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The following supplementary material includes additional descriptions, tables, and figures of the BOSSE model.
Supplementary (S) 1 describes the plant functional types (PFT) and how their relative abundance was calculated per climatic
zone. S2 describes the meteorological variables that BOSSE uses to run. S3 reports how different spectral libraries and trait
databases were processed to characterize their covariance and randomly generate draws of traits. S4 describes how the
SCOPE simulations used to train the BOSSE emulators were configured and run. S5 describes the model predicting soil
resistance for evaporation from the pore space. S6 reports the training of the different BOSSE emulators. S8 describes the
phenological model. S8 describes the semi-empirical respiration model. S9 reports how the spatial resolution of maps and
images is degraded. S10 reproduces Fig. 5 in the manuscript with “clustered” and “even” spatial patterns. S11 reproduces
Fig. 6 in the manuscript with “clustered” and “even” spatial patterns. S12 shows the meteorological data used to simulate the

ecosystem functions in Fig. 7 in the manuscript.

S1 Plant functional types and climatic zones

BOSSE determines the plant functional types (PFT) that could potentially exist in a simulated Scene as a function of the
climatic zone where a site is located. PFT frequency per climatic zone was extracted by convolving the European Space
Agency’s Land Cover Climate Change Initiative (ESA LC-CCI) Global Plant Functional Types Dataset (v.2.08) from Harper
et al. (2023) with the K&ppen Climate Classification System maps from Rubel et al. (2017). To do so, we averaged the
annual pixel abundance of each PFT between 2000 and 2022 and combined some of the map PFTs (Table S1.1). Since the
ESA LC-CCI product does not discriminate between C3 and C4 metabolic pathways, we used the estimates of C3/C4 grass
leaf area fraction generated in the NACP MsTMIP simulations (Global 0.5-degree Model Outputs in Standard Format,
Version 2.0, from Huntzinger et al. (2021)) to separate the Grasses PFTs. We considered four of the five main climatic zones
in the K&ppen classification (Tropical, Dry, Temperate, and Continental). The resulting PFT frequencies per climatic zone

are presented in Table S1.1.
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Table S1.1. BOSSE plant functional types and abundances per climatic zones

Frequency | Frequency | Frequency Frequency
BOSSE PFT ESA LC-CCI PFT Tropical Dry Temperate | Continental
(%) (%) (%) (%)
Deciduous Needle Forest (DNF) TREES-ND 0.00 0.00 0.00 7.86
Evergreen Needle Forest (ENF) TREES-NE 0.00 0.00 10.48 19.37
Deciduous Broadleaf Forest TREES-BD 736 1.45 967 2.09
(DBF)
Evergreen Broadleaf Forest TREES-BE 43.97 0.00 8.46 0.00
(EBF)
SHRUBS-ND +
SHRUBS-BD +
Shrubland (SHB) SHRUBS-NE + 4.21 6.49 2.65 5.90
SHRUBS-BE
GRASS-MAN +
C3 Grasses (GRAC3) GRASS-NAT 0.00 62.54 59.07 58.79
GRASS-MAN +
C4 Grasses (GRAC4) GRASS-NAT 44.46 29.52 9.67 0.00
S2 Meteorological data

BOSSE can be run at different locations where meteorological data has been evenly selected and prepared (Table S3.1)

within the climatic zones. For each climatic zone, we selected 15 random locations within each climatic zone, (60 sites total).

We gathered these sites’ ERA5-Land hourly meteorological time series between 2020 and 2022. Accumulated radiation and

precipitation variables were recomputed at hourly intervals, and these were used to produce the inputs of the model SCOPE

(Van Der Tol et al., 2009) as in Li et al. (2023). These data were used for two purposes. The main one was to run BOSSE

simulations. The second purpose was to fit a Gaussian Mixture Model (GMM) able to predict coherent meteorological

conditions that could be used as inputs of the SCOPE model (Van Der Tol et al., 2009) look-up table simulations

(Supplementary S6) used to train the emulators and (Supplementary S8). To do so, we used two ERAS-Land datasets, data

from 1000 sites located in draught-prone regions downloaded for SCOPE simulations used by Li et al. (2023) and the time

series downloaded at the BOSSE climatic regions. We selected 10° samples from these datasets to fit the GMM using the

expectation-maximization (EM) algorithm (Dempster et al., 1977).
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Table S2.1 BOSSE meteorological variables

Variable ERA Variable Units Description
name
Time time -
Year Yr y
DoY DoY d Day of the year
Hour Hour h
Latitude latitude °
Longitude longitude °
Air temperature Ta °C ERAS-Land 2 metre temperature (t2m)
Air pressure p hPa ERAS5-Land Surface pressure (sp)
Accumulated ssrd Jm? ERAS5-Land Surface solar radiation downwards (ssrd)
incoming shortwave
irradiance
Accumulated strd Jm? ERAS-Land Surface thermal radiation downwards
incoming shortwave (ssrd)
irradiance
Total precipitation tp m ERAS5-Land Total precipitation (tp)
Relative humidity rH %
Incoming shortwave Rin W m™ Instantaneous (desaccumulation of ssrd)
irradiance
Incoming longwave Rli W m™ Instantaneous (desaccumulation of strd)
irradiance
Sun zenith angle tts ° Computed with the Python package “pysolar”
Sun azimuth angle saa ° Computed with the Python package “pysolar”
Vapor pressure ea hPa Calculated from Ta and rH
Wind speed u ms’! Vector addition of ERA5-Land 10 metre U wind
component (u10) and 10 metre V wind component
(v10)
Volumetric soil SMC % Averaged ERAS5-Land Volumetric soil water layer 1
moisture content (swvll), Volumetric soil water layer 2 (swvl2),
Volumetric soil water layer 3 (swvl3), and Volumetric
soil water layer 4 (swvl4).
Relative soil moisture wr - Volumetric soil moisture content to field capacity
Vapor pressure deficit VPD hPa Calculated from Ta and ea
Potential PET mm d! Computing using the Penman-Monteith model in the
evapotranspiration Python package “pyet”
Day time DayTime - Boolean, whether Rin > W m™



https://apps.ecmwf.int/codes/grib/param-db/167
https://apps.ecmwf.int/codes/grib/param-db/134
https://apps.ecmwf.int/codes/grib/param-db/169
https://apps.ecmwf.int/codes/grib/param-db/175
https://apps.ecmwf.int/codes/grib/param-db/228
https://pypi.org/project/pysolar/
https://pypi.org/project/pysolar/
https://apps.ecmwf.int/codes/grib/param-db/165
https://apps.ecmwf.int/codes/grib/param-db/165
https://apps.ecmwf.int/codes/grib/param-db/166
https://apps.ecmwf.int/codes/grib/param-db/39
https://apps.ecmwf.int/codes/grib/param-db/40
https://apps.ecmwf.int/codes/grib/param-db/41
https://apps.ecmwf.int/codes/grib/param-db/42
https://apps.ecmwf.int/codes/grib/param-db/42
https://pypi.org/project/pyet/
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S3 Plant traits and covariance

To randomly sample realistic sets of plant traits, we generated a dataset of foliar traits and radiative transfer parameters by
combining spectral libraries and samples from the TRY database (Kattge et al., 2020). Then, we adjusted a GMM over this
dataset as before. First, we gathered the spectral libraries LOPEX (Hosgood et al., 1994) and ANGERS (Feret et al., 2008),
which offered 606 sets of leaf directional-hemispherical reflectance and transmittance factors and RTM parameters as in
Pacheco-Labrador et al. (2022). However, some missing parameters were estimated this time instead of assumed to equal 0.
We estimated leaf anthocyanin content (Can) using the linear equation adjusted for the modified Anthocyanin Reflectance
Index (mARI) as in Féret et al. (2017). We gap-filled any other missing parameter (mostly senescent pigments (Cs)) by
inverting the leaf radiative transfer model PROSPECT-D (Féret et al., 2017). However, since the PROSPECT model
(Jacquemoud and Baret, 1990) has evolved, changing some of the initial assumptions regarding surface rugosity and
illumination angles (Feret et al., 2008), we first re-calculated the leaf structural parameter (N) inverting the model against the
three wavelengths with minimum absorptance or maximum transmittance or reflectance as described in Féret et al. (2017),
and then constrained the missing parameters. If the fit RMSE was larger than 0.0025, we considered that Cs could be large
enough to affect the retrieval of N, and attempted to constrain simultaneously Cs and N against the three selected
wavelengths. If RMSE was still larger than the threshold, we assumed pigment measurements could be uncertain and,
therefore, attempted to constrain all pigments and N simultaneously against the leaf optical properties available between 400
and 1050 nm. We kept 591 samples with root mean squared error (RSME) lower than 0.0025; the removed samples
corresponded to quite senesced leaves, which likely could not be fit due to the fact senescent pigments darken over time
(Proctor et al., 2017; Pacheco-Labrador et al., 2021).

We also incorporated additional spectral libraries featuring 203 sets of foliar visible and near-infrared reflectance factors and
measurements of chlorophyll (Ca), carotenoids (Ca), and Cane content (Gitelson et al., 2017; Solovchenko et al., 2017). To
gap-fill dry matter (C4m) and (Cy) content, with little influence in the available spectral range, we used the data available
from the previous gap-filled databases to train variational heteroscedastic Gaussian process (VHGP) models (Lazaro-
Gredilla et al., 2014) to predict Cy as a function of N, and Cy (test squared Pearson correlation coefficient 7° = 0.69, relative
root mean squared error RRMSE = 32.9 %) and Cyn as a function of N, Cap, Car, and Cyy (test 72 = 0.69, RRMSE = 32.3 %,
respectively). These models were used to predict these plant traits during the inversion of PROSPECT-D and to determine
the final values after optimization. We used the same methodology described before, but using only reflectance factors with
sufficient quality between 437 and 900 nm. In this case, all the samples featured RMSE < 0.0025. In total, the spectral
libraries offered 794 samples.

We extracted foliar pigments, dry matter (or specific leaf area), and water available per mass, area, or nitrogen content data
from the TRY database (TraitID € [413, 164, 418, 491, 809, 810, 731, 3120, 3115, 3116, 3117, 185, 186, 487, 50, 14],
accessed in October 2022), which led to a dataset of 370096 samples of foliar radiative model parameters where N and C;

were missing in all the cases. We kept 15935 samples presenting at least Cay, or Cyr and Cam or Cy values. Cap and Cym were
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available for all these samples. Then, data were gap-filled with VHGP models (Table S3.1) trained from the values available

within the 16703 samples of the joint datasets (spectral libraries and TRY).

Table S3.1. VHGP models trained on the joint spectral and TRY databases. * means that gap-filled data were used to train the

model.
Predicted variable Predictors Train statistics Test statistics

Car Cab, Cim ”=0.85 ”=0.76
RRMSE =23.7 % RRMSE =30.2 %

Cy Cab, Cim ”=0.59 ”=0.59
RRMSE =47.2 % RRMSE =48.7 %

N Cab, Cor”, Cy”", Cim ”=0.77 ”=0.53
RRMSE = 8.7 % RRMSE =12.3 %

Cs N, Cab, Cy", Cam =047 ”=0.32
RRMSE =97.9 % RRMSE =99.7 %

Cant N, Cab, Car', Cs", Cy" ”=0.26 ”=0.29
RRMSE =236.8 % RRMSE =242.0 %

Additional relevant parameters of the model, such as the maximum carboxylation rate (Vcmax) and the Ball-Berry stomatal
sensitivity (mgg), were generated from different sources. Miner et al. (2016) provided plant functional type-dependent ranges
of variability from where mgg could be randomly sampled. Luo et al. (2019) provided linear model coefficients to predict
Vemax from Cyp, for C3 plants; for C4 grasses, we scaled multiplying by 0.28, a C4/C3 ratio reported by Niu et al. (2006).

Moreover, for the leaf area index (LAI), the maximum values were set by Asner et al. (2003) as a function of the PFT and
the climatic zone. We used the maximum values corrected by using a two inter-quartile range analysis (Table 2 in Asner et

al. (2003)).

S4 SCOPE simulations

We used the model SCOPE v1.74 (Van Der Tol et al., 2009) to generate look-up tables (LUT) of 10* samples of vegetation
and soil parameters, meteorological conditions, and the corresponding spectral signals with two different configurations
using a Gaussian Mixture Model (GMM, Supplementary S3. Plant traits and covariance) and a Latin Hypercube Sampling
(LHS) approach. In all cases, LHS was used to create the structural parameters such as LAIL, LIDF,, LIDFy, A, and /,. We
also included an empirical parameter determining the sensitivity of soil resistance for evaporation from the pore space () to
relative soil moisture content (the ratio between soil moisture content (SM,) and field capacity (6), that determined 7 as a
function of the former ones (Supplementary S5. Soil resistance for evaporation from the pore space model). Furthermore, we
included the stress factor introduced in SCOPE by Bayat et al. (2019), which reduces the maximum carboxylation rate as a
function of soil moisture content. This variable allows simulations to include a direct link between plant physiological
regulation with fluorescence radiance and surface temperature. Since this factor varies between 0 and 1, BOSSE simulations

directly prescribed the stress factor with the value of the GSI response function to water availability. Leaf and soil thermal

5
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emissivities were prescribed as a function of their reflectance factor at 2400 nm to make this variable controlling energy
balance and surface temperature more dynamic and linked to vegetation properties. Separated models were calibrated with
the samples of soil (R? = 0.76, RMSE = 0.008) and photosynthetic vegetation (R?> = 0.46, RMSE = 0.018) available in the
ECOSTRESS spectral library version 1.0 (Meerdink et al., 2019). The meteorological inputs were always drawn from the
GMM generated from the ERA-5 Land datasets (Supplementary S2. Meteorological data). We included a LUT of 4000

samples simulating bare soil to improve the performance of the models at low LAI values.

SCOPE predicted hyperspectral reflectance factors (R) and sun-induced chlorophyll radiances (F). In addition, we produced
an estimate of land surface temperature (LST) by applying the temperature-emissivity separation (TES) algorithm (Hanus et
al., 2016) to the bottom of the atmosphere thermal radiances provided by SCOPE. Both LUTs were produced to train the
emulators. In addition, we generated smaller LUTs (5000 samples) using the same approaches for testing the emulators and
2000 samples of bare-soil LUTs that were added to the training and test datasets. The latest improved the emulators’
performance when LAI was low.

We then trained emulators (2-layer neural networks) to predict these variables individually (R, F, LST) and to estimate
vegetation foliar and structural variables (OT) from the hyperspectral R and from these convolved to the spectral

configuration of different imagers: EnMAP, DESIS, and Sentinel-2 MSI (Supplementary S6. SCOPE emulators).

S5 Soil resistance for evaporation from the pore space model

We developed a semi-empirical model predicting soil resistance for evaporation from the pore space (rs) as a function of
relative soil water content (SMr., the ratio of soil moisture content (SM,,), and field capacity (6s)) and a sensitivity parameter
(7ss factor). Unlike former models used for this purpose in SCOPE (e.g., Pacheco-Labrador et al. (2019)), this model includes a
parameter controlling the sensitivity of the resistance to water availability, which allows for multiple soil responses. The

model is a 2D interpolator that uses simulated curves at fixed 7 factor values (Fig. S6.1)



125

130

135

140

500001
40000

30000

|

[{_ws]s

20000

10000

0.0
0.2 0.4 0 0.4 0.2

0.6 6 A
rss'factor[‘] 08 10 10 08 SMrer b

Figure S6.1: 2D interpolator predicting soil resistance for evaporation from the pore space as a function of relative soil water
content and a sensitivity parameter.

S6 SCOPE emulators

Three emulators (2-layer neural networks) predicting hyperspectral reflectance factors (R), hyperspectral sun-induced
chlorophyll radiances (F), and land surface temperature (LST) were trained from the SCOPE look-up tables (LUT)
(Supplementary S4. SCOPE simulations). From the 22 - 10* samples available for training each emulator, 20 % was left
apart for validation during the optimization of the model hyperparameters (number of neurons per layer). Learning was
facilitated by setting O for all the vegetation parameters whenever LAI was 0. Sun zenith angle (6sn) was also set to 0
whenever Oy, = for the R and F emulators since the SCOPE soil reflectance model (BSM) lacks directionality and emits no
fluorescence. The meteorological variables, predictors of ' and LST, were set to 0 only for the first case since these, together
with G, also play a role in LST.

Before training, random white noise (1%) was added to the spectral variables, and standardization and principal components
analyses were applied to reduce dimensionality, as in Pacheco-Labrador et al. (2022). In addition, we trained 2-layer neural
networks predicting vegetation foliar and structural variables from the hyperspectral R (simulated at 1 nm step) and from
these reflectance factors convolved to the spectral configuration of different imagers (EnMAP, DESIS, and Sentinel-2).
Standardization and PCA were also applied to the predicted variables in this case.

After that, the effect of the emulator on the estimation of functional diversity metrics was assessed using the test dataset to
randomly simulate combinations of species and compute Rao’s quadratic entropy index (QOrao) and the fractions of alpha and
beta diversity (f.s) using a variance partitioning approach implemented in the Python package “pyGNDiv”
(https://github.com/JavierPachecolLabrador/pyGNDiv-master) (Pacheco-Labrador et al., 2023). We compared the metrics

computed from the test look-up table variables and the corresponding emulator predictions for the evaluation.


https://github.com/JavierPachecoLabrador/pyGNDiv-master
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Table S6.1 summarizes the training and test performance of the different emulators. The uncertainties of the forward

emulators (predicting R, F, and LST) are low and scale according to the uncertainties expected for the corresponding RS

imagery, being the largest for F and the lowest for R. In all cases, the impact of the emulator on the calculation of functional

diversity metrics is low (RRMSE < 1.6%). Uncertainties are larger for the models retrieving optical traits from the R

convolved to different RS missions. These are particularly large for DESIS since they do not cover the shortwave infrared

region, and the plant traits considered include foliar water and dry matter contents, which affect that region most strongly.

Despite the larger prediction uncertainties, the impact on the computation of FDM is similarly low (RRMSE < 3.6%). Table

S6.2 summarizes the training and test performance of the emulator that predicts most of the ecosystem functions. For all the

variables, train R? > 0.98, except for sensible heat flux (H, R?> = 0.97), and test R? > 0.95, except for H (R?> = 0.92). The

performance of the model is within what could be expected from eddy covariance measurements.

Table S6.1. Performance of the different remote sensing SCOPE emulators

(Sentinel-2)

Emulator Predicted Predictors Train Test Test Orao Test fao,p
variable RRMSE RRMSE RRMSE RRMSE
(%) (%) (%) (%)
Reflectance RTM plant and soil
£ R variables, and sun-view 1.83 2.19 0.05 0.01
actors
geometry
Fluorescence RTM p 1 ant, so?l,
. F meteorological variables, 5.77 11.37 1.60 0.20
radiance :
and sun-view geometry
Land surface RTM p 1 ant, so?l,
LST meteorological variables, 2.81 3.09 1.05 0.37
temperature >
and sun-view geometry
Optical trait
retrieval OThy R and sun-view geometry 20.32 23.40 1.66 0.44
(Hyperspectral)
Optical trait
retrieval OTeamar | R and sun-view geometry 25.57 27.79 2.18 0.54
(EnMAP)
Optical trait
retrieval OTpesis R and sun-view geometry 29.68 31.92 2.79 0.65
(DESIS)
Optical trait
retrieval OTs: R and sun-view geometry 33.57 35.42 3.59 0.73
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Table S6.2 Performance of the different ecosystem functions SCOPE emulator

Variable Predicted Units Predictors Train Test Train Test
variable RMSE RMSE RRMSE RRMSE
(%) (%)

Gross primary | gpp | pmolC 138 2.05 18.38 29.03
production m”s
Total latent A W m? 21.55 35.02 17.91 31.37
heat flux
Transpiration Acanopy W m? | RTM plant, soil, 21.54 34.42 19.26 33.56
Sensible heat H wm? | meteorological 21.78 33.20 25.49 41.01
flux variables, and
Net radiation Ry W m? sun-view 11.40 12.78 5.22 6.20
Soil heat flux Giot W m™ geometry 2.34 2.64 18.05 19.46
Light-use LUg | HmolC 10.05 16.75
efficiency umol
Green light- |y yyp | pmolC 8.41 19.78
use efficiency umol

S7 The Growing Season Index phenological model

The Growing Season Index (GSI) phenological model (Forkel et al., 2014) defines vegetation phenology as a function of its
response to light (i.e., incoming shortwave radiation (Ri,)), water availability (way), to cold and heat determined by air
temperature (73). The phenological response to each of these responses takes the shape (Eq. S7.1):

_ 1 _
feprr = foprr + < - fxt,P}17T) " Tx,PFT > (87.1)

1+g(“'sx.PFT'(x‘bx,PFT))

where f stands for the vegetation response, ¢ for the current timestep and #-1 for the former one, x for the environmental
driver (Rin, Way, Or Ty), sxprr for the slope, by prr for the base or inflection point, and z.prr is the sensitivity respect to the
former conditions, where under scripts x and PFT indicate that their values are driver and PFT-dependent. The coefficient a
equals -1 for all the responses except for the one to heat, which presents a negative response to the driver. The absolute value
of the second addend in Eq. S8.1 was truncated using PFT-dependent values to prevent unrealistic changes in the

physiological state of vegetation (Table S7.1).

Table S7.1. GSI rate of change limits per plant functional type in [day-1].

DNF ENF DBF EBF SHB GRAC3 GRAC4

0.015 0.008 0.015 0.008 0.015 0.025 0.025

These functions scale between 0 and 1, and the model determines the final phenological state of vegetation, which is the

product of the four responses (Eq. S7.2).
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GSlppr = flight,PFT ' fwater,PFT ' fcold,PFT ' fheat,PFT, (87.2)

Forkel et al. (2014) constrained the PFT-dependent parameters of the model (s prr, bxprr, Toprr) against time series of the
fraction of absorbed photosynthetically active radiation (f,p4r), considering this variable integrative of the phenological
response of function vegetation to the environment since it determines the amount of radiation vegetation aims to absorb as a
function of its capability to use it for photosynthesis. Whereas f,p4z cannot summarize all the vegetation functions, we
considered this variable enough to represent plant traits phenology in BOSSE. Parameter values are defined per species and

plant trait.

S8 Ecosystem respiration model

Since SCOPE does not predict ecosystem respiration (Re,) we implemented the semi-empirical model of
Migliavacca et al. (2011). The model predicts respiration at a daily scale as a function of different physical and empirical

factors (Eq. S8.1)

1

1
Reco = (Rpat=o + apar - LAlpay + k3 - GPP) - eEo(Tref_TO Ta—To) . (w)

K+P(1-a) (s8.1)
where R, depends on the leaf area index (LAI) and gross primary production (GPP), air temperature (74), and precipitation
(P). LAI and GPP response is given by a basal respiration level given by Reco when LAI = 0 (Rpa=o, the sensitivity to LAI
(avan), and a GPP-related sensitivity (k). T, dependency is expressed by an exponential function of the product between the
ecosystem respiration sensitivity to temperature (or activation energy parameter Eo) and the difference between the inverse
differences of a reference temperature (7rr = 288.15 K) and T, with another fixed temperature (7p = 227.13 K). Finally,
precipitation effects are defined with a hyperbolic function controlled by the half-saturation constant (k) and the Reco
response to null precipitation (a). Since the model predicts daily Reco, for each hourly timestamp, the 7, averaged the 24 h
around the timestamp, the accumulated GPP in the 24 h surrounding the timestamp, and the 30 days averaged precipitation
are used to compute the respiration rate. Then, the model day-based output in [gC m? day™'] are converted to instantaneous
rates [umolC m? s™'].

We use the PFT-specific parameter values from Table 5 in Migliavacca et al. (2011) and the standard errors estimated to
draw each species’ parameters randomly. Intra-specific variability is generated by considering it is between 20 % and 40 %
of the interspecific variability (Albert et al., 2010). The specific value is determined randomly for each species’ individual.
For all the parameters except Riaio, negative values are avoided by taking the absolute value, moreover, o is truncated
between [0.05, 0.95] to prevent too extreme responses. These values are summarized in Table S8.1. LAImax is directly

assigned from the upper bound of LAI assigned to each individual.

10
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Param. DNF ENF DBF EBF SHB GRAC3 GRAC4
Rrao u=1.02 u=1.02 u=1.20 u=-047 u=0.42 u=0.42 u=0.42
0=0.42 0=0.42 0=0.50 0=0.50 0=0.39 0=0.71 0=0.71

aLal u=0.42 u=0.42 u=0.34 1u=0.82 u=0.57 u=1.14 u=1.14
0=0.08 0=0.08 0=0.10 0=0.13 0=0.17 0=0.33 0=0.33

k2 u=0.478 u=0.478 u=0.247 u=0. 602 u=0.354 u=0.578 u=0.578

0=0.013 0=0.013 0=0.009 0=0. 044 0=0.021 0=0.062 0=0.062

Ey u=124.833 u=124.833 U=87.655 u=52.753 u=156.746 u=101.181 u=101.181

0=4.656 0=4.656 0=4.405 0=4.351 0=8.222 0=6.362 0=6.362

a u=0.604 u=0.604 u=0.796 u=0.593 u=0.850 u=0.670 u=0.670

0=0.065 0=0.065 0=0.031 0=0.032 0=0.070 0=0.052 0=0.052

K u=0.222 u=0.222 u=0.184 u=2.019 u=0.097 u=0.765 u=0.765

0=0.070 0=0.070 0=0.064 0=1.052 0=1.304 0=1.589 0=1.589

S9 Remote sensing spatial resolution degradation

BOSSE remote sensing imagery spatial resolution can be downgraded using a Gaussian point spread function (PSF) model

to more accurately mimic the spatial artifacts that can occur due to the gridding step that separates remote sensing

observations from the resulting gridded imagery (Wang et al., 2020; Duveiller et al., 2011). BOSSE spatial resolution (7spat)

is defined as the ratio of the simulation (plant) to the pixel size; therefore, a 100 % resolution implies that each pixel contains

unmixed information of a unique individual or set of identical individuals. This is accounted for by the standard deviation

(opsF) and sampling interval of the PSF. The PSF is truncated at 4opsr to ensure no mixture at rgpa = 100 %, and opsr is

defined as (1 / 4) / (100 / rspar). The sampling points ([xo, Vo], the center of the PSF at each remote sensing pixel, are evenly

distributed between 100 / 7. and the size of the output remote sensing image (7pix,image = Fspat * Mpix, Scene) With a step equal to

100 / rspar. This way, for rgpa = 100 %, the center of each image pixel matches the center of the simulated scene pixel.

0
PSEey = 3 (o3l |7

0

)l

11

(S10.1)
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S10 BOSSE maps

Example of the simulation of Scene maps with “clustered” (Fig. S10.1) and “even” (Fig. S10.2) spatial patterns. The figures
are comparable to Fig. 4 in the manuscript.
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Figure 10.1: Simulated scene located in Continental climate and an “clustered” spatial pattern at midday of the day 230 of the time
series presented in Fig. 2b,h. The coordinates are shown in pixels. Maps of species, indicating taxonomical Richness (S) (a), species’
plant functional types (b), leaf area index (c), foliar chlorophyll content (d), normalized difference vegetation index (e), near-
infrared reflectance of vegetation index (f), estimated leaf area index (g), estimated foliar chlorophyll content (h), fluorescence
radiance at 687 nm (i), fluorescence radiance at 760 nm (j), land surface temperature (k), and the predicted vs. simulated leaf area
index and foliar chlorophyll content (1), standardized for comparison and evaluated with the Pearson correlation coefficient (+2).
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Figure 10.2: Simulated scene located in Continental climate and an “even” spatial pattern at midday of the day 230 of the time
series presented in Fig. 2b,h. The coordinates are shown in pixels. Maps of species, indicating taxonomical Richness (S) (a), species’
plant functional types (b), leaf area index (c), foliar chlorophyll content (d), normalized difference vegetation index (e), near-
infrared reflectance of vegetation index (f), estimated leaf area index (g), estimated foliar chlorophyll content (h), fluorescence
radiance at 687 nm (i), fluorescence radiance at 760 nm (j), land surface temperature (k), and the predicted vs. simulated leaf area
index and foliar chlorophyll content (1), standardized for comparison and evaluated with the Pearson correlation coefficient (r2).

13



S11 Examples of spatial resolution degradation effect on the functional diversity estimates

Example of the of spatial resolution degradation effect on the functional diversity estimates with “clustered” (Fig. S11.1) and
250 “even” (Fig. S11.2) spatial patterns. The figures are comparable to Fig. 5 in the manuscript.
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Figure 11.1: Simulated imagery of the near-infrared of vegetation index (a-e), fluorescence radiance at 760 nm (f-j), and land
surface temperature (I-0) using an “clustered” spatial pattern at different spatial resolutions (100%, 90%, 60%, 30%, and 10%),

defined as the plant-to-pixel size ratio. The mean value of Rao’s quadratic entropy (Qrao) calculated over a 3 x 3 pixels moving
255

window and the fraction of a-diversity (fz), calculated from the variance-based partition approach, are presented for each map.
The coordinates are shown in pixels.
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Figure 11.2. Simulated imagery of the near-infrared of vegetation index (a-e), fluorescence radiance at 760 nm (f-j), and land
260 surface temperature (l-0) using an “even” spatial pattern at different spatial resolutions (100%, 90%, 60%, 30%, and 10%),
defined as the plant-to-pixel size ratio. The mean value of Rao’s quadratic entropy (Qrao) calculated over a 3 x 3 pixels moving

window and the fraction of a-diversity (f), calculated from the variance-based partition approach, are presented for each map.
The coordinates are shown in pixels.
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S12 Scene meteorology

Fig. S12 presents the meteorological variables corresponding the simulations of ecosystem functions shown in Fig. 6 of the

275 manuscript.
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Figure S12: Meteorological data corresponding to the dataset “0” of the “Continental” short (Rin) and long (Ri) wave incoming
radiation (a), air temperature (7air) (b), sun zenith angle (6sun) (¢), atmospheric pressure (Pam) (d), soil moisture content (SMC)

280 and water availability (Wr) (e), wind speed (u) (f), vapour pressure (ea) (g), vapour pressure deficit (VPD) (h), and potential
evapotranspiration (PET) (i).
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