 model benefit from independent remote-sensing
data and from a process-based model approach since it is cal-
ibrated using in situ site observations.

Finally, we found some inconsistencies in the widely used
WAD2M surface wetland extent. A new wetland map is
currently being produced (Bernard et al., 2024b) based on
GIEMS-2 (Prigent et al., 2020) observations which pro-
vide a seamless estimate of inundated areas with realistic

inter-annual variability (Bernard et al., 2024a). Utilizing the
SatWetCH4 model with this new dataset would allow for the
study of annual variability and trends in emissions.

Another perspective is the coupling of SatWetCH4 with at-
mospheric inversions. Indeed, one way to overcome the chal-
lenges associated with calibration using surface flux data is
to incorporate this simple model into an atmospheric inver-
sion model. This would allow for the optimization of both
parameters k and Q100 in the inversion equation using atmo-
spheric concentrations (more numerous than methane fluxes
data, especially with satellite data) rather than just the op-
timization of the methane flux value, as is usually done in
inversion models.

Code and data availability. The optimization and model codes
are available at https://doi.org/10.5281/zenodo.11204999 (Bernard,
2024).

All global forcings used in this study are freely available on-
line: ERA5-Land data at https://doi.org/10.24381/cds.68d2bb30
(Muñoz Sabater, 2019), WAD2M at https://doi.org/10.5281/zenodo.
5553187 (Zhang et al., 2021a), TOPMODEL-derived wetland ex-
tent at https://doi.org/10.5281/zenodo.6409309 (Xi et al., 2021),
and MODIS PsnNet data through https://doi.org/10.5067/MODIS/
MOD17A2HGF.061 (Running et al., 2021).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-863-2025-supplement.
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