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Abstract. The representation of cloud microphysics in nu-
merical weather prediction models contributes significantly
to the uncertainty of weather forecasts. Polarimetric radar
observations are increasingly used to evaluate numerical
weather simulations, due to their sensitivity to microphysi-
cal properties. Typically, this evaluation is performed for in-
dividual case studies, which limits the generalizability of the
results. This is particularly problematic for convective pre-
cipitation events, which are characterized by high variabil-
ity due to their small scale and rapid error growth of initial
uncertainties, and are often associated with severe weather
phenomena. In this study, the performance of microphysics
schemes in the simulation of convective precipitation events
is evaluated statistically over a 30d dataset. The aim is to
assess the distribution of precipitation into convective and
stratiform regions, and the microphysical properties in these
regions based on radar reflectivity and differential reflectiv-
ity. Within a Weather Research and Forecasting model setup,
5 different microphysics schemes of varying complexity are
evaluated. The choice of microphysics schemes has a signif-
icant impact on the distribution of precipitation; the median
convective area fraction varies by an order of magnitude be-
tween the microphysics schemes. These differences are at-
tributed to differences in rain drop size distributions. In the
convective core, the FSBM and Morrison schemes frequently
lack large rain drops, while the Thompson and P3 schemes
simulate too many. Statistical evaluations are important to
address the prevailing uncertainty surrounding cloud micro-
physics. The framework presented in this study can serve as
a guide for future statistical evaluations of weather models
with polarimetric radar observations.

1 Introduction

Simulation of convective precipitation events presents a par-
ticular challenge, owing to their small scale and rapid error
growth of initial uncertainties (Selz and Craig, 2015; Ho-
henegger and Schir, 2007). These events are characterized
by strong vertical air motions, and a high spatial variabil-
ity (Powell et al., 2016) and frequently coincide with severe
weather phenomena, including flooding, hail, strong winds,
and tornadoes (Doswell III, 2001). Despite of their poten-
tial for hazardousness, current numerical weather prediction
models struggle to accurately predict convective precipita-
tion events. Xue et al. (2017) for example demonstrate that
3 different microphysics schemes produce a substantially dif-
ferent dynamical and thermodynamical structure of a squall
line over the continental United States. These events often
consist of a leading convective core and a trailing stratiform
region (Houze, 1994), with the convective core character-
ized by strong updrafts and downdrafts, intense precipitation
and winds, and possibly hail. The stratiform region typically
has a lower precipitation intensity, but can potentially cover
larger areas. Due to the different nature and hazard of these
regions, the correct representation of the distribution of pre-
cipitation into these regions is important for weather fore-
casting and hydrology.

The accurate simulation of the convective core and sur-
rounding stratiform precipitation is a significant challenge
for cloud microphysics schemes. For example, Shrestha
et al. (2022) found that their simulations of three convec-
tive storms produced too small convective areas compared
to stratiform areas. Han et al. (2019) found that their simu-
lations of a squall line case underestimated total stratiform
precipitation, primarily due to the underestimation of precip-
itation area. Qian et al. (2018) found that the trailing strati-
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form region of a simulated squall line case was strongly sen-
sitive to the choice of cloud microphysics schemes. Not only
the distribution of precipitation into convective core and trail-
ing stratiform region is challenging, but also the representa-
tion of microphysical properties in each category. Wu et al.
(2021) show that the microphysical characteristics of precip-
itation within a typhoon differ considerably to radar observa-
tions and are mainly determined by the microphysics scheme
used. In Kocher et al. (2022), we demonstrate that some of
the tested microphysics schemes produce graupel particles
that are too large or too dense within convective cores. In a
related study, Planche et al. (2019) examined the discrepan-
cies between radar observations and simulations for a squall
line case, highlighting differences in the vertical profile of
rain size distributions within the stratiform region. These dis-
crepancies were primarily attributed to the process of drop
breakup. Sun et al. (2023) demonstrate that two evaluated
microphysics schemes encounter difficulties in consistently
reproducing radar signals in both, the stratiform and convec-
tive regions, as well as throughout the vertical profile. These
issues are attributed to deficiencies in particle size distribu-
tions, density assumptions, and the simulation of ice pro-
cesses. All of these studies underscore the prevailing uncer-
tainty surrounding the representation of cloud microphysics
in numerical weather prediction models, particularly in the
context of convective precipitation events.

Cloud microphysical processes include the formation of
cloud droplets, ice crystals, and precipitation (Lamb, 2003;
Morrison et al., 2020). A characteristic feature of microphys-
ical processes is its inherent complexity, involving numerous
(nonlinear) interactions among diverse species of particles
and the surrounding air, as well as a broad spectrum of par-
ticle shapes and sizes. Given the vast number of particles in
a cloud and the complexity of the processes, direct simula-
tion of these processes over the entire range of scales is com-
putationally unfeasible. Consequently, these processes are
typically parameterized, meaning their effects on key vari-
ables are described without explicitly calculating the pro-
cesses themselves. This is typically done by so-called cloud
microphysics schemes (e.g., Thompson et al., 2008; Morri-
son and Milbrandt, 2015; Shpund et al., 2019; Seifert and
Beheng, 2005). However, uncertainties in microphysical pro-
cess rates persist due to fundamental gaps in our understand-
ing of the processes, as well as the lack of observations to
constrain the schemes (Morrison et al., 2020). Constrain-
ing microphysical processes is challenging, as they occur on
small scales. Observational constraints can be derived from
laboratory studies (e.g., Seidel et al., 2024), in situ observa-
tions (e.g., Billault-Roux et al., 2023), and remote sensing
observations (e.g., Tana et al., 2023). However, all of these
approaches are limited: laboratory studies are typically lim-
ited to a small number of particles and idealized setups. In
situ observations, for example with aircraft, require much ef-
fort and are spatially limited. Remote sensing observations,
such as radar observations, offer much better spatial cover-
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age. However, they generally cannot measure the microphys-
ical properties directly. Instead, these properties are inferred
from the observed signals. These limitations hinder the vali-
dation microphysics schemes to improve their representation
in models.

In recent years, polarimetric radar observations have been
established. For example, in 2015, the German Meteorologi-
cal Service (Deutscher Wetterdienst, DWD) finished upgrad-
ing its radar network to polarimetric radars (Tromel et al.,
2021). Polarimetric radars transmit a radar signal at two or-
thogonal polarizations, and measure the power and phase of
the backscattered signals at both polarizations. The received
polarimetric signals are affected by numerous particle prop-
erties, including shape, size distribution, orientation, phase,
and number concentration of particles within the measure-
ment volume. Consequently, these polarimetric fingerprints
can be utilized to deduce information concerning cloud mi-
crophysical processes that affect these properties. This, in
turn, can be used to constrain cloud microphysics schemes
in NWP models (Kumjian, 2012; Ryzhkov et al., 2020).

Meanwhile, there are several studies that have employed
polarimetric radar observations to evaluate cloud micro-
physics schemes in NWP models (e.g., Chen and Liu, 2024;
Li et al., 2023; Chen et al., 2021; You et al., 2020; Putnam
et al., 2016; Brown et al., 2016; Wu et al., 2021, and many
more). However, all of these studies are limited to case stud-
ies. While case studies are instrumental to understand the
processes in detail, they are limited in their generalizabil-
ity. This limitation is particular problematic in the context of
for convective precipitation, due to large variability between
different events (Flack et al., 2019). Only few studies exist
that evaluate cloud microphysics schemes statistically over a
large dataset. Caine et al. (2013) statistically compared con-
vective cell properties; however, their statistics were limited
to less than 5d. Stein et al. (2015) evaluated simulated con-
vective storms of 40 cases, but only for one microphysics
scheme and without the use of polarimetric radar observa-
tions. In Kocher et al. (2022), we provided a setup for statisti-
cal evaluation of weather model simulations with polarimet-
ric radar measurements which was applied in Kocher et al.
(2023) to statistically evaluate the performance of 5 micro-
physics schemes in predicting high-impact weather events,
such as hail and heavy rain. Statistical analysis is not only
important for representative results, but also required for un-
certainty estimation. As highlighted by Morrison et al. (2020)
in one of their main conclusions, the critical evaluation of
model performance necessitates statistically robust remote-
sensing approaches.

The objective of this study is to statistically evaluate the
performance of 5 cloud microphysics schemes in simulating
the distribution of precipitation into convective and strati-
form regions. The aim is to assess the microphysical prop-
erties in these regions based on the observed and simulated
polarimetric radar signals. Within the scope of this study, we
solely focus on the differential reflectivity (Zg4,) and radar re-
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flectivity (Z). Other polarimetric variables, such as specific
differential phase (Kqp) and correlation coefficient (RHOhv)
could provide further insight into the microphysical proper-
ties, but will be left for future studies.

The remainder of this paper is structured as follows:
Sect. 2 describes the data and methods used in this study.
Section 3 describes the results of the analysis, including the
vertical distribution of reflectivity signals (Sect. 3.1), the dis-
tribution of precipitation into convective and stratiform re-
gions (Sect. 3.2), the microphysical properties of the precipi-
tation within these regions based on polarimetric radar statis-
tics (Sect. 3.3), and the impact of the simulated rain drop
size distributions on the polarimetric radar signals (Sect. 3.4).
Section 4 provides a summary and conclusions of the study.

2 Data and methods

The data and methodologies employed in this study build
upon Kocher et al. (2022). The dataset consists in total of
30d of precipitation events in the Munich region in South
Eastern Germany in 2019 and 2020. These events were ob-
served from the German Meteorological Service (Deutscher
Wetterdienst, DWD) radar network, and simulated with
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2019). A complete list of the measurement
days is provided in Kocher et al. (2022), in their Table Al.
Below, we provide a brief overview of the dataset. For a de-
tailed description, we refer to Kocher et al. (2022).

The observational data utilized in this study was provided
by the DWD, which operates a network of fully dual polari-
metric C-band radars. These radars provide the polarimetric
variables differential reflectivity (Zg;), specific differential
phase (Kgp), and correlation coefficient (RHOhv), in addi-
tion to the radar reflectivity (Z). In this study, we solely focus
on raw Z and Zg, data, i.e., without any attenuation correc-
tion applied. The network consists of 17 radars that cover
the entire area of Germany. For the purpose of this study, the
closest radar to Munich, i.e., the radar in Isen, southern Ger-
many was selected. The operational measurement strategy of
the DWD radars involve a volume scan every five minutes,
which consist of Plan Posistion Indicator (PPI) scans at 11 el-
evation angles spanning from 0.5-25°. Further details on the
DWD radar network and the measurement strategy can be
found in Helmert et al. (2014).

The simulations were performed using a regional limited
area model setup of WREF, version 4.2. The inner nest is cen-
tered over Munich with a horizontal grid spacing of 400 m,
40 vertical levels, and a horizontal extent of 144 km x 144 km.
5 microphysics schemes were are employed and listed in
Table 1. The simulations were initialized with reanalysis
data from the Global Forecast System (GFS; National Cen-
ters For Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department Of Commerce, 2015) at 0.25°
horizontal resolution.
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In this study, observed polarimetric radar signals are com-
pared to simulated radar signals. The Cloud-resolving model
Radar SIMulator (CR-SIM, version 3.33; Oue et al., 2020)
is utilized to simulate the radar signals from the WRF model
output. CR-SIM is based on the T-matrix method (Barber and
Yeh, 1975) and is capable of providing the polarimetric vari-
ables Zgr, Kap, and RHOhv based on assumed particle shapes
and particle orientations, depending on the simulated hy-
drometeor classes. The simulated particle densities and par-
ticle size distributions are consistent with the microphysics
schemes employed. CR-SIM does not implement a melt-
ing scheme; instead, particles are either completely frozen
or completely melted, in accordance with the microphysics
schemes. This makes it impossible to simulate melting layer
effects such as the “bright band” (Austin and Bemis, 1950),
and hence the analysis in this study is focused on heights
above and below the melting layer. Furthermore, the atten-
uations effects are simulated by CR-SIM and applied to the
simulated reflectivity (Z) and differential reflectivity (Zg4;).

The radar data resolution depends on the distance to the
radar. To ensure comparability of the datasets, both are inter-
polated to a joint Cartesian grid with a horizontal grid spac-
ing of 400 m. The radar data is interpolated to the model grid
using an inverse distance interpolation. To ensure a fair com-
parison between model and radar geometry, as well as to ap-
ply the attenuation correction, the model data is first interpo-
lated to a radar grid. This is achieved by considering the radar
beam geometry, whereby each pixel is weighted based on the
distance to the radar beam center. To allow the application of
a cell-tracking algorithm that operates on a Cartesian grid
(see Sect. 2.1), the resulting data is then interpolated back to
the Cartesian grid using the same inverse distance interpola-
tion as for the radar data.

2.1 Cell-tracking

An automatic cell-tracking algorithm (tobac; Sokolowsky
et al., 2024) is applied to the matched radar and simulation
data alike to identify convective cells and their surrounding
stratiform regions. Note that this approach is different from
the methodology employed in our prior study (Kocher et al.,
2022). In the preceding study, the focus was exclusively on
convective cores. In contrast, the present study aims for a
separation into convective and stratiform regions. Tobac not
only tracks convective cores, but also provides the fucntion-
ality to assign surrounding stratiform regions to the convec-
tive cores through the implementation of a segmentation pro-
cesses based on a watershedding algorithm. The tobac algo-
rithm consists of three main steps:

1. Identification of convective cells based on reflectivity
thresholds. For the purpose of this study, a reflectivity
threshold of 35 dBZ is used. The location of the maxi-
mum reflectivity within a cell is designated as the cell’s
center.

Geosci. Model Dev., 18, 8363-8377, 2025
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Table 1. Abbreviations, WRF-IDs, and corresponding publications of the employed microphysics schemes.

Name

WRF-1ID

Publication

Thompson 2-mom

Morrison 2-mom

Thompson aerosol-aware

Fast spectral bin (FSBM)
Predicted Particle Properties (P3)

8  Thompson et al. (2008)
10 Morrison et al. (2009)
28  Thompson and Eidhammer (2014)
30  Shpund et al. (2019)
50  Morrison and Milbrandt (2015)

2. Segmentation of surrounding stratiform precipitation. A
surrounding volume is associated with each convective
cell based on watershedding with a fixed threshold of
5 and 35dBZ for the stratiform and convective parts,
respectively.

3. Tracking of cells over time. Identified cells are linked
over time based on the cell position using the python
library trackpy (Allan et al., 2021).

Based on the identified convective cells and the associated
stratiform regions, the convective area fraction (CAF) is cal-
culated. The CAF is defined as the ratio of the area covered
by convective precipitation to the total area covered by pre-
cipitation and will be used to describe the distribution of pre-
cipitation into convective and stratiform regions. All in all,
a total of 8395 convective cells were identified by the tobac
algorithm over the 30d dataset in the radar data while the
number of cells in the simulations varied depending on the
microphysics scheme and is discussed below. An example of
the cell tracking output is shown in Fig. 1. For a more detailed
description of the radar data, simulation setup, and forward
operator, please refer to Kocher et al. (2022). An example
case demonstrating the simulation output of the five differ-
ent microphysics schemes within the NWP model setup is
presented in Kocher et al. (2023).

3 Results

In general, the majority of the weather model simula-
tions yielded comparable total surface precipitation amounts,
ranging from 295-321 mm precipitation summed over the
entire 30 d over the whole domain (Fig. 2). Only the FSBM
scheme yielded slightly higher total precipitation amounts,
reaching 390 mm. However, while the total precipitation
varies by a factor of only around 10 %-30 %, the number of
identified cells varies by a factor of 2, ranging from 5261—
11576 across the microphysics schemes. This indicates dif-
ferences in distribution of precipitation into convective and
stratiform regions between the microphysics schemes. For
example, FSBM precipitates more water than P3, but shows
a much lower number of intense convective cells, indicating
more wide spread and less convectively active rain weather
in FSBM.
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Figure 1. Example tobac tracking applied to DWD radar data on the
20 June 2020, 10:05 UTC. In color the measured reflectivity. Black
“x” symbols are the identified cells and the black numbers are the
corresponding cell IDs. The colored lines around the precipitation
areas are the identified stratiform regions that were assigned to the
convective cells. Background map data by OpenStreetMap (http:
//openstreetmap.org, last access: 7 April 2025; © OpenStreetMap
contributors. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.). Roads, rivers, and lakes made
with Natural Earth (https://www.naturalearthdata.com, last access:
7 April 2025).
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Figure 2. Total WRF simulated precipitation (blue) over all
timesteps and all grid boxes as well as total number of identified
convective cells (red) for each of the 5 microphysics schemes.
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Figure 3. Vertical distribution of the mean pixel fraction larger than
a 35 dBZ (dashed) and a 5 dBZ (continuos) threshold.

3.1 Vertical distribution of reflectivity signals

In order to further evaluate the spatial distribution of precipi-
tation, we next analyze the vertical distribution of the reflec-
tivity signals. Figure 3 shows the vertical distribution of the
precipitation fraction based on reflectivity, i.e., the fraction
of pixels that exceeded 5 and 35 dBZ depending on height.
A stark difference can be seen between the microphysics
schemes up to about 4 km for the convective (35 dBZ) thresh-
old and over the full vertical profile for the (stratiform) 5 dBZ
threshold. Most apparent is the Morrison scheme (green)
which produces the highest precipitation fraction throughout
the profile for the stratiform threshold. At the same time, the
Morrison scheme produces the second lowest cloud fraction
for the convective threshold below 3.5 km. Given that the to-
tal precipitation of the Morrison scheme is not significantly
different from the other schemes, this shows that the Mor-
rison scheme produces a much larger area of precipitation
with a much lower intensity in general. Another interesting
observation is the P3 scheme (purple) which closely follows
the observed fraction for both thresholds at upper heights,
but starts to deviate at lower heights. This is especially pro-
nounced at the convective threshold (dashed lines) and indi-
cates that the transition from ice to rain seems to be problem-
atic, producing a too high convective precipitation fraction at
lower heights of about twice the observed fraction. This also
matches the large number of convective cells identified in the
P3 scheme (Fig. 2). In the following, we focus our analysis
on two height levels, 1500 and 5500 m, indicated with the
dashed horizontal lines in Fig. 3. This way we cover both, an
upper height where we expect to observe differences in ice
growth processes, as well as a lower height where we mainly
expect precipitating liquid rain drops while at both heights,
there is a significant variation in the fraction between the mi-
crophysics schemes and to the observations.
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Figure 4. Convective area fraction (CAF) for the 30 d data set for
each of the 5 microphysics schemes and the radar observations at
two heights, 1500 and 5500 m.

3.2 Distribution of convective and stratiform regions

While all schemes produced similar overall amounts of total
precipitation, the distribution of precipitation into convective
and stratiform regions varies significantly between the mi-
crophysics schemes. This is illustrated in Fig. 4, which shows
the CAF for the 30d data set for each of the 5 microphysics
schemes and the radar observations.

The CAF is visualized using a boxplot, which shows the
median (center line), the interquartile range (coloured box),
and the range of the data without outliers (whiskers). Outliers
are defined as data points that are more than 1.5 times the
interquartile range away from the upper or lower quartile.
The interquartile range is the difference between the 75th and
25th percentile of the data. Shown are two heights, 1500 and
5500 m, to illustrate the vertical distribution of the CAF.

Generally, the observations have small median CAFs of
around 0.8 % at 1500 m. Morrison (0.5 %) and FSBM (0.4 %)
are close and only slightly too low. The other 3 schemes have
CAFs that are much too high, with the P3 scheme having
the highest CAFs (5 %) followed by the Thompson schemes
(3 %).

At 5500 m, the CAF is generally lower than at 1500 m,
since convective cores not always reach up that high. The
overall picture is similar, with a group of schemes (Thomp-
son 2-mom, Thompson aerosol-aware and P3) producing too
high CAFs and another group (Morrison and FSBM) pro-
ducing close and only slightly too low CAFs. Interestingly,
while P3 was highest at 1500 m, the Thompson schemes
were highest at 5500 m. This is due to the fact that the
Thompson schemes produce more frequently high reflectivi-
ties at 5.5 km altitude which is attributed to graupel particles
(not shown). The distribution into convective and stratiform
regions was also evaluated by previous studies. Shrestha
et al. (2022) for example found that the CAF was underes-
timated by their model for 3 convective storm cases. Here,
we demonstrate that the choice of microphysics schemes has
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a significant impact on the distribution of precipitation into
convective and stratiform regions. Some schemes, especially
the P3 and Thompson schemes produce CAFs that are un-
realistically high compared to the observations over the 30d
dataset.

These discrepancies are due to the fact that convective re-
flectivities of > 35dBZ are produced too frequently in the
simulations, especially below the melting layer height within
rain. The simulation of these high reflectivities is driven
by the underlying rain drop size distribution, which in turn
is strongly influenced by microphysical processes. For ex-
ample, processes such as evaporation, aggregation, or drop
break-up can significantly alter the size distribution of hy-
drometeors and, consequently, the reflectivity. Further insight
about the microphysical processes can be gained from the po-
larimetric radar signals, which are analyzed in the following
section.

3.3 Polarimetric radar statistics

Next we will thus have a deeper look into the distributions
of reflectivity (Zhh) and, especially, differential reflectivity
(Zg4r) at the two height levels. The figures corresponding to
the convective and stratiform regions are shown in Figs. 5
and 6, respectively. Shown are histograms of simulated and
observed reflectivity (left) and differential reflectivity (right)
values for the radar observations and the 5 microphysics
schemes. The analysis at 5500 m altitude is shown in the up-
per row, while the analysis at 1500 m altitude is shown in
the lower row. The values are binned into 50 bins (0.6 dBZ
and 0.1dB bins for reflectivity and differential reflectivity,
respectively). Below, we provide a detailed analysis of the
histograms for stratiform and convective regions separately.

3.3.1 Convective region at 1500 m

The histograms for the convective region at 1500 m altitude
are shown in the lower part of the picture. A comparison of
the radar observations (black line) and the simulations (col-
ored lines) reveals a significant overestimation of convective
(larger than 35 dBZ) reflectivities in the reflectivity distribu-
tion (Fig. 5c)) for Thompson 2-moment, Thompson aerosol-
aware, and especially the P3 scheme, The FSBM scheme on
the other hand has a low bias for most of the reflectivity
range, and never produced reflectivities larger than 49 dBZ.
To investigate the reason for the frequency in the reflec-
tivity histogram, the factors that influence radar reflectivity
need to be examined. In general, radar reflectivity is influ-
enced by several factors, including the size and number of
particles in the beam volume, as well as the density and phase
of these particles. At an altitude of 1500 m, the predominant
hydrometeor type is rain during the analyzed warm season
cases. Consequently, any observed reflectivity bias may be
attributable to the size and number of rain drops. It is not pos-
sible to distinguish between these potential sources of bias

Geosci. Model Dev., 18, 8363-8377, 2025

G. Kocher and T. Zinner: Spatial distribution of convective precipitation

solely based on reflectivity. However, the differential reflec-
tivity (Zg4r) can provide further context. Zg, is defined as the
ratio of the reflectivity received at the horizontal polariza-
tion (Zhh) to the reflectivity received at the vertical polariza-
tion (Zvv):

_ ( Zhn )
Zgr = 10logy (1)
ZVV

In principle, Zg4, is a measure of the aspect ratio of particles
in the direction of the radar beam. For rain drops, the aspect
ratio is related to their size (Ryzhkov et al., 2011). The result-
ing Zg; depends on the viewing angle of the radar. From be-
low, rain drops appear spherical to the radar, resulting in a Zg;
value of 0 dB. At low elevation angles, when the radar looks
through the side of the rain particles, rain drops appear more
oblate, resulting in Zg; values larger than 0 dB. The magni-
tude of Zg; is then related to the size of the rain drops, with
larger rain drops producing larger Zg4, values. Importantly,
Zg; is independent of the number of particles in the beam
volume. Both, Zhh and Zvv, are proportional to the number
of particles in the beam volume, so any change in the num-
ber of particles cancels out in the ratio. Consequently, at low
elevation angles, Z4, can be used as a measure of rain drop
size.

The Zg, histograms for the convective region at 1500 m al-
titude are shown in Fig. 5d). The observations exhibit a Zg,
distribution that has a peak at about 1.2dB and is skewed
to the right, with a tail extending to higher values. In gen-
eral, the simulations exhibit similar distributions, but with a
notable bias towards higher or lower values, depending on
the scheme. The FSBM scheme has a strong low bias, gen-
erating Zg; values below 1dB to frequently, while Zg4, val-
ues above 1.5dB are not simulated at all. The Thompson
schemes and particularly the P3 scheme demonstrate a high
bias in Zg, simulating high Z4 values of more than 2 dB
too frequently. This correlates well with the reflectivity dis-
tribution in Fig. 5¢). We conclude that the high area fraction
of convective precipitation in the P3 and Thompson schemes
is due to rain drop sizes that are too large, while the FSBM
scheme misses large rain drops and produces too many small
rain drops. The Morrison scheme also exhibits low bias in
Z4r, though less pronounced. The Morrison scheme exhibits
a tendency to simulate Zg, values lower than 1dB with a
higher frequency than observed, yet failed to generate Zg,
values greater than 3 dB, despite the existence of such ob-
servations. However, this does not translate into a low re-
flectivity bias. This suggests that large drops were missing
in the Morrison scheme relative to the observations, but a
large number of droplets compensates for this providing suf-
ficient reflectivity still. Sun et al. (2023) noted a similar lack
of large rain drops in the convective part of a squall line in
the Morrison scheme. In this study, we demonstrate that this
phenomenon is consistent across multiple days and differ-
ent convective events. However, Sun et al. (2023) reported a
low bias of reflectivity in the convective region for the Mor-
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Figure 5. Histograms of simulated and observed reflectivity (a, ¢) and differential reflectivity (b, d) for convective precipitation at 5500 m

(a, b) and 1500 m (c, d) altitude.

rison scheme in their squall line case, which we cannot find
based on our simulations. Planche et al. (2019) on the other
hand find a high reflectivity bias in the convective part of
their squall line case simulation with the Morrison scheme, in
line with our findings. This underscores the high variability
in the performance of microphysics schemes across different
convective events and highlights the strength of a statistical
approach.

Relating these findings to the biases in CAF (Fig. 4), we
see a strong correlation between the high fraction of con-
vective precipitation in the P3 and Thompson schemes and
the high bias in the reflectivity and Zg; histograms. Thus, we
conclude that the P3 and Thompson schemes produce a con-
vective precipitation area that is too large, which is a result of
the frequent occurence of large rain drops that produce high
reflectivities and Zg4; values. The FSBM scheme, on the other
hand, produces a low fraction of convective precipitation due
to the low frequency of large rain drops. This could mean
that rain within the P3 and Thompson simulations is gener-
ally more intense, but also more localized, while the FSBM
scheme produces a more widespread and less intense rain.

3.3.2 Convective region at 5500 m

The reflectivity and differential reflectivity histograms for
the convective region at an altitude of 5500 m are shown in
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Fig. 5a and b, respectively. These heights provide some con-
text to the preceding analysis conducted at 1500 m altitude,
because at mid-latitudes, rain typically originates from melt-
ing ice phase particles present at this altitude. Figure 5a re-
veals an overall overestimation of convective (larger 35 dBZ)
reflectivities by most schemes. While FSBM and Morrison
somewhat compensate for this by a lack of largest values,
both Thompson do not. Only P3 shows a deficit of these
convective reflectivites in general. The Thompson schemes
demonstrate analogous biases at this altitude as observed
at 1500 m altitude, e.g., the Thompson schemes exhibit a
consistent high bias, generating convective reflectivities too
frequently over the entire reflectivity range. This suggests
that the issues in the convective core at 1500 m altitude for
these schemes stem from the ice phase. For example, in the
Thompson schemes, high reflectivities at 1500 m altitude due
to rain drop sizes that are too large might be a result of melt-
ing ice phase particles that are already too large at 5500 m
altitude. Planche et al. (2019) for example show that the rain
drop size distribution is very sensitive to the melting process
within the Thompson scheme, although their focus was on
the melting of snow.

The Morrison scheme exhibits a notable low bias at
5500 m altitude, resulting in low reflectivities of 39 dBZ and
below being produced too frequently and reflectivities above
39 dBZ being produced too infrequently. This does not trans-
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late into a low reflectivity bias at 1500 m altitude. However,
it might explain the low bias in Zg; at 1500 m altitude, as the
Morrison scheme produces a low fraction of large rain drops
at 1500 m altitude, based on the Zg4; histogram (Fig. 5d).

To provide further context, the Zg, histograms for the con-
vective region at 5500 m altitude are shown in Fig. 5b. At this
altitude, the radar forward operator assumptions regarding
the ice shape significantly influence the simulated Zg4;. The
P3 scheme diverges from the other schemes in the ice phase
by employing a single ice class, whereas the other schemes
utilize multiple ice classes. Consequently, the forward oper-
ator assumptions differ between the P3 scheme and the other
schemes. Further uncertainties arise from the fact that the
radar forward operator must assume ice particle shapes as
well as particle orientations, which are not simulated directly
by the WRF model. Due to the significant impact of these
radar forward operator assumptions on the differential reflec-
tivity in the ice phase we refrain from further analysis of the
Zg4; histograms at 5500 m altitude.

Unfortunately, this means we cannot provide a clear expla-
nation for the bias in reflectivity at 5500 m altitude. However,
with the radar forward operator applied in this study (CR-
SIM), it is possible to distinguish between the contributions
of different hydrometeor classes to the radar signals. Large
reflectivities of more than 30 dBZ at 5500 m altitude are typ-
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and differential reflectivity (b, d) for stratiform precipitation at 5500 m

ically associated with graupel particles. We find that the P3
scheme produce graupel-induced reflectivities of only up to
30dBZ, Morrison and FSBM schemes of up to 40 dBZ, while
the Thompson schemes frequently yield graupel reflectivities
exceeding 50 dBZ (not shown). We conclude that the bias in
reflectivity in the convective core is attributable to graupel
particles, where graupel is underrepresented in the P3, Mor-
rison and FSBM scheme, but overrepresented in the Thomp-
son schemes. However, we cannot distinguish between the
effects of number concentration, density assumption or grau-
pel size on the reflectivity bias. Graupel was also identified as
a potential important source of bias in other studies. Sun et al.
(2023) for example proposed an underprediction of ice-phase
processes associated with graupel and hail, such as riming,
as the likely cause for the aforementioned lack of large rain
drops in the Morrison scheme within the context of a squall
line case. A different study by Shrestha et al. (2022) revealed
that melting of graupel was the dominant rain mechanism in
COSMO simulations of 3 convective storms, whereas the ob-
servations indicated a different mechanism.

3.3.3 Stratiform region at 1500 m

Figure 6 illustrates the histograms for the stratiform region.
At an altitude of 1500 m, the majority of the schemes ex-
hibit a low bias in reflectivity (Fig. 6¢). This phenomenon
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is particularly evident in the Morrison and FSBM schemes,
who simulate reflectivity values below 25 dBZ too frequently
and reflectivity values above 25dBZ too infrequently. The
Thompson schemes, produce a peak at the correct reflectiv-
ity; however, all schemes produce low reflectivities much too
often. This was of course also evident in Fig. 3. Only the P3
scheme distribution is very similar to the observed distribu-
tion, however, the frequency over the entire range is slightly
too high.

Once more, Zg4; provides further context (Fig. 6d). In this
case, all schemes except for the P3 scheme demonstrate a
pronounced low bias in Zg;, where Zg, below 0.3-0.5dB
is simulated too frequently and higher Zg, is simulated too
rarely. This suggests that in the stratiform region at 1500 m,
all schemes except the P3 scheme simulate large rain drops
less often than observed. This pattern is consistent with the
convective region at 1500 m altitude for the Morrison and
FSBM schemes, where a low bias in Zg, is also observed
and is attributed again to a low frequency of large rain drops.
While our findings in the convective regions were in line with
the findings of Sun et al. (2023), the results in the stratiform
region are not. Sun et al. (2023) reported an excessive pro-
portion of large drops for the Morrison scheme for the strat-
iform regions of their squall line case, whereas we find that
over a 30 d dataset, the Morrison scheme exhibits a low bias
in Zgr in the stratiform regions. A possible explanation for
this discrepancy could be that the large drops that Sun et al.
(2023) find in the stratiform region of their squall line is a
case specific phenomenon, which is not a general bias of the
Morrison scheme.

The Morrison and FSBM distributions exhibited similar
characteristics both in the stratiform and convective regions
at 1500 m altitude, e.g., largest Zg, values were simulated
too rarely. In contrast, the Thompson schemes exhibit a com-
pletely different behavior in the stratiform region compared
to the convective region at 1500 m altitude. There is a clear
overestimation of large Zg; values in the convective region,
while in the stratiform region, the Thompson schemes ex-
hibit a low bias in Zg;. This could indicate that large particles
might fall out within the convective region too efficiently, re-
sulting in a low amount of large particles transported via the
ice phase into the stratiform region.

Previous studies reported contradictory results regarding
rain size biases in the Thompson schemes. Wu et al. (2021)
found that their simulation of a typhoon event with the
Thompson 2-mom scheme produced a frequency of large
rain drops lower than observed. Putnam et al. (2016) on the
other hand found that the Thompson 2-mom scheme pro-
duced reflectivity values that are too high and attributed this
among other things to a high frequency of large rain drops.
Our findings suggest that the Thompson schemes produce a
relatively high frequency of large rain drops in the convec-
tive region, but a relatively low frequency of large rain drops
in the stratiform region, which might explain the contradic-
tory findings in previous literature. The P3 scheme is the only
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scheme that exhibits a Zg, distribution that closely resembles
the observations, with only a marginal shift towards higher
Zgr values, suggesting that the frequency of large rain drops
is more prevalent in the P3 scheme than what is observed.
This is consistent with the findings in the convective region
at 1500 m altitude, where the P3 scheme also produced a high
frequency of large rain drops. However, this bias is much less
pronounced in the stratiform region than in the convective re-
gion at 1500 m altitude.

3.3.4 Stratiform region at 5500 m

The reflectivity histograms for the stratiform region at an al-
titude of 5500 m (Fig. 6a) reveal that all schemes produce too
large areas of the shown reflectivity levels, but that they do
not exhibit a substantial bias. In general, stratiform reflectiv-
ities are simulated more frequently than what was observed
over most of the reflectivity range for all schemes except the
P3 scheme. This is most pronounced for weaker reflectiv-
ities below 25 dBZ for all schemes except for the Morrison
scheme. The Morrison scheme exhibits a notable deviation of
approximately 5 dB towards higher reflectivity values. This
finding has been reported in other studies and appears to be
a persistent issue with the Morrison scheme. For instance,
Planche et al. (2019) reported overestimations of simulated
reflectivity of more than 10 dB between 5 and 10 km in their
squall line case, attributing this to either snow density as-
sumptions or an excessive number of large snow particles.
Sun et al. (2023) also found that the Morrison scheme pro-
duced reflectivity values that were too high in the stratiform
region below the —20°C level for their squall line case and
attribute this to high assumed graupel densities or too large
graupel fractions. In our simulations, we find that reflectiv-
ities larger than 25dBZ at 5.5 km altitude are primarily as-
sociated with snow particles in the Morrison scheme simula-
tions (not shown).

Interestingly, the correlation of biases between 1500 and
5500 m altitude is significantly lower for the stratiform re-
gion than for the convective region. The Morrison scheme
even has a pronounced high bias at 5500 m altitude, con-
trasting with the low bias at 1500 m. This suggests that the
origin of biases at 1500 m may not be exclusively attributed
to the ice phase for the Morrison scheme within the strat-
iform region. The disparities in the drop size distributions
within the stratiform region may also be attributable to the
representation of warm rain processes, such as collisional
breakup, collision-coalescence or evaporation. For instance,
Planche et al. (2019) reported an unrealistic strong vertical
change of drop size diameter and number concentration in
the stratiform region of the Morrison simulation of a squall
line, due to the representation of warm rain processes in the
Morrison scheme. Sun et al. (2023) further reported an overly
strong collision-coalescence process in the Morrison scheme
for their squall line case in the stratiform region.
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The Z4; histograms for the stratiform region at 5500 m al-
titude are displayed in Fig. 6b. It is evident that no simula-
tion was capable of reproducing the observed Zg, distribu-
tion, as all of them exhibited a pronounced peak at approxi-
mately 0 dB and almost no values above 0.1 dB. In contrast,
the observed distribution is much broader, encompassing val-
ues up to 1 dB more frequently. The discrepancy in the Zg,
histograms at 5500 m altitude can be attributed to the inher-
ent assumptions of the radar forward operator concerning the
particle shapes. Given the similarity in bias observed among
all schemes, we refrain from further interpretation of the Zg,
histograms at 5500 m altitude.

3.4 Simulated rain drop size distributions

In the previous section, issues in the simulated reflectivity
and differential reflectivity at 1500 m altitude were mainly
attributed to the size of rain drops. While we do not have
real observations of the size distribution of rain drops, we
can analyze the simulated size distributions of rain drops
in the model output. This helps to understand if the differ-
ences in the simulated reflectivity and differential reflectiv-
ity are indeed due to differences in the size distribution of
rain drops. Figure 7 shows the total number of simulated rain
drop sizes over all 30d at 1500 m altitude for the 5 micro-
physics schemes for the convective and stratiform regions.
The size distributions of the bulk schemes are binned into 17
bins that correspond to the bins used in the FSBM scheme. In
general, the distributions within the convective regions and
stratiform regions look similar. The area covered by strati-
form precipitation is generally larger than the area covered
by convective precipitation (see Fig. 3). Therefore, the to-
tal number of drops in the stratiform region is also generally
larger than in the convective region. However, the difference
in the number of drops between the two regions is not con-
stant across all drop sizes. For small drops, the number of
drops in the stratiform region is significantly larger than in
the convective region, by up to 1-2 orders of magnitude. In
contrast, the number of large drops of about 4 mm is similar
in both, the convective and stratiform regions. This demon-
strates that within the convective region, the drop size distri-
bution is shifted towards larger drops, while in the stratiform
region, the distribution is shifted towards smaller drops.

The microphysics schemes also impact the size distribu-
tion of rain drops. The Morrison and FSBM schemes pro-
duce a higher number of small drops, and the lowest number
of large drops. The P3 scheme is the exact opposite, produc-
ing the highest number of large drops and the lowest number
of small drops, while the Thompson schemes are in between.
This is true for both regions, convective as well as stratiform,
but the differences are more pronounced in the stratiform re-
gion, especially for small drops. This is consistent with the
interpretations in the previous sections. The schemes that
produced the highest Zg4, values (Thompson and P3) also pro-
duced the highest number of large drops in the size distribu-
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tion, while the schemes that produced the lowest Zg; values
(Morrison and FSBM) also produced the lowest number of
large drops in the size distribution. This provides confidence
in our conclusions regarding the rain drop size distributions
based on the simulated differential radar reflectivity Zg;.

4 Summary and conclusions

The representation of cloud microphysics in numerical
weather prediction models are subject to large uncertainties
(Morrison et al., 2020; Fan et al., 2017). Particularly chal-
lenging is the prediction of convective precipitation events,
due to their small scale and rapid error growth of initial un-
certainties (Selz and Craig, 2015; Hohenegger and Schir,
2007). In this study, the performance of five different micro-
physics schemes in the simulation of convective precipitation
events is analyzed statistically over a 30 d dataset in 2019 and
2020. The simulations are conducted using the Weather Re-
search and Forecasting (WRF) model, employing a regional
limited area model setup over Munich with a horizontal grid
spacing of 400 m. 5 different microphysics schemes are uti-
lized: the Thompson 2-moment scheme (Thompson 2-mom;
Thompson et al., 2008), the Morrison 2-moment scheme
(Morrison 2-mom; Morrison et al., 2009), the Thompson
aerosol-aware scheme (Thompson aeresol-aware; Thompson
and Eidhammer, 2014), the fast spectral bin microphysics
scheme (FSBM; Shpund et al., 2019), and the Predicted
Particle Properties scheme (P3; Morrison and Milbrandt,
2015). The simulations are then compared to polarimetric
radar observations from the German Meteorological Service
(DWD) radar network, i.e., reflectivity (Z) and differential
reflectivity (Z4r). The convective and stratiform regions are
separated using an automatic cell-tracking algorithm, tobac
(Sokolowsky et al., 2024).
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The convective area fraction (CAF) is a metric employed
to assess the distribution of precipitation into convective and
stratiform regions. While the total precipitation amounts are
comparable for all schemes, the distribution into convec-
tive and stratiform regions varies significantly. The Thomp-
son schemes and P3 exhibit higher CAFs compared to the
observed values, while the Morrison schemes and FSBM
demonstrate close, though slightly lower CAFs. The dis-
crepancies are mainly a result of differences in the simu-
lated convective area, rather than the stratiform area. This
underscores the pivotal role that the choice of microphysics
schemes plays in determining the distribution of precipitation
into convective and stratiform regions.

To investigate microphysical reasons for the differences in
precipitation distributions, an analysis of simulated and ob-
served reflectivity and differential reflectivity histograms is
conducted for the convective and stratiform regions at two
altitudes, 1500 and 5500 m. Polarimetric radar signals are in-
fluenced by the size and number of the particles in the beam
volume, as well as the density and phase of the particles. This
allows for an interpretation of the biases in reflectivity and
differential reflectivity in terms of the microphysical proper-
ties of the simulated particles. The following conclusions are
derived from the analysis of the radar signal histograms:

Convective Core

1. At an altitude of 1500 m, FSBM and Morrison simu-
lations frequently lack large rain drops. For the FSBM
scheme, this results in a low bias in reflectivity. For the
Morrison scheme this is not the case as it is compen-
sated by a high number of small drops.

2. The Thompson schemes and P3 produce an excessive
number of high Zy values, indicating that large rain
drops are too frequent in these schemes. This is con-
sistent with the simulated rain drop size distributions.

3. The Thompson schemes exhibit comparable biases in
reflectivity at 1500 and 5500 m altitude, indicating that
these biases originate in the ice phase.

Sun et al. (2023) also reported a lack of large rain drops in
the convective part of a squall line in the Morrison scheme,
a finding consistent with our results. Here, we demonstrate
that this is persistent across multiple days and different con-
vective events. Contradictory results have been reported in
other studies concerning the reflectivity biases of the Morri-
son scheme. Sun et al. (2023), for instance, reported a low
bias within the convective region for their squall line case,
while Planche et al. (2019) found a high bias in the convec-
tive part for their squall line case. This demonstrates the high
variability of the performance of microphysics schemes for
different convective events and the strength of a statistical
approach.
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Stratiform region

1. Only the P3 scheme produces a sufficient number of
large rain drops, while all other schemes produce too
few large rain drops, resulting in a low bias in Zg; and
reflectivity.

2. At an altitude of 5500 m, the Morrison scheme exhibits
a significant high bias in reflectivity.

3. There is no significant correlation between distributions
at 1500 and 5500 m altitude, indicating that the origin
of the bias is not necessarily in the ice phase.

Other studies also reported that the Morrison scheme
yielded reflectivity values that were excessively high in the
stratiform region at upper heights. Planche et al. (2019), for
instance, reported overestimations of Morrison’s simulated
reflectivity of more than 10dB between 5 and 10km alti-
tude for their squall line case. They attributed this to either
snow density assumptions or too many large snow particles.
Sun et al. (2023) also found that the Morrison scheme pro-
duced reflectivity values that were too high in the stratiform
region below the —20°C level for their squall line case and
attributed this to graupel densities or too large graupel frac-
tions.

In general, the Morrison and FSBM schemes exhibit sim-
ilar biases in Zg; in the stratiform and convective regions at
1500 m altitude, i.e., low Zg,; values are simulated too fre-
quently in both regions. The Thompson schemes on the other
hand have a bias in Zg, at 1500 m altitude in the convective
region, but a low bias in Zg at 1500 m altitude in the strat-
iform region. This could indicate that large particles might
sediment too efficiently within the convective region, result-
ing in a low amount of large particles transported via the ice
phase into the stratiform region. Previous studies reported
contradictory results regarding rain size biases in the Thomp-
son schemes. For example, Wu et al. (2021) reported a fre-
quency of large drops lower than observed, while Putnam
et al. (2016) found that the Thompson 2-mom scheme pro-
duced reflectivity values that are too high and attributed this
to a high frequency of large rain drops. Our findings suggest
that the Thompson schemes do not generally exhibit a size
bias in rain drops, but that the size bias is dependent on the
region. This might explain the contradictory findings in pre-
vious literature.

Relating the analysis based on the polarimetric radar sig-
nals to the precipitation distribution based on the CAF, we
find a strong correlation between the high fraction of convec-
tive precipitation in the P3 and Thompson schemes and the
high bias in reflectivity and Zg; histograms. We conclude that
the high CAF in the P3 and Thompson schemes is due to the
high frequency of large rain drops that produce high reflec-
tivities and Zg; values. This translates into an unrealistic high
fraction of convective precipitation in the P3 and Thomp-
son schemes. With the same argument, we conclude that the
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missing large drops in the FSBM and Morrison scheme trans-
late into a low CAF, although this is not as pronounced as in
the P3 and Thompson schemes.

In general, the majority of the observed biases in reflec-
tivity and Zg, can be attributed to issues in the simulation of
particle size distributions. Analysis of the underlying simu-
lated rain drop size distributions (DSDs) supports these in-
terpretations of the Zg, signals. This is of particular signif-
icance, because the representation of particle size distribu-
tions is crucial for the accurate simulation of precipitation.

Our study shows that the choice of microphysics schemes
has a significant impact on the rain drop size distributions,
which in turn affects the distribution of precipitation into
intense localized convective and more widespread, weaker
stratiform regions. We demonstrate how polarimetric radar
observations can be used to identify issues in the underly-
ing particle size distributions of the microphysics schemes.
In contrast to previous studies that evaluate microphysics
schemes typically based on case studies, our evaluation en-
compasses a dataset over 30d of convective precipitation
events. This provides a more robust estimate of the perfor-
mance of microphysics schemes. In light of the increasing
accessibility of operational polarimetric radar observations,
our study has the potential to provide a framework for the rig-
orous statistical evaluation of weather models using polari-
metric radar measurements, extending this capability to other
regions and weather scenarios. However, within the scope of
this study, we focused only on one polarimetric radar vari-
able, Z4;. Future research could expand the analysis to in-
clude additional polarimetric radar variables, such as specific
differential phase (Kgp) or correlation coefficient (RHOhv),
which could provide further insights into the microphysical
properties of the different microphysics schemes. Kgp, for
instance, can provide information on number concentration
of rain drops in the radar beam volume, while RHOhv can
provide information on the presence of mixed-phase precip-
itation (Bringi and Chandrasekar, 2001, Chapter 7). K4, and
RHOv in combination with Zg. and Z could also be used
for hydrometeor classification (e.g., Dolan et al., 2013).

While polarimetric radar measurements can provide valu-
able insights into the microphysical properties of hydrom-
eteors, exact conclusions regarding the DSDs could be de-
rived through the use of disdrometer measurements or re-
trievals, such as Dual-Wavelength retrievals. Li et al. (2023),
for instance, evaluated a simulation of an extreme rainfall
event over China using disdrometer measurements and un-
derscored the importance of drop size distributions when an-
alyzing extreme rainfall events.

Furthermore, the radar forward operator assumptions on
the particle shapes exert a substantial influence on the sim-
ulated Zg; for ice phase particles. This hinders the interpre-
tation of the Zg, histograms at 5500 m altitude in this study.
The use of a more sophisticated radar forward operator that
does not rely on the T-matrix method could provide more
insights into the microphysical properties of the different mi-
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crophysics schemes. Alternatively, the utilization of schemes
that provide more detailed information on the particle shapes
and orientations could mitigate the uncertainties in the radar
forward operator assumptions.

Finally, this study did not consider cell lifetime stage.
However, with cell tracking tools such as tobac, it is possible
to obtain further insights into the microphysical properties of
the different microphysics schemes during various stages of
a convective cell’s lifetime. This could be a topic for future
research.
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marock et al., 2019). The forward operator CR-SIM (version 3.33)
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tion, e.g., simulations and observations after interpolation to a
regular grid is available at: https://doi.org/10.57970/0f0ep-q9x13
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