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Abstract. Isoprene is the dominant non-methane Volatile Or-
ganic Compound (VOC) emitted from terrestrial ecosystems
and plays an important role in ozone chemistry. Understand-
ing isoprene emissions is critical for controlling air pollu-
tion. The Model of Emissions of Gases and Aerosols from
Nature (MEGAN) is widely used to calculate biogenic iso-
prene emissions worldwide. While MEGAN predictions are
good for many regions, a previous analysis of isoprene ob-
servations around China showed large discrepancies between
observed and simulated isoprene concentrations. The uncer-
tainties of isoprene emissions in China are also reflected in
the large differences between MEGAN version 2.1 and 3.1.
In this work, bottom-up high-resolution vegetation distribu-
tions and updated emission factors are combined with satel-
lite data in the Speciated Isoprene Emission Model with the
MEGAN Algorithm for China (SieMAC) to improve iso-
prene emission estimates in China. The results from this new
emission inventory for summer 2013 improve upon MEGAN
versions 2.1 and 3.1 when compared with isoprene observa-
tions and satellite HCHO products. This improved emission
inventory is applied in a regional model, and the results in-
dicate a potentially underestimated role of biogenic isoprene
in ozone formation over polluted eastern China.

1 Introduction

Isoprene (C5H8) dominates global biogenic volatile organic
compound (BVOC) emissions, accounting for approximately
half of total BVOC emissions and one-third of all volatile
organic compounds (VOCs) released into the atmosphere
(Guenther et al., 2012). Its high reactivity makes it a cru-
cial precursor for tropospheric ozone (O3) formation, partic-
ularly in regions with substantial biogenic sources (Fiore et
al., 2005; Fu et al., 2007; Geng et al., 2011; Fu and Tai, 2015;
Zhang and Wang, 2016; Ma et al., 2019; Li et al., 2019a; Wu
et al., 2020; Wang et al., 2021b; Geddes et al., 2022; Lou et
al., 2023; Oumami et al., 2024).

This is especially significant in China, where isoprene
comprises over 50 % of annual BVOC emissions and sur-
passes anthropogenic VOC levels during summer daytime
hours when ozone production peaks (Tie et al., 2006; Li et
al., 2016; Wang et al., 2021a). Recent studies show that iso-
prene can enhance regional ozone production rates by up to
10 ppbV h−1 during summer (Geng et al., 2011; Wu et al.,
2020; Yu et al., 2022). The importance of accurately quan-
tifying isoprene emissions has grown as China faces persis-
tent and severe summertime ozone pollution (Li et al., 2019c,
2020b; Lu et al., 2020; Wang et al., 2023). This highlights
the critical need for well-constrained isoprene emission es-
timates to better understand regional atmospheric chemistry
and develop effective air quality policies.
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The Model of Emissions of Gases and Aerosols from
Nature (MEGAN) is the most widely used biogenic emis-
sion model and serves as the standard module for estimating
biogenic isoprene emissions in chemistry transport models.
However, MEGAN-based national isoprene emission esti-
mates for China ranged from 4.10 to 37.45 Tg C yr−1 (Guen-
ther et al., 1995; Klinger et al., 2002; Tie et al., 2006; Chi
and Xie, 2012; Fu and Liao, 2012; Li et al., 2012, 2013,
2020c, 2023; Li and Xie, 2014; Stavrakou et al., 2014; Gao
et al., 2019; Wang et al., 2021a; Wu et al., 2020; Ma et
al., 2022) and regional studies showed uncertainties between
−82 % and+177 % (Zheng et al., 2010; Wang et al., 2011b).
Furthermore, a previous analysis of isoprene observations
around China showed large discrepancies between observed
isoprene concentrations and those simulated with MEGAN
emission inventories (Zhang et al., 2020).

These uncertainties in MEGAN are largely attributed to its
Emission Factor (EF) input (Wang et al., 2011b; Situ et al.,
2014). EF represents the emission potential of plants, and
ranges from 0 to > 10000 µg m−2 h−1 among plant species,
with substantial variations even within individual genera
(Klinger et al., 2002; Guenther et al., 2006, 2012). Ide-
ally, to generate precise EF inputs, species-specific EF mea-
surements and species-level plant composition data are re-
quired. Unfortunately, such data specificity is not available
for some regions (Messina et al., 2016; Guenther et al.,
2006). MEGAN provides a global gridded EF map with 1
km spatial resolution as the default input (Guenther et al.,
2012; Chen et al., 2022). While this high-resolution map in-
corporates speciated EF data for regions with adequate mea-
surements and detailed vegetation distributions, the values
assigned to most regions in China were based on an outdated
ecoregion map and global ecoregion-average EFs (Guenther
et al., 2006; Olson et al., 2001), failing to capture the coun-
try’s diverse vegetation composition and recent land cover
changes (Peng et al., 2014; Chen et al., 2019). Although
MEGAN version 3.1 incorporates more recent EF measure-
ments for China, it still relies on the previous ecoregion dis-
tributions (Jiang et al., 2018b; Chen et al., 2022).

Recent studies have begun utilizing local EF mea-
surements and plant species distribution datasets to drive
MEGAN for China (Wang et al., 2011b; Li et al., 2013,
2020c; Situ et al., 2013, 2014; Li and Xie, 2014; Wang et al.,
2018). However, few of these estimates are evaluated against
observational data, and those incorporating both local EFs
and detailed vegetation distributions are largely confined to
regional scales. For example, Li et al. (2020c) investigated
national-scale isoprene emissions using local EFs, but their
reliance on outdated vegetation distributions limits the accu-
racy of their estimates. To our knowledge, no comprehensive
national study has estimated isoprene emissions across China
by integrating both localized EFs and updated vegetation dis-
tribution, highlighting a critical gap in the field that needs to
be addressed.

To address these challenges, we present the Speciated
Isoprene Emission Model with the MEGAN Algorithm for
China (SieMAC). SieMAC builds upon the MEGAN frame-
work with four key updates: (1) incorporation of extensive lo-
cal EF measurements and up-to-date vegetation distributions,
(2) implementation of Plant Functional Type (PFT)-specific
Leaf Area Index (LAI), (3) addition of an optional environ-
mental factor accounting for water-stress impacts, (4) modifi-
cation of the temperature response algorithm for boreal grass.

We implement SieMAC into a three-dimensional re-
gional chemical transport model (REAM) and evaluate its
performance using both ground-based measurements and
satellite observations. The evaluation results demonstrate
that SieMAC outperforms both MEGAN version 2.1 and
MEGAN version 3.1 in representing isoprene emissions
across China. The paper describes the model algorithms and
input datasets (Sect. 2), evaluation methodology (Sect. 3), re-
sults and validation (Sect. 4), and discusses uncertainties and
implications for understanding regional air quality (Sect. 5).

2 Model description

2.1 SieMAC model algorithm

SieMAC adapts the MEGAN algorithm to calculate veg-
etation isoprene emissions. The model is based on
MEGAN v2.1’s offline version (available at https://bai.ess.
uci.edu/megan, last access: 6 September 2025) and calculates
emissions as:

Emission= EF · γ (1)

where EF is the emission factor representing emissions under
the standard condition as defined in Guenther et al. (2012)
and γ is the normalized emission activity factor accounting
for deviations from the standard condition.

MEGAN provides a global 1 km× 1 km EF map as the
default input for emission factor, while also supporting PFT-
specific emission factors as an alternative option (Guenther
et al., 2006, 2012; Oumami et al., 2024). SieMAC adopts the
PFT-specific approach, which allows dynamic adjustment of
EF inputs for different regions and periods. Following the
PFT-7 classification scheme (Table 1), the model calculates
grid cell emission factors as:

EF=
∑
i

Fi ·EFi (2)

where Fi is the fraction of grid area covered by PFT i, and
EFi is its specific EF based on plant composition of the PFT.

The emission activity factor γ accounts for environmental
influences on emissions:

γ =

 ∑
canopy layer=l

wl · γP,l · γT ,l

 · γA · γSM · γCO2 ·LAI ·CCE (3)
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Table 1. PFT scheme used in this study.

PFT number Description

1 Broadleaf Evergreen Tree
2 Broadleaf Deciduous Tree
3 Needleleaf Evergreen Tree
4 Needleleaf Deciduous Tree
5 Shrub
6 Crop
7 Grass

where the components represent effects of light (γP ), tem-
perature (γT ), leaf age (γA), soil moisture (γSM), CO2 in-
hibition (γCO2 ), and leaf area index (LAI). CCE is a unit-
less constant that normalizes γ to unity under the standard
condition. SieMAC implements MEGAN’s standard canopy
environment model, which simulates light and temperature
distributions at five canopy depths. The overall impact of
light and temperature (γP · γT ) is calculated as the weighted
average of these factors across the canopy layers using the
model’s predefined layer-specific weights (wl). In addition,
we modify the calculation of γT for boreal grass following
Wang et al. (2024b), and the affected regions are shown in
Fig. S1 in the Supplement. The calculation of γA follows
MEGAN v2.1’s default algorithm. The values of γSM and
γCO2 are set to 1 due to uncertainties in characterizing these
processes (Situ et al., 2014; Jiang et al., 2018b; Wang et al.,
2021b; Pang et al., 2024).

A key enhancement in SieMAC is the use of PFT-specific
LAI rather than grid cell averaged values, as LAI can
vary substantially among different vegetation types (e.g.,
broadleaf trees typically have greater leaf area than grasses)
and show distinct seasonal patterns (Oleson and Bonan,
2000; Bonan et al., 2002). Additionally, SieMAC includes
an optional factor, γVPD, to account for enhanced isoprene
emissions under water-stressed conditions, addressing a lim-
itation in MEGAN v2.1 where soil moisture effects (γSM)
are not fully characterized (Zhang and Wang, 2016; Ma
et al., 2019). γVPD is calculated based on the vapor pres-
sure deficit (VPD), defined as the difference between satura-
tion vapor pressure and ambient vapor pressure (Zhang and
Wang, 2016). VPD is directly related to water stress of plants,
with higher VPD values indicate more intense water-stressed
conditions. While γVPD was derived from US observations
and its application to other regions requires careful evalua-
tion, it provides a mechanism to investigate water-stress im-
pacts on isoprene emissions in China. The final emission cal-
culation in SieMAC is:

Emission=

 ∑
canopy layer=l

wl · γP,l · γT ,l

 · γA · γVPD

·CCE ·
∑
i

Fi ·EFi ·LAIi (4)

where i is the index of PFT, and γVPD is optional. Details
of datasets and methods used to derive driving variables for
SieMAC are described below.

2.2 SieMAC land cover variables

SieMAC requires two categories of driving variables:
weather variables (light, temperature, wind speed, humid-
ity and pressure) and land cover inputs. For land cover in-
puts, we develop two datasets at different spatial resolu-
tions: a High Resolution (HR) dataset and a Moderate Res-
olution (MR) dataset. These datasets include PFT fractions
(Fi in Eq. 2), PFT-specific emission factors (EFi in Eq. 2),
and leaf area indices (LAIi in Eq. 2). Given that unrepresen-
tative land cover inputs can significantly bias emission esti-
mates, we derive these datasets through careful integration
of multiple data sources. We use these variables to estimate
isoprene emissions across China during summer 2013 and
evaluate the results using previous studies, satellite products,
and ambient measurements.

2.2.1 Fraction and emission factor

We first calculate the fraction of a grid cell area covered by
each PFT and their corresponding emission factors (here-
after PFT F and PFT EF, respectively), and then use these
results to derive PFT-specific LAIs for each grid. Three
datasets are used for this derivation: the Vegetation Atlas
of China (1 : 1000000) (Zhang, 2007), eighth China Forest
Resource Statistics (https://www.forestdata.cn/, last access:
15 May 2025), and MODIS MOD44B v006 product for 2013
(https://lpdaac.usgs.gov/products/mod44bv006/, last access:
15 May 2025, DiMiceli et al., 2015).

Our land cover analysis integrates these three comple-
mentary datasets to provide a complete picture of vegeta-
tion distribution in China. The Vegetation Atlas of China
(1 : 1000000) serves as our baseline for vegetation compo-
sition, providing species-level distributions based on nation-
wide surveys from the 2000s (Li et al., 2013; Li and Xie,
2014). However, this information needs to be updated. We
therefore incorporate the eighth Forest Resource Statistics,
a five-year national survey that provides genus-level forest
composition data at the provincial level for 2009–2013 and
the MODIS MOD44B v006 product, which provides an-
nual tree and non-tree vegetation areas at a 250 m resolution
for 2013.

Given that no single dataset provides up-to-date species-
level vegetation distribution for China, we develop two pro-
cessing approaches – High Resolution (HR) and Moderate
Resolution (MR) – to optimize the use of available infor-
mation. The HR approach prioritizes detailed species com-
position from the Vegetation Atlas while adjusting tree ar-
eas using the Forest Resource Statistics, whereas the MR ap-
proach directly applies provincial-level tree compositions to
MODIS tree area data. HR provides more accurate species
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Figure 1. Schematic workflow for generating SieMAC land cover input data. Pink boxes denote input datasets: Vegetation Atlas, Forest
Resource Statistics, tree and non-tree coverage from MODIS MOD44B, EF measurements, MODIS LAI and PFT products. Grey panels
represent two processing approaches: high-resolution (HR, left) and medium-resolution (MR, right). Within each panel, orange rectangles
indicate area-aggregation or scaling operations, blue rectangles indicate derivation of provincial or gridded composition/PFT fractions, and
orange diamonds mark decision branches. Green boxes show the final products used as SieMAC inputs: gridded PFT fractions, EFs, and LAI.

composition data, but it is based on an older national survey,
while MR takes advantage of concurrent satellite tree cover
data with provincial-level species composition constraints,
as shown in Fig. 1. The detailed data integration workflows
for both approaches are further illustrated in Fig. S2 (MR)
and Fig. S3 (HR). For both datasets, we first disaggregate
the genus-level tree compositions from the Forest Resource
Statistics into species-level information using the species
proportion data from the Vegetation Atlas. This step provides
provincial-level species composition data that are consistent
with the two datasets.

For the HR dataset related to trees, we compare provincial-
level areas between the Forest Resource Statistics and the
Vegetation Atlas for each tree PFT. When the Atlas shows
larger areas, we proportionally scale down all species ar-
eas within that PFT to match the Forest Resource Statistics
while maintaining relative species proportions. Conversely,
when the Forest Resource Statistics show larger areas, we
preserve the Atlas species distributions and calculate resid-
ual areas. These residuals are then redistributed across grid
cells where MODIS indicates tree cover after accounting for
Atlas-based distributions. To implement this redistribution,
we regrid both the Vegetation Atlas (∼ 10 km2) and MODIS
tree products to a 4×4 km2 resolution, ensuring that the total
areas for all tree PFTs match the Forest Resource Statistics

The MR dataset for trees takes a different approach by
directly applying the derived provincial species composi-
tions to MODIS tree area data at the 250 m resolution.

This assumes uniform tree species composition within each
province but captures concurrent vegetation cover more ac-
curately. The resulting fractions are then averaged to 500 m
grid cells to match the resolution of LAI data to be described
in the following section.

For non-tree PFTs (shrubs, crops, and grass), both HR and
MR datasets use the same approach. We combine MODIS
non-tree vegetation areas with PFT type from the Vegetation
Atlas. For grid cells with MODIS non-tree vegetation cover-
age but lacking non-tree vegetation classification in the Atlas,
we assign the non-tree PFT types based on the nearest clas-
sified grid cell. We calculate PFT fractions with these PFT
areas, which are then averaged to a 4 km resolution for HR
and a 500 m resolution for MR datasets.

To derive PFT EFs, we compile leaf-level measurements
from published studies for tree and shrub species (Guenther
et al., 1995; Yang et al., 2001, 2013; Klinger et al., 2002; Li
and Klinger, 2002; Wang et al., 2002, 2003a, b, 2007, 2011a,
2016, 2017b, 2018; Zhang et al., 2002; Zhao et al., 2004;
Kang et al., 2005; Luo et al., 2005; Geron et al., 2006; Singh
et al., 2008; Chen et al., 2009; Dong et al., 2009; Tsui et al.,
2009; Zhang and Xie, 2009; Deng et al., 2010; Yin et al.,
2010; Huang et al., 2011; Li and Xiang, 2011; Zhu, 2011;
Song et al., 2012; Li et al., 2014, 2017, 2019b, d, 2020a;
Situ et al., 2014; Bao, 2015; Gao, 2016; Tang et al., 2016;
Bu et al., 2017; Lin et al., 2017; Chen et al., 2018; Jiang
et al., 2018a; Jin et al., 2018; Pan et al., 2018; Lian et al.,
2019; Liu et al., 2020; Peng et al., 2020; Pang et al., 2021), as
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they contribute most significantly to isoprene emissions and
show high variability in emission capacities (Guenther et al.,
2012). For species lacking direct measurements, we assign
EFs based on genus-average values. When genus-average
values are unavailable, we adopt default values from Guen-
ther et al. (1995) and Wang et al. (2003a, 2016). For crops
and grasses, we use MEGAN v2.1 default EFs (Guenther et
al., 2012) due to limited measurements and generally lower
emission rates. However, based on recent findings of higher
emission potentials in boreal regions (Wang et al., 2024b),
we increase the grass EFs by a factor of three in northwest-
ern provinces of China (Fig. S1), where sedge comprises a
significant portion of the grass coverage.

2.2.2 Leaf area index

We make use of MODIS measurements in conjunction
with the high-resolution PFT distribution described in the
previous section to derive LAI distributions. The three
MODIS products include MCD15A2H (https://lpdaac.usgs.
gov/products/mcd15a2hv006/, last access: 15 May 2025,
Myneni et al., 2015), MCD12Q1 (https://lpdaac.usgs.gov/
products/mcd12q1v006/, last access: 15 May 2025, Friedl
and Sulla-Menashe, 2019), and MOD44B. MCD15A2H is
MODIS LAI product, delivering mean LAI values for each
pixel on a 8 d basis. MCD12Q1 is MODIS land cover prod-
uct, providing global maps of land cover with five legacy
classification schemes at annual time steps; we apply the
PFT classification scheme land cover dataset for 2013. Both
MCD15A2H and MCD12Q1 have a spatial resolution of
500 m, while MOD44B has a resolution of 250 m. We ag-
gregate MOD44B data to a 500 m resolution to be compati-
ble with the other MODIS datasets. A key issue is to prop-
erly account for the differences between the Vegetation Atlas
and MODIS PFT product since the former can be used to
assign species-specific isoprene EFs (Table S1 in the Sup-
plement), but the latter cannot. Additionally, the derivation
of MODIS LAI product incorporates its land cover prod-
uct as a priori data (Knyazikhin et al., 1999). To accommo-
date these incompatibilities, we first define eight main ecore-
gions (Fig. S4, Rodríguez and Pérez, 2013; Zhang, 2007).
An ecoregion is a geographical area that has a similar set of
ecosystems. As such, a given PFT in MODIS can represent a
different ecosystem set in a different ecoregion. It should be
noted that the eight ecoregions are used exclusively for the
purpose of calculating LAI data. We therefore compute 56
PFT-ecoregion dependent base LAIs using MODIS data (Ta-
ble S2). In the second step, we apportion grid-cell MODIS
LAI data into PFT-specific LAIs to maintain the spatial vari-
ability observed by MODIS.

We first compute monthly averaged PFT-ecoregion depen-
dent base LAIs. The MODIS MCD12Q1 product only as-
signs one dominant PFT type to each 500 m grid cell, and we
apply MOD44B vegetation coverage data to determine the
fraction of the assigned PFT in each grid cell. We compute

the monthly PFT-ecoregion dependent LAI data for PFT i

and ecoregion j :

LAIi,j =

k=Nj∑
k=1

LAIk

k=Nj∑
k=1

Fk

(5)

where Nj is the number of grid cells with PFT i in ecore-
gion j , LAIk denotes MODIS LAI value for grid cell k, and
Fk denotes PFT i fraction in grid cell k.

We then add MODIS observed grid cell level LAI variabil-
ity to the PFT-ecoregion average LAIs. MODIS LAI mea-
surement gives the average cell LAIc

MODIS, which is the sum
of area-weighted LAI for all PFTs in the grid cell:

LAIc
MODIS =

∑
i

αi ·F
c
i ·LAIi,j (6)

where αi accounts for the discrepancies between the PFT
area fractions, F c

i , obtained using the Vegetation Atlas
of China, China Forest Resource Statistics, and MODIS
MOD44B v006 product as described in the previous section,
and those applied by MCD15A2H as prior information. We
assume that αi does not vary with PFT, therefore:

α =
LAIc

MODIS∑
i

F c
i ·LAIi,j

. (7)

For each grid cell and PFT i, we then constrain the LAI value
as:

LAIc
i = α ·LAIi,j . (8)

The LAIc
i represents the LAI value for PFT i in grid cell

that can be directly used in calculating the emissions from
the PFT, which is the PFT LAI input required for SieMAC.
The 500 m PFT LAI data are directly used for MR emis-
sions and aggregated to a 4 km resolution for HR emissions.
We limit the range of the resulted PFT LAI values follow-
ing Bonan et al. (2002). For grid cells lacking valid MODIS
LAI values, which occurs when MODIS PFT product classi-
fies a grid as non-vegetation despite the presence of some
vegetation cover (Wang et al., 2018; Wang et al., 2021a),
we assign PFT-ecoregion average LAIs as default values.
This approach allows us to account for vegetation contri-
butions that might otherwise be missed in grid cells domi-
nated by non-vegetation surfaces. The resulting spatial distri-
butions of PFT-specific LAIs and emission factors are shown
in Figs. S5–S8.

3 Model evaluations

3.1 Model setup

We implemented SieMAC into REAM to evaluate emission
estimates and simulated ambient isoprene levels against mea-
surements. REAM is a three-dimensional regional chemistry
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Table 2. REAM simulations.

Case Isoprene emission model

SieMAC MR SieMAC with MR land cover, omit γVPD
SieMAC HR SieMAC with HR land cover inputs, omit γVPD
SieMAC MRVPD Same a SieMAC MR, but includes γVPD
SieMAC HRVPD SieMAC with HR land cover, but includes γVPD
MEGAN v2.1 offline MEGAN v2.1
MEGAN v3.1 offline MEGAN v3.1

transport model that has been applied in numerous tropo-
spheric chemistry and transport studies across the United
States and China (Zhao et al., 2009, 2010; Zhao and Wang,
2009: Zhang and Wang, 2016; Zhang et al., 2018, 2020; Li
et al., 2019a; Qu et al., 2020; Yan et al., 2021). The over-
all model setup and SieMAC integration approach are il-
lustrated in Fig. S9. The model has a spatial resolution of
36× 36 km2 and includes 30 vertical layers in the tropo-
sphere. Meteorological fields are obtained from the Weather
Research and Forecast (WRF) model V4.0 simulations, con-
strained by ECMWF Reanalysis v5 (ERA5) products. The
chemical mechanism is based on GEOS-Chem (v11.01)
with extended aromatic reactions from SAPRC-07. Lateral
boundary conditions are obtained from a 2°× 2.5° GEOS-
Chem model (v11.01) simulation. For anthropogenic emis-
sions, we used the Multi-resolution Emission Inventory
for China (MEIC) for 2013, while biogenic emissions for
all chemical species except isoprene are calculated using
MEGAN v2.1. We selected summer 2013 for this study as
it represents the first year with concurrent availability of
CARE-China isoprene measurements and the China National
Environmental Monitoring Centre (CNEMC) Network air
quality observations, enabling comprehensive model evalu-
ation (Zhang et al., 2020; Bai et al., 2020).

We conducted model simulations for summer 2013 using
six different isoprene emission configurations as detailed in
Table 2. For the MEGAN v2.1 and v3.1 simulations, we uti-
lized their respective offline versions and EF inputs available
at https://bai.ess.uci.edu/megan/data-and-code (last access:
15 May 2025). It needs to be noted that MEGAN v3.1 EFs
are provided with different J-ratings, a measure of confidence
for corresponding EF values. Here, we used the EF values
with a J-rating value of 4, the highest confidence, to obtain
the most accurate EF inputs for MEGAN v3.1. We followed
the procedure in Wang et al. (2021a) to obtain LAI data (de-
noted as LAIv in that study) as well as PFT distributions. We
averaged the LAIs, PFT fractions, and MEGAN 1 km EFs
at each REAM grid cell and used the results as land cover
inputs for MEGAN models. Note that MEGAN v3.1 results
should be considered preliminary as the developers are cur-
rently finalizing MEGAN v3.2.

The SieMAC implementation in REAM involved a multi-
scale integration approach. We first simulated the canopy
environment for each REAM grid cell with local weather

variables, including hourly temperature, solar radiation, hu-
midity, wind speed and pressure derived from the WRF
simulations, and grid cell-averaged LAI and PFT fractions
derived from the high-resolution land cover datasets, us-
ing the MEGAN canopy model. For simulations using the
MR dataset, the REAM grid-averaged LAI and PFT frac-
tions were calculated by aggregating the 500 m resolution
data, while for HR simulations these parameters were de-
rived from the 4 km resolution datasets. The environmental
activity factors calculated for each REAM grid cell were then
applied to their corresponding high-resolution subgrid cells.
Emissions were first calculated at finer resolutions (500 m
for MR and 4 km for HR), then aggregated to the REAM res-
olution by summing emissions from all subgrid cells within
each REAM cell.

3.2 CARE-China observations

The Campaign on Atmospheric Aerosol Research Net-
work of China (CARE-China) collected ambient air sam-
ples at twenty sites across China (Fig. 2) at approximately
14:00 BJT (Beijing time) every Wednesday from March 2012
to April 2014, providing valuable isoprene measurements
for model-measurement comparison. Details about CARE-
China observations are described by Zhang et al. (2020).
We compared REAM simulated isoprene concentrations us-
ing different emission inventories with these CARE-China
observations to evaluate the model performance. We anal-
ysed the model performance across six regions: North
China Plain (NCP), Northeast China Plain (NECP), North-
west China (NWC), Southwest China (SWC), Southeast
China (SEC), and South China (SC). The Lhasa site was ex-
cluded from analysis due to limited observations during the
study period.

3.3 OMI HCHO product

Formaldehyde (HCHO) serves as an intermediate product
of isoprene oxidation and provides a valuable proxy for
evaluating isoprene emissions. During summer, when iso-
prene emissions peak and dominate reactive VOC emissions,
HCHO spatial variability closely aligns with isoprene emis-
sion patterns (Palmer et al., 2003; Shim et al., 2005; Millet
et al., 2008). We evaluated the spatial distribution of different
emission inventories obtained in this study using the monthly
Level 3 OMI HCHO Vertical Column (VC) product with a
0.25°× 0.25° spatial resolution, from the Belgian Institute
for Space Aeronomy (BIRA-IASB) (De Smedt et al., 2012,
2015), increasing observed concentrations by 32 % to correct
the low bias of OMI HCHO products for high HCHO regions
as suggested by Zhu et al. (2020).
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Figure 2. Geographical distribution of the 19 CARE-China mon-
itoring sites analysed in this study. Sites are colour-coded by re-
gion following Zhang et al. (2020): North China Plain (NCP,
blue squares), Northeast China Plain (NECP, light-green squares),
Northwest China (NWC, orange squares), Southeast China (SEC,
magenta diamonds), South China (SC, pink diamonds), and South-
west China (SWC, grey diamonds). Provincial boundaries are
shown for reference.

4 Results and discussion

4.1 Model evaluations

4.1.1 Comparison with other studies

The national isoprene emissions estimated by SieMAC MR
and HR for summer 2013 are 10.92 and 11.37 Tg C, respec-
tively (Table 3). Based on the seasonal distribution pattern
where summer accounts for approximately 70 % of annual
emissions (Tie et al., 2006; Li et al., 2023), these estimates
correspond to annual emissions of around 15.6–16.2 Tg C.
These values fall within the range of previous estimates and
notably align with the 15 Tg C annual estimate reported by
Guenther et al. (1995). However, the SieMAC emission dis-
tributions differ from previous studies, which will be elabo-
rated in Sect. 4.2.

The SieMAC HR estimate is approximately 4.1 % higher
than the MR estimate, reflecting their different approaches to
characterizing tree distributions. In HR, tree areas and dis-
tributions are constrained by the Forest Resource Statistics
and the Vegetation Atlas, respectively. In contrast, MR re-
lies on MODIS products for tree area and assumes uniform
tree composition at the provincial level. The impact of these
methodological differences is well illustrated in Heilongjiang
province, where the tree coverage is 1.95× 105 km2 in HR
compared to 1.49× 105 km2 in MR. This difference in total
tree area, approximately 31 % higher in HR, directly explains
the 32 % higher emission estimate given by the HR approach
for this province.

Comparing SieMAC with MEGAN simulation results us-
ing their respective default emission factor maps, REAM
grid-average LAI and PFT fractions, and identical meteoro-
logical inputs, we find that SieMAC HR and MR estimates

exceed both MEGAN v2.1 (8.05 Tg C) and MEGAN v3.1
(4.47 Tg C) predictions for summer 2013. Four key factors
contribute to SieMAC’s higher estimates: (1) the implemen-
tation of PFT-specific LAI, which better captures emissions
from high-emitting vegetation types (Messina et al., 2016);
(2) incorporation of China’s recent afforestation, which has
doubled national forest cover (Zhang et al., 2016; Chen et
al., 2019); (3) improved representation of mixed vegetation
areas, addressing a MODIS LAI retrieval limitation that can
reduce emission estimates by up to 19 % (Wang et al., 2018);
and (4) updated emission factors for shrub species that are
significant isoprene emitters in China (Klinger et al., 2002).

Including VPD effects in SieMAC increases emission esti-
mates by approximately 40 %, pushing estimates toward the
upper range of previous studies. While this VPD algorithm
was developed based on the observations in the United States
(Beckett et al., 2012; Zhang and Wang, 2016), and its direct
application to Chinese vegetation introduces uncertainties,
the magnitude of this effect highlights the potential impor-
tance of water-stress impacts on isoprene emissions in China.
This suggests a critical need for region-specific studies of
emission dependence on water stress in future work.

4.1.2 Evaluation against CARE-China observations

We first evaluate REAM’s performance in simulating key
atmospheric chemistry processes using the observations
from the China National Environmental Monitoring Cen-
tre (CNEMC) Network (https://www.cnemc.cn/en/, last ac-
cess: 15 May 2025), which provides ozone (O3) and nitro-
gen dioxide (NO2) measurements across China. This valida-
tion step is essential before using REAM to evaluate isoprene
emission inventories, as CARE-China provides only isoprene
concentration measurements without broader atmospheric
chemistry data. The REAM model demonstrates good agree-
ment with observed ozone concentrations as shown in Figs. 3
and S10. The spatial patterns of MDA8 ozone biases are il-
lustrated in Figs. S11 and S12, which show more uniform
bias distributions for SieMAC models compared to MEGAN
versions, particularly during high ozone episodes. The im-
proved bias characteristics of SieMAC models during high
pollution events are particularly important for air quality
applications, as these episodes represent the conditions of
greatest concern for human health and regulatory compli-
ance. While modelled NO2 exhibits a linear relationship with
observations (Figs. 3 and S13), there is a noted low bias that
corresponds to known instrument bias issues in surface-level
NO2 measurements (Zhang et al., 2018; Li et al., 2019a).
This general agreement in simulated ozone and NO2 pro-
vides confidence in REAM’s capability for simulating iso-
prene concentrations.

Comparing the different emission models, SieMAC shows
superior performance to MEGAN simulations across most
regions, as illustrated in Fig. 4. Following previous findings
of distinct MEGAN performance patterns between northern
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Table 3. Isoprene emission estimates for China (unit: Tg C).

Data source Model Study period Emissions (Tg C)

This Study SieMAC MR summer 2013 10.92 per season
This Study SieMAC HR summer 2013 11.37 per season
This Study SieMAC MRVPD summer 2013 15.27 per season
This Study SieMAC HRVPD summer 2013 15.83 per season
This Study MEGAN v2.1 summer 2013 8.05 per season
This Study MEGAN v3.1 summer 2013 4.47 per season
Wang et al. (2021b) MEGAN v2.1 summer 2013 5.8 per season
Chen et al. (2022) MEGAN v2.1 July 2014 2.00 per month
Wang et al. (2007) Guenther et al. (1995) July 1999 0.95 per month
Li et al. (2023) MEGAN v3.1 2020 7.23 yr−1

Ma et al. (2022) MEGAN v2.1 2015–2019 13.88–14.29 yr−1

Wang et al. (2021a) MEGAN v2.1 2001–2016 14.06 yr−1

Li et al. (2020c) MEGAN v2.1 2008, 2013, 2018 28.23–37.45 yr−1

Wang et al. (2020) MEGAN v2.1 2001–2016 7.56 yr−1

Wu et al. (2020) MEGAN v2.1 2017 13.3 yr−1

Gao et al. (2019) MEGAN v3.0 2005–2016 6.13 yr−1

Li and Xie (2014) MEGAN v2.1 1999–2003 27.09 yr−1

Stavrakou et al. (2014) MEGAN v2.04 2005 9.30 yr−1

Li et al. (2013) MEGAN v2.1 2003 23.42 yr−1

Chi and Xie (2012) Guenther et al. (1995) 2003 7.45 yr−1

Fu and Liao (2012) MEGAN module embedded in GEOS-CHEM 2001–2006 9.59 yr−1

Li et al. (2012) PCEEA in Guenther et al. (2006) 2006 9.36 yr−1

Tie et al. (2006) Guenther et al. (1993) 2004 7.70 yr−1

Klinger et al. (2002) Guenther et al. (1995) 2000 4.10 yr−1

Guenther et al. (1995) Guenther et al. (1995) 1990 15.00 yr−1

Figure 3. Evaluation of REAM-SieMAC MR with surface observations from the China National Environmental Monitoring Cen-
tre (CNEMC). Hourly model outputs and measurements were processed to seasonal means at each CNEMC site before comparison. (a) Max-
imum daily 8 h average ozone (MDA8); (b) daily mean NO2. Each dot represents a single site–season mean. The dashed line indicates the
1 : 1 relation; statistics in the lower-right corner give the root-mean-square error (RMSE), mean bias (MB), and Pearson correlation coeffi-
cient (r).

and southern China by Zhang et al. (2020), we analyse model
performance separately for these regions.

In northern regions including NCP, NEC, and NWC,
SieMAC MR demonstrates strong consistency with obser-
vations, with 82 % and 87 % of data points falling within

the evaluation criteria established by Zhang et al. (2020)
(1 : 10 to 10 : 1 range) in NCP and NEC, respectively.
SieMAC HR shows slightly lower but still robust perfor-
mance with 78 % and 82 % within range in these two regions.
The inclusion of VPD effects shows great impacts on iso-
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Figure 4. Comparison between simulated and measured isoprene concentrations at CARE-China sites. Northern and southern regions are
evaluated separately because MEGAN exhibits region-dependent performance (Zhang et al., 2020). Panels (a)–(f) show results for northern
sites – North China Plain (NCP, blue), Northeast China Plain (NECP, light green), and Northwest China (NWC, orange) – using six emission
schemes: SieMAC MR, SieMAC HR, MEGAN v2.1, SieMAC MRVPD, SieMAC HRVPD, and MEGAN v3.1. Panels (g)–(l) present the
same schemes for southern sites – Southeast China (SEC, magenta), South China (SC, pink), and Southwest China (SWC, dark green).
Each symbol represents an observation point, while stars denote regional geometric means. The geometric mean is used here because the
concentration values span multiple orders of magnitude. Both axes are logarithmic; the solid black line shows the 1 : 1 reference, and red
dashed lines mark factors of ten (10 : 1 and 1 : 10). Percentages in the upper-left corners indicate the proportion of data points falling within
the factor-of-ten lines.
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prene emissions in the NCP and NECP, with emissions nearly
doubling when vegetation is water-stressed. However, the re-
sponse of isoprene emissions to water stress exhibits nonlin-
ear behaviour that varies with drought severity. Some studies
find enhanced isoprene emissions during early or mild stages
of drought due to elevated leaf temperatures from reduced
stomatal conductance (Otu-Larbi et al., 2020; Kaser et al.,
2022), while other studies indicate that emissions are signif-
icantly reduced under severe drought conditions (Potosnak
et al., 2014; Klovenski et al., 2022). Recent modeling devel-
opments attempt to capture this complex nonlinear response,
distinguishing between mild drought-induced increases and
severe drought-induced decreases (Wang et al., 2022). The
current VPD algorithm in SieMAC, derived from US mea-
surements, may not fully capture these nuanced responses
in Chinese ecosystems. Despite these complexities, the VPD
inclusion substantially improves model-measurement agree-
ment and highlights the critical need to investigate isoprene
emissions when vegetation is water-stresses in these regions.
For SieMAC MR, the difference between measured and sim-
ulated regional averages decreases from 30 % to 3 % in NCP
and from 40 % to 7 % in NEC when the VPD effect is in-
cluded. Similarly, for SieMAC HR, the difference decreases
from 43 % to 17 % in NCP and from 36 % to 5 % in NEC.
This improvement reflects the model’s ability to capture en-
hanced emissions during the dry, hot conditions typical of
northern regions when the VPD effect is included. In con-
trast, both MEGAN models show substantial underestima-
tions, particularly MEGAN v3.1, where 58 % of predicted
concentrations fall below one-tenth of observed values in
NCP. The NWC region presents unique challenges, showing
consistent underestimations across all models. This is pri-
marily attributed to MODIS limitations in detecting sparse
tree cover and potential bias in emission activity algorithms
that were primarily developed for temperate and tropical
vegetation. Recent research indicates that boreal ecosystems
respond differently to environmental changes compared to
plants in other climate zones (Wang et al., 2024a, b). Despite
these challenges, SieMAC still outperforms MEGAN models
in this region.

In southern regions including SC, SEC, and SWC,
SieMAC MR and HR achieve even stronger performance,
with up to 100 % of predictions falling within the 1 : 10 to
10 : 1 range. The impact of VPD effects varies regionally,
improving predictions in SWC but slightly degrading perfor-
mance in SEC and SC. This variation likely stems from the
relationship between VPD, temperature, and humidity. High
summer temperatures in SEC and SC can elevate VPD lev-
els and trigger emission enhancements even in humid con-
ditions. This calls for further experiments to characterize re-
gional plant responses to high VPD in China. MEGAN v2.1
performs reasonably well in SC and SWC but underestimates
in SEC, while MEGAN v3.1 shows broader underestimation,
capturing only 42 % of observations in SEC.

The distribution of model/measurement ratios in Fig. 5
further demonstrates SieMAC’s advantages, particularly for
SieMAC MRVPD, which exhibits the narrowest distribution,
with a central tendency of unity. While MEGAN v2.1 shows
reasonable performance in southern regions, its heavy left-
tailed distribution for northern sites indicates systematic un-
derestimations. MEGAN v3.1 consistently shows the broad-
est, left-skewed distributions, reflecting widespread under-
estimations across all regions. We acknowledge that the
CARE-China isoprene measurements, obtained using canis-
ter sampling techniques, may have inherent uncertainties re-
lated to sampling and storage procedures (Plass-Dülmer et
al., 2006), representing an additional source of uncertainty in
model-measurement comparisons.

4.1.3 Evaluation with OMI HCHO

Satellite observations of HCHO vertical columns provide an
independent method for evaluating simulated isoprene emis-
sions for regions dominated by biogenic emissions. During
summer, isoprene oxidation represents the main source of
HCHO over most of China’s land area (Zhang et al., 2021;
Fan et al., 2021; Cao et al., 2018; Wang et al., 2017a).
While anthropogenic VOCs can dominate HCHO produc-
tion in metropolitan regions, these urban areas comprise only
a small fraction of the total land area. The spatial distribu-
tion of HCHO columns thus generally reflects isoprene emis-
sion distribution patterns across much of China (Wang et al.,
2021a).

The agreement between simulated and observed HCHO
columns is examined after interpolating the OMI HCHO ob-
servations to match the REAM 36 km grid resolution. Us-
ing Pearson correlation coefficients (r) shown in Fig. 6,
SieMAC MR and MRVPD show correlation values of 0.64
and 0.65 with OMI HCHO observations, notably higher than
both MEGAN v2.1 and v3.1. Given that summer HCHO
distributions are strongly influenced by isoprene oxidation,
these higher correlations suggest that SieMAC MR better
represents the spatial distribution of isoprene emissions. The
relatively poor performance of SieMAC HR compared to MR
could be attributed to the bias in its tree distributions, which
strictly relies on the Vegetation Atlas.

The improvement in SieMAC is further supported by di-
rect comparisons between modelled and observed HCHO
vertical columns shown in Fig. 7. Since all model simu-
lations use identical meteorological fields, chemical mech-
anisms, and emissions except for isoprene, the differences
in model performance can be attributed directly to the iso-
prene emission estimates. The spatial correlation coeffi-
cients among all simulations are high (0.87–0.9), reflect-
ing the contribution of isoprene emissions to high HCHO
columns. MEGAN v3.1 shows a substantial underestima-
tion of HCHO magnitudes with a large negative mean
bias (MB=−2.2× 1015 molec. cm−2) and a high root mean
square error (RMSE= 4.35×1015 molec. cm−2). In contrast,
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Figure 5. Distributions of the model-to-measurement ratio for surface isoprene at CARE-China sites. Histograms are shown separately for
northern (N, panels a–h) and southern (S, panels i–p) regions. Within each region, the four columns, from left to right, correspond to the
SieMAC configurations: MR, MRVPD, HR, and HRVPD. Red bins represent SieMAC results, blue bins represent MEGAN v2.1, and yellow
bins represent MEGAN v3.1. The x axis is logarithmic with a bin width of 0.5. The vertical dashed line marks the 1 : 1 ratio.

SieMAC configurations demonstrate much better overall per-
formance with smaller biases and RMSE values, indicating
that SieMAC not only captures spatial patterns but also re-
produces the observed HCHO magnitudes more accurately.
This suggests that while MEGAN v3.1 may preserve some
spatial relationships, it systematically underestimates actual
HCHO concentrations, whereas SieMAC provides more re-
alistic emission estimates.

4.2 Spatiotemporal distributions of SieMAC estimates

We now examine the spatiotemporal patterns of SieMAC iso-
prene emissions. Understanding these patterns is crucial due
to isoprene’s critical role in ozone formation and China’s se-
vere summer ozone pollution. We analyse the spatial dis-
tribution of isoprene emissions, present estimates for three
highly urbanized and densely populated metropolitan areas

with significant ozone pollution, explore the contributions of
various PFTs and their temporal variations during the sum-
mer of 2013. These insights could provide valuable context
for analysing isoprene’s impacts on regional ozone levels.

4.2.1 Spatial distribution

The spatial distributions of summer isoprene emissions over
China exhibit distinct patterns in different models (Fig. 8).
While all models capture the general contrast between high
emissions in eastern China and minimal emissions in the
sparsely vegetated western regions, there are substantial dif-
ferences in both magnitude and spatial patterns that call for
detailed examination.

A key distinction between SieMAC HR and MR lies in
their spatial continuity patterns. HR exhibits more hetero-
geneous distributions with abrupt transitions and isolated
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Figure 6. Spatial correspondence between modelled isoprene emis-
sions and satellite formaldehyde (HCHO). Bars give the Pearson
correlation coefficient (r) between grid-cell seasonal mean isoprene
emission from each inventory – SieMAC MR, SieMAC MRVPD,
SieMAC HR, SieMAC HRVPD, MEGAN v2.1, and MEGAN v3.1
– and Ozone Monitoring Instrument (OMI) HCHO vertical column
over mainland China for summer 2013. Higher values of r indicate
a closer match in the spatial patterns of isoprene emissions and ob-
served formaldehyde.

emission hotspots, reflecting its preservation of detailed lo-
cal variations in tree species composition from the Vegetation
Atlas. In contrast, MR shows more gradual spatial transitions
due to its application of provincial-level tree compositions to
MODIS vegetation cover data. Despite these methodological
differences, both approaches identify the Qinling mountains,
encompassing southern Shaanxi, northern Hubei, and west-
ern Henan provinces, as a major emission source, with emis-
sions exceeding 12 nmol m−2 s−1 due to extensive Quercus
forests.

MEGAN models identify the central southern China re-
gion, including Hunan, Jiangxi, Fujian, and southern An-
hui, as the primary emission source, with higher emis-
sions compared to the Qinling region. While MEGAN also
shows elevated emissions in northern Hubei province, the
high emissions do not extend to the Qinling mountains as
SieMAC. MEGAN v2.1 and v3.1 share similar spatial pat-
terns, though v3.1 consistently simulates lower emissions
with peak values of around 8 nmol m−2 s−1 compared to
approximately 12 nmol m−2 s−1 in v2.1, reflecting updates
to emission factors and algorithms (Guenther et al., 2012;
Jiang et al., 2018b; Chen et al., 2022). While SieMAC es-
timates align more closely with MEGAN v2.1 in magni-
tude, they show distinct spatial patterns and notably higher
emissions across broad areas of eastern China, particularly
in the Qinling region where SieMAC exceeds MEGAN v2.1
by up to 9 nmol m−2 s−1. These differences primarily stem
from MEGAN’s use of ecoregion-based distributions versus
SieMAC’s incorporation of detailed Chinese vegetation data.
Additionally, SieMAC HR and MR predict much higher iso-
prene emissions at 5.5–5.8 nmol m−2 s−1 over the polluted
NCP region compared to MEGAN v2.1 and v3.1 at 1.4–
2.8 nmol m−2 s−1, indicating a larger biogenic contribution

to the observed severe ozone episodes in the region than pre-
viously thought (Ma et al., 2019).

The inclusion of VPD effects in SieMAC significantly en-
hances emissions in regions experiencing hot and dry sum-
mers (Fig. 9). The most pronounced increases of up to
10 nmol m−2 s−1 occur in Shandong province and the Qin-
ling region. These enhancements highlight the potential im-
portance of water stress effects on regional emissions and at-
mospheric chemistry. However, as shown in the model eval-
uation against CARE-China observations and OMI HCHO
data, further field measurements would help better constrain
these effects across Chinese ecosystems.

4.2.2 Emission estimates for major megacity-cluster
areas

Table 4 lists emission estimates for the three most de-
veloped and polluted megacity-cluster regions in China:
NCP, the Yangtze River Delta (YRD), and the Pearl River
Delta (PRD). The spatial distribution of these study regions
is shown in Fig. S14. While SieMAC predictions are gener-
ally closer to MEGAN v2.1 than MEGAN v3.1, significant
differences still exist between SieMAC and MEGAN v2.1.
The substantial differences between MEGAN v2.1 and v3.1
estimates also highlight the uncertainties in current isoprene
emission estimates for these important megacity-cluster re-
gions.

Previous studies have documented that isoprene emissions
enhance regional ozone production in NCP and YRD. How-
ever, studies constraining isoprene emissions in these ar-
eas are currently limited and primarily focus on subregions
rather than the entire regions. SieMAC without VPD algo-
rithm predicts isoprene fluxes of 1.16–1.26 kg C km−2 h−1 in
NCP and 1.33–1.45 kg C km−2 h−1 in YRD, approximately
2.1- and 1.7-times MEGAN v2.1 estimates of 0.59 and
0.84 kg C km−2 h−1, respectively. These results suggest that
isoprene’s impact on regional air quality may be more signif-
icant than previously recognized.

Including VPD effects further increases emission es-
timates to 1.77–1.92 kg C km−2 h−1 in NCP and 1.91–
2.08 kg C km−2 h−1 in YRD, representing increases of ∼
52 % and∼ 44 %, respectively. Given that vegetation has fre-
quently been water-stressed over NCP and YRD in recent
years (Xu et al., 2015), these substantial increases highlight
the need for targeted research to better characterize emission
dependence on water stress in Chinese ecosystems.

In contrast to NCP and YRD, PRD has more compre-
hensive regional emission studies available (Table 4). PRD
shows the highest isoprene fluxes among the three regions,
primarily due to its meteorological conditions that favour iso-
prene emissions. The region’s dense vegetation cover, consis-
tently high temperatures, and strong solar radiation create op-
timal conditions for isoprene production. While the relative
difference between SieMAC and MEGAN v2.1 is smaller in
PRD compared to the other two regions, SieMAC estimates
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Figure 7. Seasonal mean of formaldehyde (HCHO) vertical columns (VC) for summer 2013 simulated with six emission inventories:
(a) SieMAC MR, (b) SieMAC HR, (c) MEGAN v2.1, (d) SieMAC MRVPD, (e) SieMAC HRVPD, and (f) MEGAN v3.1. Values are ex-
pressed in 1015 molec. cm−2. Statistics in the lower-left corner of each panel give the mean bias (MB), the root-mean-square error (RMSE),
and Pearson spatial correlation coefficient (r) between model and OMI HCHO VCs across all grid cells, quantifying the overall amplitude
and spatial agreement with observations.

Figure 8. Summertime (2013) isoprene emissions over mainland China derived from six emission schemes: (a) SieMAC MR,
(b) SieMAC HR, (c) MEGAN v2.1, (d) SieMAC MRVPD, (e) SieMAC HRVPD, and (f) MEGAN v3.1. Shade shows emission rate
in nmol m−2 s−1 (colour scale at right).
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Figure 9. Spatial differences in isoprene emissions (summer 2013) among different schemes. (a) and (b) map the difference between
SieMAC and MEGAN v2.1 for MR and HR, respectively (SieMAC–MEGAN v2.1). (c) and (d) map the difference between SieMAC
and MEGAN v3.1 for MR and HR, respectively (SieMAC–MEGAN v3.1). (e) and (f) quantify the impact of vapour pressure deficit stress
by subtracting the unstressed SieMAC fields from their VPD-enabled counterparts (SieMAC MRVPD–SieMAC MR and SieMAC HRVPD–
SieMAC HR). Colours denote the magnitude of the difference in nmol m−2 s−1 (scale at right); red shades indicate higher emissions in the
first-listed inventory, while blue shades indicate lower emissions.

are still noticeably higher than MEGAN v2.1. The PRD’s hu-
mid monsoon climate presents unique challenges for model-
ing VPD effects. The high summer temperatures can elevate
VPD levels even in humid conditions, leading to enhanced
regional emissions in SieMAC, which appears to overpredict
emissions compared to observations (Fig. 4). This suggests
that the current VPD algorithm, developed for different cli-
mate conditions, may require regional calibration for humid
environments like PRD.

4.2.3 PFT contributions and monthly variations

Understanding the contributions of different PFTs to iso-
prene emissions and their temporal variations is crucial for
accurate emission modelling in China and for informing
vegetation management policies. We focus on the MR and
HR simulations here due to the introduced additional uncer-
tainties by the VPD algorithm in the southern China.

Both SieMAC MR and HR simulations show that
broadleaf deciduous trees are the largest contributors at 39 %
and 43 %, followed by broadleaf evergreen trees at 38 %
and 33 % (Fig. 10). When combined, broadleaf trees account
for 76 %–77 % of total isoprene emissions, consistent with
their known role as dominant isoprene emitters. Grasses con-
tribute 11 % in MR and 14 % in HR simulations, while shrubs
account for 7.31 % and 8.38 %. Other vegetation types make
up the remainder.

These relative contributions differ somewhat from previ-
ous studies. While Li et al.(2013, 2020) similarly identified
broadleaf trees as the primary contributors at 72.9 % and
80.2 %, they found a higher relative contribution from shrubs
compared to grasses. Our higher grass contributions likely re-
flect the updated temperature response algorithms and emis-
sion factors assigned to grasses, particularly in northwest
China, where grass emissions are pronounced.

The monthly distribution of isoprene emissions shows a
clear peak in July across all model simulations (Fig. 11). This
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Table 4. Regional isoprene emission estimates (unit: kg C km−2 h−1).

Region Data source Model Study period Emissions Note if for
(kg C km−2 h−1) subregions

NCP This Study SieMAC MR 2013 summer 1.26
SieMAC HR 2013 summer 1.16
SieMAC MRVPD 2013 summer 1.92
SieMAC HRVPD 2013 summer 1.77
MEGAN v2.1 2013 summer 0.59
MEGAN v3.1 2013 summer 0.29

Wang et al. (2018) MEGAN v2.1 2018 0.18 Beijing
Wang et al. (2003a) GloBEIS 1998 summer 0.17 Beijing

YRD This Study SieMAC MR 2013 summer 1.33
SieMAC HR 2013 summer 1.45
SieMAC MRVPD 2013 summer 1.91
SieMAC HRVPD 2013 summer 2.08
MEGAN v2.1 2013 summer 0.84
MEGAN v3.1 2013 summer 0.48

Lou et al. (2023) MEGAN v2.1 2020 Aug 1.6 Zhejiang province

PRD This Study SieMAC MR 2013 summer 1.46
SieMAC HR 2013 summer 1.75
SieMAC MRVPD 2013 summer 1.70
SieMAC HRVPD 2013 summer 2.04
MEGAN v2.1 2013 summer 0.78
MEGAN v3.1 2013 summer 0.53

Situ et al. (2014) MEGAN v2.1 2008 Fall 2.4 Dinghu Mountain
Wang et al. (2011b) MEGAN v2.0 2003 summer 0.42
Zheng et al. (2010) GloBEIS 2006 0.16

Figure 10. Relative contribution of each PFT to the total isoprene
emissions during summer 2013, shown separately for MR (a) and
HR (b). BrDe Tree and BrEv Tree refer to broadleaf deciduous and
broadleaf evergreen trees, respectively; “Others” comprises needle-
leaf trees and crops. Values next to each sector give the percentage
contribution to the total national emissions attributable to that PFT.

temporal pattern is consistent between SieMAC MR, HR,
and both versions of MEGAN, reflecting their similar ap-
proaches to calculating emission activity factors. The slight
variations between SieMAC and MEGAN estimates can be
attributed to SieMAC’s implementation of PFT-specific LAI
and updated temperature response functions for boreal grass.

4.3 Impacts on ozone simulations

The differences in isoprene emissions between SieMAC and
MEGAN significantly influence simulated ozone distribu-

tions across China, with distinct spatial patterns emerging
from different emission scenarios (Fig. 12). Compared to
MEGAN v2.1 simulations, both SieMAC MR and HR pre-
dict widespread ozone increases across eastern China, while
minimal changes are observed in western China, consistent
with the negligible isoprene emission differences in that re-
gion. In the North NCP region, ozone concentrations increase
by 5–10 ppbv, while other regions typically show increases
less than 5 ppbv. This enhancement pattern aligns with the
spatial distribution of elevated atmospheric oxidation capac-
ity, as evidenced by increased HCHO concentrations across
the regions (Fig. S16). The differences become even more
pronounced when comparing against MEGAN v3.1, with
ozone increases exceeding 15 ppbv around the NCP region,
reflecting the lower isoprene emissions in MEGAN v3.1.

The incorporation of VPD effects in SieMAC further am-
plifies these patterns (Figs. 12 and S17). SieMAC MRVPD
and HRVPD simulations show ozone increases exceeding
15 ppbv in the NCP region, while other areas rarely ex-
ceed 10 ppbv increases. The regional differences in ozone
response can be attributed to variations in ozone-NOx-VOC
chemical sensitivity between different areas. The heavily pol-
luted NCP, characterized by high NOx emissions from ur-
banization and industrial activities, appears to operate more
in a VOC-sensitive regime where ozone production has rel-
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Figure 11. Monthly variation of isoprene emissions for sum-
mer 2013 in four inventories: SieMAC MR (dark blue),
SieMAC HR (light blue), MEGAN v2.1 (brown), and MEGAN v3.1
(grey). (a) is the relative monthly emissions expressed as a percent-
age of each inventory’s total summer emission, permitting direct
comparison of seasonal progression across inventories. (b) presents
absolute monthly emissions in Tg C per month, showing the magni-
tude differences between emission inventories.

atively high sensitivity to reactive VOCs and therefore, ad-
ditional isoprene emissions directly lead to substantial ozone
increase. In contrast, regions like southern Shaanxi province
in the Qinling mountains do not have large NOx sources.
Ozone photochemistry in these regions is NOx-sensitive
where ozone formation is less responsive to VOC increases.
Additionally, the distinct topographical and meteorological
differences between these regions might also contribute to
the varying ozone responses. The flat NCP region expe-
riences more persistent high-pressure systems that favour
ozone accumulation, while the mountainous Shaanxi ter-
rain might promote enhanced vertical mixing that can dilute
ozone responses to isoprene increases. This enhanced sensi-
tivity to VPD effects is particularly significant given that the
NCP already experiences China’s most severe ozone pollu-
tion. These findings align with previous research (Ma et al.,
2019) that documented strong correlations between water-
stressed conditions, enhanced isoprene emissions, and ele-
vated ozone levels in the NCP region.

These findings demonstrate significant spatial variations in
how different isoprene emission estimates affect simulated
ozone distributions across China. The pronounced ozone in-
creases in the NCP region, particularly when accounting for

VPD effects, suggest that current models may underestimate
the role of biogenic emissions in China’s ozone pollution.

5 Summary and conclusions

We developed the Speciated Isoprene Emission Model with
the MEGAN Algorithm for China (SieMAC), which reveals
distinct spatial patterns of isoprene emissions across China
compared to previous estimates. Model evaluation against
both ground-based CARE-China network observations and
satellite HCHO data demonstrates SieMAC’s improved per-
formance over MEGAN v2.1 and v3.1, particularly in north-
ern China where previous versions showed systematic un-
derestimation. When using SieMAC emissions, the chemical
transport model, REAM, produces more accurate spatial dis-
tributions of both isoprene and HCHO compared to simula-
tions using MEGAN emissions.

SieMAC estimates summer 2013 emissions between
10.22 and 14.79 Tg C, corresponding to annual emissions
of approximately 15–22 Tg C. While these magnitudes align
with the range of previous studies, SieMAC indicates a sig-
nificantly smaller north-south emission gradient than previ-
ously recognized. This revised spatial pattern reflects in part
recent land use changes, especially the extensive afforesta-
tion efforts and urban greening initiatives in northern China
that have introduced high-emitting tree species across the re-
gion. The resulting higher emissions in the polluted NCP and
YRD regions indicate a large contribution of biogenic emis-
sions to severe summertime ozone pollution in these regions.

The inclusion of VPD effects in SieMAC reveals poten-
tially significant water-stress impacts on emissions, with en-
hancements up to 40 % during summer conditions. This find-
ing is particularly relevant for the NCP region, where water-
stress induced emission increases can contribute to severe
ozone pollution episodes. These results highlight the need to
better understand dehydration-emission relationships in Chi-
nese ecosystems, especially given the region’s vulnerability
to climate change.

Despite these improvements, several important uncertain-
ties remain in the current model framework. The emission
factors used in SieMAC, while incorporating extensive lo-
cal measurements, still cannot fully capture the diversity of
China’s vegetation. The assigned EFs for species lacking di-
rect measurements introduce potential biases that could be
addressed through expanded measurement campaigns. Addi-
tionally, while SieMAC uses real-time vegetation datasets to
adjust distributions from the Vegetation Atlas of China, the
resolution limitations of current remote sensing and vegeta-
tion statistic datasets and the dated Vegetation Atlas limit the
model’s ability to capture recent land use changes. The an-
ticipated release of an updated Vegetation Atlas should help
address some of these limitations.

Another significant source of uncertainty lies in the
activity response algorithms. SieMAC primarily adopts
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Figure 12. Differences in seasonal mean of daily maximum 8 h average ozone (MDA8) between SieMAC and MEGAN simulations
(summer 2013). Panels show the differences between various SieMAC configurations and MEGAN inventories: (a–d) SieMAC versus
MEGAN v2.1, and (e–h) SieMAC versus MEGAN v3.1. From left to right, columns represent SieMAC MR, SieMAC HR, SieMAC MRVPD,
and SieMAC HRVPD configurations. Colours indicate concentration differences in ppbv (scale at right); red shades show higher ozone con-
centrations in SieMAC simulations, while blue shades indicate lower concentrations.

MEGAN’s algorithms and inherits their uncertainties. The
optional VPD response factor of SieMAC, derived from US.
measurements, may not fully represent the behaviour of Chi-
nese vegetation. Regional differences in how plants respond
to environmental changes have been documented in other
studies, suggesting the need for China-specific field studies
and laboratory experiments to better characterize these rela-
tionships.

Our results highlight several critical implications for en-
vironmental policy and air quality management. The signifi-
cant role of biogenic isoprene in modulating regional ozone
pollution is particularly evident in eastern China and the NCP
region, where accurate emission representation is crucial for
surface ozone control. Additionally, these findings empha-
size the importance of considering air quality impacts in fu-
ture afforestation projects, especially in dehydration-prone
regions where VPD effects can substantially enhance iso-
prene emissions and subsequent ozone formation. Further-
more, our results suggest that current models may underesti-
mate the contribution of isoprene to China’s ozone pollution,
particularly in polluted eastern China. Looking forward, the
flexible open-source framework of SieMAC, which allows
for continuous improvement and regional customization as
new datasets and measurements become available, make it a
valuable tool for both research and policy applications.

Code and data availability. The current version of SieMAC stan-
dalone code is available on the following GitHub link: https:
//github.com/Cathiiie/SieMAC_Gamma (last access: 7 Novem-
ber 2025) under the MIT licence. The exact version of the
model described in this paper is archived on Zenodo under
https://doi.org/10.5281/zenodo.15740701 (Xi, 2025). Setup instruc-
tions and execution steps are outlined in the README file. The

sample input files, including PFT-specific emission factors, LAI
datasets, sample meteorological inputs, and benchmark outputs,
are available at http://apollo.eas.gatech.edu/data/ (last access: 7
November 2025). Complete emission inventory outputs, additional
meteorological data files, and supplementary datasets can be pro-
vided upon request.
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