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Abstract. We integrate the refactored community Noah-MP
version 5.0 model with the NASA Land Information Sys-
tem (LIS) version 7.5.2 to streamline the synchronization,
development, and maintenance of Noah-MP within LIS and
to enhance their interoperability and applicability. We eval-
uate and compare 5-year (2018–2022) global and regional
benchmark simulations of LIS/Noah-MPv5.0 and LIS/Noah-
MPv4.0.1 for a set of key land surface variables. Both models
capture the spatial and seasonal distributions of observed soil
moisture, latent heat (LH), snow water equivalent (SWE),
snow depth, snow cover, and surface albedo, with similar
bias patterns. Both models tend to underestimate soil mois-
ture over wet soil regimes and overestimate over dry soil
regimes, with slightly higher (≤∼ 0.01 m3 m−3 for global
mean) soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-
MPv4.0.1 across most regions. The model bias patterns of
LH overall follow those of soil moisture, while LIS/Noah-
MPv5.0 has a lower LH across many non-polar regions than
LIS/Noah-MPv4.0.1, which reduces the global mean LH bias
from 0.99 to −0.39 W m−2. The model SWE bias patterns
are dominated by the precipitation and temperature forcing
uncertainties, with slightly lower SWE values in LIS/Noah-
MPv5.0 (global mean bias of −13.2 mm) than LIS/Noah-
MPv4.0.1 (global mean bias of −10.1 mm). The model bias
patterns of snow depth generally follow those of SWE.
LIS/Noah-MPv4.0.1 consistently overestimates snow cover
globally with a mean bias of 0.11, while LIS/Noah-MPv5.0
effectively reduces the overestimates across the global snow-
packs with a mean bias of 0.07 because of updated snow

cover parameters. Both models show widespread overesti-
mates of surface albedo over mid-latitude and high-latitude
regions but significant underestimates in the Sahara Desert
and Antarctica. Overall, LIS/Noah-MPv5.0 outperforms or
is similar to LIS/Noah-MPv4.0.1 in the evaluated land sur-
face variables, except for slight degradation in simulated sur-
face soil moisture and SWE. This study reveals possible
model deficiencies, motivates future improvements in cou-
pled canopy-snowpack-soil processes and input soil data, and
points to the importance of considering observational and
forcing data uncertainties in model evaluation.

1 Introduction

Land processes play a profound role in the Earth and cli-
mate systems through altering surface water and energy bal-
ances and feedback to the atmosphere (Fisher and Koven,
2020; Blyth et al., 2021). Earth’s land surface provides im-
portant boundary conditions for atmospheric processes and
climate/weather predictions particularly at the subseasonal-
to-seasonal (S2S) time scale (Koster and Walker, 2015; Ben-
son and Dirmeyer, 2023). Furthermore, as climate changes,
increasing climate/weather extremes (e.g., drought, flood,
heatwave, and fire) and food-water security issues (e.g., agri-
cultural production and irrigation management) are happen-
ing at the land surface, triggering key crises for the society
(Sillmann et al., 2017; AghaKouchak et al., 2020). To tackle
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these critical land-related environmental issues, accurate land
modeling systems are needed.

There have been substantial efforts in the past decades to
develop and improve various land modeling systems (e.g.,
Dickinson et al., 1993; Liang et al., 1994; Chen et al., 1997;
Ek et al., 2003; Oleson et al., 2004; Best et al., 2011; Niu et
al., 2011; Haverd et al., 2018). Among them, the NASA Land
Information System (LIS) is a widely used, established open-
source framework for high performance land surface and ter-
restrial hydrology modeling as well as data assimilation (DA)
of satellite and ground-based observations (Kumar et al.,
2006; Peters-Lidard et al., 2007; Kumar et al., 2008a). The
LIS system integrates different land surface models (LSMs),
satellite and ground observations, and advanced computing
and data management tools, to enable an interoperable envi-
ronment that is applicable across different spatial and tem-
poral scales. Various model developments and applications
using LIS have been conducted in the past decade, such as
coupling with atmospheric models to improve weather pre-
dictions (Kumar et al., 2008b; Wu et al., 2016), DA of ob-
served vegetation, snow, terrestrial water storage, albedo, and
soil conditions to improve land surface modeling (Liu et
al., 2015; Santanello et al., 2016; Kumar et al., 2016, 2019,
2020), and applications for hydrological predictions (Arse-
nault et al., 2020), food security (Hazra et al., 2023), and
land analysis (Nie et al., 2024).

LIS allows the use of an ensemble of LSMs, such as
Noah (Chen et al., 1997; Ek et al., 2003), Noah-MP (Niu
et al., 2011), CLM (Oleson et al., 2004), VIC (Liang et al.,
1994), JULES (Best et al., 2011), and CABLE (Haverd et
al., 2018). Among them, Noah-MP is one of the most com-
monly used state-of-the-art LSMs in the world (He et al.,
2023a). Built upon the Noah LSM, Noah-MP has signifi-
cant enhancements in representations of canopy-snow-soil-
hydrology processes and interactions as well as capabili-
ties of modeling human activity impacts (e.g., crop dynam-
ics, irrigation dynamics, tile drainage, and urbanization). The
multi-parameterization options of Noah-MP further allow for
uncertainty analysis and model performance optimization/-
calibration based on multi-physics model ensembles (Li et
al., 2020). Noah-MP has been serving as a key land compo-
nent of various research and operational weather and hydro-
climate models, such as the NOAA Unified Forecast System
(UFS), the Weather Research and Forecasting (WRF) model,
the U.S. National Water Model (NWM), the Model for Pre-
diction Across Scales (MPAS), the Korean Integrated Model
(KIM), and the Chinese Global-to-Regional Integrated Fore-
cast System (GRIST). Because of its advantages, Noah-MP
has been applied in numerous applications, including high-
resolution climate modeling (Liu et al., 2017; Rasmussen et
al., 2023), vegetation and soil DA (Kumar et al., 2019; Xu et
al., 2021), climate extremes (Arsenault et al., 2020; Kumar et
al., 2021; Abolafia-Rosenzweig et al., 2022a, 2023, 2024a),
snowpack and hydrology (He et al., 2019; Jiang et al., 2020;
Hazra et al., 2023), agriculture and groundwater (Barlage et

al., 2021; Zhang et al., 2023, 2025), and urban climate (Xue
et al., 2024, 2025).

Recently, the community Noah-MP has undergone a sub-
stantial code modernization effort (version 5.0) to improve
its modularity and interoperability (He et al., 2023b), with
many physics updates and bug fixes compared to the ver-
sions 3.6 and 4.0.1 in LIS. These two earlier Noah-MP ver-
sions in the current LIS (version 7.5.2) were implemented by
manually replicating the Noah-MP source code and updating
LIS/Noah-MP interface and drivers, which does not allow
easy model upgrades and hence leads to a long-delayed ver-
sion update compared to the community Noah-MP. Thus, in
this effort, we describe the streamlining of the development
and maintenance of Noah-MP in LIS to enable the seam-
less integration between LIS and the community Noah-MP
version to further enhance the interoperability and applica-
bility of both models. Specifically, we couple the refactored
community Noah-MPv5.0 with the LIS framework through
the GitHub submodule mechanism accompanied by devel-
oping a new LIS/Noah-MP interface, which provides a di-
rect, automatic link between the two models’ source codes.
This integration will allow easy code updates, synchroniza-
tion, and maintenance for the coupled LIS/Noah-MP frame-
work. The second goal of this study is to evaluate and com-
pare global and regional benchmark simulations between
LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 for key land sur-
face conditions. Such systematic benchmarking is needed
to examine the realism of LIS/Noah-MP model simulations,
quantify the gaps between modeling and observations, and
identify key processes for future model enhancements. This
study is a step toward establishing a “scorecard” type of prac-
tice for LSMs.

2 Model descriptions and simulations

2.1 NASA LIS

The LIS system is a land surface hydrology digital twin en-
vironment, with the development led by the Hydrological
Sciences Laboratory at NASA’s Goddard Space Flight Cen-
ter. Because of its extensible and flexible software infras-
tructure, LIS allows customized land DA systems and multi-
ple LSMs to be integrated, assembled, and reconfigured eas-
ily using shared plugins and standard interfaces. Currently,
LIS is the land component for several Earth system models,
such as the NASA Unified WRF (NU-WRF) model, and the
key component of several land DA system (LDAS) such as
Global LDAS (GLDAS), North American LDAS (NLDAS),
the Famine Early Warning Systems Network (FEWS NET)
LDAS (FLDAS), and the operational land DA analysis en-
vironment at the U.S. Air Force Weather (Eylander et al.,
2022).

Specifically, the LIS software suite consists of three main
components: (1) Land Data Toolkit (LDT; Arsenault et
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al., 2018), which handles the data-related requirements of
LIS including land surface parameter processing, geospatial
transformations, consistency checks, data assimilation pre-
processing, and forcing bias correction; (2) Land Informa-
tion System (LIS), which is the modeling system that encap-
sulates land and hydrological models, DA algorithms, op-
timization and uncertainty estimation algorithms, and high
performance computing (HPC) support; and (3) Land Verifi-
cation Toolkit (LVT; Kumar et al., 2012), which is a model
verification and benchmarking environment that can be used
for enabling rapid prototyping and evaluation of model sim-
ulations by comparing against a large suite of in-situ, remote
sensing, and model and reanalysis data products. More de-
tails can be found at the LIS website: https://lis.gsfc.nasa.
gov/ (last access: 25 November 2024). In this study, we use
the LIS version 7.5.2 (latest version at the time of this work)
coupled with Noah-MP in benchmark simulations and the
LVT for model evaluation.

2.2 Integration of refactored Noah-MPv5.0 with LIS

In this study, we couple the LIS system with the refac-
tored community Noah-MPv5.0 model through the GitHub
submodule mechanism to streamline the synchronization of
Noah-MP between the community version and the LIS ver-
sion, which will simplify future code updates and main-
tenance of Noah-MP within LIS. The GitHub submodule
mechanism (https://gist.github.com/gitaarik/8735255, last
access: 20 October 2025) allows (1) separated source code
maintenance and updates for Noah-MP (by the Noah-MP
team) and LIS (by the NASA/LIS team), and (2) convenient
updates of Noah-MP inside LIS by updating the submodule
link to a newer Noah-MP GitHub tag/branch version. Com-
pared to the Noah-MPv4.0.1 model in LIS, the community
Noah-MPv5.0 model includes several important updates and
new features: (1) improved modularization with modern For-
tran code structures, (2) new hierarchical model data types
and structures, (3) enhanced subroutine interface and calling
workflow based on the modularization and new data types,
(4) new self-explanatory model variable and module names,
and (5) model bug fixes and new physics schemes. The key
bug fixes include updates in vegetation properties (e.g., bug
fixes in vegetation fraction scaling treatments) and processes
(e.g., bug fixes in canopy wind absorption parameters) as
well as snowpack processes. The new physics schemes in-
clude improved parameters related to various snowpack pro-
cesses, a new wet-bulb temperature-based snow-rain parti-
tioning scheme, a new snow meltwater retention process, a
new dynamic irrigation scheme, updated crop growth param-
eters, a new tile drainage scheme, a new canopy heat storage
treatment, additional runoff schemes, and new capabilities
to control the soil process timestep. More details of Noah-
MPv5.0 features can be found in He et al. (2023b). The
detailed Noah-MP physics and formulations are described
in He et al. (2023c). The major code changes from Noah-

MPv4.0.1 to Noah-MPv5.0 are described in the model re-
lease notes available at: https://github.com/NCAR/noahmp/
blob/master/RELEASE_NOTES.md (last access: 25 Novem-
ber 2024). The key components we modify to couple LIS and
Noah-MPv5.0 are the LIS/Noah-MP land model driver inter-
face to create new input/output variable mapping, and the LIS
initialization and master driver parts to leverage new mod-
ularized Noah-MP code modules. By taking advantage of
the plugin and standard interfaces in LIS, the Noah-MPv5.0
model is also connected to other components of LIS, such as
data assimilation, river routing, etc.

2.3 LIS/Noah-MP benchmark simulations

We conduct and evaluate two sets of benchmark simula-
tions with LIS coupled with Noah-MP, including one set
of regional simulations over the contiguous U.S. (CONUS)
and one set of global simulations. Each set of the simula-
tions includes one LIS/Noah-MPv4.0.1 simulation and one
LIS/Noah-MPv5.0 simulation to compare their performance
and quantify differences between versions. The regional sim-
ulations are conducted for 10 years (2013–2022) with a 5-
year spin-up, which are driven by the hourly 0.125° North
American Land Data Assimilation System (NLDAS-2) at-
mospheric forcing data (i.e., precipitation, surface tempera-
ture, surface pressure, surface specific humidity, wind speed,
downward surface shortwave and longwave radiation). More
details of NLDAS-2 data are described in Xia et al. (2012).
The global simulations are conducted for 5 years (2018–
2022) with a 5-year spin-up, and are driven by the global
hourly ∼ 10 km U.S. Air Force (USAF) atmospheric forcing
reanalysis data (Kemp et al., 2022). More details of the forc-
ing data (formerly known as AGRMET, AGRiculture ME-
Teorology) are described in Eylander et al. (2022). For all
the simulations, the static land type map is from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) satel-
lite data (Fig. 1), while the MODIS monthly climatological
(2000–2008) leaf area index (LAI) and stem area index (SAI)
are used (Yang et al., 2011). The static soil type map is from
the State Soil Geographic (STATSGO)/Food and Agricul-
ture Organization (FAO) soil database (FAO, 1991). For both
LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations, we
adopt the same default Noah-MP physics options (see Ta-
ble A1), which have been commonly used in previous Noah-
MP applications to produce skilled model performance (He
et al., 2023b). Model evaluations for both the regional and
global simulations are focused on the 5-year period of 2018–
2022.

3 Reference data for model evaluation

We use a suite of reference datasets to evaluate the LIS/Noah-
MP simulations of key land surface variables over the globe
and CONUS, including soil moisture, latent heat flux (LH),
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Figure 1. MODIS land cover maps used for LIS/Noah-MP (a) global and (b) CONUS benchmark simulations.

snow water equivalent (SWE), snow depth, snow cover frac-
tion, and surface albedo. Specifically, for surface soil mois-
ture, we use the global daily 36 km Soil Moisture Active
Passive (SMAP) version 8 Level 3 satellite data (O’Neill et
al., 2021; https://nsidc.org/data/spl3smp/versions/8, last ac-
cess: 25 November 2024). We also use the surface and root-
zone soil moisture from the International Soil Moisture Net-
work (ISMN) ground station hourly measurements (Dorigo
et al., 2021; https://ismn.earth/en/, last access: 25 Novem-
ber 2024). The data quality control is done via LVT. For
LH, we use the global 0.25° daily Global Land Evapora-
tion Amsterdam Model (GLEAMv3.8a) reanalysis data (Mi-
ralles et al., 2011; https://www.gleam.eu/, last access: 25
November 2024) and the global 0.05° hourly FLUXCOM-
X-BASE observation-based data (Nelson et al., 2024; https:
//gitlab.gwdg.de/fluxcom/fluxcomxdata, last access: 6 July
2025). For SWE and snow depth, we use the daily 1 km
NOAA National Weather Service’s National Operational Hy-
drologic Remote Sensing Center (NOHRSC) Snow Data
Assimilation System (SNODAS) data (Barrett, 2003; https:
//nsidc.org/data/g02158/, last access: 25 November 2024)
and the global 0.1° ERA-5 land (ERA5-Land) reanalysis
data (Muñoz-Sabater et al., 2021; https://www.ecmwf.int/
en/era5-land, last access: 25 November 2024). For snow
cover fraction, we use the global daily 500 m MODIS Terra
Snow Cover version 6 data (Hall and Riggs, 2016; https:
//nsidc.org/data/mod10a1/versions/6, last access: 25 Novem-
ber 2024). For surface albedo, we use the global daily 0.05°
MODIS Terra/Aqua merged data (Schaaf and Wang, 2021;
https://lpdaac.usgs.gov/products/mcd43c3v061/, last access:
25 November 2024). For model evaluation, we re-map the
reference gridded datasets to the LIS/Noah-MP model grids
or bilinearly interpolate model values to in-situ measure-

ment locations via LVT, which will likely introduce uncer-
tainties to model evaluations. We also note that those refer-
ence datasets have their own uncertainties, which may impact
model evaluation results.

4 Results and discussions

4.1 Soil moisture

Figure 2 shows the global 5-year (2018–2022) mean sur-
face soil moisture comparison between SMAP retrievals
and LIS/Noah-MP simulations driven by the USAF forcing.
Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simula-
tions capture the spatial and seasonal distributions of surface
soil moisture globally (Figs. 2 and S1 in the Supplement),
with similar bias patterns. Both simulations tend to underes-
timate in wet soil regimes (e.g., northern and eastern Canada,
Amazon forests, northern Europe, tropical Africa, and south-
east Asia) and overestimate in dry soil regimes (e.g., west-
ern US, west and east coasts of South America, southern
and northern Africa, mid-latitudinal Eurasia, and Australia),
partially caused by the USAF precipitation forcing bias
(Fig. S2), except for northern Canada and southern Brazil
which requires further investigation. We note that SMAP
data quality is less reliable over regions with thick vegeta-
tion (e.g., Southeast US, Amazon rainforest, Congo Basin).
The evapotranspiration (ET) biases caused by model defi-
ciencies in plant hydraulics and root water uptake processes
may also contribute to the soil moisture bias, as revealed by
previous Noah-MP studies (Niu et al., 2020; Li et al., 2021).
These global model bias patterns are consistent across all
seasons (Fig. S1). Due to the offset of model overestimates
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and underestimates across different regions, the global an-
nual mean model bias is small (0.003 m3 m−3 for LIS/Noah-
MPv4.0.1 and 0.008 m3 m−3 for LIS/Noah-MPv5.0). Over-
all, LIS/Noah-MPv5.0 shows consistently higher surface soil
moisture than LIS/Noah-MPv4.0.1 but the difference is small
(Fig. 2f), which is expected since there is no direct soil
physics update but changes in snowpack (e.g., snow cover
parameter updates) and vegetation processes (e.g., vegetation
fraction scaling treatments) from Noah-MPv4.0.1 to Noah-
MPv5.0.

Further model evaluation with the ISMN global in-
situ measurements indicates systematic model overestimates
of surface soil moisture at most sites (Fig. 3), particu-
larly over the CONUS and Europe that have very dense
measurement networks, with global mean biases of 0.062
and 0.067 m3 m−3 for LIS/Noah-MPv4.0.1 and LIS/Noah-
MPv5.0, respectively. This bias pattern is consistent with
the SMAP comparisons (Fig. 2). LIS/Noah-MPv5.0 shows
slightly (0.005 m3 m−3) higher mean surface soil moisture
than LIS/Noah-MPv4.0.1 across all sites (Fig. 3f). We fur-
ther compute the soil moisture anomaly correlation between
the model simulations and ISMN observations following
Navari et al. (2024), where the anomaly is computed as
daily anomaly by subtracting monthly mean values. Both
models show similar anomaly correlation spatial patterns
(Fig. 3g–h), with a mean value of ∼ 0.53 and higher values
in North America and Europe than in Asia and Africa. Com-
pared to the surface soil moisture, the root-zone soil mois-
ture shows similar spatial distributions (Fig. 4a–c), model
bias patterns (Fig. 4d–e), and anomaly correlation patterns
(Fig. 4g–i) across most ISMN sites, with global annual mean
biases of 0.039 and 0.050 m3 m−3 for LIS/Noah-MPv4.0.1
and LIS/Noah-MPv5.0, respectively.

Over the CONUS, both LIS/Noah-MPv4.0.1 and
LIS/Noah-MPv5.0 simulations driven by the NLDAS-2
forcing capture the spatial distribution of SMAP surface soil
moisture with similar spatial bias patterns (Fig. 5), which
show model underestimates over wet soil regimes (e.g.,
the northwest coast and southeast and northeast US) and
overestimates over dry soil regimes (e.g., western and central
US). This is consistent with the global evaluation albeit
using a different forcing dataset. LIS/Noah-MPv5.0 also
produces consistently but slightly (0.007 m3 m−3) higher
soil moisture than LIS/Noah-MPv4.0.1 using the NLDAS-2
forcing (Fig. 5f), similar to the results using the USAF
forcing, revealing a robust difference pattern between the
two model versions. The comparison with ISMN surface
soil moisture data over the CONUS shows similar model
bias patterns with those evaluated against SMAP (Fig. 6),
except for the northwest coast and Florida, where ISMN
indicates dry soil regimes that are opposite to SMAP. This
points to the importance of considering observational data
uncertainty in model evaluation. The CONUS mean biases
across all ISMN sites are 0.041 and 0.047 m3 m−3 for
LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0, respectively.

The CONUS mean anomaly correlation is about 0.6 for both
models (Fig. 6g–h), with slightly lower values particularly
over many western US sites for LIS/Noah-MPv5.0 than
LIS/Noah-MPv4.0.1 (Fig. 6i). The model bias pattern of
root-zone soil moisture is similar to that of surface soil
moisture but with larger underestimates at some central US
sites (Fig. 7).

4.2 Latent heat flux

Figure 8 shows the global 5-year (2018–2022) mean la-
tent heat (LH) flux comparison between the GLEAM data
and LIS/Noah-MP simulations driven by the USAF forc-
ing. Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 sim-
ulations capture the spatial and seasonal LH distributions
with similar bias patterns (Figs. 8 and S3). The model LH
biases are generally consistent with the surface soil mois-
ture bias patterns (Fig. 2), with the underestimated (overes-
timated) LH over regions with the underestimated (overesti-
mated) soil moisture, except for northern Eurasia and north-
west North America (Alaska and west Canada). Although
LIS/Noah-MPv5.0 has a slightly higher soil moisture than
LIS/Noah-MPv4.0.1 (Figs. 2–4), it shows a lower LH (by
up to ∼ 15 W m−2) over some tropical and mid-latitude re-
gions with the largest difference in the tropics, which re-
duces the global mean LH bias from 0.99 W m−2 (LIS/Noah-
MPv4.0.1) to −0.39 W m−2 (LIS/Noah-MPv5.0). This dif-
ference in the two Noah-MP versions is mainly due to the
code updates related to vegetation properties (e.g., bug fixes
in vegetation fraction scaling treatments) and processes (e.g.,
added canopy heat storage treatment) which alters ET and
LH (see Sect. 5 for discussion). The minor LH difference
(up to ∼ 5 W m−2) between the two model versions over the
Antarctica and Greenland is mainly caused by updates in the
glacier scheme that uses snowpack physics consistent with
other land snowpacks in LIS/Noah-MPv5.0. We note that the
LH (or ET) reference data product also has nontrivial un-
certainties which may confound model evaluations here (see
Sect. 5 for detail).

Further CONUS evaluation of model simulations driven
by the NLDAS-2 forcing also reveals that model LH bias
patterns (Fig. 9) generally follow the soil moisture bias pat-
terns (Fig. 5) except for many western US mountainous re-
gions, where both model simulations have very small LH bi-
ases despite the overestimation of soil moisture (Figs. 5–7).
Compared to LIS/Noah-MPv4.0.1, LIS/Noah-MPv5.0 shows
a lower LH over southwest US and eastern US by up to
about 10 W m−2, which degrades the CONUS-mean model
bias from −0.21 to −2.30 W m−2. We note that GLEAM is
a model-based reanalysis data that has its own uncertainty.

4.3 Snow water equivalent (SWE)

Figure 10 shows the global 5-year (2018–2022) mean SWE
comparison for seasonal snowpack between ERA5-Land
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Figure 2. Surface soil moisture (m3 m−3) comparison between SMAP retrievals and LIS/Noah-MP simulations driven by USAF forcing
globally averaged during 2018–2022: (a) SMAP data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-
MPv4.0.1 biases (model minus SMAP), (e) LIS/Noah-MPv5.0 biases (model minus SMAP), and (f) differences between LIS/Noah-MPv5.0
and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)–(f).
The statistical significance over each grid is computed using daily time series and the t-test method. The global mean value is also provided
in the lower right of each panel. See Fig. S1 for seasonal plots.

Figure 3. Surface soil moisture (m3 m−3) comparison between ISMN station measurements and LIS/Noah-MP simulations driven by USAF
forcing globally averaged during 2018–2022: (a) ISMN data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d)
LIS/Noah-MPv4.0.1 biases (model minus ISMN), (e) LIS/Noah-MPv5.0 biases (model minus ISMN), (f) differences between LIS/Noah-
MPv5.0 and LIS/Noah-MPv4.0.1 simulations, (g) LIS/Noah-MPv4.0.1 anomaly correlation, (h) LIS/Noah-MPv5.0 anomaly correlation, and
(i) differences between LIS/Noah-MPv5.0 and LIS/Noah-MPv4.0.1 anomaly correlation. The global mean value is also provided in the lower
right of each panel.

data and LIS/Noah-MP simulations driven by the USAF
forcing. Both LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0
simulations capture the spatial and seasonal SWE distribu-
tions with similar bias patterns (Figs. 10 and S4). Both simu-
lations tend to have much lower SWE (by up to 50 mm) in the
Himalayas and west Canada than ERA5-Land, with slightly
less SWE in eastern Russia, partially driven by overestimated
surface temperature (Sect. 4.7). Both simulations have higher
SWE than ERA5-Land in most other mid-latitude and high-
latitude snowpacks, mainly driven by overestimated pre-
cipitation (Fig. S2) and underestimated surface temperature

(Fig. S8). The global annual mean SWE biases are−10.1 and
−13.2 mm for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0,
respectively. Overall, LIS/Noah-MPv5.0 shows lower SWE
than LIS/Noah-MPv4.0.1, particularly in spring when differ-
ences reach up to 25 mm (Figs. 10f and S4) due to the up-
dated snow cover parameters (He et al., 2021) that reduces
snow cover fraction (Sect. 4.5) and enhances snow abla-
tion particularly in spring through the positive surface albedo
feedback. We note that the ERA5-Land SWE data also has
uncertainties, which tends to overestimate SWE over moun-
tainous areas (Monteiro and Morin, 2023).
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Figure 4. Same as Fig. 3, but for root-zone soil moisture (m3 m−3) evaluation.

Figure 5. Same as Fig. 2, but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during
2018–2022.

The CONUS-wide regional evaluation between SNODAS
and LIS/Noah-MP simulations driven by the NLDAS-2 forc-
ing indicates large SWE underestimates by up to 50 mm or
more in high-elevation mountains in the western US and very
small biases across other CONUS regions (Fig. 11), mainly
due to the underestimated mountain precipitation in NLDAS-
2 (He et al., 2019). The CONUS mean SWE biases are
−4.2 and −5.0 mm for LIS/Noah-MPv4.0.1 and LIS/Noah-
MPv5.0, respectively, with slightly lower SWE in LIS/Noah-
MPv5.0 than LIS/Noah-MPv4.0.1 over most CONUS snow-
packs (Fig. 11f).

4.4 Snow depth

Figure 12 shows the global 5-year (2018–2022) mean snow
depth comparison for seasonal snowpack between ERA5-
Land data and LIS/Noah-MP simulations driven by the
USAF forcing. Both LIS/Noah-MPv4.0.1 and LIS/Noah-
MPv5.0 simulations reproduce the spatial and seasonal snow

depth distributions with similar bias patterns (Figs. 12 and
S5). The snow depth bias pattern generally follows the
SWE bias pattern (Fig. 10) with global annual mean bi-
ases of ∼ 0.06 m for both simulations, except for the lower
snow depth over some regions with higher SWE in north-
ern Canada and northern Russia compared to ERA5-Land.
The snow depth difference (global mean of 0.003 m) be-
tween LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 is small
(Fig. 12f).

The CONUS-wide regional snow depth evaluation be-
tween SNODAS and LIS/Noah-MP simulations driven by
the NLDAS-2 forcing also reveals a similar bias pattern
(Fig. 13) as the SWE evaluation, with largely underestimated
snow depth over most western US high mountains due to
the underestimated SWE. The CONUS mean snow depth bi-
ases are −0.013 and −0.015 m for LIS/Noah-MPv4.0.1 and
LIS/Noah-MPv5.0, respectively, with very minor differences
between the two simulations (Fig. 13f).
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Figure 6. Same as Fig. 3, but for evaluation of LIS/Noah-MP simulated surface soil moisture (m3 m−3) driven by the NLDAS-2 forcing over
the CONUS averaged during 2018–2022.

Figure 7. Same as Fig. 4, but for evaluation of LIS/Noah-MP simulated root-zone soil moisture (m3 m−3) driven by the NLDAS-2 forcing
over the CONUS averaged during 2018–2022.

4.5 Snow cover fraction

Although LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simu-
lations capture the spatial and seasonal snow cover distribu-
tions, they systematically overestimate snow cover globally
relative to MODIS observations (Figs. 14 and S6). This high
bias in snow cover is particularly outstanding considering
the underestimated SWE and snow depth (Figs. 10 and 12),
which has been a long-standing problem in Noah-MP (He et
al., 2019; Jiang et al., 2020; Zhou et al., 2023). Specifically,
LIS/Noah-MPv4.0.1 tends to overestimate snow cover across
the global snowpack by up to 0.3 with a global mean bias
of 0.11, while LIS/Noah-MPv5.0 reduces the snow cover
overestimate particularly in northern high-latitudes and the
Tibetan Plateau, which effectively reduces the global mean

bias to 0.07. This bias reduction is attributable to the up-
dated snow cover parameters in LIS/Noah-MPv5.0 (He et
al., 2021). However, LIS/Noah-MPv5.0 still systematically
overestimates snow cover over most mid-latitude and high-
latitude snowpacks, which suggests the need for improved
snowpack physics in Noah-MP (see Sect. 6 for discussion).
The spatial heterogeneity of the snow cover change magni-
tude caused by the snow cover parameter updates may be due
to several reasons: (1) The snow cover parameter updates are
more effective for regions with snow depth less than about
0.3 m, since this is the most sensitive snow depth regime for
snow cover calculations based on the parameterization used
in Noah-MP (He et al., 2019); (2) The snow cover parame-
ter updates are vegetation type dependent, so the effective-
ness of this change also depends on vegetation types; (3)
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Figure 8. Latent heat flux (W m−2) comparison between the GLEAM data and LIS/Noah-MP simulations driven by USAF forcing globally
averaged during 2018–2022: (a) GLEAM3.8a data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-
MPv4.0.1 biases (model minus GLEAM), (e) LIS/Noah-MPv5.0 biases (model minus GLEAM), and (f) differences between LIS/Noah-
MPv5.0 and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels
(d)–(f). The statistical significance over each grid is computed using daily time series and the t-test method. The global mean value is also
provided in the lower right of each panel. See Fig. S3 for seasonal plots.

Figure 9. Same as Fig. 8 but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged during
2018–2022.

Due to the positive surface albedo feedback, the snow cover
change is more effective over ablation regions and periods;
(4) The snow cover impact is further complicated by the spa-
tial heterogeneity of SWE biases (Abolafia-Rosenzweig et
al., 2025).

The CONUS-wide regional evaluation between MODIS
and LIS/Noah-MP simulations driven by the NLDAS-2 forc-
ing also reveals a consistently high bias in snow cover in
LIS/Noah-MPv4.0.1, particularly over western US moun-
tains, with a CONUS mean bias of 0.055 (Fig. 15).
LIS/Noah-MPv5.0 effectively removes the snow cover over-
estimates in snowpacks outside high-elevation mountains in
the western US, which halves the CONUS mean bias. The re-
maining snow cover overestimate in western US high moun-
tains, which notably correspond to the regions with underes-

timated SWE and snow depth (Figs. 11 and 13), needs further
investigation.

4.6 Surface albedo

Figure 16 shows the global 5-year (2018–2022) mean sur-
face albedo comparison between MODIS and LIS/Noah-MP
simulations driven by the USAF forcing. Both LIS/Noah-
MPv4.0.1 and LIS/Noah-MPv5.0 simulations capture the
spatial and seasonal surface albedo distributions with similar
bias patterns (Figs. 16 and S7). LIS/Noah-MPv4.0.1 shows
consistently overestimated surface albedo over most global
regions by up to 0.05 or more, except for significant underes-
timates in the Sahara Desert and Antarctica which dominate
the global mean bias (−0.02). This bias pattern is consistent
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Figure 10. SWE (mm) comparison between ERA5-Land and LIS/Noah-MP simulations driven by USAF forcing globally averaged during
2018–2022: (a) ERA5-Land data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases
(model minus ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences between LIS/Noah-MPv5.0 and
LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)–(f). The
statistical significance over each grid is computed using daily time series and the t-test method. The global mean value is also provided in
the lower right of each panel. See Fig. S4 for seasonal plots.

Figure 11. Same as Fig. 10 but for SWE (mm) comparison between SNODAS and LIS/Noah-MP simulations driven by the NLDAS-2
forcing over the CONUS averaged during 2018–2022.

across different seasons (Fig. S7). Compared to LIS/Noah-
MPv4.0.1, LIS/Noah-MPv5.0 shows an overall reduction of
surface albedo across mid-latitudes and high-latitudes due to
lower snow cover (Sect. 4.5), which reduces the high bias
of surface albedo particularly in the midlatitudes (Fig. 16).
The remaining albedo overestimates in LIS/Noah-MPv5.0
in the mid-latitude and high-latitude snowpacks are par-
tially caused by the overestimated snow cover (Fig. 14e) and
also likely by the soil and vegetation albedo uncertainties.
The systematic surface albedo underestimates in the Sahara
Desert, Antarctica, and Greenland further indicate model bi-
ases in the background albedo for desert soil and glacier
ice/snow albedo.

The CONUS-wide regional evaluation between MODIS
and LIS/Noah-MP simulations driven by the NLDAS-2 forc-
ing also reveals a consistently high bias in surface albedo

in LIS/Noah-MPv4.0.1 across the CONUS, except in some
parts of southwest US (Fig. 17), with a CONUS mean bias
of 0.031. LIS/Noah-MPv5.0 effectively reduces the mean
albedo bias to 0.023 due to improved snow cover simulations
(Figs. 15f and 17f). The remaining albedo overestimates
in the western US is partially due to the snow cover bias
(Fig. 15e) and snow albedo bias (He et al., 2019; Abolafia-
Rosenzweig et al., 2022b). The albedo overestimates in the
rest of CONUS may be related to the model uncertainty in
background soil and vegetation albedo (see Sect. 5 for dis-
cussion).
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Figure 12. Snow depth (m) comparison between ERA5-Land and LIS/Noah-MP simulations driven by USAF forcing globally averaged
during 2018–2022: (a) ERA5-Land data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1
biases (model minus ERA5-Land), (e) LIS/Noah-MPv5.0 biases (model minus ERA5-Land), and (f) differences between LIS/Noah-MPv5.0
and LIS/Noah-MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)–(f).
The statistical significance over each grid is computed using daily time series and the t-test method. The global mean value is also provided
in the lower right of each panel. See Fig. S5 for seasonal plots.

Figure 13. Same as Fig. 12, but for snow depth (m) comparison between SNODAS and LIS/Noah-MP simulations driven by the NLDAS-2
forcing over the CONUS averaged during 2018–2022.

5 Discussion on resulting differences in two
LIS/Noah-MP model versions

To summarize the evaluation metrics for all the investigated
variables from both model simulations in this study, we
adopted the International Land Model Benchmarking (IL-
AMBv2.7.2; Collier et al., 2018) package and applied it to
our model simulations and reference datasets. Overall, the
result (Fig. 18) shows that LIS/Noah-MPv5.0 outperforms or
is similar to LIS/Noah-MPv4.0.1 globally in the key land sur-
face variables evaluated in this study, except for slight degra-
dation in simulated surface soil moisture and SWE. In ad-
dition, we summarized all the bias values for different sea-
sons and regions for both model simulations in Tables 1
and 2. The slightly degraded surface soil moisture simula-
tion in LIS/Noah-MPv5.0 mainly comes from the degraded
performance over northern and southern mid-latitudes, while

the slightly degraded SWE in LIS/Noah-MPv5.0 is mainly
caused by the degraded performance in the northern high-
latitudes (Table 1). The soil moisture and SWE differences
between the two model simulations are primarily caused by
the model updates in vegetation processes (added canopy
heat storage and bug fix of vegetation fraction scaling) and
improved snow cover parameters.

The modeled LH and soil moisture assessments in Sect. 4
indicate a slightly higher soil moisture but lower LH over
some mid-latitude (e.g., the eastern US) and the tropics in
LIS/Noah-MPv5.0 compared to LIS/Noah-MPv4.0.1. To fur-
ther understand this seemingly conflicting model differences,
we conducted a series of additional analyses.

First, to quantify the uncertainty of reference ET data
products, we conducted additional model evaluations using
the FLUXCOM-X-BASE (Nelson et al., 2024) data. The re-
sults indicate large inconsistency between the FLUXCOM-
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Figure 14. Snow cover fraction comparison between MODIS and LIS/Noah-MP simulations driven by the USAF forcing globally averaged
during 2018–2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases
(model minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between LIS/Noah-MPv5.0 and LIS/Noah-
MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)–(f). The statistical
significance over each grid is computed using daily time series and the t-test method. The global mean value is also provided in the lower
right of each panel. See Fig. S6 for seasonal plots.

Figure 15. Same as Fig. 14, but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged
during 2018–2022.

X-BASE and GLEAM data, where the model biases reverse
the signs across many global regions particularly in the low-
latitudes (Fig. S9). For the CONUS, the bias sign also re-
verses in the northeastern US and many parts of the west-
ern US (Fig. S10). Previous studies (Nelson et al., 2024)
showed that FLUXCOM-X-BASE has consistently lower ET
in evergreen tropics as well as the temperate and high lat-
itudes of the Northern Hemisphere than GLEAM, whereas
FLUXCOM-X-BASE has higher ET in the semiarid and arid
ecosystems of the lower and middle latitudes. This is con-
sistent with previous studies (e.g., Abolafia-Rosenzweig et
al., 2021a) finding large disagreements across ET reference
datasets in general. These results suggest that the modeled
ET in this study falls into the range of observational uncer-
tainty over many global regions and the uncertainty in ET ref-
erence data products can confound model assessments which
should be accounted for in future studies.

Then, to assess the role of soil temperature change, we
further analyzed the soil temperature differences between
the two model simulations, which indicates a consistently
higher soil temperature in LIS/Noah-MPv5.0 than LIS/Noah-
MPv4.0 across all soil layers over the majority of the globe
except for polar regions (Figs. S11–12), which hence is not a
driver but rather a result of the decrease in LH.

Furthermore, our additional analyses indicate that the bug
fix of vegetation fraction scaling in LIS/Noah-MPv5.0 dom-
inates the impact on the ET (and LH) reduction, with mi-
nor opposite effects from the added canopy heat storage
term which generally increases sensible and latent heat fluxes
(Fig. S19). Furthermore, the LH changes tend to be larger
over regions with higher vegetation fraction (Fig. S20),
which underlines potentially large and heterogeneous im-
pacts in response to this.
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Figure 16. Surface albedo comparison between MODIS and LIS/Noah-MP simulations driven by USAF forcing globally averaged dur-
ing 2018–2022: (a) MODIS data, (b) LIS/Noah-MPv4.0.1 simulation, (c) LIS/Noah-MPv5.0 simulation, (d) LIS/Noah-MPv4.0.1 biases
(model minus MODIS), (e) LIS/Noah-MPv5.0 biases (model minus MODIS), and (f) differences between LIS/Noah-MPv5.0 and LIS/Noah-
MPv4.0.1 simulations. Grids with statistically significant differences (p < 0.05) are shown with gray dots in panels (d)–(f). The statistical
significance over each grid is computed using daily time series and the t-test method. The global mean value is also provided in the lower
right of each panel. See Fig. S7 for seasonal plots.

Figure 17. Same as Fig. 16, but for evaluation of LIS/Noah-MP simulations driven by the NLDAS-2 forcing over the CONUS averaged
during 2018–2022.

In addition, we quantified the differences in each of the
modeled ET components between the two model versions
and their biases by comparing with the GLEAM data. Us-
ing the CONUS region as an example, the results show that
the lower LH in LIS/Noah-MPv5.0 over the eastern US is
mainly caused by the lower plant transpiration and soil evap-
oration compared to LIS/Noah-MPv4.0.1, which outweigh
the higher canopy-intercepted water evaporation (Figs. S13–
S15). The slightly lower LH in LIS/Noah-MPv5.0 over the
western US is dominated by the lower plant transpiration
and canopy-intercepted water evaporation, which outweigh
the higher soil evaporation. Overall, the generally oppo-
site patterns in the western and eastern US in these model
differences in each ET component likely reflect the spa-
tially heterogeneous impacts across water limited vs. non-
water limited regimes, which needs further investigation.
These patterns are generally consistent throughout the sea-
sons (Figs. S16–S18), with stronger signals for plant tran-

spiration and soil evaporation in spring and summer due to
warmer temperature and higher solar radiation. Thus, the
slightly higher soil moisture appears to be a result of the
lower total ET in LIS/Noah-MPv5.0 compared to LIS/Noah-
MPv4.0.1. Besides, the slightly higher soil moisture in
LIS/Noah-MPv5.0 is also partially contributed by the up-
dated snow cover parameters in LIS/Noah-MPv5.0 that lead
to enhanced snow melting and hence increased soil moisture
in winter, spring, and early summer.

For snowpack and surface albedo, LIS/Noah-MPv5.0 gen-
erally shows a lower SWE than LIS/Noah-MPv4.0.1 partic-
ularly during ablation periods, mainly due to the updated
snow cover parameters in LIS/Noah-MPv5.0 resulting in
lower snow cover and hence reduced surface albedo and sub-
sequently enhanced melting. This triggers positive surface
albedo feedback.
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Table 1. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by the USAF forcing averaged during
2018–2022 on the global and regional scale. The values are the annual mean model bias (LIS/Noah-MP simulations minus reference datasets).
The statistically significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 simulations (p < 0.05 using a t-test for daily
time series) are marked as bold font. The values in the parentheses are the annual mean absolute model biases. The seasonal biases are shown
in Tables S1–S4.

Global low latitude northern mid-latitudes northern high-latitudes southern mid-latitudes southern high-latitudes
(30° S–30° N) (30–60° N) (> 60° N) (30–60° S) (> 60° S)

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0

Surface soil moisture 0.003 0.008 −0.009 −0.002 0.020 0.025 −0.013 −0.009 0.028 0.036 – –
(m3 m−3 compared to SMAP) (0.076) (0.078) (0.065) (0.066) (0.079) (0.082) (0.093) (0.094) (0.081) (0.086)

Surface Soil moisture 0.062 0.067 0.027 0.036 0.062 0.068 0.119 0.121 0.049 0.051 – –
(m3 m−3 compared to ISMN) (0.078) (0.082) (0.061) (0.067) (0.079) (0.082) (0.121) (0.123) (0.062) (0.062)

Latent heat flux (W m−2 0.992 −0.386 2.105 −2.759 0.752 −0.608 −4.122 −3.784 1.469 −0.271 2.992 3.668
compared to GLEAM3.8a) (6.802) (7.273) (10.740) (11.601) (7.994) (8.127) (5.541) (5.731) (9.369) (9.627) (3.105) (3.692)

Snow water equivalent −10.123 −13.237 −0.845 −0.878 0.715 −1.349 −45.177 −56.181 −10.804 −10.471 – –
(mm compared to ERA5-Land) (22.444) (22.328) (0.951) (0.966) (16.267) (15.898) (71.928) (72.276) (16.494) (16.311)

Snow depth (m −0.059 −0.061 −0.003 −0.003 −0.019 −0.019 −0.231 −0.245 −0.040 −0.037 – –
compared to ERA5-Land) (0.076) (0.079) (0.003) (0.003) (0.051) (0.052) (0.255) (0.268) (0.050) (0.050)

Snow cover fraction 0.112 0.069 0.001 0.000 0.149 0.118 0.234 0.108 0.020 0.015 – –
(compared to MODIS) (0.113) (0.090) (0.003) (0.002) (0.151) (0.122) (0.235) (0.183) (0.027) (0.023)

Surface albedo −0.018 −0.033 −0.016 −0.017 0.032 0.021 0.016 −0.024 0.017 0.013 −0.084 −0.100
(compared to MODIS) (0.061) (0.067) (0.047) (0.046) (0.052) (0.045) (0.052) (0.072) (0.034) (0.032) (0.089) (0.102)

Table 2. Model evaluation metrics for LIS/Noah-MPv4.0.1 and LIS/Noah-MPv5.0 simulations driven by the NLDAS-2 forcing averaged over
the CONUS during 2018–2022. The values are the mean model bias (LIS/Noah-MP simulations minus reference datasets). The statistically
significant difference between LIS/Noah-MP v4.0.1 and LIS/Noah-MPv5.0 simulations (p < 0.05 using a t-test for daily time series) are
marked as bold font. The values in the parentheses are the mean absolute model biases.

Annual DJF MAM JJA SON

LIS/Noah-MP v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0 v4.0.1 v5.0

Surface soil moisture 0.000 0.008 0.025 0.035 0.003 0.008 0.006 0.013 −0.010 −0.001
(m3 m−3 compared to SMAP) (0.062) (0.065) (0.077) (0.085) (0.067) (0.069) (0.062) (0.065) (0.058) (0.062)

Surface Soil moisture 0.041 0.047 0.041 0.051 0.024 0.029 0.043 0.049 0.047 0.054
(m3 m−3 compared to ISMN) (0.065) (0.068) (0.075) (0.080) (0.066) (0.067) (0.069) (0.072) (0.069) (0.074)

Latent heat flux −0.207 −2.302 −5.864 −5.126 −0.575 −3.498 9.476 3.209 −4.017 −3.865
(W m−2 compared to GLEAM3.8a) (9.135) (9.286) (7.014) (6.385) (14.912) (14.413) (17.752) (14.815) (7.147) (7.904)

Snow water equivalent −4.173 −4.959 −5.083 −6.715 −10.246 −11.309 −0.700 −0.961 −0.643 −0.843
(mm compared to SNODAS) (6.422) (6.369) (10.148) (9.961) (13.924) (14.061) (1.221) (1.051) (1.018) (0.930)

Snow depth −0.013 −0.015 −0.016 −0.020 −0.032 −0.033 −0.002 −0.002 −0.004 −0.004
(m compared to SNODAS) (0.020) (0.020) (0.036) (0.035) (0.040) (0.040) (0.003) (0.002) (0.005) (0.005)

Snow cover fraction 0.055 0.028 0.221 0.117 0.045 0.026 −0.003 −0.003 0.018 0.004
(compared to MODIS) (0.058) (0.037) (0.227) (0.137) (0.049) (0.046) (0.003) (0.003) (0.026) (0.018)

Surface albedo 0.031 0.023 0.072 0.030 0.022 0.016 0.024 0.023 0.031 0.026
(compared to MODIS) (0.038) (0.033) (0.083) (0.056) (0.032) (0.029) (0.033) (0.033) (0.041) (0.037)

6 Implications for future model improvements

The evaluation of global and regional benchmark simulations
(Sect. 4) reveals several important Noah-MP model uncer-
tainties and deficiencies, which calls for future model im-
provements.

First, the model biases in soil moisture and LH (Sect. 4.1
and 4.2) partially reflect the inadequate representation of
plant hydraulics and root schemes and/or too shallow soil

column configuration (e.g., in the Amazon), which have also
been highlighted by a few previous studies (e.g., Niu et al.,
2020; Li et al., 2021; Bieri et al., 2025). Recently, Li et
al. (2021) developed a new whole-plant hydraulics scheme
for Noah-MP with observation-constrained parameters (Sun
et al., 2024), which largely improves simulations of ET and
terrestrial water storage (TWS) compared to the default soil
hydraulics scheme in Noah-MP. Other studies (e.g., Niu et
al., 2020; Bieri et al., 2025) developed dynamic root uptake
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Figure 18. Scorecard-type comparison for LIS/Noah-MPv4.0.1 and
LIS/Noah-MPv5.0 model performance in simulating key surface
variables evaluated against the reference datasets used in this study
based on the ILAMB tool.

schemes in Noah-MP that improve modeled soil moisture,
ET, and TWS. These model updates have not been included
in the community Noah-MPv5.0, which needs to be done in
the future. Another possible model deficiency that could re-
sult in the LH bias is the canopy turbulence scheme. Noah-
MP uses the Monin–Obukhov (M–O) similarity theory to
compute momentum and heat exchange coefficients above
and through the canopy, which however does not account
for the canopy-induced turbulence in the roughness sublayer
(RSL) and hence fails above and within dense forests (Bo-
nan et al., 2018). Abolafia-Rosenzweig et al. (2021b) im-
plemented and evaluated a unified RSL turbulence scheme
throughout the canopy in an earlier Noah-MP version, which
demonstrates the potential of improving modeled surface
heat fluxes. We are currently working on a comprehensive
assessment of this RSL canopy turbulence scheme in Noah-
MPv5.0 across global FLUXNET sites. However, we note
that the satellite soil moisture data has large uncertainties
over dense forests. In addition, the input soil texture data
could also impact the modeled soil moisture and hence ET.
Li et al. (2024) recently developed a global 1 km high-quality

datasets for key land surface parameters (including soil tex-
ture), and we plan to test the effect of using this new dataset
in Noah-MP simulations in our next step.

Second, the model biases in snowpack, including SWE,
snow depth, and snow cover, reveal inadequate treatments
of snow physics. For example, the SWE underestimates
over midlatitude mountains (e.g., the Himalayas and west-
ern US high mountains) could be caused by the snow abla-
tion bias in the model, in addition to the precipitation and
temperature forcing uncertainty (Sect. 4.3). He et al. (2021)
found that Noah-MP tends to melt snow faster than obser-
vations in some western US mountain areas, likely due to
wind and solar radiation forcing biases and/or model de-
ficiencies in above-snowpack turbulence, canopy radiative
transfer, and snow albedo. Recently, Lin et al. (2025) cou-
pled Noah-MPv5.0 with a widely used physical snow albedo
scheme, SNICAR-ADv3 (Flanner et al., 2021; He et al.,
2024a), and found improved snow albedo relative to the de-
fault semi-empirical snow albedo scheme in Noah-MP. This
snow albedo physics update will be included in the next
Noah-MP major version release. The snow depth bias is not
only driven by the SWE bias but also by uncertainty in snow
compaction processes. A recent study (Abolafia-Rosenzweig
et al., 2024b) enhanced the Noah-MP snow compaction pa-
rameterization constrained by in-situ measurements across
∼ 800 SNOTEL sites in the western US, which is currently
being transferred to the Noah-MPv5.0 (https://github.com/
NCAR/noahmp/pull/148; last access: 24 November 2024). In
addition, a new flexible framework was recently developed to
couple the LSMs (including Noah-MPv4.0.1) in LIS with a
physical snow model, Crocus, which shows promising im-
provements in modeling snow depth and SWE (Navari et al.,
2024). The systematically overestimated snow cover fraction
in Noah-MP is a long-standing model problem, which has
been investigated by several studies over different mountain
regions (He et al., 2019; Jiang et al., 2020; Zhou et al., 2023).
A number of improvements in the model snow cover param-
eterization have been proposed for the Tibetan Plateau (Jiang
et al., 2020; Zhou et al., 2023) and the western US (Abolafia-
Rosenzweig et al., 2025). These solutions, however, need to
be tested for global applications.

Third, the model biases in surface albedo, particularly
over the Sahara Desert and glaciers, suggest possible de-
ficiencies in background desert soil albedo and glacier
albedo. Currently, Noah-MPv5.0 assumes a uniform medium
soil color everywhere, whereas using a spatially-varying
soil color map (Lawrence and Chase, 2007) tends to re-
duce Noah-MP surface albedo particularly over the desert
(Michael Barlage, personal communication, 2024), which
will be tested in NoahMPv5.0 together with the aforemen-
tioned Li et al. (2024) global 1 km input datasets. To im-
prove glacier modeling, Eidhammer et al. (2021) coupled
the Crocus snow/ice model with Noah-MP within the WRF-
Hydro framework, which reproduces the observed glacier
surface albedo and mass balance in Norwegian glaciers. Fu-
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ture Noah-MP model improvements need to also focus on
glacier regions, which were less studied in previous Noah-
MP applications. In addition, vegetation albedo (and canopy
radiative transfer) may also contribute to the surface albedo
biases in Noah-MP, which however lacks systematic assess-
ments in the literature and hence needs more future investi-
gations.

7 Conclusions

In this study, we integrated the refactored community Noah-
MPv5.0 model with the NASA LIS system (version 7.5.2)
through the GitHub submodule mechanism to streamline the
synchronization, development, and maintenance of Noah-
MP within LIS and to enhance the interoperability and ap-
plicability of both models. The GitHub submodule mech-
anism also allows for more rapid implementation of bug
fixes as well as new versions of Noah-MP (such as includ-
ing the new physics detailed in Sect. 5) into the LIS software
framework. We systematically evaluated multi-year (2018–
2022) global and regional (CONUS) LIS/Noah-MP bench-
mark simulations driven by the USAF and NLDAS-2 at-
mospheric forcing, respectively, for a set of key land sur-
face variables. Overall, LIS/Noah-MPv5.0 outperforms or
is similar to LIS/Noah-MPv4.0.1 globally in simulating the
key land surface variables evaluated in this study, except
for slight degradation in simulated surface soil moisture and
SWE.

Specifically, both LIS/Noah-MPv4.0.1 and LIS/Noah-
MPv5.0 simulations capture the spatial and seasonal dis-
tributions of observed surface and root-zone soil moisture,
LH, SWE, snow depth, snow cover, and surface albedo, with
similar bias patterns. For surface and root-zone soil mois-
ture, model simulations tend to underestimate over wet soil
regimes and overestimate over dry soil regimes, with slightly
higher soil moisture in LIS/Noah-MPv5.0 than LIS/Noah-
MPv4.0.1 across most regions. Due to the offset of model
overestimates and underestimates across different regions,
the global mean soil moisture biases of both models are rela-
tively small.

For LH, the model bias patterns generally follow
those of soil moisture, with the underestimated (overesti-
mated) LH over areas with the underestimated (overesti-
mated) soil moisture across most global regions. Although
LIS/Noah-MPv5.0 has a slightly higher soil moisture than
LIS/Noah-MPv4.0.1, it shows a lower LH across most non-
polar regions, which reduces the global mean LH bias
from 0.99 W m−2 (LIS/Noah-MPv4.0.1) to −0.39 W m−2

(LIS/Noah-MPv5.0).
For snowpack conditions, the model SWE bias patterns are

dominated by the precipitation and temperature forcing un-
certainties, with large SWE underestimates in the Himalayas,
west Canada, and western US mountains and overestimates
in most other mid-latitude and high-latitude snowpacks. The

SWE biases are similar for both models, with slightly larger
underestimates in LIS/Noah-MPv5.0 (global mean bias of
−13.2 mm) than LIS/Noah-MPv4.0.1 (global mean bias of
−10.1 mm). The model bias patterns of snow depth generally
follow those of SWE, with a global mean bias of∼ 0.06 m for
both simulations. For snow cover, LIS/Noah-MPv4.0.1 has a
systematic large overestimate across the globe, even over re-
gions with underestimated SWE, which is a long-standing
Noah-MP problem. LIS/Noah-MPv5.0 with updated snow
cover parameters effectively reduces the snow cover overes-
timates globally, decreasing the global mean bias from 0.11
to 0.07.

For surface albedo, both models show widespread over-
estimates over most mid-latitude and high-latitude regions
partially due to the snow cover overestimate, and significant
underestimates in the Sahara Desert, Greenland, and Antarc-
tica, which dominate the global mean bias. Because of the
reduced snow cover, LIS/Noah-MPv5.0 shows consistently
lower surface albedo than LIS/Noah-MPv4.0.1, which de-
grades the global mean bias from −0.018 to −0.033.

The model evaluation in this study reveals several impor-
tant Noah-MP uncertainties and deficiencies and motivates
future improvements in model processes/components includ-
ing plant hydraulics and dynamic root uptake, canopy turbu-
lence and interaction with snowpack, input soil texture and
color data, snow cover and albedo, glacier ice, and vegeta-
tion albedo (canopy radiative transfer).
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Appendix A

Table A1. Default Noah-MP physics options used in this study.

Noah-MP Physics Option Description

dynamic vegetation option 4 use table LAI and maximum vegetation fraction
rain-snow partition option 1 Jordan (1991) scheme
soil moisture factor for stomatal resistance option 1 Noah (soil moisture) (Ek et al., 2003)
ground resistance option 1 Sakaguchi and Zeng (2009) scheme
surface drag coefficient option 1 Monin–Obukhov (M–O) Similarity Theory (Brutsaert, 1982)
canopy stomatal resistance option 1 Ball-Berry scheme (Bonan, 1996)
snow surface albedo option 1 BATS snow albedo (Dickinson et al., 1993)
canopy radiation transfer option 3 two-stream applied to vegetated fraction (Niu and Yang, 2004)
snow/soil temperature time scheme option 1 semi-implicit; flux top boundary condition (Niu et al., 2011)
snow thermal conductivity option 1 Stieglitz scheme (Yen, 1965)
lower boundary of soil temperature option 2 Deep soil boundary temperature read from input file (Niu et al., 2011)
soil supercooled liquid water option 1 No iteration (Niu and Yang, 2006)
runoff option 3 Schaake scheme (Schaake et al., 1996)
frozen soil permeability option 1 linear effects, more permeable (Niu and Yang, 2006)
soil configuration option 1 use input dominant soil texture
glacier treatment option 1 include phase change of glacier ice
tile drainage option 0 No tile drainage
irrigation option 0 No irrigation
dynamic crop model option 0 No dynamic crop model

Code and data availability. The data and scripts produced in this
study is available at https://doi.org/10.5281/zenodo.14567220
(He et al., 2025). The LIS/Noah-MPv5.0 model
code produced and used in this study is available at
https://doi.org/10.5281/zenodo.14567645 (He et al., 2024b).
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