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Abstract. As global and regional vegetation diversity loss
threatens essential ecosystem services under climate change,
monitoring biodiversity dynamics and its role in ecosystem
services is crucial in predicting future states and providing
insights into climate adaptation and mitigation. In this con-
text, remote sensing (RS) offers a unique opportunity to as-
sess long-term and large-scale biodiversity dynamics. How-
ever, the development of this capability suffers from the lack
of consistent, global, and spatially matched ground diver-
sity measurements that enable testing and validating gener-
alizable methodologies. The Biodiversity Observing System
Simulation Experiment (BOSSE) aims to alleviate the lack of
this information by means of simulation. BOSSE simulates
synthetic landscapes featuring communities of various vege-
tation species whose traits’s seasonality and ecosystem func-
tions (e.g., biospheric fluxes) respond to meteorology and
environmental factors. Simultaneously, BOSSE can generate
various types of remote sensing imagery linked to the traits
and functions via radiative transfer theory. Specifically, it
simulates hyperspectral reflectance factors (R), which can be
convolved to the bands of specific RS missions, sun-induced
chlorophyll fluorescence (SIF), and land surface temperature
(LST). The resolution of the RS imagery can be degraded
to test the robustness of different approaches to information
loss and the capability of new methodologies to overcome
this limitation. Therefore, BOSSE enables users to evaluate
the capability of different methods to estimate plant func-
tional diversity (PFD) from RS and link it to ecosystem func-

tions. We expect BOSSE to support the benchmarking and
improvement of old and novel methods dedicated to estimat-
ing plant diversity and exploring the biodiversity—ecosystem
function (BEF) relationships, facilitating advances in this
growing area of research and supporting the analysis and
interpretation of real-world measurements. We also expect
BOSSE to be extended and include new features that pro-
vide more realistic simulations that help answer more com-
plex questions related to climate change and global warming.

1 Introduction

Climate change and other human-induced environmental
changes jeopardize ecosystems’ biodiversity and functions,
many of which directly translate to ecosystem services
(Hernandez-Blanco et al., 2022). Biodiversity can sustain
the stability of ecosystem functions, such as photosynthe-
sis or transpiration, in response to environmental variabil-
ity, perturbations, and extreme events (Mahecha et al., 2024;
de Bello et al., 2021). Many terrestrial ecosystem functions
and services depend on plant diversity, as plants are the pri-
mary producers in terrestrial ecosystems, i.e., they produce
the chemical components that support other living beings (Is-
bell et al., 2011). Therefore, it is necessary to establish a sys-
tem for global plant diversity monitoring to assess and quan-
tify biodiversity loss, sustain ecosystem stability, and fore-
cast future scenarios (Gonzalez et al., 2023; Pereira et al.,
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2013). In this context, remote sensing (RS, find a glossary
in Table A for all the terms not defined in other tables)
has become a valuable tool, given its capability to provide
continuous and synoptic information on the Earth’s surfaces
(Cavender-Bares et al., 2017). Since the proposition of the
Spectral Variation Hypothesis (SVH) (Palmer et al., 2000),
the spatial variability of spectral signals and RS products has
been related to different facets of vegetation diversity, such as
taxonomic (Van Cleemput et al., 2023), functional (Ma et al.,
2019), and phylogenetic (Schweiger et al., 2018) diversity;
moreover, recent works have also linked RS-derived diver-
sity with ecosystem functional properties (Gomarasca et al.,
2024). However, other studies have also reported RS failing
to capture different facets of plant diversity, at least in partic-
ular cases (Ludwig et al., 2024; Fassnacht et al., 2022; Van
Cleemput et al., 2023).

The evaluation of the SVH is challenging since the test
outcome strongly depends on the data used (e.g., field sam-
pling schemes, sensor features, and resolutions), the method-
ologies and metrics quantifying diversity, and the type and
extent of the study sites. The variability and lack of overlap
of these factors lead to a broad spectrum of results (Torresani
et al., 2024), which are not systematically comparable. Since
most studies are limited in all these aspects, it remains un-
clear whether the hypothesis should be discarded or whether
the methods and data fail to capture plant diversity. The un-
derlying problem is a lack of consistent global databases
(meaning representative of the Earth’s terrestrial ecosystems)
to develop, compare, and identify reliable methodologies.
Furthermore, the relationships established between RS and
field estimates of plant diversity are often indirect due to a
lack of physical connection between the variables measured
in the field and the spectral signals of vegetation. This lack
of connection limits the interpretation and generalization of
the results and might make the estimation of some diver-
sity facets unreliable and context-dependent (e.g., taxonomic
diversity; Fassnacht et al., 2022). Among all the diversity
facets, plant functional diversity (PFD) is the most directly
(physically) linked to RS data since it relies on the physical
properties of vegetation that determine its interaction with
radiation. However, not all traits or their measurements fea-
ture this physical link. For example, ecological surveys of-
ten measure plant traits on a per-leaf mass basis, which are
less connected to the spectral signals captured by RS than
if measured per-leaf area (Kattenborn et al., 2019). In ad-
dition, the effect of the measurement uncertainties and spa-
tial mismatches between field and RS data is poorly under-
stood and could induce spurious relationships and conclu-
sions (Pacheco-Labrador et al., 2022). Consequently, despite
multiple studies (for a literature review, see Torresani et al.,
2024), basic methodological questions remain unanswered,
and there is a risk that methodologies prone to spuriousness
are identified as adequate and others more suitable pass un-
noticed.
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Generating consistent datasets for robust methodological
benchmarking and SVH evaluation would require great coor-
dination efforts and dedicated field sampling protocols rarely
used by ecologists or remote sensing scientists. On the one
hand, the plant traits targeted by ecologists (characteristics of
organisms that influence performance or fitness), along with
their sampling schemes, are not optimized for evaluating RS-
based estimates of biophysical variables or their diversity.
On the other hand, adapting the typical sampling schemes
in RS to facilitate the evaluation of diversity estimates could
require both n-folding the sampling effort (e.g., multiply-
ing the number of sampling plots to build n-by-n grids as in
Hauser et al., 2021) and making sure that the variables (traits)
that significantly influence the spectral signals are effectively
measured. Furthermore, optimized samplings should be ap-
plied in research stations where ecosystem functions are also
measured so that methods to assess BEF relationships us-
ing remote sensing -a nascent research field- can be robustly
developed. Nowadays, even the most promising coordinated
activities in this direction (Barnett et al., 2019) lack sampling
protocols fully optimized for testing the SVH and bench-
marking RS methods, despite which these efforts are ex-
tremely valuable.

Alternatively, some researchers have used radiative trans-
fer models to overcome the lack of suitable field datasets
(simulating them instead) and answer methodological ques-
tions regarding the capability of RS to infer different plant
taxonomic (Badourdine et al., 2023; Fassnacht et al., 2022;
Van Leeuwen et al., 2021) and functional diversity (Pacheco-
Labrador et al., 2022; Ludwig et al., 2024). Simulations have
also helped to understand the results found using RS data to
assess BEF relationships (Gomarasca et al., 2024). Within
the limitations of the synthetic data, these works have pro-
vided valuable insights into methodological questions and
framed the chances of RS to infer plant diversity within wide
ranges of situations that exceed those covered by local and
individual studies. Radiative transfer simulations have also
helped to test new diversity metrics optimized for RS data
(Pacheco-Labrador et al., 2023). However, these works have
been relatively limited regarding the simulation of multiple
spectral signals, the incorporation of phenology, the spatial
representation of landscapes, the corresponding RS imagery,
and the connection of spectral signals with ecosystem func-
tions.

This manuscript presents the Biodiversity Observing Sys-
tem Simulation Experiment (BOSSE), a modeling tool to
advance the development of RS methods to monitor PFD
and BEF relationships from space. BOSSE simulates 1)
spatially explicit scenes (vegetation-populated landscapes)
where plant traits (PT) and the associated functions (e.g.,
biospheric fluxes) respond to meteorology and environmen-
tal factors, and 2) the physically and physiologically con-
nected imagery of hyperspectral reflectance factors (R), sun-
induced chlorophyll fluorescence radiance (F'), land sur-
face temperature (LST), and retrieved optical traits (OT).
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BOSSE v1.0 is designed to benchmark metrics and meth-
ods that cope with the challenges of using RS data to capture
PFD and relate the PFD estimates with ecosystem functions
in space and time, allowing for a flexible configuration of
the simulations, e.g., degrading sensor resolutions while al-
ways providing a reference or best-case scenario. We expect
BOSSE to help the RS community benchmark and develop
their methods in a controlled environment, supporting the in-
terpretation and design of experiments and measurements.

2 Methods
2.1 BOSSE model

The BOSSE model v1.0 is a spatially defined dynamic veg-
etation model able to simulate maps of plant traits, functions
(e.g., biospheric fluxes), and the physically and physiolog-
ically connected remote sensing imagery in the optical do-
main at hourly steps. It allows various configuration options
that enable repeatable simulations featuring different spatial
patterns, climatic and meteorological conditions, taxonomic
richness, spatial and temporal resolutions, or simulated satel-
lite missions. A BOSSE “Scene” is a configurable synthetic
landscape containing species’ individuals whose properties
and functions evolve in response to meteorology and other
spatially varying environmental conditions (e.g., soil proper-
ties). BOSSE conceives a plant “species” as a classification
rather than an evolutionary unit (Dupré, 2001). A species is
defined as a unique set of variables (phenological maximum
and minimum radiative transfer variables and phenological
model parameters, among others) that is randomly gener-
ated. Moreover, BOSSE simulates intra-specific variability
so that each species represents the averaged specific pheno-
type and response to the environment (phenology) of a group
of individuals. Consequently, in the simulated plant traits
maps, each pixel shows unique values that differ to some de-
gree from the values of the pixels corresponding to the same
species. This variability propagates to the spectral signals and
functions related to each pixel. Despite operating on a con-
tinuous trait space, each species is associated with a given
plant functional type (PFT), which constrains the range of
variability and sometimes the covariance between traits and
the relative abundance as a function of the simulated Koppen
climatic zone.

Figure 1 summarizes BOSSE’s workflow, which is di-
vided into three phases (the last one, “Analyses”, is
to be implemented by the user). BOSSE is coded in
Python 3.11 as a Class to facilitate usability. The source
code and a Jupyter tutorial are published on GitHub (https:
//github.com/JavierPachecoLabrador/pyBOSSE, last access:
10 June 2025) under the GPL-3 license.

Initialization of the BOSSE class. Each simulation loca-
tion is assigned to a given climatic zone that determines the
presence and the probability of occurrence of the different
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PFTs represented (S1 in the Supplement). Moreover, mete-
orological data time series (e.g., radiation, air temperature,
soil moisture) are used with a phenological model to filter
out the least competitive PFTs under those conditions. Then,
one or more species are assigned to each PFT. The individ-
uals of the different species are located in space, assuming
each pixel is occupied by one individual or a group of identi-
cal individuals and, therefore, it contains a unique set of plant
trait values. Then, the maximum and minimum values of all
traits (i.e., radiative transfer variables) are defined for each
pixel.

Simulation: Once BOSSE is initialized for a given Scene,
the phenological model parameters and the trait ranges deter-
mine the trait values of each individual at any given time as
a function of meteorology. The results of this step are plant
trait maps and the corresponding RS imagery and ecosystem
functions. These data can be directly analyzed with Python
or stored in NetCDF files for later assessment with other
programming languages or software. BOSSE also allows for
estimating large-scale simulations’ computational costs (in
time) so that users can allocate the necessary resources.

Analyses: The user can use BOSSE outputs to com-
pute functional diversity metrics from the simulated trait
maps and the simulated RS imagery. It is also possible
to derive ecosystem functional properties from the ecosys-
tem functions. These products can be used to benchmark
different methods and answer methodological questions
(e.g., which variables capture the best plant diversity or
BEF relationships). In this manuscript, we exemplify the
analysis of BOSSE v1.0 outputs with the Python pack-
age “pyGNDiv” (https://github.com/JavierPachecoLabrador/
pyGNDiv-master, last access: 10 June 2025) (Pacheco-
Labrador et al., 2023) recently updated with “numba” (Lam
et al., 2015) compilation for faster computation and new fea-
tures to directly asses cubes of RS imagery, products or plant
trait maps. pyGNDiv provides a selection of benchmarked
functional diversity metrics and methods for partitioning di-
versity at different scales (Pacheco-Labrador et al., 2023;
Pacheco-Labrador et al., 2022) such as Rao’s quadratic en-
tropy index Qrao (Botta-Dukét, 2005) and the fractions of «
(fe) and B-diversity (fp) using a variance-based approach
(Laliberté et al., 2020). In addition, pyGNDiv normalizes the
value of the metrics by the number of variables so that these
are comparable one-to-one, independently of the number of
traits or spectral bands analyzed. At this stage, the users can
also test and benchmark their own methods and metrics.

2.2 BOSSE data and data-driven submodels

BOSSE combines data and several models parametrized
from different datasets or bibliographic references.

Geosci. Model Dev., 18, 8401-8422, 2025
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Figure 1. Biodiversity Observing System Simulation Experiment (BOSSE) workflow. First, the BOSSE model is initialized for a particular
scene where the climatic zone and local meteorology limit the plant functional types (PFT) present. Then, the model is able to simulate plant
trait maps, ecosystem functions, and remote sensing (RS) imagery at any desired time of the meteorological time series. From these outputs,
the users can apply any methods they choose to estimate diversity metrics and relate them to ecosystem functions.

2.2.1 Plant functional types and climatic zones

We determined the relative abundance of different PFTs
in each Koppen climatic zone by convolving the European
Space Agency’s Land Cover Climate Change Initiative (ESA
LC-CCI) Global Plant Functional Types Dataset (v.2.08)
from Harper et al. (2023) with the Képpen Climate Clas-
sification System maps from Rubel et al. (2017). We also
considered the estimates of C3/C4 grass leaf area fraction
generated in the NACP MsTMIP simulations (Global 0.5-
degree Model Outputs in Standard Format, Version 2.0, from
Huntzinger et al., 2021) to separate the Grasses PFTs (S1 in
the Supplement). These probabilities are used to determine
the number of species belonging to a PFT when a Scene is
generated.

2.2.2 Meteorological data

For each climatic zone, we selected 15 random locations
(60 sites total) where we downloaded two years (2020-2022)
of ERAS5-Land hourly meteorological data (S2 in the Supple-
ment). Accumulated radiation was recomputed to instanta-
neous rates (W m~2) and accumulated precipitation at hourly
intervals. The selected variables were prepared as the inputs
of the model Soil Canopy Observation, Photochemistry and
Energy fluxes (SCOPE) (Van Der Tol et al., 2009) as in Li
et al. (2023) (Table S2 in the Supplement).

2.2.3 Plant traits and random generator

BOSSE randomly generates sets of plant traits (i.e., radia-
tive transfer model variables) for each pixel of a Scene, each
representing a species individual or group of identical indi-
viduals. This can be constrained by PFT-dependent bounds
or consider empirical relationships between traits (Table 1).
BOSSE preserves the covariance between most foliar traits
by drawing them from a Gaussian Mixture Model (GMM)
trained over a 16 703 samples database generated by combin-
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ing and gap-filling different spectral libraries and the TRY
database (Kattge et al., 202) (S3 in the Supplement). The
maximum carboxylation at optimal temperature (Vcpo) rate
is then predicted as a PFT-dependent function of chloro-
phyll content (Cyp). Most structural parameters are sampled
from uniform distributions within global or PFT-dependent
bounds. Canopy height (k) is derived as a function of leaf
area index (LAI).

2.2.4 Remote sensing and ecosystem functions
emulators

For computational feasibility, BOSSE uses emulators (i.e.,
2-hidden layer neural networks; Gémez-Dans et al., 2016) of
SCOPE model (Van Der Tol et al., 2009) to simulate RS im-
agery and most of the ecosystem functions (Table 2). The
emulators predict hyperspectral R, hyperspectral F, and LST
imagery as a function of plant traits, soil properties, meteo-
rological data, and sun-view geometry (S4-S6 in the Supple-
ment). Additional emulators retrieve optical traits (RS-based
estimates of plant traits) from sun angles and R, which can
also be tailored to specific RS missions (i.e., EnMAP, DESIS,
and Sentinel-2 MSI) by convolving first R to their spectral re-
sponse functions. An additional emulator predicts gross pri-
mary production, evapotranspiration, transpiration, sensible
heat and soil heat fluxes, net radiation, and total and green
light-use efficiency; ecosystem respiration is approximated
with the semi-empirical model of Migliavacca et al. (2011)
and used to compute net ecosystem productivity. Addition-
ally, BOSSE computes friction velocity for the later compu-
tation of ecosystem functional properties (Gomarasca et al.,
2024)

The emulators were trained over a database of simulations
generated with SCOPE 1.74 using the full model (including
the energy balance and photosynthesis) to ensure that spec-
tral variables were linked to the simulated plant physiology.
Vegetation traits were randomly generated (1) using a GMM

https://doi.org/10.5194/gmd-18-8401-2025
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Table 1. BOSSE plant traits and variables, symbols, bounds, and the method used to produce them in the simulations.

Plant trait Symbol  Units Bounds Simulation
Leaf structural parameter N layers [1,3.6] Random, GMM
Leaf chlorophyll content Cab ug cm—2 [0, 100] Random, GMM, with
PFT-dependent bounds from
Croft et al. (2017)
Leaf carotenoids content Ceca ug cm™2 [0, 40] Random, GMM
Leaf anthocyanins content Cant ug cm™2 [0, 10] Random, GMM
Leaf senescent pigments content Cs a.u. [0, 3] Random, GMM
Leaf water content Cyw g cm™2 [0.004, 0.081] Random, GMM
Leaf dry matter content Cdm gcm_2 [0.019, 0.030] Random, GMM
Leaf inclination distribution function LIDF, - [—1,1]; Random, uniform distribution
Bimodality of the leaf inclination LIDF, - ILIDF, +LIDFp| <1 with global bounds
Leaf area index LAI m2m—2 [0, 15] Random, uniform distribution
with PFT-dependent bounds
from Asner et al. (2003)
Canopy height he m [0.1, 10.0] LAI allometric relationship
from Jones (1998)
Leaf width lw M [0.01, 0.10] Random, uniform distribution
with global bounds
Leaf maximum carboxylation rate at Vemo umol Cem™2m~! [0,250] PFT-dependent function of Cjy,
25°C from Luo et al. (2019)
Leaf stomatal sensitivity (Ball-Berry MBB - [1, 50] Random, uniform distribution
model slope) with PFT-dependent bounds
from Miner et al. (2016)
Table 2. BOSSE remote sensing products and ecosystem functions variables.
Parameter Symbol Units Model Features
Hyperspectral reflectance R - SCOPE Emulator 1 nm step between 400 and
factors 2500 nm
Sun-induced chlorophyll F mWm 2sr 'nm~! SCOPE Emulator 1 nm step between 641 and
fluorescence radiance 849 nm
Land surface temperature LST K SCOPE Emulator Temperature Emissivity
Separation (TES) algorithm
Optical traits oT various SCOPE Emulator N, Cyp, Cea, Cant, Cs, Cy,
Cdm, LIDF,, LIDFy, LAL hc,
and [y
Gross primary production GPP umol Cm 25! SCOPE Emulator
Total latent heat flux A Wm—2 SCOPE Emulator
Transpiration Acanopy Wm—2 SCOPE Emulator
Sensible heat flux H Wm—?2 SCOPE Emulator
Net radiation Ry Wm—2 SCOPE Emulator
Soil heat flux Grot Wm™? SCOPE Emulator
Light-use efficiency LUE umol C pumol ~1 SCOPE Emulator GPP/aPAR
Green light-use efficiency LUEgreen umol C pmolfl SCOPE Emulator GPP/aPARgreen
Ecosystem respiration RECO umol C m~2s~1 Semi-empirical model  (Migliavacca et al., 2011)
Ecosystem respiration at a Rgco,15°c umolC m2s~! Semi-empirical model  (Migliavacca et al., 2011)
reference temperature (15 °C)
Net ecosystem productivity NEP umol C m~2s~1 Equation NEP = GPP — Rgco
Friction velocity u* ms~! Physical model (Wallace and Verhoef, 2000)
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Figure 2. Components and functioning of the Growing Season Index (GSI) phenological model. Individual species response to water avail-
ability (f(Wp), a), incoming radiation (f(Rjy), b), cold temperatures (f (T, cold)> d), and warm temperatures (f (Ta,warm), €) colored by
plant functional type (DNF: Deciduous Needleleaf Forest, ENF: Evergreen Needleleaf Forest, GRAC3: C3 grasslands or SHR: Shrubland)
Individual species responses computed on a meteorological data time series colored by driver (c), and the GSI resulting of their product (f).

trained over a plant trait database (Sect. 2.2.3) and (2) using
a Latin Hypercube Sampling approach. Moreover, we devel-
oped a semi-parametric model (a 2D interpolator) predict-
ing soil resistance for evaporation from the pore space as
a function of the relative soil moisture (W;, the ratio volu-
metric soil water content (SMp) to soil field capacity (6fc))
and a parameter determining the sensitivity of the response
(S5 in the Supplement). Realistic meteorological conditions
were randomly drawn from an additional GMM trained over
a 107-size dataset subsampled from the BOSSE meteorolog-
ical dataset (Sect. 2.2.1).

We did not only test the performance of the RS emulators
to predict different RS variables on independent datasets but
also assessed the impact of these uncertainties on the derived
functional diversity metrics (Table S4 in the Supplement).
These analyses suggested the emulator’s predictions align
with the expected uncertainties of the different RS products
and that the fact of using emulators does not bias or jeop-
ardize the computation of functional diversity metrics. Simi-
larly, the emulators’ capability in predicting ecosystem func-
tions was within the uncertainties expected from eddy covari-
ance measurements (Table S5 in the Supplement). While the
emulators carry certain epistemic uncertainty, the underlying
models also carry such uncertainty. As the models, the emu-
lators establish sufficiently formal relationships between the
plant traits and the RS variables used to estimate functional
diversity metrics and the fluxes used to compute ecosys-
tem functional properties, thus enabling the benchmark of
methods exploring the relationships between those variables.

Geosci. Model Dev., 18, 8401-8422, 2025

BOSSE also allows adding random uncertainty to the simu-
lated RS variables to match specific Gaussian noise levels.

2.2.5 Phenological model

BOSSE uses the Growing Season Index (GSI) phenological
model (Forkel et al., 2014) that defines vegetation phenology
as a function of its response to water availability (Fig. 2a),
light (i.e., incoming shortwave radiation, Fig. 2b), as well as
cold (Fig. 2d) and heat (Fig. 2e), determined by air tempera-
ture. The combination of these functions over local meteorol-
ogy (Fig. 2c) leads to the combined response of each species
(Fig. 2f). GSI predicts vegetation trait values at any time as
a function of the boundaries assigned to each pixel and me-
teorology (S7 in the Supplement). BOSSE assigns the PFT-
dependent values parametrized by Forkel et al. (2014) and
adds random Gaussian noise to generate variability between
species and between traits. The GSI runs over the 30d av-
eraged meteorological values, and the rate of change of the
GSI index is limited for each PFT to avoid unrealistic sudden
changes in the vegetation state.

2.3 BOSSE initialization
2.3.1 BOSSE class initialization

The BOSSE class is initialized by passing two Python dictio-
naries containing the simulation options (Table 3) and paths
necessary to load all the models and constants required and
to store the outputs.

https://doi.org/10.5194/gmd-18-8401-2025
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Table 3. BOSSE configuration arguments.

Input Datatype  Default value

Meaning and values

“rseed_num” integer 100

Seed for a random number generator. Controls the repeatability of the
simulations

“subfolder_out”  string “bosse_outputs”

Name of the subfolder where the different simulations are stored.

“scene_sz” integer 60

Length in pixels of the Scene simulated.

“S_max” integer 40

The maximum number of species that could be simulated in that Scene. A
random number between “S_max” and 1 is selected in each case.

“sensor” string “Hy”

Name of the sensor that will be used to simulate spectral reflectance factors.
BOSSE can ingest “Hy” (hyperspectral), which directly provides the 1 nm step
output of the radiative transfer model between 400-2400 nm, “EnMAP” and
“DESIS”, which convolve the bands of the corresponding hyperspectral
imagers and “S2”, convolves reflectance factors to the bands of the Sentinel-2
multispectral imager.

“spat_res” integer 100

Determines the spatial resolution of the sensor with respect to the plant size.
100 means that the plant and pixel feature the same size, and lower values
equal the fraction of the plant to the pixel sizes in percentage values. For
example, 50 indicates the pixel is 2 times larger than the plant, and four plants
can approximately be included in one pixel.

“sp_pattern” string “intermediate”

Patterns used to simulate the spatial distribution of species. “clustered”
produces landscapes of grouped species; “even” leads to more scattered
patterns, where species mix without forming closed clusters. “intermediate” is
a mixture of both.

“clim_zone” string “continental”

The climatic zone where the simulated sites will be placed. It determines plant

functional types and meteorological inputs. “Tropical”, “Dry”, “Temperate”,
and “Continental”

“inspect” boolean False

Option to inspect the results. If true, BOSSE produces different plots showing
maps, meteorology, phenology, and plant traits of each site simulated.

“verbose” boolean False

Option to print information regarding the initialization and simulations.

During the initialization, BOSSE loads all the necessary 5. PFT maximum leaf area index values from Asner et al.
datasets and models and preallocates 3D matrices represent- (2003).

ing the 2D Scene with the third dimension containing prede-
fined values for all the plant, soil, and meteorological vari-
ables the model uses. BOSSE also establishes upper and

lower bounds for each variable.

6. Parameters of the GSI phenological model from Forkel
et al. (2014): which determine phenology and are used
to filter the least adapted PFTs to local meteorology.

First, BOSSE sets the PFT-dependent information regard- 7. The ecosystem respiration model parameters and stan-
ing: dard error from Migliavacca et al. (2011).
1. The PFT and relative abundances corresponding to the Next, it loads the following models:
selected climatic zone 1. The GMM used to draw random samples of correlated
2. The coefficients of the linear models relating V., with plant traits.

Cap from Luo et al. (2019) controlling photosynthesis

and, therefore, fluorescence emission.

2. SCOPE model emulators to predict spectral signals (re-
flectance factors, fluorescence radiance, and land sur-

3. The Ball-Berry model slope (mpp) ranges from Miner face temperature), retrieve optical traits from canopy
et al. (2016), controlling the ratio between photosynthe- reflectance factors of different sensors, and predict
sis and transpiration and, therefore, surface temperature. ecosystem functions.

4. Potential canopy conductance from Leuning et al. 3. The model (a 2D interpolator) predicts soil resistance
(2008). for evaporation from the pore space as a function of
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Geosci. Model Dev., 18, 8401-8422, 2025



8408

the W; and a parameter determining the sensitivity of
the response.

2.3.2 BOSSE Scene initialization

Once BOSSE has loaded all the necessary variables and mod-
els, it can initialize a given Scene, which is controlled by the
options provided when the BOSSE class is initialized (Ta-
ble 3). The only necessary input argument is an integer num-
ber that identifies the meteorological dataset to be loaded.
This number is used by default to seed the BOSSE class
random number generators to ensure reproducibility; alterna-
tively, the user can provide a different seed number and a low
bound for the maximum mean LAI simulated in the Scene.
By default, it is larger than or equal to 1.0m?m™ to gener-
ate Scenes with a certain amount of vegetation. However, this
value can be lowered to represent barely vegetated Scenes.
The random number generator is seeded several times during
the Scene initialization to maximize the comparability of the
species’ plant traits for the scenes generated with different
spatial patterns.

Meteorological and leaf area index data

First, the time series of ERA5-Land meteorological variables
are loaded for the site. Units are converted to those of the
SCOPE model when necessary. Since ERA5-Land times-
tamps are UTC, the first and the last day might be incom-
plete in local time; therefore, these are gap-filled data from
the nearby day, so they feature 24 hourly values at local time,
which is the time used by BOSSE. Next, unfeasible negative
values are interpolated and, if persistent, truncated. Wy, vapor
pressure deficit, and timestamps in different formats (e.g.,
Day of the Year) are then computed. Finally, BOSSE cal-
culates daily and 30 d averages and midday values and stores
them in separate data frames; also, daily potential evapotran-
spiration is calculated using the Python package “pypyet”
(Vremec et al., 2023) according to Penman-Monteith (1965).

Soil properties and climatic PFT filtering

The random number generator is seeded for the first time.
Then, BOSSE randomly generates unique values of the
SCOPE soil reflectance model parameters and field capacity
(6fc, —) for the Scene. 65 is set within 100 %—150 % of the
maximum volumetric moisture content (SMp, %] of the time
series, and water availability (W), —) is updated according to
the new 6.

Next, BOSSE uses the default PFT-dependent parameters
of the phenological model and W, to calculate the GSI time
series of each PFT, utilizing the default coefficient values
from Forkel et al. (2014). BOSSE filters out the PFTs that are
poorly adapted to the Scene’s climate. To do so, it compares
the percentile 95 (or 5 for the warm temperature) of each
meteorological variable with the corresponding GSI “base”
parameter that determines the inflection point of the pheno-
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logical response function to meteorology (see S7 in the Sup-
plement). BOSSE removes the PFTs from the Scene where
the most extreme meteorological conditions do not cross this
point, assuming these are too stressful for such species to
develop in competition with other species. If no PFT meets
these criteria, BOSSE keeps only the most competitive PFT
(reaching the largest phenological index values).

Species location and correlation with soil properties

Then, some or all of the remaining PFTs are randomly se-
lected for the Scene, and individuals of different species are
assigned to the scene pixels. BOSSE runs at a 100 % spa-
tial resolution; therefore, each pixel is occupied by a single
phenotype (a single individual or identical individuals of the
same species), meaning a unique set of vegetation parame-
ters. The number of species is randomly sampled from the
range between 1 and the input “S_max” (maximum species
richness). BOSSE assigns these species to the PFTs and,
together with foreseen relative abundances and the spatial
pattern configured (“clustered”, “intermediate”, or “even”),
the Neutral Landscape model (Etherington et al., 2015) dis-
tributes them in space. Neutral Landscape produces spatial
patterns of a continuous variable that is then classified to de-
termine the pixels belonging to each species, trying to respect
the foreseen abundances, which must be recomputed later.
BOSSE filters this spatial pattern generated using a Gaus-
sian kernel of standard deviation randomly selected between
[0.5, 1.5] pixels. This smoothed map is then used to scale the
soil reflectance model variables (B, lat, and lon), generating
a spatial variability of soil properties that is partly correlated
with the species’ location.

Species functional traits

Plant trait values are randomly generated, either using the
GMM for the leaf radiative transfer variables (N, Cap,
Car, Cants Cs, Cy, Cgm) truncated within PFT or species-
dependent bounds (S3 in the Supplement) or randomly sam-
pling within those bounds (LIDF,, LIDF, LAL I, and mpg)
(Table 1). Moreover, V¢mo is computed as a function of Cy,
using PFT-dependent relationships from Luo et al. (2019),
and canopy height (k) is computed using the allometric re-
lationship with LAI and PFT-dependent scaling factors de-
scribed in Jones (1998).

BOSSE determines the phenological maximum and mini-
mum values for the plant traits per pixel, considering that the
bounds of some plant traits are PFT-dependent (e.g., LAI,
Cab, and mpg). In each scene, BOSSE randomly generates a
set of plant traits and a range of variability between 10 % and
40 % of the global PFT range. The bounds above and below
this “central” value are used to generate random sets of mean
plant traits for the species of each PFT (Fig. 3a). Then, the in-
terspecific variability is calculated from the weighted average
of the plant traits of all the species included, and the intraspe-
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Figure 3. Generation of phenological maximum and minimum plant trait values for each plant individual (pixel). From the global or plant
functional type-dependent upper and lower bounds, new bounds are set for each PFT in the scene (a), and from those, bounds are generated
for each species (b), and then for each individual (i.e., pixel) including a certain intra-specific variability (c). The growing season index
(GSI), ranging between [0, 1], determines the value of the traits of each individual at time 7. The process is exemplified for the leaf area
index (LAI) of an Evergreen Broadleaf Forest individual (EBF), where the asterisk means that the values have been randomly set within a

predefined range (d).

cific variability is determined assuming it ranges between
20 % and 40 % of the interspecific variability (Fig. 1 in Albert
et al., 2010) (Fig. 3b). Using each initial mean species plant
trait values and the intraspecific variability, the plant traits of
each species individual (i.e., pixel) are randomly determined.
This process can bias the resulting species’ mean from the
initial mean value. Also, any value outside the global bounds
of the above and below-average site ranges are truncated
if they exceed the global trait bounds. Finally, each pixel’s
phenological maximum and minimum values are produced
by adequately assigning the largest or the lowest value to
the maximum or minimum phenological moment (Fig. 3c).
For example, pigments and structural variables maximize in
the green peak (GSI=1), but senescent pigments content
(Cy) are assumed minimum during that period. Also, BOSSE
ensures that LAI, Cy, carotenoids (C¢,), and anthocyanins
(Cant) content of deciduous species equal zero at the bottom
of the phenological period (GSI=0) and reduces the range
of variability of all variables for the evergreen PFTs. It also
ensures that the C only develop after the green peak (max-
imum GSI of the year). At any time (¢) of the simulations,
the plant trait values are determined by interpolating between
these phenological bounds with the corresponding phenolog-
ical state determined by the GSI. When LAl =0, plant traits
are set to 0, which improves the emulators’ performance. The
whole process is represented for a given individual in Fig. 3d.

Functional traits temporal variability

Then, the GSI phenological model is run using 30 d averages
of the meteorological variables. Starting from the PFT pa-
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rameter values, different parameters are generated for each
species and plant trait by adding random Gaussian noise
(5 % for the slope (sgsr) and the base (bgsy), and 1 % for the
legacy sensitivity (zgsy), S7 in the Supplement). This allows
species of the same PFT to behave similarly but prevents all
the plant traits from synchronizing precisely.

BOSSE runs GSI using the incoming shortwave radiation
and air temperature from ERA-5 Land. Following Forkel
et al. (2014), water availability must be calculated from the
relative soil water content, a PFT-defined maximum transpi-
ration value (Table 1 in Gerten et al., 2004), potential evapo-
transpiration, and a PFT-dependent potential canopy conduc-
tance value from Leuning et al. (2008).

Moreover, to prevent unrealistically fast changes in the
vegetation’s phenological status, BOSSE includes some PFT-
dependent arbitrary limits to the rate of change of the GSI
index of each of the response functions of the model (Ta-
ble S6 in the Supplement). During the calculation of the GSI
index, these values truncated any change of the index, taking
into account the time step length of the change.

Ecosystem respiration model parameters

BOSSE uses the model described and parametrized by Migli-
avacca et al. (2011) to predict ecosystem respiration (Reco)
and takes the PFT-dependent parameters and their associated
standard errors reported in the abovementioned manuscript
(S8 in the Supplement). The model scales R, with the max-
imum seasonal leaf area index, which is determined at this
point for each pixel. This is done by multiplying the maxi-
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mum species-dependent GSI value assigned to LAI and the
LAI upper bound assigned to each pixel.

Then, for the rest of the model parameters, BOSSE first
generates the interspecific variability by random sampling
parameter values of a Gaussian distribution with a mean
equal to the adjusted PFT-dependent value and standard devi-
ation equal to the reported standard error in Table 5 in Migli-
avacca et al. (2011). Once the model parameters are defined
per species, intraspecific variability is generated by adding
random noise drawn from a uniform distribution, assuming
traits’ intraspecific variability ranges between 20 % and 40 %
of the interspecific variability (Fig. 1 in Albert et al., 2010).

2.4 BOSSE simulation

BOSSE simulations always occur at 100 % spatial resolu-
tion. However, the different plant trait maps, remote sensing
imagery, and ecosystem functions can be retrieved at lower
resolutions where the different signals and values are aver-
aged with different approaches depending on the nature of
the variable.

24.1 Trait maps

BOSSE uses the precomputed plant trait bounds and the GSI
values to generate plant trait maps at any time (¢) of the me-
teorological time series. Each species and trait GSI value
(GSIsp,pr € [0, 1]) is used to linearly interpolate the corre-
sponding trait value between the bounds corresponding to the
upper (PTypper) and lower (PTiower) points of the phenology,
assigned for each trait and pixel (pix) of the Scene (Eq. 1).
The fact that all the necessary variables are precomputed dur-
ing initialization ensures the repetition of these simulations.
Plant trait map resolution is degraded using a regular grid,
mimicking field sampling schemes.

PTt,pix = PTlower,pix + (PTupper,pix - PTlower,pix)
x GSI sp, T, ()

2.5 Remote sensing imagery and products

BOSSE can simulate maps of plant traits and related RS im-
agery and products (R, F, LST, and OT) for any sample
of the meteorological dataset. The phenological state (GSI
value) is determined daily, and then the meteorological con-
ditions and sun angles are set hourly. The hyperspectral re-
flectance factors (R, —) are initially generated at 1 nm step,
between 400 and 2400 nm. These can be convolved to the
spectral response functions of different RS imagers (EnMAP,
DESIS, and Sentinel-2 MSI). Fluorescence radiances (F,
mWm~2sr—2nm™!) are also provided at 1 nm step between
641 and 849 nm, and land surface temperature (LST, K) is a
single layer.

In addition, RS imagery spatial resolution can be down-
graded using a Gaussian point spread function (PSF) model
to more accurately mimic the spatial artifacts that can occur
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due to the gridding step that separates RS observations from
the resulting gridded imagery (Wang et al., 2020; Duveiller
et al., 2011) (S9 in the Supplement). A Gaussian PSF model
is currently adopted (Eq. S4 in the Supplement), aiming at
considering the PSF effects only at nadir with an isotropic as-
sumption. BOSSE spatial resolution (rspyt) is defined as the
ratio of the simulation (plant) to the pixel size; therefore, a
100 % resolution implies that each pixel contains unmixed
information of a unique individual or set of identical indi-
viduals. The resolution of the plant trait maps can also be
degraded since many RS-related field campaigns use plots
and not species as sampling units. In this case, BOSSE uses
a simpler regular grid since the RS sampling process does
not need to be simulated and is closer to how field data are
gridded (e.g., Hauser et al., 2021). This feature would allow
assessing the effect of the RS sampling at different scales
(with their respective PSF effects) to see if this “erases” our
capacity to detect the underlying traits accordingly.

Finally, a different set of emulators can retrieve the veg-
etation traits (optical traits) from the simulated R images to
include the effect of the retrieval uncertainty (noise and bi-
ases) in the analyses. This retrieval is performed with emu-
lators trained independently from the emulators predicting R
(S9 in the Supplement); moreover, these emulators have been
trained for specific sets of spectral bands (i.e., hyperspectral
and the missions EnMAP, DESIS, and Sentinel-2). The em-
ulators can be applied to R with any (100 % or down-graded
resolution), which also allows for assessing how the loss of
spatial detail propagates to the estimated optical traits.

2.5.1 Ecosystem functions

BOSSE uses instantaneous meteorological data and vegeta-
tion and soil traits to predict instantaneous gross primary pro-
duction (GPP), total latent heat flux (A E), canopy latent heat
flux (AEcanopy), sensible heat flux (H), net radiation (Rp),
soil heat flux (G), light use efficiency (LUE), and LUE com-
puted with the photosynthetically active radiation absorbed
by chlorophyll (LUEgeen) using a SCOPE dedicated emula-
tor. Negative GPP, LUE, and LUEg, are allowed to pre-
vent biases in averages and ecosystem functional properties,
which is acceptable since these values are present in observa-
tional datasets due to uncertainty. The analysis of the simu-
lated fluxes might be subject to quality analysis and filtering,
as the observations.

In addition, Rec, is computed also using the model
described in Migliavacca et al. (2011). The model is
parametrized to predict daily Reco, using daily mean air tem-
perature, daily GPP, and monthly precipitation. Therefore,
the model is fed with the values averaged for those periods
around the timestamp where respiration is computed. Reco
is converted to umolCm™2s~! to calculate net ecosystem
productivity (NEP = GPP — Reco); additionally, R, y5°¢ at
the reference temperature of 15 °C is also computed. Finally,
BOSSE also calculates the friction velocity (u*) following
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Figure 4. Simulation of a Scene with different spatial patterns: “clustered” (a), “intermediate” (b), and “even” (c). The number of species (.S)
is the same for all the cases; however, the relative abundance and the averaged value of the plant traits per species can vary slightly.

Wallace and Verhoef (Wallace and Verhoef, 2000), as done
in the SCOPE model. The ecosystem functions can be pro-
vided as a map or as the average value for the Scene. The
functions can be provided as the average value of the Scene,
as well as maps so that other integration approaches (e.g.,
climatology footprints; Kljun et al., 2015) can be applied.

3 Results
The pyBOSSE package features a “tuto-
rial_bosse_v1_0.ipynb” Jupyter Notebook that shows

how to import the pyBOSSE and pyGNDiv packages,
initialize the BOSSE class, create Scenes with different
features, modify the simulations, retrieve the trait maps and
the remote sensing products, visualize, store, and benchmark
simulations, and compute functional diversity metrics on
the maps and imagery. This section presents more advanced
results (see “ManuscriptFigures.py”) that require the com-
putation of time series in some cases, but the precomputed
results are also provided.

3.1 Scene spatial patterns and species distribution

BOSSE can represent Scenes featuring the same number of
species with similar plant trait values (on average) but dif-
ferent spatial distributions to assess its impact on the assess-
ment of plant diversity and its relationship with ecosystem
functions, if any. Figure 4a—c exemplifies the simulation of
the same Scene species with three different spatial patterns:
“clustered”, “intermediate”, and “even”, respectively.

3.2 Vegetation phenology, intra and inter-specific
variability

BOSSE simulates the time series of vegetation functional
traits associated with species’ individuals. Figure 5 exempli-
fies the simulated LAI (Fig. 5a—f) and leaf chlorophyll con-
tent (Cjp, Fig. 5g-1) for scenes in different climatic zones and
spatial patterns (i.e., those in Fig. 4). Figure 5 presents the
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mean and one standard deviation (o) confidence interval for
each species, colored by PFTs; species richness (S) is 30 in
all the cases ). For the same Scene, BOSSE ensures that the
averaged values of each species are very similar across the
spatial patterns (Fig. Sa—c and g—i); however, climatic con-
ditions and local meteorology modify the PFTs and species
included in each site, and therefore, their trait values (Fig. Sa,
d-f, g, and j-1). The different seasonalities of evergreen and
deciduous species are clearly visible and change across cli-
mates; grasses respond faster to meteorological changes than
the other PFTs.

3.3 Scene maps, vegetation properties, and remote
sensing products

Figure 6 exemplifies the simulation of Scene maps and
RS products for an “intermediate” spatial pattern (see
Figs. S2 and S3 in the Supplement for the “clustered” and
“even” spatial pattern examples, respectively). The simula-
tion takes place specifically at midday of day 230 of the time
series presented in Fig. 5b and h, during the green peak. The
species map (Fig. 6a) generated during the Scene initializa-
tion is the base to produce other maps at each timestamp.
Each species is associated with a PFT (Fig. 6b). BOSSE first
simulates the plant trait maps (e.g., LAI and Cy,, Fig. 5c
and d) and, from those, simulates the remote sensing im-
agery. In this case, we computed the Normalized Difference
Vegetation Index (Rouse et al., 1974) and the Near-infrared
reflectance of vegetation (Badgley et al., 2017) spectral in-
dices computed from the hyperspectral reflectance factors
(Fig. 6e and f). The indices are coherent with the properties
and taxonomy of vegetation. The figure also shows the fluo-
rescence radiance at 687 and 760 nm from the hyperspectral
spectra (Fig. 61 and j) and LST (Fig. 6k), which include in-
formation about the physiological status of vegetation. In ad-
dition, BOSSE can retrieve optical traits (Fig. 6g and h), each
estimated with different uncertainty (Fig. 61). In this specific
case, the retrieved LAI correlates well with the simulated
one. In contrast, Cy, has been overestimated and is retrieved

Geosci. Model Dev., 18, 8401-8422, 2025
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Figure 5. Time series of leaf area index (LAI, a—f) and leaf chlorophyll content (C,p, g-1) for different spatial patterns (a—c and g-i) and
climatic zones (a, d—f, g, and j-1). The averaged value of the traits and one-standard deviation (o) confidence interval are presented per each
species. The colors represent the plant functional type of each species: deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF),
shrubland (SHR), C3 grassland (GRAC3), and C4 grassland (GRAC4). All the simulations feature the same species richness (S).

less accurately, which is not contrasting since foliar parame-
ters are more challenging to retrieve (e.g., Pacheco-Labrador
et al., 2024). Overall, the RS images and optical traits follow
the patterns presented by the vegetation traits with varying
degrees of correlation. The previous relationships allow them
to capture different PFD measures with various accuracy lev-
els, alone or in combination. These correlations are the basis
for assessing the capability of remote sensing to capture plant
functional diversity.

Geosci. Model Dev., 18, 8401-8422, 2025

3.4 Spatial resolution and functional diversity
estimates

BOSSE can simulate remote sensing imagery at different rel-
ative spatial resolutions, defined as plant-to-pixel size ratio.
As the resolution coarsens, it becomes suboptimal for diver-
sity analysis as the signals of more and more different plants
are integrated into a single pixel of the coarse-resolution sim-
ulated images. This feature can help analyze suboptimal res-
olution estimation of PFD, enabling users to test whether a
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Figure 6. Simulated scene located in Continental climate and an “intermediate” spatial pattern at midday of day 230 of the time series
presented in Fig. 5b and h. The coordinates are shown in pixels. Maps of species, indicating taxonomic Richness (S) (a), species’ plant
functional types (b), leaf area index (c), foliar chlorophyll content (d), normalized difference vegetation index (e), near-infrared reflectance
of vegetation index (f), estimated leaf area index (g), estimated foliar chlorophyll content (h), fluorescence radiance at 687 nm (i), fluorescence
radiance at 760 nm (j), land surface temperature (k), and the predicted vs. simulated leaf area index (c vs. g, blue) and foliar chlorophyll
content (d vs. h, green)(l), standardized for the comparison and evaluated with the Pearson correlation coefficient (rz).

given approach is robust to a specific spatial resolution. The
spatial resolution has a strong effect on the computation of
the diversity metrics as shown for QRrao (mean of 3 x 3 win-
dows) and f, estimated from NIR, (Fig. 7a—e), F at 760 nm
(Fig. 7f—j), and LST (Fig. 71-0). The loss of spatial resolution
can result in both positive or negative biases according to the
underlying configuration. In this case (“intermediate” spatial
pattern), both metrics (QRrao and fy) seem to decrease when
resolution reduces to 90 % and then increase, reaching values
above the ones at the 100 % resolution as it continues degrad-
ing. The behavior is also found for the other spatial patterns
of the same Scene (see Figs. S4 and S5 in the Supplement for
the “clustered” and “even” spatial pattern examples, respec-
tively).

3.5 Ecosystem function time series

BOSSE can compute different ecosystem functions at hourly
timestamps. Figure 8 shows the integrated functions corre-
sponding to the Scene represented in Figs. 5b and 6 for
2 years. In this case, the functions are computed per pixel
and averaged for the whole Scene. The fluxes follow the ex-
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pected seasonal behavior, following the Scene meteorology
(Fig. S6 in the Supplement), featuring one productive peak
per year.

4 Discussion

BOSSE is the first Observing System Simulation Experi-
ment (OSSE) dedicated to studying plant diversity from RS.
Simulations have been recently applied to tackle method-
ological questions regarding the remote estimation of dif-
ferent aspects of plant diversity (Pacheco-Labrador et al.,
2022; Pacheco-Labrador et al., 2023; Gomarasca et al., 2024;
Fassnacht et al., 2022; Ludwig et al., 2024). However, none
of these works have provided a sufficiently comprehensive
tool to spatially describe different ecosystem types and land-
scapes in various climatic zones across time. Also, while sim-
ulations of all these works have explored the links between
spectral and plant diversity, none of them has aimed to ex-
plore simulated BEF relationships derived from RS. BOSSE
also simulates additional spectral signals beyond vegetation
reflectance factors (i.e., SIF and LST), which might help elu-
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Figure 7. Simulated imagery of the near-infrared of vegetation index (a—e), fluorescence radiance at 760 nm (f—j), and land surface temper-
ature (I-0) using an “intermediate” spatial pattern at different spatial resolutions (Spat. Res., 100 %, 90 %, 60 %, 30 %, and 10 %), defined as
the plant-to-pixel size ratio. The mean value of Rao’s quadratic entropy (QRrao) calculated over a 3 pixel x 3 pixel moving window and the
fraction of a-diversity ( fi), calculated from the variance-based partition approach, are presented for each map. The coordinates are shown

in pixels.

cidate these signals’ potential contribution to the study of
plant diversity or BEF analyses.

Despite the inherent limitations of the simulations, these
are still necessary tools to clarify fundamental questions in
this emerging research field. The lack of global compara-
ble field data sets acquired for validating RS estimates of
plant diversity hampers the definition and selection of reli-
able metrics and methodologies. This is particularly relevant
for the analysis of functional diversity, where noise and un-
certainty can be confounded with variability. Using simula-
tions, Pacheco-Labrador et al. (2022) showed that some func-
tional diversity metrics presented a large variability of per-
formances when used at local scales (e.g., a single study site)
or were prone to spuriousness under uncertainty. Therefore,
the empirical results of local studies might not be sufficient
to identify the most reliable methodologies, and their publi-
cation might suffer from a survivorship bias not necessarily
related to the capability of approaches and metrics to capture
plant functional diversity from RS. Furthermore, the SVH on
which the assessment of plant diversity from remote sensing
relies has been questioned (Torresani et al., 2024), and mod-
eling and observational works have identified significant lim-
itations (Ludwig et al., 2024; Pacheco-Labrador et al., 2022;
Fassnacht et al., 2022; Wang et al., 2018). It could be that
SVH is not applicable in practice or that we have not yet

Geosci. Model Dev., 18, 8401-8422, 2025

found reliable methodologies and the limits of their appli-
cation; considering the limitations of comparable field mea-
surements and local studies, BOSSE and similar tools might
play a fundamental role in the assessment of SVH. BOSSE
aims not to replace the necessary field studies but to offer a
framework to answer methodological questions that improve
and guide the analysis of RS imagery and validate the esti-
mates with real-world observations.

BOSSE simultaneously simulates species and plant trait
maps, the associated remote sensing signals, and the related
ecosystem functions. The quality of this information can be
degraded at will to test the robustness or applicability of dif-
ferent methodologies capturing plant diversity and BEF re-
lationships. BOSSE relies on emulators, accepting a certain
degree of epistemic uncertainty between the original model
and BOSSE simulations. However, these uncertainties might
not differ too much from those existing between models and
reality and still offer a systematic link between the variables
of interest that allows testing whether different methodolo-
gies can capture and under which circumstances. While the
relationships found between BOSSE variables could not be
directly transferable to real-world applications (e.g., a rela-
tionship between QRrao computed from R and PT), BOSSE
could help to define how plant diversity or BEF relationships
should be estimated (e.g., selecting the most convenient mov-
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Figure 8. Time series of Scene-integrated ecosystem functions corresponding to a Scene simulated in a Continental climatic zone with an “in-
termediate” pattern: gross primary production (GPP, a), ecosystem respiration (Rgco, b), ecosystem respiration at 15 °C (Rgcg, 15 °c. ©), net
ecosystem productivity (NEP, d), light use efficiency (LUE, e), green light use efficiency (LUEgreen, f), latent heat flux (A E, g), transpiration
(T, h), sensible heat fluxes (H, i), net radiation (Ry, j), soil heat fluxes (G, k), and friction velocity (u*, I).

ing window sizes), and how to adapt the methodologies to
different sensors (spatial resolution, spectral configuration),
or observational limitations, and organize field campaigns
for validation. Still, in the case of plant functional diversity,
simulations have provided results close to those found with
observations (e.g., Pacheco-Labrador et al., 2022). BOSSE
phenology will also help to understand the role of vegetation
phenological status on the reliability of diversity estimates or
how to exploit this temporal information in the assessment
of BEF relationships (which, so far, relies on the productive
stages, e.g., Gomarasca et al., 2024).

BOSSE v1.0 offers realistic simulations but also has excel-
lent potential to increase their complexity and completeness
and tackle more challenging questions in upcoming versions.
The current version already allows for testing numerous fun-
damental but unsolved methodological questions about how
spatial resolution, phenology, and different spectral signals
affect or enable the estimation of plant functional diversity.
BOSSE v1.0 is already the first simulation environment pro-
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viding not only reflectance factors but also other signals of
interest for studying plant diversity, such as SIF (Tagliabue
et al., 2020) or the less explored LST, two signals related
to vegetation physiology and ecosystem functions whose
role on BEF analyses remains untested. In its current state,
BOSSE v1.0 might help to test and improve methodologies
already developed to characterize different aspects of plant
diversity (e.g., Féret and De Boissieu, 2020; Laliberté et al.,
2020; Rocchini et al., 2021; Rossi and Gholizadeh, 2023, or
Rossi et al., 2021), and BEF relationships (Gomarasca et al.,
2024).

BOSSE relies on 1D radiative transfer models representing
vertically homogeneous canopies. Future versions could rely
on more complex radiative transfer models representing ver-
tically heterogeneous canopies (e.g., SCOPE 2 (Yang et al.,
2021) or DART (Gastellu-Etchegorry et al., 2017)) and sim-
ulating LiDAR datasets, which could help to develop the ca-
pability of RS to infer plant diversity in structurally complex
ecosystems where different species overlap (Almeida et al.,

Geosci. Model Dev., 18, 8401-8422, 2025
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2021; Zhao et al., 2018). Radar imagery has also been pro-
posed as a tool to assess vegetation diversity (Bae et al., 2019;
Hoffmann et al., 2022); BOSSE v1.0 could also incorporate
Radar radiative transfer models (e.g., Oh and Kweon, 2013)
to assess the capabilities of this signal. In its first version,
BOSSE only represents nadiral observations, which limits
the conclusions of the analyses in terms of missions and sun-
view configurations. Future versions will include off-nadir
and multi-angular capabilities to offer more realistic RS sim-
ulations of different sensors and enable the study of direc-
tional effects on the analysis of plant diversity. BOSSE will
also improve the representation of vegetation and its pro-
cesses. Upcoming versions will also represent plants of dif-
ferent sizes and include more ecological theory, allowing for
the competition and replacement of species, one of the key
mechanisms behind the role of plant diversity on ecosystem
stability (de Bello et al., 2021). While some models already
present some of the features to be included in BOSSE (e.g.,
FORMIND represents vegetation interactions vertically het-
erogeneous canopies and features a LIDAR simulator; Knapp
et al., 2018), BOSSE aspires to provide more diverse features
at a fast computational speed.

Beyond the study of plant diversity, BOSSE could support
methodological development and benchmarking in other RS
applications, particularly in those dealing with coarse spatial
resolutions and integrating multiple RS products, or address
scaling issues in surface-atmosphere flux modeling with low-
or mid-resolution RS data. BOSSE could also support the
development of digital tweens of existing landscapes via the
assimilation of remote sensing and other observables.

5 Conclusions

BOSSE is the first Observing System Simulation Experi-
ment dedicated to studying plant diversity and biodiversity—
ecosystem function relationships from remote sensing. It
aims to support the development of these areas, overcom-
ing the lack of global and consistent field datasets. In its
first version, BOSSE will allow researchers to test hypothe-
ses and benchmark methodologies, while future versions will
grow in complexity to help answer more nuanced and di-
verse research questions. BOSSE will allow researchers to
select the most promising approaches, test them with real-
world observations, and interpret the results by characteriz-
ing the sensitivity of the methods to different confounding
factors under controlled conditions. In addition, the spatial
and temporal nature of BOSSE simulations could be used
for the development of other remote sensing applications.
We expect BOSSE and similar modeling approaches will
contribute to elucidating whether and under which circum-
stances the Spectral Variation Hypothesis can be reliably ap-
plied or under which circumstances.
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Appendix A: Glossary

Acronym or  Definition

Symbol

B Soil brightness factor

BEF Biodiversity-Ecosystem Function
(relationships)

bast Growing Season Index model
sensitivity equation slope

BOSSE Biodiversity Observing System
Simulation Experiment

DBF Deciduous Broadleaf Forest

DESIS DLR Earth Sensing Imaging
Spectrometer

EBF Evergreen Broadleaf Forest

ECMWF European Centre for
Medium-Range Weather Forecasts

EnMAP Environmental Mapping and
Analysis Program

ERAS ECMWF Reanalysis v5

ESA LC-CCI  European Space Agency’s Land
Cover Climate Change Initiative

f(Rin) Vegetation growth response to
incoming radiation

S (Ta,cold) Vegetation growth response to cold
temperatures

f Ty warm) Vegetation growth response to
warm temperatures

f(Wp) Vegetation growth response to
water availability

FORMIND Forest Model Individual-Based

fu fractions of a-diversity

I8 fractions of B-diversity

GMM Gaussian Mixture Model

GRAC3 C3 Grassland

GRAC4 C4 Grassland

GSI Growing Season Index

lat Soil “latitude” parameter (not
geographical)

LiDAR Light Detection and Ranging

lon Soil “longitude” parameter (not
geographical)

MSI Multispectral Imager

MsTMIP Multi-Scale Synthesis and
Terrestrial Model Intercomparison
Project

NACP North American Carbon Program

OSSE Observing System Simulation
Experiment

PFD Plant Functional Diveristy

PFT Plant Functional Type

pix Pixel
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PSF Point Spread Function

PT Plant Traits

ORao Rao’s quadratic entropy index

Radar Radio Detection and Ranging

RS Remote Sensing

Tspat Spatial resolution

S Species richness

SCOPE Soil Canopy Observation,
Photochemistry and Energy fluxes

SGSI Growing Season Index model
sensitivity equation slope

SHR Shrubland

SIF Sun-induced Chlorophyll
Fluorescence

SM,, Volumetric soil water content

sp Species

SVH Spectral Variation Hypothesis

t Time

TRY Plant Trait Database

UTC Coordinated Universal Time

W;r Relative soil moisture

Wp Water availability

Ofc Soil field capacity

log Standard deviation

TGSI Growing Season Index model

legacy sensitivity

Code availability. The model pyBOSSE can be found at
https://github.com/JavierPachecoLabrador/pyBOSSE, last access:
10 June 2025 and https://doi.org/10.5281/zenodo.14973471
(Pacheco-Labrador, 2025). The latest version of pyGNDiv package,
updated for faster computation and image analysis, can be found
at https://github.com/JavierPachecoLabrador/pyGNDiv-master
(Pacheco-Labrador, 2025).

Data availability. The ERAS-Land hourly meteorological datasets
required to run BOSSE at various locations can be found in
https://doi.org/10.5281/zenodo.14717038 (Pacheco-Labrador et al.,
2025) under Creative Commons Attribution 4.0 International li-
cense.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-8401-2025-supplement.
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