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Abstract. This paper describes the Python package
JuWavelet, which implements the continuous wavelet trans-
form using the Morlet wavelet, which is a popular tool in the
geosciences to analyse wave-like phenomena. It closes a gap
in available software, which is typically focused on discrete
transforms or lower dimensions than offered here. The code
implements the transform in 1-D, 2-D, and 3-D. In particular,
not only the analysis but also the synthesis from a (modified)
decomposition is available. It also provides a consistent im-
plementation for both the original continuous wavelet trans-
form and the derivative and arguably superior S transform
popular in atmospheric gravity wave analysis for all dimen-
sions.

This paper documents the mathematics behind the imple-
mentation and offers several examples to showcase the ca-
pabilities of the software including the code to generate the
figures shown.

1 Introduction

Since the introduction of the continuous wavelet transform
(CWT) by Grossmann and Morlet (1984), it has been used
extensively in the geophysical sciences. In particular the
Morlet wavelet, being a harmonic oscillation with a Gaus-
sian envelope, is uniquely useful for the analysis of wave-like
phenomena (e.g. Meyers et al., 1993). The papers by Stock-
well et al. (1996) and Torrence and Compo (1998) further
popularized the transform in the geophysical sciences. Since
then, the CWT and the special “flavour” of CWT introduced
by Stockwell labeled S-transform (ST) have been mainstays

in the analysis of atmospheric gravity waves (e.g. Kaifler
et al., 2015; Chen and Chu, 2017; Ghil et al., 2002; Hind-
ley et al., 2019; Kaifler et al., 2023; Reichert et al., 2024).
While not named as such by its inventor, the S transform is
sometimes also labelled Stockwell transform.

As exemplary structures for our examples, we use atmo-
spheric gravity waves (GWs), which are internal GWs in
a stably stratified medium reflecting the interplay between
gravity and buoyancy force (Nappo, 2012). Due to their 3-
D propagation 2-D horizontal cross sections of temperature
fields, obtained for instance by the Atmospheric InfraRed
Sounder (AIRS) or by numerical models, show spatially lo-
calized wave packets with only few oscillations (e.g. Hind-
ley et al., 2019; Jiang et al., 2019). But GW packets are also
localized in the frequency domain since spectral properties
are functions of atmospheric background conditions that can
change quickly (Reichert et al., 2024). This localized nature
of GWs requires a time–frequency or space–wavenumber
analysis tool such as the CWT or ST. While we use only at-
mospheric gravity waves and synthetic data for our examples,
the method is well suited for analysing any signal with local-
ized wave-like structures. This paper focuses on the general
and pure CWT approach, but dedicated tools for GW analy-
sis have been created using similar techniques. Of recent note
are the few-wave decomposition (S3D) by Lehmann et al.
(2012), which is focused on high-performance 3-D analy-
sis based on short-time Fourier transform (STFT)-like tech-
niques, and the Unified Wave Diagnostics by Schoon and
Zuelicke (2018) based on the Hilbert transform.

Wavelets can be defined in any number of dimensions, but
most geophysical applications deal with only 1-D, 2-D, or
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3-D data. While the literature describing the transform and
analysing data of these dimensionalities is available (e.g. the
2-D analysis by Chen and Chu (2017) or a 3-D analysis by
Hindley et al., 2019), properly validated code is only freely
available associated with the publication of Torrence and
Compo (1998), providing the 1-D CWT only. This paper tries
to close this gap by describing the open-source JuWavelet
package, which provides 1-D, 2-D, and 3-D implementa-
tions in the widely used Python programming language of the
CWT using the Morlet wavelet, as well as the associated ST.
Following the equations provided by this paper allows us to
fully validate both the algorithm and the implementation and
should also allow the development of derivative work such as
a 4-D analysis, the use of different wavelet basis functions,
or the translation of the code in a different programming lan-
guage. Earlier versions of this software were already used for
the publications of Geldenhuys et al. (2023) and Krasauskas
et al. (2023). The intent is to make this analysis method more
readily available and to provide a starting point for modifica-
tions of the algorithm to suit the scientific need at hand.

We first introduce the mathematics behind the CWT and
its discretization in 1-D. We keep the higher-dimensional for-
mulas in the Appendix for brevity’s sake. A comprehensive
and rigorous treatise on wavelets in general can be found in
textbooks as provided by, for example, Mallat (1999), the
notation of whom we follow here. Second, we describe the
CWT using the Morlet wavelet and the S transform in greater
detail including several application notes helpful for users of
the software package. Third, we exemplarily explain the call
of the 2-D decomposition in detail. Lastly, we give some ex-
amples of the use of the software package. A particular high-
light of the overdetermined CWT (and ST) is the ability to
not only analyse the data for signals of certain frequencies
but also extract features from this. This requires the proper
implementation of the inversion of the transform documented
below, which this software delivers as well.

2 Continuous wavelet transform

This section gives a very brief and mathematical introduc-
tion of the CWT and its inversion, here called reconstruction.
Emphasis is put on the discretization necessary to apply the
continuous transform on sampled data on a computer. Here,
we always assume that there is a continuous function behind
the samples, which is our actual target of interest. The basic
idea behind the CWT is to transform a function from its orig-
inal space into a function operating on a higher dimensional
space, which spans both the original spatial (or temporal) di-
mension(s) and, in addition, dimensions of wavelength/pe-
riod. This higher-dimensional function then allows for the
easier analysis and modification of the original signal. First
we present the mathematics behind the transform, its inverse,
and the necessary discretization employed for the implemen-
tation at hand. While the software necessarily treats discrete

data, we stress that both inputs and outputs of the implemen-
tation are to be interpreted as samples of continuous func-
tions.

Given an square-integrable function (typically complex-
valued) ψ with zero average and L2-norm of 1, a wavelet
dictionary can be constructed by translations and scaling of
ψ :{
ψu,s(t)=

1
√
s
ψ

(
t − u

s

)}
u∈R,s∈R+

.

These basis functions are normalized with
∣∣∣∣ψu,s∣∣∣∣= 1 (us-

ing here and later the L2 norm). The CWT operator W ap-
plied to the function f ∈ L2(R) is then defined as

Wf (u,s)=
〈
f,ψu,s

〉
=

∞∫
−∞

f (t)
1
√
s
ψ∗
(
t − u

s

)
dt. (1)

The CWT can be defined for complex-valued functions as
well, but this has less practical relevance for the application
to geophysical data and is thus neglected here. Due to the
convolution theorem, this can be computed more efficiently
in Fourier space as

Wf (u,s)=

∞∫
−∞

f̂ (ω)
√
s
[
ψ̂(sω)

]∗
ei2πωudω, (2)

with ·̂ denoting the Fourier transform of a function1. The ∗

denotes the complex conjugate. This function also explains
the implementation of the transform in the software best,
with the exception of being discretized and using the fast
Fourier transform instead of the continuous one.

Let ψ ∈ L2(R,C) be a complex-valued wavelet with

0< Cψ :=

∞∫
0

|ψ̂(ω)|2

ω
dω <∞.

Then, W can be inverted (under sensible assumptions on f ;
Mallat, 1999) as

f (t)=
2
Cψ

Re

 ∞∫
0

∞∫
−∞

Wf (u,s)
1
√
s
ψ

(
t − u

s

)
du

ds
s2

 .
This also conserves the energy of f :

∞∫
−∞

|f (t)|2dt =
2
Cψ

∞∫
0

∞∫
−∞

|Wf (u,s)|2du
ds
s2 . (3)

1Here, we follow the convention of f̂ (ω)=
∫
∞

−∞
f (t)e−i2πωtdt

and f (t)=
∫
∞

−∞
f̂ (ω)ei2πωtdω as this allows a closer alignment

of the code using discrete Fourier transforms with the continuous
maths described here, assuming obviously that the integral exists.
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In practice, a different, simpler reconstruction formula is
used. Due to the redundancy of the CWT, other functions can
also be used instead of ψ for the reconstruction. Holschnei-
der and Tchamitchian (1991) give the necessary conditions
for such a function and the proof. One typically uses the
Dirac delta function δ as this greatly simplifies the compu-
tation of the reconstruction formula:

f (t)=
1
Cδ

Re

 ∞∫
0

Wf (t,s)
1
√
s

ds
s


with Cδ = Re

(∫
∞

0
ψ̂(ω)δ̂(ω)

ω
dω
)

. It has the added advantage
that only the wavelet transform evaluated at location t is re-
quired to reconstruct f at this location, which is perfect keep-
ing in mind that we can only sample the CWT at discrete
locations on a computer.

So, to allow numerical fast execution on computers, we
apply discretization. First, we discretize the scales s. The
data that we analyse are normally sampled and finite and
thus band-limited, such that only a finite interval of scales
is relevant for the analysis at hand. It is also useful to sam-
ple the scales in a logarithmic fashion: s = s02dj j following
Torrence and Compo (1998), with j ∈ R for the first step and
a natural number in the second step in the following equa-
tion. dj determines the sampling density and is often in the
order of 1

8 to 1
2 . If we assume that only scales between s0 and

s1 = s02dj (js−1), with js ∈ N, are of relevance (e.g. because
the original function is band-limited), the reconstruction for-
mula thus becomes by substitution

f (t)=
1
Cδ

Re

 ∞∫
−∞

Wf (t,s02jdj )
dj ln2√
s02jdj

dj



≈
1
Cδ

Re

 js−1∫
0

Wf (t,s02jdj )
dj ln2√
s02jdj

dj


≈

1
Cδ

Re

(
js−1∑
j=0

Wf (t,s02jdj )
dj ln2√
s02jdj

)
.

This formula can also be used to compute Cδ more easily as
the equation also holds for f being the Dirac delta. With

Wδ(u,s)=

∞∫
−∞

δ̂(ω)
√
s
[
ψ̂(sω)

]∗
ei2πωudω

=

∞∫
−∞

√
s
[
ψ̂(sω)

]∗
ei2πωudω

follows

δ(0)= 1≈
1
Cδ

Re

js−1∑
j=0

∞∫
−∞

√
s02jdj

[
ψ̂(s02jdjω)

]∗

·ei2πω0dω
dj ln2√
s02jdj

)

=
1
Cδ

Re

js−1∑
j=0

dj ln2

∞∫
−∞

[
ψ̂(s02jdjω)

]∗
dω


and thus

Cδ ≈ dj ln2
js−1∑
j=0

Re

 ∞∫
−∞

[
ψ̂(s02jdjω)

]∗
dω

 .
3 The Morlet wavelet and the S transform

In the field of geophysics the use of the Morlet wavelet is his-
torically very popular (e.g. in the fields of seismology, Gross-
mann and Morlet, 1984, oceanography, Meyers et al., 1993;
Torrence and Compo, 1998, and atmospheric gravity waves,
Chen et al., 2019). Strictly speaking, the Morlet wavelet is
not admissible as it does not have a zero mean, which can be
fixed mathematically with some tricks (e.g. using the Heav-
iside function), but for a discretized analysis of functions of
finite support it does not practically matter due to the band-
limitedness of the involved signals. The code uses the fol-
lowing definition in Fourier space:

ψ̂s(ω)=
√

2s 4
√
πe−

1
2 (2πsω−k)

2
.

In real space, it is a combination of a Gaussian envelope with
a complex-valued sinusoid. A Gaussian is a good window
choice as it is similarly well localized in both spatial and fre-
quency space. The free parameter k configures the relation of
the scale parameter (and the width of the Gaussian envelope)
to the period of the oscillation. The full formula for the CWT
using the Morlet wavelet is

Wf (u,s)=
〈
f,ψu,s

〉
=

∞∫
−∞

f (t)
1
√
s

1
4
√
π

1
√
s
e−

1
2 (

t−u
s )

2

︸ ︷︷ ︸
Gaussian

1
√
s
e−ik

(t−u)
s︸ ︷︷ ︸

oscillation

dt. (4)

The scale s corresponds to the standard deviation of the
Gaussian window, and the parameter k modulates the wave-
length of the harmonic oscillation. For a parameter of k =
2π , the length of one period of the oscillation corresponds to
both the scaling parameter and the standard deviation of the
Gaussian.

The Morlet wavelet is shown in Fig. 1 in both spatial and
frequency space. The scale is chosen for each wavelet to have
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Figure 1. The Morlet wavelet in spatial and frequency space. The
Morlet parameter influences the number of wave crests within the
envelope and thus the localization in frequency space.

the same period in its oscillation of 100 km: under these con-
ditions, k widens the Gaussian envelope allowing more peri-
ods of the oscillation to fit under it. This directly affects the
spectral localization; i.e. more repetitions under the envelope
imply a higher spectral resolution and vice versa. The smaller
k, the larger ψ̂s(0) becomes, i.e. the “less” admissible it be-
comes in its unmodified form. Commonly used values are 6
or 2π . The default value for JuWavelet is 2π as this simpli-
fies the interpretation of results; e.g. the scale parameter s is
identical to the analysed wave period for the default value.

The ST is a variation of the CWT that allows a simpler
interpretation of results. The ST S is defined as

Sf(u,s)=

√
2

√
s 4
√
π
e−ik

u
s
〈
f,ψu,s

〉
=

2

s
√

2π

∞∫
−∞

f (t)e−
1
2 (

t−u
s )

2
e−ki

t
s dt, (5)

typically choosing k = 2π ; there is a difference of a fac-
tor of 2 to the definition by Stockwell et al. (1996) as we
analyse real-valued in contrast to complex-valued functions.
Please note the similarity of this equation to Eq. (1); the dif-
ferences are the scale-dependent scaling of coefficients and
the location-dependent phase correction, which can be seen
in the harmonic term. For the CWT the harmonic term is
shifted with the u variable causing the coefficients to rotate in
phase space when u is varied, whereas it remains fixed in the
ST. The discrete ST as originally defined by Stockwell et al.
(1996) always uses N dyadic scales for data of length N (ef-
fectively using a discretization parameter dj = 1), whereas
the given implementation is more flexible. On the continu-
ous side, they are identical.

Both the CWT using the Morlet wavelet and the ST are
closely related to the Gabor transform, which is a short-

time Fourier transform using a Gaussian window (Gabor,
1946). The notable difference between the Gabor transform
and the ST is the wavelength-dependent scaling of the win-
dow, which varies for the ST with the scale parameter s,
whereas it is of a fixed size for the Gabor transform. This
causes the spectral resolution of the Gabor transform to vary
for different scales (i.e. it is spectrally highly resolved for
high frequencies but spectrally coarsely resolved for low fre-
quencies), whereas the CWT (and its derivative the ST) has
a uniform spectral resolution.

The scaling of the CWT by
√
s
−1 allows the ST coeffi-

cients for k = 2π to be directly interpreted as amplitude at
wavelength s (Stockwell et al., 1996); the proof of this is
rather straightforward and will not be repeated here, as it
has no relation to the implementation of the software pack-
age. This relationship holds for an input signal containing a
harmonic oscillation of infinite extent, whereas for smaller
wave packets, a reduction in derived amplitude may occur.
The Morlet-parameter can be taken as a rough guideline: if
the wave packet has fewer periods than the Morlet parame-
ter, the dampening cannot be neglected. For the ST, these are
roughly six full periods.

A similar scheme to the ST was developed by Chen and
Chu (2017) lacking the phase correction. Without phase cor-
rection, the complex angle of the coefficients varies by 2π
while been translated over one wavelength. The JuWavelet
code implements the pure CWT, the ST, and also the vari-
ation introduced by Chen and Chu (2017) by the name of
“scaled” as this variation only scales the coefficients to align
with the amplitude of a infinite monochromatic analysed sig-
nal. For 1-D a Gabor transform is also available. All relevant
transform methods have a mode parameter to select the de-
sired transform; by default, the S transform variation is used,
as this delivers the most useful coefficients. Please note that
while the normal CWT transforms Gaussian white noise in
the input signal to Gaussian white noise in the coefficients,
the ST introduces a colouring of the noise due to the scal-
ing of coefficients with scale such that coefficients of small
periods are more “noisy” than those of large periods.

Both the implementations of CWT and ST may use any
parameter for the Morlet wavelet free parameter k. Practi-
cally, this tunes the relationship between spatial and spectral
resolution of the transforms. A higher parameter k results in
a better spectral resolution at the cost of spatial resolution
as the Heisenberg uncertainty relation imposes limits (e.g.
Weyl, 1931). Smaller values than 2π cause the wavelet to be-
come “less admissible” as more and more energy leaks into
negative frequencies, which invalidates some of the proofs
underlying the CWT. Practically, values as small as 5 can be
used (Farge, 1992); smaller values would require some mod-
ifications to the wavelet (i.e. setting non-positive frequencies
to zero) for the reconstruction to work properly and associ-
ated correction terms, e.g. in the conversion from scale to
period. Several studies have examined the effect of differing
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trade-offs and configurations, and we refer to these studies
for details (e.g. Fritts et al., 1998; Pinnegar and Mansinha,
2003; Hindley et al., 2016, 2019). In the case that a value
different from the default k = 2π is used, the wavelet scale
parameter of the transform and the period (or wavelength)
of the associated wave in the analysed signal differ; the de-
composition in the code always returns both the scale and
the period for all computed coefficients, and the supplied pe-
riod should be used for almost all purposes. Different k pa-
rameters require different constants for the reconstruction,
if desired. The code contains pre-computed values Cδ for
the most sensible Morlet parameters (i.e. single-digit integers
and multiples of π ); for other values, it will be computed on
the fly and cached for repeated use within the same program
execution.

The mathematics for the 2-D and 3-D transforms are ex-
tensions of the formulas for the 1-D transform and rather ver-
bose due to the added dimensions. They are thus given in the
Appendix A1 and A2, respectively. They do not introduce
relevant new concepts aside the one or two angles rotating
the wavelet in two or three dimensions, respectively, and the
aspect ratio described in the next paragraph.

An additional feature only available for the 2-D and 3-D
transforms is the addition of an aspect ratio, which effec-
tively scales the axis of the last dimension before applying
the transform, which does not affect or resample the data
field. The basis functions of the CWT and ST are defined
to be isotropic. If the analysis shall be employed using actual
units, e.g. kilometres, this can pose a problem for vertical
cross-sections of atmospheric gravity waves, which are often
hundreds of times wider than tall and often only have one
or two periods. Using a simple 2-D ST will use basis func-
tions, which extend vertically beyond the wave structure and
thus cause the derived coefficients to be much smaller than
the amplitude of the present waves; i.e. the derived ampli-
tudes are dampened. Scaling the 2-D field vertically such that
the measured waves are more “quadratic” or “cubic”, respec-
tively, resolves this issue (an equivalent interpretation of the
mathematics would be using a wavelet condensed in one di-
mension). JuWavelet is capable of scaling the axis of the last
dimension by a scalar. This has no effect on the mathemati-
cal transform itself; however, the computation of directional
wavelengths changes. For this reason, the corresponding di-
rectional wavelengths in the two or three dimensions are pro-
vided for the higher-order transforms. Generally, the decom-
position results vary depending on the units of the employed
axis, and a “normalization” of the data to a sensible relation-
ship is useful for a meaningful analysis. Both CWT and ST
will always be invertible, but the interpretation of results is
simpler if the axes of the data field are scaled in a reasonable
fashion; otherwise the derived coefficients will more strongly
deviate from the desired local amplitudes.

4 The 2-D decomposition

In this section, we describe the call of the 2-D decomposition
as some of its parameters are not very intuitive. The 1-D and
3-D transforms are very similar. The signature of the 2-D
transform is as follows:

def decompose2d(
data, dx, dy, s0, dj, js, jt, aspect=1,
nxpad=None, nypad=None, opts=None, filt=None,
mode="stockwell", dtype=np.complex128):

The first parameter data refers to the 2-D NumPy array
containing the data to be analysed. It needs to be regularly
sampled, and the sampling distances in x and y direction
are given by the dx and dy parameters. The 2-D CWT han-
dles the analysis of data defined on an infinite plane. Here,
we have a finite set of sampled data, and the implementa-
tion assumes that the data are defined as “zero” outside the
given samples. If the data are not naturally zero, it is ad-
visable to employ a preprocessing step to subtract an hope-
fully uninteresting average value, e.g. using an appropriately
sized median filter. Another option is a so-called tapering,
which surrounds the data with a boundary region in which
it is smoothly brought to zero to reduce the effect of ring-
ing in the analysis due to discontinuity that would otherwise
be present at the border. A simple tapering function called
smooth_edges is contained in the utils submodule.

The aspect parameter effectively scales the dy parame-
ter with the difference that the decomposition returns the di-
rectional wavelengths for the correct sampling distance. The
provided directional wavelength assumes that the unit of the
x and y axis is identical. If they have different units such as
length and time, the interpretation is obviously more difficult
and cannot be automated. Values of 1 for both dx and dy can
be used as well to have a fully unitless analysis.

The CWT is defined for all non-negative scales. For prac-
tical reasons, only a finite number of these scales is evaluated
by the implementation; the available data field is also neces-
sarily band-limited due to its sampled nature. The s0 param-
eter defines the smallest scale to be analysed. A value result-
ing in an analysed period smaller than both 2dx and 2dywill
obviously not deliver useful results due to the Nyquist fre-
quency. js defines the number of scales to be analysed. The
runtime of the transform increases linearly with the number
of analysed scales. Towards the longer scales, values result-
ing in wavelet basis functions of a size similar to the data set
will provide ever more dampened values due to the increas-
ing overlap between analysing wavelet basis function and the
zero region around the supplied data. The dj parameter con-
figures the sampling of the scales to be analysed with the for-
mula of

{
s02jdj |j ∈ [0, . . ., js − 1]

}
. A reasonable value for

dj is typically 1/4 (Torrence and Compo, 1998), but an ex-
ploratory analysis benefits from the speedup of a value of 1 in
combination with a smaller js parameter. The jt parameter
defines the number of angles to be used in the analysis. The
2-D Morlet wavelet can be rotated by an angle θ with values
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within the half-open interval of [0,π). A good starting value
would be something in the order of 12. More angles allow
a better identification of wave parameters, but the runtime
increases linearly with the examined angles.

The opts parameter is a Python dictionary allowing
us to configure the k parameter of the Morlet wavelet for
both the Morlet CWT and ST transform. For example,
opts={"param": 5} configures a value of 5, allowing
for a better spatial resolution at the cost of spectral resolu-
tion in comparison to the default value of 2π .

The filt parameter is a Python dictionary allow-
ing us to skip the computation of selected directional
wavelength to speed up the computation. The possible
keys vary depending on the employed transform. The 2-
D transform supports the keys min_wavelength_x,
max_wavelength_x, min_wavelength_y,
max_wavelength_y, min_theta, and max_theta.
For example filt={"min_wavelength_x": 10,
"max_wavelength_x": 100} only computes coef-
ficients associated with directional wavelength along the
x axis between 10 and 100. Coefficients associated with
wavelengths outside this range will be filled with NaN
values.

The padding parameters nxpad and nypad allow us to
manually configure the padding necessary to perform the
convolution in Fourier space. The underlying fast Fourier
transform (FFT) assumes data to be periodic in all spatial
directions, which is not an assumption underlying the CWT.
To avoid effects of this periodicity affecting the analysis, the
data are padded with zeros, applying a different assumption
of the data being zero outside the supplied data. If the data are
actually periodic, this can be exploited by setting the padding
parameters to zero. It should normally be left to its default
values, which guarantee correct results, albeit at increased
runtime. In the case that the data field is already sufficiently
padded with zeros (e.g. due to tapering or similar preprocess-
ing steps), it should be set appropriately to save memory and
runtime.

The mode parameter configures the type of transform to
be used. The default value of “stockwell” uses the ST, while
“cwt” uses the Morlet CWT.

The final parameter dtype defines the numerical format
to store the coefficients in. The computation internally uses
the double format to reduce error propagation, but the results
can be stored in lower accuracy to save memory. The default
format is complex128 for the 1-D and 2-D transform and
complex64 for the 3-D transform.

5 Examples

This section gives several examples demonstrating the capa-
bilities and application of the available analysis tool.

5.1 1-D analysis on synthetic data

The first example2 serves to showcase the ability of the CWT
to analyse a signal for individual components and highlight
the differences between the implemented method. Figure 2
shows a signal consisting of three subsignals in panel (a).
The individual subsignals are shown in panel (e). One sub-
signal decreases linearly in amplitude, one changes its fre-
quency, and one is only present in the second half, which
would be typically time or space in geophysical data. The
signal is a 1-D array with 2048 entries (8 kB). We first apply
the 1-D CWT to the signal using dx= 1, s0= 2, dj= 1/8,
js= 56, and k = 2π . Panel (b) shows nicely how the sub-
signals are reflected in peaks of the magnitude. The phase
signal (panel f) is difficult to interpret, as it changes linearly
during the signal. Here, as a comparison, we showcase the
result of a Gabor short-time Fourier transform (STFT; e.g.
Allen, 1977; Mallat, 1999), which has an analysing function
using a Gaussian envelope with a fixed standard deviation of
length 100. In panels (c) and (g), one can see that the results
are similar to the CWT but that the spectral resolution is bet-
ter for small periods and worse for large periods. This is a
direct consequence of the changing number of periods in the
basis function due to the envelope of fixed size. Finally, we
apply the 1-D ST to the signal using the same parameters as
in the 1-D CWT case. Results are shown in panels (d) and (h).
The magnitude of the coefficients corresponds to the magni-
tude of the original signals, as expected. Another difference
can be spotted in the phase plot. The phase stays constant in
the analysis at the correct period length, which gives another
indication of the “correctly” identified period length. Due to
evaluating only a discrete set of scales on a computer, one
seldom really analyses the correct period and is much more
likely to look at one “close” to the correct one, where the
phase still changes albeit, slowly. Also, many real-life signals
vary slightly in frequency, so this makes the phase difficult to
interpret even for the ST.

On a more practical note, please observe that the results
of the CWT get more “fuzzy” on the edge for larger scales.
This is due to the increasing extent of the wavelet basis func-
tions, which extend beyond the original signal, where the al-
gorithm assumes a signal of “zero”. This can cause a variety
of artefacts in the coefficients close to the border; here, the
magnitude decreases, but for data that are not “zero” at the
boundaries, ringing-like artefacts will also appear. To avoid
this as much as possible, it is suggested to use tapering, i.e.
to bring the signal to zero in a controlled fashion. Be gen-
erally aware of this when interpreting the coefficients. Tor-
rence and Compo (1998) provide a “cone of influence” for
1-D data, which can be found in the utils submodule for
1-D decompositions.

2See examples/decompose1d.py within JuWavelet.
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Figure 2. An analysis of a combination of three signals, which each vary in a different quantity (amplitude, frequency, location). Panel
(a) shows the assembled signal, while panel (e) shows the individual signals. Panel (b) and (f) show the magnitude and the phase of the CWT
coefficients. Panel (c) and (g) show the magnitude and phase of the Gabor STFT coefficients. Panels (d) and (h) show the magnitude and
phase of the ST coefficients.

5.2 1-D analysis of sea surface temperature (SST)

As a second example3, we would like to reproduce a figure
by Torrence and Compo (1998) analysing an actual series of
sea surface temperatures (SSTs) as a measure of the ampli-
tude of the El Niño–Southern Oscillation. The software and
data used by Torrence and Compo (1998) for this 1-D anal-
ysis are readily available (see Acknowledgements). The SST
data are a 1-D array with 504 entries (3 kB). We apply our 1-
D CWT to the SST time series using the following set of pa-
rameters: dx= 0.25, s0= 0.5, dj= 1/4, js= 37, k = 6.
Results of the analysis are shown in Fig. 3. The SST time
series shows obvious “high-frequency” oscillations of short
timescales of a few years in addition to less obvious long-
term features. The power spectrum (i.e. the squared absolute
values of the coefficients of the CWT) is shown in Fig. 3b.
The power relates to the variance of the original signal ex-
plained by the indicated periods and time frames. Here, the
hatched region indicates the coefficients roughly, where the
relevant support of the wavelet extends beyond the region of
available data (cone of influence). Please note that the CWT
of JuWavelet retains the energy of the continuous signal as
described in Eq. (3), whereas Torrence and Compo (1998)
defined their transform to conserve the variance of the sam-
pled signal, which causes the spectrum to change if the sam-
pling distance varies; this causes a discrepancy of a factor of
4 between their figure and our figure. Panel (c) shows the ab-
solute value of the ST, which directly relates to the amplitude
in the original signal. Please note how the ST reduces the co-
efficient magnitude for longer periods and elevates values for
smaller periods (and thus also amplifies noise).

3See examples/sst.py within JuWavelet.

Figure 3. A replication of the analysis of the Niño3 SST index from
Torrence and Compo (1998). Panel (a) shows the index itself, while
panel (b) shows the power spectrum of the 1-D CWT analysis us-
ing a Morlet wavelet (with parameter 2π ). The hatched region indi-
cates untrustworthy values where the relevant wavelet support ex-
tends over the region where data are available. Panel (c) shows the
amplitudes derived from the ST for comparison.
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5.3 2-D analysis on synthetic data

The 2-D Morlet wavelet is shown in Fig. 4 for differing scales
and angles. It is used to analyse4 a synthetic 2-D field con-
taining several wave packets depicted in Fig. 5a. The syn-
thetic field is similarly designed as the synthetic wave field
shown in Hindley et al. (2016, therein Fig. 2) and contains
eight partially overlapping waves. All waves have an ampli-
tude of 1 but differing envelopes. One example uses a circu-
lar pattern similar to gravity waves induced by point sources.
The field is an array with 200×200 entries and takes up a disc
space of 0.3 MB. The CWT transforms this 2-D field into a 4-
D field with added dimensions of scale (or period) and angle.
The disc space occupied by the 4-D array increases linearly
with the number of scales and rotation angles, and so does the
computation time. For the wavelet analysis of the synthetic
wave field, we used dx= dy= 1, s0= 2dx, dj= 1/16,
js= 106, jt= 18, k = 4, and an aspect ratio of 1, resulting
in an array of size 1.4 GB. Please note that due to an ambi-
guity of π , the 18 angles are equally distributed in the range
[0,π ]. This 4-D information field is difficult to visualize, so
following Hindley et al. (2016) we collapse the 4-D field by
selecting the coefficient with the largest amplitude for each
spatial sample and selecting the associated wavelength and
angle. This gives again 2-D fields. Figure 5b and c show the
reconstruction of the dominant modes and the resulting am-
plitude field, respectively. Please note that we used the scaled
version (mode= “scaled”), which yields the correct ampli-
tudes of the signal. While the structure of the wave field is
nicely reconstructed, the amplitudes are all strictly smaller
than 1, as the relationship between wavelet coefficients and
amplitude of original waves only holds for monochromatic
waves of infinite extent, and the employed examples are all
comparatively small. Here the CWT uses the Morlet param-
eter of k = 4, which is chosen due to the strong localization
of the wave packets in space. The wavelength and wavefront
orientations associated with the dominant coefficients are de-
picted in panel (d) and (e). In addition, we oppose input and
output wavelengths and wave orientations in Fig. 5f. While
wavefront orientations are in perfect agreement, we notice
an underestimation of the wavelength for wave packet 6 and
7. The reason for this underestimation might be their large
wavelengths in comparison to the physical extent of their en-
velopes. Another contributing factor might be the vicinity of
wave packets 6 and 7 to the boundary of the domain.

5.4 2-D reconstruction

The supplied code can not only compute the decomposition
but also reconstruct the original field from the CWT. This al-
lows the manipulation of coefficients for a wide variety of
purposes. Figure 6 shows several examples5 thereof. Please
note that the physical dimensions of the data are widely

4See examples/separate2d.py within JuWavelet.
5See examples/decompose2d.py in JuWavelet.

different. While vertically, the measured data cover about
50 km, horizontally about a thousand are covered. Also the
gravity waves in the data often have much larger horizontal
than vertical wavelengths. To facilitate the analysis here, we
make use of the aspect feature described above. Here, an as-
pect of 40 was employed, which delivered reasonable results
and did not leave the computed coefficients for most angles
empty (as is the case for the default aspect of 1).

The data set is a down-sampled version of the tempera-
ture data measured by the ALIMA lidar (Kaifler et al., 2017)
analysed and discussed by Geldenhuys et al. (2023) using an
earlier version of this software. The temperature field (see
Fig. 6a) is a 2-D array with 89× 110 entries (244 kB). We
apply the 2-D CWT to the data using the following param-
eters: dx= 8.46, dy= 0.4, s0= 20, dj= 1/45, js= 20,
jt= 18, aspect= 40, and k = 2π . The coefficients pro-
vided by the CWT can be filtered; i.e. practically “undesired”
coefficients are set to zero before performing a reconstruc-
tion. In this manner one can filter out components according
to angle and thus separate the original field into left-slanted
(Fig. 6b) or right-slanted waves (Fig. 6c), which likely also
correspond here to a downward or upward propagation di-
rection, respectively. A low-pass filter can be finely config-
ured by setting wavelet coefficients to 0 where periods are
smaller than 100 km (Fig. 6d) or vice versa. It is also possible
to extract individual wave packets. A simple clustering algo-
rithm contained in the software package identifies different
wave packets and the associated CWT coefficients. Due to
the finite spectral and spatial resolution of the employed ba-
sis, the basis function closest in parameters to the true wave
packet will typically have the largest coefficient, but spec-
trally neighbouring basis functions will still have large values
decreasing with “distance” in the wavelet space. Including
these in the reconstruction is important to retain the ampli-
tude of the packet. The algorithm assumes that overlapping
wave packets are separable in spectral space by coefficients
below a configurable threshold. Due to the high dimension-
ality of the CWT coefficients, this is a reasonable assump-
tion. The algorithm then identifies the largest coefficient not
part of an identified cluster and first identifies the scales and
angles associated with this cluster by looking for neighbour-
ing scales and angles at this point above the threshold. In a
second step, the spatial extent is explored in the same way,
starting from the identified scales and angles. The algorithm
repeats until no further cluster can be constructed from re-
maining coefficients. By only using the coefficients of a sin-
gle cluster in the reconstruction, individual wave packets can
be identified and analysed with respect to wavelength, direc-
tion, and amplitude. The two major features of the field are
given in Fig. 6e and f. The directional wavelengths given in
the panel headings fit the observable structure close to the
highlighted centre of the wave packet well. Further away, the
agreement is worse; here the supplied automatic clustering
algorithm is unable to identify properly the cluster bound-
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Figure 4. The 2-D Morlet wavelet. The three panels showcase variations when changing the rotation or the scale parameter.

Figure 5. An example of a 2-D CWT analysis. Panel (a) shows the synthetic field containing several waves. A CWT analyses this field and
the “dominant” wavelet; i.e. the wavelet with the largest coefficient is identified for each spatial sample. Panel (b) shows the reconstruction
of the dominant mode, panel (c) the resulting amplitude, panel (d) the corresponding wavelength, panel (e) the corresponding orientation.
Panel (f) opposes input wavelength and orientation to estimated quantities.

aries. We suggest mostly using the automatic algorithm for
exploratory analysis.

5.5 2-D separation of two waves

In general, waves can overlap. However, most studies focus
on analysing wave parameters with dominant amplitudes at
spatial samples (such as done in Sect. 5.3; see also Hind-
ley et al., 2016, 2019; Wright et al., 2021). In this exam-
ple6, we present a superposition of a simple large-scale plane
wave and a small-scale Kelvin wake pattern. Figure 7a shows
the wave field with 640×480 entries (1.2 MB). We compute
the 2-D CWT of the wave field using dx= dy= 0.1 km,
s0= 2dx, dj= 1/8, js= 58, jt= 9, k = 4, and an as-

6See examples/segment2d.py within JuWavelet.

pect ratio of 1 and obtain a 4-D array of wavelet coeffi-
cients (memory space: 2.8 GB, runtime: 2.8 min (two phys-
ical cores, i.e. four logical CPUs via two-way hyperthread-
ing)). Subsequently, we use the watershed function from
the skimage.segmentation package in Python to label the
wavelet coefficients. For this, we calculate the power spec-
trum and invert it. The watershed function then segments re-
gions in the spectrum that are separated by a minimum. In
this example we find two major segments that are associated
with the small- and the large-scale wave. To reconstruct the
small-scale wave, all wavelet coefficients corresponding to
the large-scale wave are set to zero and vice versa. The re-
construction of the small- and large-scale wave is shown in
Fig. 7b, and c. To represent the respective amplitudes, wave-
lengths, and orientations, we take the adjusted wavelet coef-
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Figure 6. This example shows the capabilities of reconstructing a data set from a modified set of coefficients. Panel (a) shows the original
data field. Panel (b) shows a filtered reconstruction allowing only left slanted waves, while panel (c) shows the right slanted waves. The sum
of (b) and (c) gives the original data. Panel (d) shows the effect of discarding the small scales, effectively a low pass. Panels (e) and (f) show
reconstructions containing only coefficients from the vicinity of two local maxima in the CWT corresponding to two wave packets, which
can be identified in this manner with wavelengths of 381 km horizontally and 5.5 km vertically for panel (e) and 248 km horizontally and
7.4 km vertically for panel (f). The spatial location of the coefficient with the largest amplitude is given by a white circle.

ficients and collapse the modified 4-D array of coefficients
by saving the parameters that are associated with the ampli-
tude maximum at each spatial sample. The result is shown in
Fig. 7d–i. In contrast to the example in Sect. 5.3 the two wave
fields in this example cannot be separated by simply looking
for dominant amplitudes, but we must make use of their dif-
ferent scales. Here, we find that the watershed function nicely
separates the two waves. Not only the wave fields can be re-
constructed separately, but also the wave’s spectral properties
such as amplitude, wavelength, and orientation can be stud-
ied separately. Please note that the retrieved large-scale wave
amplitude is weaker at the boundary of the domain due to the
enhanced overlap of the 2-D wavelet with padded zeros out-
side the domain. We apply the same watershed function to
the wavelet power spectrum from Sect. 5.3 and reconstruct
almost all synthetic wave packets separately (see Fig. A1).
Only the location, scales and orientations of wave packets 4
and 7 are to similar, and hence these two wave packets can-
not be separated by the algorithm (see Fig. A1b). These ex-
amples demonstrate the power of combining the 2-D CWT
with an appropriate segmentation algorithm.

5.6 3-D analysis of synthetic data

Figure 8 shows the 3-D structure of a mountain wave. For this
example7 we compute the vertical displacement (see Eq. 20

7See examples/decompose3d.py in JuWavelet.

in Smith, 1980) given a bell-shaped mountain (h= 1000 m,
a = 25000 m) as well as a static stability of N = 0.02s−1

and a horizontal wind speed of u= 10ms−1. The data are
a 3-D array with 250× 300× 40 entries (11.4 MB). The 3-D
CWT is applied to the wave field using the following parame-
ters: dx= dy= 2 km, dz= 0.25 km, s0= 4 km, dj= 1/4,
js= 16, jt= 6, jp= 7, k = 4, and an aspect ratio of 10.
As a result of the 3-D CWT we get a 6-D object containing
wavelet coefficients for all three spatial, one scale, and two
angle dimensions (memory space: 13.5 GB, runtime: 0.74 h
(16 physical cores, i.e. 32 logical CPUs via two-way hyper-
threading)). In order to illustrate the amplitude of the wave
field, we collapse the 6-D CWT into a 3-D object containing
the maximum amplitude for each spatial sample. We then
choose to illustrate the isosurface connected to an amplitude
of 70 m of vertical displacement. The structure of the ampli-
tude isosurface agrees nicely with the 3-D wave field in the
left panel.

6 Implementation

The sampling of the CWT draws heavily on the fast Fourier
transform (FFT). We effectively discretize Eq. (2) and use
the FFT to compute f̂ and the inverse continuous Fourier
transform. This computes the CWT for all sampled values
of u (corresponding to the sampling of the supplied data set)
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Figure 7. This example shows the capabilities of reconstructing a data set from a modified set of coefficients. Panel (a) shows a simulated
superposition of two waves, one of large scale and one of small scale. Panels (b) and (c) show filtered reconstructions of the large-scale and
small-scale waves. The sum of (b) and (c) gives the original data. Panels (d), (e), and (f) show the amplitude, wavelength, and orientation of
the large-scale wave. Panels (g), (h), and (i) show the amplitude, wavelength, and orientation of the small-scale wave.

Figure 8. An example of a 3-D CWT analysis. The left panel shows a modelled mountain wave field following Smith (1980). Isosurfaces
are drawn for η =±70 m. A CWT analyses this field and the “dominant” wavelet; i.e. the wavelet with the largest coefficient is identified for
each spatial sample. The right panel shows the isosurface for an amplitude of 70 m.

and one scale. Effectively, one FFT is needed for each scale,
which largely determines the computational complexity.

The software package is available in the Python program-
ming language. It leverages the NumPy library heavily for
its computational needs. For the 1-D transform, let ns be
the number of scales and nx the length of data. One FFT
is needed for analysing the data and ns FFTs for comput-

ing the coefficients. Then the 1-D transform is of complex-
ity O(nsnx lognx) neglecting constants and smaller terms8.
With ny and nz and nθ and nφ the length of higher di-
mensions and number of analysed angles, respectively, the
complexity of the 2-D transform can be estimated to be

8The complexity of the FFT of a data set of length n is
O(n logn).
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O
(
nsnθnxny log

(
nxny

))
, and the 3-D transform is in the or-

der of O
(
nsnθnφnxnynz log

(
nxnynz

))
, again depending on

the number of 2-D and 3-D higher-dimensional FFT evalua-
tions.

As almost all computation time is spent doing FFTs, sup-
port for both the Intel Math kernel library and the FFTW li-
brary (Frigo and Johnson, 2005) is available, which provide
highly optimized and parallelized implementations thereof.
This requires the mkl_fft or pyFFTW Python package, re-
spectively. By default, JuWavelet first tries MKL and then
FFTW, but the employed routines can also be configured dur-
ing runtime using the functions of the fft submodule. Fur-
ther parallelization, in particular over multiple nodes of a su-
percomputer, can be realized by distributing individual scales
onto different processes and/or machines or using selective
filters and aggregating the results.

7 Conclusions

The presented software package closes a gap by providing
readily available 1-D, 2-D, and 3-D STs and Morlet CWTs.
Both analysis and reconstruction formulas are implemented
such that the filtering of signals for individual wave packets is
also possible. The software has been used successfully for the
published analysis of temperature measurements but is well
suited for the analysis of other localized wavelike phenomena
in geophysics.

Appendix A: Mathematical description of 2-D and 3-D
transforms

A1 2-D

The definition for the 2-D Morlet wavelet in Fourier space is

ψ̂s,θ (ωx,ωy)= 2
√
πse
−

1
2

(
(2πsωx−k cos(θ))2+(2πsωy−k sin(θ))2

)
,

with θ ∈ [0,π ] denoting the angle of the wavelet. The trans-
form is given by

Wf (u,v,s,θ)=

∞∫
−∞

∞∫
−∞

f̂ (ωx,ωy)s
[
ψ̂(sωx, sωy)

]∗
· ei2πωxuei2πωyvdωxdωy .

With the same discretization of s as in the 1-D case, and a
regular sampling of θ in π

jt
steps, the reconstruction formula

is

f (x,y)≈
1
Cδ

js−1∑
j=0

jt−1∑
k=0

π

jt
Re
(
Wf

(
x,y,s02jdj ,

kπ

jt

))
dj ln2
s02jdj

with

Cδ ≈
π

jt
dj ln2

js−1∑
j=0

jt−1∑
k=0

Re
(

∞∫
−∞

∞∫
−∞

[
ψ̂(s02jdjωx, s02jdjωy)

]∗
dωxdωy

)
.

A2 3-D

The definition for the 3-D Morlet wavelet in Fourier space is

ψ̂s,θ,φ(ωx ,ωy ,ωz)=

√
2

3
π

4
√
π
s3/2

· e
−

1
2

(
(2πsωx−k cos(φ)cos(θ))2+(2πsωy−k cos(φ)sin(θ))2

+(2πsωz−k sin(φ))2
)
,

with θ ∈ [0,π ] denoting the horizontal turning (azimuth an-
gle) of the wavelet and φ ∈ [−π/2,π/2] the vertical rotation
(zenith angle). The transform is given by

Wf (u,v,w,s,θ,φ)=

∞∫
−∞

∞∫
−∞

∞∫
−∞

f̂ (ωx,ωy,ωz)s
3/2

·

[
ψ̂(sωx, sωy, sωz)

]∗
ei2πωxuei2πωyvei2πωzwdωxdωydωz.

With the same discretization of s as in the 1-D case, and a
regular sampling of θ and φ, the reconstruction formula is

f (x,y,z)≈
1
Cδ

js−1∑
j=0

jt−1∑
k=0

jp−1∑
l=0

π

js

π

jp
cos

(
(l+ 0.5)π

jp
−
π

2

)

·Re
(
Wf

(
x,y,z,s02jdj ,

kπ

js
,
(l+ 0.5)π

jp
−
π

2

)
dj ln2

(s02jdj )3/2

)
.

Please note the factor of cos(φ) necessary for integrating the
rotation over the unit sphere. The sampling of φ is shifted by
half a sample to avoid the value of −π/2 and π/2 where the
coefficients do not contribute to the reconstruction and the
value of θ has no effect on the wavelet. The factor Cδ can be
computed as

Cδ ≈
π

js

π

jp
dj ln2

js−1∑
j=0

js−1∑
k=0

jp−1∑
l=0

cos
(
(l+ 0.5)π

jp
−
π

2

)

·Re

 ∞∫
−∞

∞∫
−∞

∞∫
−∞

[
ψ̂(s02jdjωx , s02jdjωy , s02jdjωz)

]∗
dωxdωydωz

 .
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Figure A1. Reconstruction of individual wave packets from the synthetic wave field from Sect. 5.3. Mapping of panels and wave packets is
as follows: (a) shows wave packet 5, (b) shows wave packets 4 and 7, (c) shows wave packet 3, (d) shows wave packet 6, (e) shows wave
packet 1, (f) shows wave packet 8, and (g) shows wave packet 2.

Code and data availability. The software and data is avail-
able on both the long-term available Zenodo archive (Unger-
mann, 2025, https://doi.org/10.5281/zenodo.16962346) un-
der the AGPL V3 licence and a Git repository, which is
located at https://jugit.fz-juelich.de/j.ungermann/juwavelet
(last access: 7 November 2025), where the current ver-
sion can be installed using, for example, pip install
git+https://jugit.fz-juelich.de/j.ungermann/
juwavelet.
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