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Abstract. Resolved spatial information for climate change
projections is critical to any robust assessment of climate im-
pacts and adaptation options. However, the range of spatially
resolved future scenario assessments available is limited, due
to the significant computational and human demands of Earth
System Model (ESM) pipelines. In order to explore a wider
variety of societal outcomes and to enable coupling of cli-
mate impacts into societal modelling frameworks, rapid spa-
tial emulation of ESM responses to climate change is there-
fore desirable. Many existing pattern scaling methods as-
sume spatial climate signals which scale linearly with global
temperature change, where the pattern of response is inde-
pendent of the nature and timing of emissions. However, this
assumption may introduce biases in emulated climates, espe-
cially under net negative emissions and overshoot scenarios.
To address these biases, we propose a novel emulation sys-
tem, METEOR, which represents multi-timescale spatial cli-
mate responses to multiple climate forcers. The mapping of
emissions to forcing is provided by the CICERO Simple Cli-
mate Model, combined with a calibration system that can be
used to train model-specific pattern response engines using
only core training simulations from CMIP. Here, we demon-
strate that our fitted spatial emulation system is capable of
rapidly and accurately predicting gridded annual mean tem-
perature and precipitation responses to out-of-sample scenar-
ios.

1 Introduction

Spatially resolved information is essential for informing ro-
bust assessments of mitigation and adaptation strategies in
response to global climate change (IPCC, 2021, 2022). Ac-
curate and detailed regional projections enable policymakers
and stakeholders to understand potential impacts and to plan
accordingly (IPCC, 2022). The Coupled Model Intercompar-
ison Project (CMIP) aims to deliver this information, and
is increasingly moving towards an operational procedure,
wherein CMIP7 Earth System Models will be run on a semi-
regular frequency, allowing updates of model complexity,
historical forcing and future scenarios (Dunne et al., 2024).
However, these pipelines are time-consuming and compu-
tationally intensive, resolving numerous physical, chemical,
and biological processes at high spatial and temporal reso-
lutions such that a modest number of scenario simulations
with multiple models takes years to achieve (Eyring et al.,
2016). Demand for regional climate information increasingly
requires more frequent updates for a wider range of policy-
relevant future scenarios. Limitations on time, computational
and human resources needed for ESM simulations constrain
the range of future scenarios and models that can be feasi-
bly explored (Nicholls et al., 2020, 2021). In addition, there
is an increased need for fast spatial modelling frameworks
where regional climate impacts are resolved to allow for the
simulation of risks, inequalities, impacts on and interactions
between social, economic and natural systems under climate
change (van Vuuren et al., 2012; Kikstra et al., 2021; Dietz
et al., 2021; Ferrari et al., 2022; Rising et al., 2022).
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To address these needs, spatial emulation techniques have
been developed to rapidly approximate the output of ESMs
under various scenarios (Zelazowski et al., 2018). Linear pat-
tern scaling is one such approach, which assumes that spatial
patterns of climate response scale linearly with global mean
temperature change (Santer et al., 1990; Mitchell, 2003;
Beusch et al., 2020). This method allows for quick estima-
tions of regional climate change by scaling predefined spatial
patterns according to projected global temperature changes
(Tebaldi et al., 2021; Zhao et al., 2017).

Several models have exploited pattern scaling techniques
in climate research. The SCENGEN tool, for instance, gen-
erates regional climate change scenarios by scaling stan-
dardised patterns derived from General Circulation Mod-
els (GCMs) (Hulme et al., 2000). Similarly, the MESMER
framework employs pattern scaling to efficiently emulate
temperature and precipitation fields from ESMs (Beusch
et al., 2020, 2022). Likewise, the PRIME framework makes
use of pattern scaling and subsequently provides the spatial
climate information as input for a land surface model (Math-
ison et al., 2025), allowing more direct simulation of terres-
trial ecosystems and downstream human and economic im-
pacts. The STITCHES model uses a different approach, by
splicing together portions of existing simulations with global
mean temperature and its derivative corresponding to the
desired prediction to emulate scenarios which have not yet
been simulated (Tebaldi et al., 2022). This allows the model
to represent, for example, differences between resolved pat-
terns under warming and cooling climate states, but is lim-
ited by the finite number of climate analogues in the training
dataset — which in CMIP is relatively sparse, and requires
concatenation of segments of simulations which may pro-
duce unphysical discontinuities in the emulated climate. Fur-
ther, the ESEm framework (Watson-Parris et al., 2021) pro-
vides options to build various types of more process agnostic
machine learning based emulators for spatio-temporally re-
solved data, using approaches such as Random Forest, Gaus-
sian Process and Neural Network regressions. Comparison
of these methods to traditional linear pattern scaling shows
good performance (Watson-Parris et al., 2022), but the setup
used requires output from experiments which have only been
run by a smaller subset of the CMIP6 ESMs. Similarly,
Mansfield et al. (2020) utilised the specific-per-species mod-
elling intercomparison setup and output in PDRMIP (Myhre
et al., 2017), to define short- and long-term ESM responses
using Gaussian Process regression, which can then in turn be
used to emulate long-term responses to new scenarios from
short-term responses. Due to the data requirements for train-
ing to new models, this setup, though potentially powerful, is
not immediately applicable to CMIP6 or new emerging ESM
datasets.

While each of these methods have increased capacity to
produce regional climate projections with reduced compu-
tational demands, questions remain on how to emulate hys-
teresis, forcing dependency and nonlinear responses in future
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climate, which have been demonstrated to exist in Earth Sys-
tem Models (Sanderson et al., 2025) but can be precluded by
emulator assumptions. Pattern scaling models such as MES-
MER rely on the assumption that spatial patterns of climate
response are a singular function of global mean tempera-
ture, insensitive to the forcing history and the emission tra-
jectory (Collins et al., 2013; Zhao et al., 2017). Patterns of
warming in PRIME are also subject to this linearity assump-
tion, though its process-based land surface model component
could potentially represent memory in slow-timescale terres-
trial processes if feedbacks were included. STITCHES can
potentially resolve non-linear and time-emergent behaviour
to the degree that behaviour is represented in the training sce-
narios, but is limited to the degree it can generalise hystere-
sis and climate reversibility dynamics. This linearity assump-
tion allows reasonable performance under scenarios of grad-
ual and monotonic climate change but can introduce signifi-
cant biases under strong mitigation scenarios or scenarios in-
volving overshoots in greenhouse gas concentrations (Herger
etal., 2015; Good et al., 2015; Tebaldi and Knutti, 2007). Ad-
ditionally, non-linearities in the climate system, such as feed-
back mechanisms and varying climate sensitivities over time
(Jonko et al., 2013), can lead to time-evolving and forcing-
dependent spatial patterns that are not adequately captured
by traditional pattern scaling approaches (Huntingford and
Cox, 2000; Shiogama et al., 2010).

To address these limitations, we propose METEOR (Mul-
tivariate Emulation of Time-Evolving and Overlapping Re-
sponses), a novel emulation framework that accounts for spa-
tial climate responses to a range of climate forcers emerging
over different timescales by using impulse response assump-
tions applied to a spatially resolved basis set. Figure 1 illus-
trates how METEOR can produce non-linear and hysteresis
responses to an idealised forcing trajectory. METEOR builds
on the emissions-forcing engine from the CICERO Simple
Climate Model (C-SCM; Sandstad et al., 2024), and can rep-
resent the temporal evolution and forcing dependency of spa-
tial patterns, providing regional climate projections which
preserve the hysteresis and time-evolving response to forc-
ing present in the target Earth System Model, allowing more
consistent representation of scenarios involving overshoots
or pathways with diverse mixes of short- and long-lived cli-
mate forcers.

In this paper, we present the structure and validation of
METEOR. We demonstrate how this approach can capture
nonlinear and time-dependent aspects of regional climate
change. As such, METEOR offers a practical tool for re-
searchers to rapidly explore a wide variety of societal out-
comes and to assess mitigation and adaptation options in-
forming policymakers with greater confidence.
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Figure 1. METEOR pattern scaling hysteresis. Illustration of the emulated METEOR ensemble response showing (a) global mean temper-
ature (GMST) and b) precipitation (GMP) response to an idealised radiative forcing with a Gaussian ramp-up to 1 Wm~2 and subsequent
ramp-down within 500 years. (¢) shows the emulated relationship between GMST and GMP, compared with common pattern scaling, which
various patterns scaling approaches are based on. METEOR (grey), trained by CMIP6 models (see Methods), is able to emulate hysteresis
behaviour, compared to a common pattern scaling (blue) that uses linear regression of the relationship between GMST and GMP. Each
individual grey line shows the response of METEOR trained to emulate a specific CMIP6 model.

2 Methods

The methodology for METEOR is illustrated in Fig. 2, and
described below. The framework of METEOR is based on
the assumption that a step change in a given climate forcer
can induce a number of time-evolving patterns for a pre-
dicted output variable, each of which emerges on a specific
timescale. The METEOR framework allows groups of cli-
mate forcers to be associated with a number of time-evolving
pattern responses, which in the current version then combine
linearly to give the total climate response.

The primary forcer component of climate change is the
greenhouse gas (GHG) signal due to well-mixed green-
house gases, which exert a forcing on the climate system
(Forster et al., 2025). For METEOR, we assume that the
time-evolving pattern of response to GHG forcing can be ap-
proximated by the response of the climate system to a step
change in CO; concentrations. This is practical given the
ready availability of abrupt4x-CO; simulations (in which at-
mospheric carbon dioxide levels are instantaneously quadru-
pled from pre-industrial levels and the system is allowed to
evolve for at least 140 yr) for all Earth System Models in the
CMIP archive, and was found to be a reasonable approxi-
mation in prior process modelling studies which considered
the pulse-response to a number of different greenhouse gases
(Myhre et al., 2017).

METEOR assumes that the response to a step change in
forcing from a given source can be represented by the sum
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of one or more impulse response patterns, each with its own
timescale of emergence as represented by a decaying expo-
nential timeseries for pattern saturation. Each timescale and
corresponding pattern can capture elements of the physical
response which emerge at different timescales, such that dif-
ferent spatial patterns can be associated, for example, with
the warming of the shallow and deep ocean. Similarly, some
forcing agents such as sulfate aerosols and black carbon
are associated with markedly different warming patterns and
timescales to those of well-mixed greenhouse gases (Myhre
etal., 2017). The METEOR framework allows for individual
forcers, or groups of forcers, to be associated with their own
set of time-emergent patterns, allowing for the model to sim-
ulate and distinguish between the spatial pattern of climate
change associated with different forcer types. As such, ME-
TEOR can be trained employing only steps 1-4 (Fig. 2), for a
single forcer version, or steps 1—4 can be repeated for multi-
ple forcers for which abrupt step-change forcing experiment
data are available.

In practice, METEOR uses outputs of the abrupt4x-CO»
experiment to fit the GHG response. Then, as separate step-
change experiment data is not generally available in CMIP
for other forcers, a residual signal from a historical and sin-
gle future scenario run (O’Neill et al., 2016) is used for
inverse estimation of patterns and timescales for a sulfate
aerosol response. We choose this technique to distinguish
sulfate aerosol only, as this is the most different and im-
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Figure 2. METEOR flowchart. Illustration of the concept and sequence of METEOR and its integration with the CICERO simple climate
model. Note that the side panels represent the necessary preparatory steps for the creation of GHG (left) and aerosol (right) transient spatial
climate response pattern. Here, the aerosol pattern calculations, specifically step 7, requires input from the GHG pattern calculation steps 3
and 4 (dotted gray line). Hence, steps 1-10 are required to train METEOR (centre panels; also see Sect. 2.1). Their outcome is used in step
C in METEOR (see Sect. 2.2). Note that METEOR partly integrates the C-SCM as it makes use of its emissions-to-forcings module.

pactful non-GHG forcer (Myhre et al., 2017; Forster et al.,
2025). See also Fig. 7.7 of Forster et al. (2021) where the
aerosol forcing is currently the most uncertain and largest
non-GHG contribution (though, this may change in the fu-
ture (Adams et al., 2001; Liao and Seinfeld, 2005; Bauer
et al., 2007; Liao et al., 2009; Bellouin et al., 2011; Hauglus-
taine et al., 2014), which is a source of structural uncertainty
in the setup of METEOR demonstrated here). In the setup
we use here, the totality of the aerosol-cloud-interactions are
represented as a function of sulfate aerosol forcing, and a
substantial part of the aerosol radiation forcing comes from
sulfate forcing. All other forcer responses including tropo-
spheric and stratospheric ozone, BC- and OC- aerosol direct
forcing, and stratospheric water vapour forcing are mapped
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from forcing strength using the GHG-response patterns and
timescales. A further breakdown of forcer types requires ad-
ditional dedicated experiments. For convenience, we will de-
note this part of the pattern simply as aerosol patterns, al-
though it is both more specific (only fitted for sulfate aerosol)
and less so (as it is a residual pattern, and will naturally also
pick up other non-sulfate or even non-aerosol patterns). The
obtained responses and patterns can then be used to emulate
the spatial response to a previously unseen experiment for
which there is emissions (or concentrations) data available.
As emissions or concentration inputs, rather than forcing
inputs, are available for both training and emulated scenarios,
METEOR uses the emissions-forcing engine from C-SCM
(Sandstad et al., 2024) to map from emissions or concentra-
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tion inputs to forcing signals. For each modelled forcer type,
the forcing input signal is scaled by C-SCM’s own forcing
strength in the training scenario.

This METEOR code framework is available at https:/
github.com/benmsanderson/METEOR (last access: 31 Octo-
ber 2025) and is importable as a Python library. The method-
ology does not come pre-trained, but includes tools to read
local model output training data, and supporting functional-
ity to download data on appropriate formats. In this article,
we present results for a selection of CMIP6 models applied
to yearly temperature and precipitation, but the methodology
is not limited to these variables, or to the set of ESM model
output used here. Indeed any yearly variable output can in
principle be emulated. Though, the reliability of the fit must
be assessed by the user. The computational time for training
is relatively fast (order of minutes on a laptop), but perfor-
mance depends on the resolution of the ESM model target for
emulation, and local machine specifications including mem-
ory limitations. Overall the code allows for efficient emula-
tion of models in the CMIP6 archive and computation and
application to a variety of climate scenarios.

2.1 Training the model: Construction of transient
spatial response patterns

In this section we describe how we use the abrupt4xCO; ex-
periment to find impulse response timescales and patterns for
CO; that can be used to recreate and model GHG forcing
response in various experiments. A combination of histori-
cal and scenario data is then employed to estimate separate
timescales and patterns for sulfate aerosol forcing. These es-
timates are then added linearly to the GHG forcing and pat-
terns to provide the composite response.

2.1.1 Greenhouse gas response estimation

We begin by obtaining the annual mean outputs for the tar-
get ESM we wish to emulate. The variables of interest in
this study are surface air temperature (tas) and precipitation
(pr). To obtain a greenhouse gas response signal, we use the
abruptdx-CO, experiment, in which atmospheric CO; con-
centrations are instantaneously quadrupled relative to pre-
industrial levels, and the piControl (pre-industrial control)
simulation (Eyring et al., 2016, Fig. 2, step 1). We obtain the
radiative forcing time series for GHGs from the abrupt4x-
CO; emissions by using the C-SCM emission-to-forcing
module (Sandstad et al., 2024) that converts carbon emis-
sions into climate forcing (Fig. 2, step 2).

For the given target variable, we estimate the gridded cli-
mate response to increased CO; by calculating the anomaly,
subtracting the piControl climatology (full time-series mean)
from the abrupt4xCO; simulation to yield X, a matrix of di-
mensions s X t, with s being the number of spatial grid points
(of the input ESM resolution as METEOR works on the input
data resolution with no regridding included) and ¢ the num-
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ber of years in the simulation with the values for the vari-
able of interest in each point in space and time as its data.
From X ; we calculate the global mean anomaly time series
Xglobal(f) by performing an area-weighted average (weight-
ing by cos(lat)) over all spatial grid points:

1 s
Tetobal (1) =~ D Jwi - Xi (1)
i=1

where w; is the area weight for pixel i, with a total number
of pixels s.

We then find an approximate representation of this global
mean response as a sum of n exponential decay functions,
representing different climate response timescales:

n
Xgiobal (1) ~ Y _ar (1—e™"/™%) )
k=1

where a; are amplitudes and t; are the decay timescales to
be determined for mode k. Note that (Freese et al., 2024;
Womack et al., 2025) present a related approach to emulate
from forcing to temperature using a Green-functions map-
ping which includes per grid-point impulse response func-
tions, rather than METEOR’s global impulse response func-
tions.

METEORV1.0 can decompose the global mean re-
sponse into a user-defined number of timescales, with each
added timescale fitted in an exponentially longer and non-
overlapping time range so that 7; € (10X, 105*1), minimised
from an initial guess of rkguess =5 x 10*. This allows for
a structured separation of the timescales. Three timescales
(n =3), which will be referred to as inter-annual mode
(1-10years), inter-decadal mode (10-100years) and inter-
centennial mode (100-1000 years) response, is the config-
uration we will describe here. Note that choice of number
of timescales (n) can be practically informed by assessing
the point at which there is no further improvement in perfor-
mance in the approximation detailed in Eq. (2) (see Sect. 3
for an illustration).

For the timescale decomposition, we construct a matrix
Tgug of dimensions n x n;, where each row n corresponds
to an exponential decay function with a specific timescale,
and n, refers to the number of simulation years (Fig. 2, step
3). T represents the temporal evolution of the global mean
climate response across different timescales:

Toug,, =1 —e /™, fork=1,2,...,n. A3)

Assuming that the spatiotemporal response can be repre-
sented as a sum of patterns which each emerge as a saturating
exponential decay (Proistosescu and Huybers, 2017), we ex-
press the anomaly matrix X as a product of spatial patterns
and temporal basis functions, where B is the spatial pattern
matrix of dimensions s X n:

X =Bghe - ToHe - 4
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This assumption allows the calculation of the spatial re-
sponse matrix B (Fig. 2, step 4), given that we have a prior
estimate of the timescale matrix T and the full time-evolving
output from the target model, X. Hence, we solve for B with
a least-squares estimate T (Moore—Penrose Pseudoinverse)
(Barata and Hussein, 2012) of the matrix T. Consequently,
the derived values of B minimise the residuals between the
observed and reconstructed anomalies:

Bong =X Ty - &)

Finally, we normalise the spatial patterns by the effec-
tive radiative forcing Fyx associated with the quadrupling of
CO» concentrations in the C-SCM, yielding a spatial pulse-
response function

that represents the spatial climate response pattern per unit
forcing.

Estimating the climate response of any forcer species for
METEOR in the way described here for CO, is possible,
but direct estimation requires a species-specific forcing step-
change experiment equivalent to the abrupt4xCO;. Such ex-
periments have only been performed for a limited number of
CMIP5 generation of models (Myhre et al., 2017)

2.1.2 Aerosol response estimation

To construct the aerosol response patterns in the CMIP6 em-
ulation, we instead make use of transient experiments to
inversely calculate the aerosol spatial pulse response func-
tions, constructing a residual between the ESM output for
an all-forcing (Farp) experiment (where both greenhouse
gases and aerosols are varying) and a synthetic GHG forc-
ing (Fgug) experiment, the response for which we estimate
using the METEOR GHG pattern response above. This as-
sumes that such a residual is primarily explained by the
aerosol climate response. In Sect. 3 we verify that this as-
sumption yields reasonable results in the scenarios consid-
ered for CMIP6.

Similarly to how we found X for the abrupt4xCO;, we ob-
tain the full ESM scenario response S, (dimensions s x n’,
where n’ is now the number of years in the scenario) from
the CMIP model output corresponding to the emission sce-
nario which will be used in the training process. For the all-
forcing scenario, we utilise a combination of the historical
experiment and the Shared Socioeconomic Pathway SSP2-
4.5 (Eyring et al., 2016) from CMIP6 ESM output (Fig. 2,
step 5), though any experiment including all forcers could in
principle be used. Here again, we obtain the aerosol forcing
time series from the historical and SSP2-4.5 emissions by
using the C-SCM emission-to-forcing module (Fig. 2, step
6).

Further, let Fgug(t") and F,e(t') denote the GHG and
aerosol forcings at time ¢’ =1,2,...,n, respectively. From

Geosci. Model Dev., 18, 8269-8312, 2025

M. Sandstad et al.: METEORv1

the SSP2-4.5 scenario, we compute the incremental changes
in GHG forcing A Fgug(t') = Foug(t') — Foug(t' — 1), with
AFgag(1) = Fgug(1). We can then calculate the time-
evolving coefficients by convolving the incremental GHG
forcings with the exponential decay functions:

t
Caong;, = Y AFGuG(t) x (1 —e~ 7/ | 6)

t'=1

or in matrix notation:

Couc = {AFgHG * TgHg} (1) , @)

where {} indicates a convolution over the time dimension.
From that, the estimated GHG-induced spatial response is
then:

SGHG, , =

5,1/

N
Beha,,; - Cong, ,/ - ®)
i=1

Using the total scenario response S; ,» from the ESM simu-
lations of SSP2-4.5, the aerosol-induced response can be es-
timated from the residual of subtracting the GHG response
from the total response (Fig. 2, step 7):

Sresid, , = S5, — SGHG, s - ©)

As was done for the GHG response, we here assume the
aerosol response can be represented with n,er = 3 timescales
Taer fOr the inter-annual, inter-decadal and inter-centennial
responses, respectively. The time response matrix T, for
each timescale j for a step change in aerosol forcing is con-
structed as (Fig. 2, step 8):

P (10)

The time-evolving coefficients for the aerosol pattern re-
sponse in the scenario can then be calculated by convolving
the aerosol forcing difference time series with the synthetic
pulse response time series:

t
Caerj,t = Z AFaer(I/)Taerj’,_l/ > (11)

t'=1

or in matrix notation:
Caer = {AFer * Taer} (1) . (12)

In order to find optimal values for . (introduced in
Sect. 2.1.2), we use an optimization algorithm to search for
values of Ty Which minimise the error in the projection of
the global mean target field residual timeseries (e.g. temper-
ature, precipitation) onto the basis defined by C,er (Fig. 2,
step 9). Once C,e; is known, we can create a least-squares
estimate of the spatial patterns of aerosol response By, as
the product of the residual matrix with the Moore—Penrose

https://doi.org/10.5194/gmd-18-8269-2025
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Pseudoinverse (Barata and Hussein, 2012) C, of the coeffi-
cients matrix Cyer:

Baer = Sresid : C;;r . (13)

The emulated spatial aerosol response S, for a novel
forcing timeseries AF can then be computed by convolv-
ing with the timescale response matrix Tyer and taking the
dot product with the aerosol spatial response patterns By,
(Fig. 2, step 10):

Saer = Baer : Caer = Baer : {AF * Taer}(t) (14’)

2.2 Applying the model: Multi-forcer multi-timescale
pattern scaling in out-of-sample scenarios

The calculations of the transient spatial climate response pat-
terns for GHG and aerosol forcing outlined in the previous
sections can now be used to emulate the spatio-temporal cli-
mate response of any climate scenario. For the application
in a new (out-of-sample) emissions scenario, METEOR con-
verts any given emission scenario (Fig. 2, step A) into forcing
time series using the emissions-to-forcings module of the C-
SCM (Fig. 2, step B). Convolving these time series with the
GHG and aerosol patterns (Fig. 2, step C) can then be utilised
to reconstruct the total multi-forcer multi-timescale emulated
climate response by linearly combining the GHG and aerosol
responses (Fig. 2, step D):

Semul”/ = SGHG”/ + Saer”/ P (15)

where SGHGM, and Saeru, are obtained according to
Egs. (6, 8) and (11, 14) respectively, with forcing timeseries
AFguG (1) and A Fue(t') calculated for the emissions sce-
nario of interest.

3 METEOR evaluation

To evaluate the performance of METEOR, we have trained
the model on CMIP6 data for a large number of CMIP6 mod-
els (see Table B1 for a full list) using a training dataset that
consists of abrupt4x-CO,, piControl, historical and SSP2-
4.5 modelling output in each case. Comparing to CMIP6
output from these experiments, we show the in-sample ac-
curacy. Furthermore, we have applied the resulting emula-
tion models to a number of additional scenarios from Sce-
narioMIP (Tebaldi et al., 2021): SSPI1-2.6, SSP3-7.0, SSP5-
8.5 and SSP5-3.4-over to consider the out-of-sample perfor-
mance (note that SSP5-3.4-over was only performed by a
limited number of models).

Additionally, in Appendix A we explore the effect and per-
formance of the model for the abrupt4x-CO, experiment and
the historical and SSP2-4.5 experiment combination depend-
ing on the number of timescales used, showing that three
timescales seem to yield good performance. Appendix B
shows per model results including Table B1 which lists the
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8275

values for the timescales obtained for GHG and aerosol re-
sponse for Surface Air Temperature (fas) and Precipitation
(pr) for each model and thus also serves as a reference of
which models were included in the analysis.

3.1 GHG and aerosol multi-timescale pattern of
climate change

Starting with the GHG response, Fig. 3 shows the full emu-
lation and contributions from the different timescale patterns
obtained from the abrupt4x-CO; experiment for temperature
and precipitation. Panels a and f show the CMIP6 multi-
model mean outputs averaged over years 80—120 for the ex-
periment. Panels (b) and (g) show the multi-model mean av-
erage of the METEOR emulations for the same models and
time period. Below in panels (c) and (h), (d) and (i) and (e)
and (j), of Fig. 3 decomposes the model mean emulation into
components associated with the inter-annual, inter-decadal
and inter-centennial responses for temperature (c, d and e)
and precipitation (h, i and j). The patterns show Arctic ampli-
fication (temperature) in both inter-annual and inter-decadal
modes. In the inter-decadal temperature mode (d) METEOR
picks up on a North-Atlantic relative cooling anomaly, which
is induced by the nonlinear response of the Atlantic Merid-
ional Overturning Circulation in some CMIP6 models. The
fast mode response for precipitation is dominated by diverse
responses over the tropical Pacific, with more widespread
changes in the slower modes.

Figure 4 similarly shows multi-model mean CMIP6 data
(panels a and g) and emulation (panels b and h), and the
split into contributions from the various timescales and pat-
terns. Here the average has been taken over years 1980-2020
in the combined historical and SSP2-4.5 experiment. Panels
(c) and (i) show the combined GHG responses for temper-
ature and precipitation, whereas panels (d) and (j), (e) and
(k), and (f) and (1) show the inter-annual, inter-decadal and
inter-centennial aerosol contributions. Broadly speaking, the
inter-annual aerosol timescale provides an overall cooling or
drying effect. The inter-decadal aerosol signal dampens the
Arctic amplification and counteracts the spatial pattern of the
precipitation signal. The inter-centennial patterns are largely
weaker but negative versions of the inter-decadal patterns.
For the net effect of all timescales, comparing the CMIP6
model output to the emulation output in Figs. 3 and 4 show
good agreement with the strength and spatial distribution of
the signals.

The global mean timeseries of the multi-model mean em-
ulated fit is shown alongside the global mean timeseries of
each ESM and the multi-model mean outputs in panels (b)
(temperature) and (d) (precipitation) of Fig. 5. The multi-
model global mean response shown in panels (a) and (b) of
Fig. 5 matches the model mean calculated from the mod-
elling output fairly well for both precipitation and temper-
ature. As such, the multi-model mean of CMIP6 METEOR
emulations is able to capture the global mean time evolu-

Geosci. Model Dev., 18, 8269-8312, 2025



8276

a CMIP6

60°N
30°N

0°
30°S
60°S

T T
120°W 60°W 0° 60°E  120°E

b METEOR

e <= =

T T
120°W 60°W 0° 60°E  120°E

T T T T
120°W  60°W 0° 60°E  120°E

d Inter-decadal mode T,

T T T T
120°W  60°W 0° 60°E  120°E

e Inter-centennial mode T3

T T T T T
120°W 60°W  0°  60°E 120°E
[K]

-15-11-7 -3 1 5 9 13

M. Sandstad et al.: METEORv1

CMIP6

60°N -
30°N 1

0° 4
30°S 1
60°S 1

T T T T
120°W  60°W 0° 60°E 120°E

METEOR

60°N -
30°N 1

0°
30°S 1
60°S -+

T T T T
120°W  60°W 0° 60°E 120°E

GHG Inter-annual mode T3

60°N -
30°N 1

0°
30°S 1
60°S 1

T T T T
120°W  60°W 0° 60°E 120°E

GHG Inter-decadal mode T,

T T T T
120°W  60°W 0° 60°E 120°E

GHG Inter-centennial mode T3

60°N -

30°N 4 2
0° +%

30°S 1
60°S

T T T T
120°W  60°W 0° 60°E 120°E

[kg m-2 s-1]

—2.4-1.6-0.80.0 0.8 1.6 2.4

le-5

Figure 3. METEOR GHG pattern from CMIP6. GHG patterns obtained from the abrupt4xCO?2 scenario (CMIP6 model average) for temper-
ature (left column) and precipitation (right column). Panels (a) and (f) show the CMIP6 model average in the 40 yr average of the run between
years 80 and 120. Panels (b) and (g) show the corresponding multi-model mean of the METEOR emulations for the scenario averaged over
the same time period. Panels (¢) and (h), (d) and (i), () and (j) show the contributions to the full emulations shown in (b) and (g) from the

inter-annual, inter-decadal and inter-centennial modes, respectively.
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Figure 4. METEOR aerosol residuals pattern from CMIP6. Residuals patterns obtained from the histroical + SSP2-4.5 scenario (CMIP6
model average) for temperature (left column) and precipitation (right column). Panels (a) and (g) show the CMIP6 model average in the
40 year average of the run between years 1980 and 2020. Panels (b) and (h) show the corresponding multi-model mean of the METEOR
emulations for the scenario averaged over the same time period. Panels (¢) and (i) show the combined emulated GHG forcing pattern from
all non-sulfate aerosol forcing. Panels (d) and (j), (e) and (k), and (f) and (1) show the contributions to the full emulations shown in (b) and
(h) from the inter-annual, inter-decadal and inter-centennial sulfate aerosol driven modes, respectively.
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tion of the original ESM multi-model mean output well until
2100.

3.2 Climate response reconstruction in out-of-sample
scenarios

In the main study detailed here, only the future SSP2-4.5 sce-
nario is used in the training of METEOR, so other scenarios
can be used as out-of-sample test cases. Figures 6-9 show
the global mean and spatial pattern performance of the emu-
lation applied to the ScenarioMIP scenarios. The timeseries
plots (Figs. 6 and 7) show both the response from greenhouse
gas forcing alone (technically all forcers apart from sulfate
aerosol), and the response from the model which includes
the calibrated sulfate aerosol signal. The results demonstrate
good performance of METEOR in out-of-sample scenarios,
both in terms of the global mean and spatially resolved output
for the multi-model mean of METEOR emulations compared
to the CMIP6 multi-model mean. Supplementary Figs. B1—
B8 show similar global mean fits for each model included,
and also show overall per model fidelity, though the time evo-
lutions of some models are less well captured than others. In
the global mean, the aerosol modes are able to capture the
broad temporal dynamics of the global mean aerosol effect:
cooling in the late 20th Century, and a reduced effect in the
future in all scenarios except SSP3-7.0.

Panel f of Figs. 6 and 7 shows year 2100 temperature and
precipitation change mean and model spread for all SSPs in-
cluded. For each scenario, METEOR is able to capture the
future spread, though multi-model mean end of 21st cen-
tury warming is slightly underestimated in the high mitiga-
tion SSP1-2.6 experiment. Panels a-e in both figures include
dashed lines showing the METEOR reconstruction results
obtained using only the GHG patterns and forcing.

We can illustrate this visually by considering the multi-
model mean spatial patterns of change in CMIP6 and the
out-of-sample METEOR reconstructions, where the emu-
lated amplitude and patterns of temperature and precipita-
tion change are highly consistent for each scenario consid-
ered (Figs. 8 and 9). The spatial bias is largest for SSP5-8.5
(the highest emissions scenario) for both temperature and
precipitation. In the case of temperature there is cold bias
for SSP5-8.5 and more of a warm bias for the low emissions
and overshoot scenarios (SSP7-2.6 and SSP5-3.4-over). This
may be an imprint of, or slight over-fitting to, the SSP2-4.5
scenario, which is colder than the former, and hotter than the
two latter scenarios at the end of the century. Note also that
the colour scale in the bias plots (c, f and i) for tempera-
ture in Fig. 8 has a smaller range, than the absolute value
plots (a, b, d, e, g and h), whereas the scales are the same in
Fig. 9 mainly due to a stronger localised bias in the tropical
pacific, especially for the SSP5-85 scenario for precipitation.
These patterns can also be seen in the spatial RMSE maps
of Fig. 14. In addition, supplementary Figs. B9, B10, B11,
and B12 compare single model emulation for all the standard
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SSP scenarios for one of the models with the best METEOR
emulations (NorESM2-MM) and one of the models with the
worst METEOR emulations (CMCC-ESM2). Per model em-
ulation to CMIP6 comparison maps for the SSP5-3.4-over
scenarios for all models that we considered for that scenario
are also shown in Figs. B13 and B14.

For a more regional breakdown, Figs. 10 and 11 in-
clude CMIP6 regional averages for the last two decades
of the 21st century for each of the SSP scenarios for
9 regions: Europe (0-45°E, 37-75°N), High Arctic (0-
360°E, 70-90°N), Antarctic + Southern Ocean (0-360°E,
55-90°8S), Tropics (0-360°E, 20°S-20°N), South Amer-
ica (275-330°E, 60° S—15° N), North America (200-310°E,
10-70° N), East Asia (65-150° E, 5-60° N), South East Asia
and Australia (95-165°E, 45° S—5°N), and Africa(0-60°E,
40°S-37°N). METEOR’s regional emulation of individual
CMIP6 models is generally good for temperature across all
regions (Fig. 10). Polar amplification is captured well, and,
despite larger absolute differences, the relative performance
of METEOR is best in the High Arctic region, while the fit is
worse for the Southern Hemisphere high latitudes. Scenario-
differences tend to remain constant regardless of their forc-
ing strength, which increases METEOR’s emulation skill for
scenarios with higher forcings. For precipitation, the results
are a bit more diverse, albeit consistent across all regions
(Fig. 11). Again, the High Arctic region shows the best agree-
ment between METEOR and CMIP6, while other regions
show larger differences. For some regions and models, there
is a contrasting direction of the precipitation response (i.e.,
opposite drying or wetting between METEOR and CMIP6),
but this tends to be limited to low-magnitude precipitation
changes.

3.3 Emulation of overshoot

A main motivation for the multiple timescale impulse re-
sponse structure of METEOR is to allow for better emula-
tion of overshoot including hysteresis behaviour in joint em-
ulation of temperature and precipitation. We will therefore
show some more detailed and per model results of the over-
shoot joint emulation through the example of the SSP5-3.4-
over scenario.

Figure 12 shows the precipitation change as function of the
temperature change globally and in each of 8 regions (Eu-
rope, High Arctic, Tropics, South America, North America,
East Asia, South East Asia and Australia, and Africa). Glob-
ally, the emulation represents hysteresis effects evident in the
CMIP6 ESMs well. At the regional scale, noise in the ESM
simulations make this harder to assess, particularly in regions
where the precipitation signal is relatively small. Nonethe-
less, in some regions such as the Tropics and South America,
hysteresis features matching those of the ESMs are captured
by METEOR.

Figure 13 show the end of century average maps of pre-
cipitation changes as function of temperature change in the
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Figure 5. METEOR GHG and aerosol residual reconstructions from CMIP6 models. METEOR reconstruction for abrupt4x-CO; (a, ¢) and
historical + SSP2-4.5 (b, d) for global mean temperature (GMST, top row) and precipitation (GMP, bottom row) for each model (grey), the
model mean (black) and the mean of the METEOR reconstructions (red for temperature and teal for precipitation). Panels (b) and (d) also
include the mean reconstruction timeseries obtained using only the GHG pattern (stippled lines), the abrupt4xCO, reconstructions in panels
(a) and (c) are identical with and without the aerosol pattern as only CO, is changing in this experiment.

SSP5-3.4-over scenario for each of the models. The results
further illustrate METEOR’s performance for the joint emu-
lation on a per model basis. For some models like CESM2-
WACCM and CanESMS3, the regional co-evolution patterns
seen in the emulation and the true model data are very sim-
ilar, whereas for others there is a larger discrepancy. How-
ever, strong changes in the tropical Pacific are the domi-
nant features in both models and emulation. The similarity of
regional patterns of the temperature-dependent evolution of
precipitation provides physics-based confidence in the joint
evolution of temperature and precipitation in METEOR.

3.4 Performance and error metrics

Here we show some selected error and performance metrics
for the METEOR evaluation to scenarios.

Table 1 shows the Pearson’s correlation coefficient and
Root Mean Square Error (RMSE) for temperature and pre-
cipitation between the METEOR pattern reconstruction and
CMIP6 end of century (2080-2100) change for each of the
SSPs. In general, out-of-sample performance is better for
temperature than for precipitation. Note that limited ESM
simulations are available for the SSP5-3.4-over scenario.
Performance in-sample (for SSP2-4.5) is better than out-of-
sample performance, with the largest errors indicated in the
high emission SSP5-8.5 scenario — but for all scenarios and

https://doi.org/10.5194/gmd-18-8269-2025

variables considered, the correlation between spatial patterns
of change exceeds 0.94. These fits are comparable to those
reported for PRIME (see Table 1 of Mathison et al., 2025).

Table 2 shows comparisons to the ClimateBench evalua-
tion suite (Watson-Parris et al., 2022; Watson-Parris, 2021),
which combines temporal and spatial NRMSE values for
emulations to the SSP2-4.5 run of NorESM-LM specifically
for several different emulation techniques. Results show that
METEOR emulations are on par with the other emulation
techniques. Note that NorESM-LM is not part of the CMIP6
multi modelled ensemble considered in the rest of this article,
as it did not have available outputs for the SSP5-8.5 scenario.
Similar metrics for the models used in our CMIP6 model en-
semble are listed in table supplementary Tables B2-BS5. As
overshoot is a special focus for METEOR, Table 3 shows the
ClimateBench results for each of the models we have consid-
ered that ran the SSP5-3.4-over scenario.

Finally, Fig. 14 shows the maps of spatial RMSE for the
end of the century emulation of CMIP6 models for four
scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The
SSP2-4.5 scenario overall shows the smallest RMSE, which
is expected as it is METEOR’s training scenario. For the
higher emission scenarios SSP3-7.0 and SSP5-8.5, the high
Arctic and the Southern Ocean shows larger RMSE for tem-
perature, while for precipitation, largest RMSE are found
over the tropical oceans. In the SSP/-2.6 scenario, the RMSE

Geosci. Model Dev., 18, 8269-8312, 2025
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Figure 6. Global mean temperature reconstruction from METEOR vs. CMIP6 data for various SSP scenarios. Panels (a)—(f) show global
mean fas (GMST) change for each model (grey), the model mean (black) and the mean of the METEOR reconstructions using GHG only (red
dashed), and the combined GHG and aerosol patterns (red solid). The red plume shows the distribution of the full METEOR reconstructions.
Panel (f) shows the year 2100 fas change with mean and modelling spread for the CMIP6 models (grey) and full METEOR reconstruction

(red).

Table 1. Root Mean Square Error (RMSE, in K for fas and in kg m—2s~! for pr) and Pearson correlation coefficient (Pearson) between the
METEOR pattern reconstruction and CMIP6 end of century (2080-2100) change.

Metric ~ Variable ~ SSPI-2.6 ~ SSP2-4.5  SSP3-7.0  SSP5-8.5 SSP5-3.4-over
Pearson ras 0.99 0.99 0.99 0.99 0.99
Pearson  pr 0.97 0.99 0.99 0.96 0.94
RMSE  1as 0.13 0.15 0.34 0.50 0.32
RMSE  pr 57x1077 34x1077 7.1x1077 84x1077 13.1x 1077

for temperature shows overall the same pattern both for tem-
perature and precipitation, but the former is much attenu-
ated over the high Arctic. This indicates that, by training to
SSP2-4.5, some non-linear Arctic ocean or sea-ice dynamics
are not captured by METEOR in the higher emission out-of-
sample scenarios for temperature, while the differences tend
to scale more linearly for precipitation.

4 Conclusions, discussion and outlook

Here, we have presented the METEOR (Multivariate Emu-
lation of Time-Evolving and Overlapping Responses) v1.0
emulator framework for spatially resolved climate impacts.
The framework allows for the reproduction of time-evolving

Geosci. Model Dev., 18, 8269-8312, 2025

response to a range of radiative forcers, allowing for the
simulation of hysteresis dynamics and forcer-dependent re-
sponses.

We showed results of its training and application to CMIP6
models for experiments abruptdx-CO,, piControl, histori-
cal, SSP2-4.5, SSP1-2.6, SSP3-7.0, SSP5-8.5 and SSP5-3.4-
over for annual mean temperature (fas) and precipitation
(pr). METEOR displays good overall performance for both
in- and out-of-sample applications and though performance
is (unsurprisingly) slightly worse for out-of-sample applica-
tions (particularly for precipitation), the amplitude and spa-
tial pattern of multi-model response is well captured for all
scenarios considered. Beyond the demonstrations here, the
model can easily be trained on new modelling output and to
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Figure 7. Global mean precipitation reconstruction from METEOR vs. CMIP6 data for various SSP scenarios. Panels (a)—(f) show global
mean pr (GMP) change for each model (grey), the model mean (black) and the mean of the METEOR reconstructions using GHG only (teal
dashed), and the combined GHG and aerosol patterns (teal solid). The teal plume shows the distribution of the full METEOR reconstructions.
Panel (f) shows the year 2100 pr change with mean and modelling spread for the CMIP6 models (grey) and full METEOR reconstruction

(teal).

Table 2. METEOR performance on NorESM-LM evaluated using and compared to the ClimateBench evaluation suite (Watson-Parris et al.,
2022; Watson-Parris, 2021). They compare normalised RMSE values obtained from comparing the average climate response over years 2080—
2100 in model output and emulation (NRMSEy), normalising RMSE in the spatially averaged timeseries over the same years NRMSE, and
taking the linear combination between the two, dubbed the total NRMSE (NRMSE; = NRMSE; + 5 - NRMSEy).

NRMSE; tas NRMSE, tas  NRMSE; tas NRMSE; pr  NRMSE, pr  NRMSE; pr
METEOR ssp126 0.165 0.161 0.969 1.978 0.100 2.480
METEOR ssp245 0.053 0.042 0.262 2.041* 0.111* 2.594%*
METEOR ssp370 0.118 0.082 0.527 2.139 0.133 2.804
Gaussian Process CB 0.109 0.074 0.478 2.341 0.341 4.048
Neural Network CB 0.107 0.044 0.327 2.128 0.209 3.175
Random Forest CB 0.108 0.058 0.400 2.524 0.502 5.035
Pattern Scaling CB 0.080 0.048 0.320 2.006 0.331 3.662
Variability CB 0.052 0.072 0.414 1.350 0.268 2.691
CMIP6 CB 0.258 0.177 1.141 1.994 0.389 3.940

* The exact methods used to derive the ClimateBench provided output (Watson-Parris, 2021) for precipitation proved hard to replicate and hence to
compare to our output, only the temperature outputs for SSP2-4.5 are compared directly to the ClimateBench output data itself. However, results were

computed using the same metrics to the output for the ensemble member used for emulation taken from the CMIP6 database directly. Results for METEOR
emulation errors for SSP7-2.6 and SSP3-7.0 were obtained in the same manner. The results for other emulations, internal variability and CMIP6 variability
are taken directly from Watson-Parris et al. (2022). Note that the ClimateBench results are compared to the mean between three ensemble member outputs,
hence some errors stemming from natural variability are dampened in the ClimateBench results and the result for SSP2-4.5 for METEOR compared to the

other METEOR results.
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Figure 8. METEOR temperature reconstruction pattern vs. CMIP6 data for various SSP scenarios. Panels in the first (a, d, g) and second
(b, e, h) column show the difference between the mean of the first 50 years of the historical experiment (1850-1900) and the last two
decades of the SSP1-2.6, SSP5-8.5 and SSP5-3.4-over scenarios for the mean of the METEOR reconstructions and the CMIP6 model output,
respectively. Panels in the third column (¢, f, i) show the difference between the second and first column, illustrating the difference between

the CMIP6 projections and the METEOR reconstruction.

Table 3. METEOR performance for all models evaluated using the Climate bench evaluation metrics. Note that comparison is to single

ensemble members, so variability driven errors are included.

NRMSE, tas  NRMSEg tas NRMSE; tas NRMSEg; pr  NRMSE, pr  NRMSE; pr
CESM2-WACCM ssp534-over 0.229 0.207 1.264 0.074 0.009 0.117
CMCC-ESM2 ssp534-over 0.144 0.120 0.743 0.058 0.009 0.104
CNRM-ESM2-1 ssp534-over 0.289 0.251 1.542 0.070 0.013 0.137
CanESMS ssp534-over 0.205 0.180 1.107 0.098 0.010 0.150
MIROC-E2SL ssp534-over 0.271 0.212 1.331 * * *
MRI-ESM2-0 ssp534-over 0.170 0.075 0.543 0.069 0.010 0.119

* Precipitation metrics for MIROC-E2SL had issues.

emulate new and unknown scenarios and reasonable accu-
racy can be expected.

The model is structured as an importable Python library
with example Jupyter notebooks that demonstrate basic us-
age and reproduce the figures in this article. This should
make the model accessible, useful and extendable for new
uses for the wider climate research community.

Geosci. Model Dev., 18, 8269-8312, 2025

4.1 Discussion

Though METEOR shows good fits, including the ability to fit
hysteresis, it has limitations. For instance, the model assumes
that increasing patterns and timescales are associated with
increasingly longer and non-overlapping timescales. In prac-
tice, there might be several pattern effects occurring on more
closely related timescales, or on timescales which are shorter
or longer than those considered here. Allowing for additional

https://doi.org/10.5194/gmd-18-8269-2025
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Figure 9. METEOR precipitation reconstruction pattern vs. CMIP6 data for various SSP scenarios. Panels in the first (a, d, g) and second (b,
e, h) column show the difference between the mean of the first 50 yr of the historical experiment (1850-1900) and the last two decades of the
SSP1-2.6, SSP5-8.5 and SSP5-3.4-over scenarios for the mean of the METEOR reconstructions and the CMIP6 model output, respectively.
Panels in the third column (¢, f, i) show the difference between the second and first column, illustrating the difference between the CMIP6

projections and the METEOR reconstruction.

modes in testing did not lead to notable increases in per-
formance. This is partly a function of data limits in train-
ing data. In particular, the number of models which have the
shortest possible timescale of 1 year indicate that a shorter
mode might yield better results. However, timescales of less
than 1 year cannot be represented given the annual mean
data used for training in this study, and training simulations
are generally run for 150-250 years, hence shorter or longer
timescales cannot be meaningfully fitted with these data. As
with any emulator, performance is limited by the availabil-
ity of training data; capturing multi-millennial timescale re-
sponses requires training data to unambiguously simulate
those timescales. Fitting shorter (sub-annual) timescales re-
quires an extension of the methodology considered here and
any meaningful approach would require a treatment of the
seasonal cycle and internal variability, which is planned for
future releases of METEOR. Further, gaining high confi-
dence in shorter timescale responses would require large ini-
tial condition ensembles, which would allow the assessment
of forced response given presence of internal variability with
large impacts on the estimation of faster response timescales

https://doi.org/10.5194/gmd-18-8269-2025

(Rugenstein et al., 2016). In general, the number of indepen-
dent forcer responses and timescales could be improved with
ESM datasets which isolate the effect of independent forcers.

In METEORV1.0, we assume that the anomaly between
the full target model response and the synthetic simulated
greenhouse gas only response is due to sulfate aerosol forc-
ing. However, in practice, anomalies will also be caused by
any errors in the reconstruction of the synthetic GHG re-
sponse, by other forcers which are not explicitly represented
or by potential nonlinear interactions between forcers. The
model framework is sufficiently flexible to test these pos-
sibilities, but data from current CMIP archives is too lim-
ited to conduct these refinements for the full range of mod-
els considered here. There exist experiments which could be
used to provide additional information for some models, such
as the DAMIP experiments (Gillett et al., 2016): ssp245-aer
ssp245-GHG, ssp245-CO2, ssp245-stratO3, which we wish
to exploit in the future. However, for this demonstration,
we prioritise showing METEOR’s performance using only
experiments which have been performed by most CMIP6
models, and therefore demonstrating METEOR’s versatility.

Geosci. Model Dev., 18, 8269-8312, 2025
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Figure 10. Regional CMIP6 vs. METEOR end of century temperature change. Regionally averaged temperature change (fas) since pre-
industrial for CMIP6 output and METEOR per emulation for each model. Panels show average end of century temperature change for
Europe (a), High Arctic (b), Antarctic + Southern Ocean (c), Tropics (d), South America (e), North America (f), East Asia (g), South East
Asia and Australia (h) and Africa (i). Each circle shows the CMIP6 model result (y axis) as function of the METEOR emulation (x axis)
for one model and scenario combination averaged over the region. Blue points show results for SSP/-2.6, green for SSP2-4.5, orange for
SSP3-7.0, red for SSP5-8.5 and purple for SSP5-3.4-over. The black diagonal shows the line where model result and emulations are equal,
and dashed lines show r?2 distances from the linear regression per scenario.

Hence, we isolate the effect of GHG and sulfate aerosol forc-
ing leaning on results from the literature (Myhre et al., 2017;
Samset et al., 2018, 2019; Zhao et al., 2019; Monerie et al.,
2022; Persad et al., 2023; Wilcox et al., 2023) including the
assessments of the last IPCC cycle (Forster et al., 2021),
which highlight the strength, peculiarity and uncertainty of
the aerosol and specifically sulfate aerosol forcing as a first
order modifier from the pure GHG-driven response.

The strength and usefulness of an emulator such as ME-
TEOR lies particularly in its ability to produce impact re-
sults rapidly. In this paper we have focused on annual mean
values of temperature, but for impact studies, seasonal cy-
cle and extreme value data might be more useful, and some
emulators already have extensions that allow for monthly or

Geosci. Model Dev., 18, 8269-8312, 2025

seasonal output (Nath et al., 2022; Schongart et al., 2024;
Tebaldi et al., 2022; Nath et al., 2024). Future versions of
METEOR will seek to represent these additional dimensions,
noting that METEOR’s variable agnostic setup can facilitate,
for example, training on seasonally varying data, i.e. building
separate patterns for January temperatures, February temper-
atures, summer temperatures or maximum yearly tempera-
tures.

As capturing hysteresis for modelling overshoot scenarios
is an explicit motivation for the METEOR methodology, the
apparent success of its fit to the SSP5-3.4-over scenario is re-
assuring. However, as only very few models have full avail-
able training data for this scenario, the robustness of ME-
TEOR for overshoot scenarios should be explored further.

https://doi.org/10.5194/gmd-18-8269-2025
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Figure 11. Regional CMIP6 vs. METEOR end of century precipitation change. Regionally averaged precipitation change (pr) since pre-
industrial for CMIP6 output and METEOR per emulation for each model. Panels show average end of century precipitation change for
Europe (a), High Arctic (b), Antarctic + Southern Ocean (c), Tropics (d), South America (e), North America (f), East Asia (g), South East
Asia and Australia (h) and Africa (i). Each circle shows the CMIP6 model result (y axis) as function of the METEOR emulation (x axis)
for one model and scenario combination averaged over the region. Blue points show results for SSP/-2.6, green for SSP2-4.5, orange for
SSP3-7.0, red for SSP5-8.5 and purple for SSP5-3.4-over. The black diagonal shows the line where model result and emulations are equal,
and dashed lines show r2 distances from the linear regression per scenario.

We note in particular that the experiment used to identify
GHG timescales and patterns (abrupt4x-CO3) only simulates
the effects of a permanent increase in concentrations, so that
in particular timescales associated with negative emissions
from processes such as Carbon Dioxide Removal might dif-
fer. Experiments in CMIP7, such as flatIOMIP (Sanderson
et al., 2025) will provide assessments of potential asymme-
tries between responses to positive and negative emissions
in Earth System Models, which could be used as additional
training data for METEOR.

For the modelling presented in this paper, we chose a com-
bination of historical and SSP2-4.5 to fit the residual sulfate
aerosol patterns. In Fig. 8, though quite small, we note a
slight hot bias for SSPI-2.6 and a slight cold bias for SSP5-

https://doi.org/10.5194/gmd-18-8269-2025

8.5. This makes sense as the SSP2-4.5 temperature trajectory
lies between the two. This implies that there may be, on aver-
age, some nonlinear temperature response in CMIP models
which is not captured in the pulse-response logic exploited
here, and will likely also mean that fits are probably slightly
more accurate when applied to scenarios that are not too far
off from the scenario used for the residual fitting. In practice
the biases here are small, and fits overall are good in the range
considered, but if the intended application of METEOR is to
scenarios in a very particular temperature trajectory range,
choosing a residual to fit to that is relatively centrally lo-
cated for that range is advisable. For the purposes of this pa-
per as well as most ordinary applications to CMIP6 data, we
consider that SSP2-4.5 is a reasonable choice. Similarly, the

Geosci. Model Dev., 18, 8269-8312, 2025
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Figure 12. SSP5-3.4-over regional precipitation versus temperature. Global and regional results for precipitation change as a function of
temperature change in the SSP5-3.4-over scenario. Each dot represents results for a specific model in a specific year averaged over the
regions Global (a), Europe (a), High Arctic (b), Tropics (d), South America (e), North America (f), East Asia (g), Australia (h) and Africa (i)
for the SSP5-3.4-over scenario. Lines show the trajectory of emulation results over the same regions for each of the models CESM2-WACCM
(blue), CMCC-ESM2 (orange), CNRM-ESM2-1 (green), CanESMS5 (red), MIROC-ES2L (grey) and MRI-ESM2-0 (purple).

aerosol profile in the future may have low emissions of sul-
fate aerosol, while nitrate aerosol emissions might increase
(Adams et al., 2001; Liao and Seinfeld, 2005; Bauer et al.,
2007; Liao et al., 2009; Bellouin et al., 2011; Hauglustaine
et al., 2014). The forcing responses to nitrate aerosols are
currently not well constrained, and can be highly dependent
on the location and height of the emissions source (Aamaas
et al., 2016). In addition to possible biases from all non-CO2
forcers that are treated as GHG, but which may in practice
feed into the residual pattern, nitrate aerosol effects might be
a particular bias to look out for in future projections.

4.2 Outlook

The potential applications of METEOR are not limited to
mean temperature and precipitation. It can be trained and
used to model climate change response in any variable for

Geosci. Model Dev., 18, 8269-8312, 2025

which a strong connection between climate change forcing
and variable evolution can be assumed. Examples can be im-
pact related variables such as extreme value impact indica-
tors (Quilcaille et al., 2022, 2023; Sillmann et al., 2013) or
other climatological variables such as humidity, radiative bal-
ance or soil moisture. Further development would extend the
model to more directly resolve impacts such as crop yields,
human heat stress and sea level rise. However, we expect
such indicators will require additional modules.

The scheme used to obtain the GHG response from
abrupt4x-CO, can be employed in the same way for any
forcer for which there is data for an abrupt step-change re-
sponse. A collection of such experiments are contained in
PDRMIP (Myhre et al., 2017, 2022). However, PDRMIP was
performed with what are now somewhat outdated modelling
versions. METEOR can be applied to that dataset, or a simi-

https://doi.org/10.5194/gmd-18-8269-2025
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Figure 13. SSP5-3.4-over spatial precipitation versus temperature. Spatial maps of end of century precipitation change as function of end of
century temperature change for each model for the SSP5-3.4-over scenario. The left column (a, c, e, g, i, k) shows results of the METEOR
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Figure 14. Spatial RMSE. End of century spatial RMSE for temperature (top row) and precipitation (bottom row) in each of the standard
scenarios SSP1-2.6 (a, e), SSP2-4.5 (b, f) SSP3-7.0 (¢, g) and SSP5-8.5 (d, h).

lar updated one, to obtain separate per forcer timescales and
patterns, allowing for further decomposition of spatial forcer
response as a function of a wider range of species.

The scheme for anomaly calculations that we employed to
obtain the aerosol signal may also be performed for multiple
forcers if data from experiments where only a single forcer is
changed are available. For instance, the DAMIP (The Detec-
tion and Attribution Model Intercomparison Project) (Gillett
etal.,2016) and RAMIP (Regional Aerosol Model Intercom-
parison Project) (Wilcox et al., 2023) datasets offer such data,
the latter of which can even separate the forcing response
from aerosols depending on their region of origin, which may
in fact produce different results both in terms of spatial pat-
tern and strength of climate results (Wilcox et al., 2023).

The timescales and patterns that METEOR obtains for any
particular model, though mostly operational and for emula-
tion purposes, may also indicate aspects of the underlying
physics of the model, and comparison between parameters
obtained for emulation of different models may itself pro-
vide indicators for understanding ESM differences (such as
the role of fast and slow feedback processes in observed cli-
mate and implications for future climate commitments).

The emissions-to-forcing pipeline from the C-SCM is cur-
rently an integral part of METEOR. However, coupling ME-
TEOR to a similar pipeline from a different simple climate
model, or allowing it to run directly from input forcing data is
alogical future development goal, allowing uncertainty in the
emissions-forcing pipeline to be decoupled from the forcing-
pattern component. An alternative would be a higher level
of integration within a simple climate model — such that the
METEOR forcing-pattern mapping becomes an integral part
of a wider model, including, for example, ecosystem compo-
nents which could evolve as a function of regional climate as
simulated within METEOR.

Geosci. Model Dev., 18, 8269-8312, 2025

Currently, METEOR does not have any representation of
natural variability, nor is there native support for producing
probabilistic output which spans uncertainty in either ESM
training model, or in fitting uncertainty for a single model.
Each of these would be useful for impact applications, and
would be logical extensions for future development. Prob-
abilistic spatial information is implemented using various
techniques for the MESMER framework (Beusch et al.,
2020; Schongart et al., 2024; Quilcaille et al., 2022, 2023).
Goals for future versions of METEOR include probabilistic
implementations in which a set of plausible METEOR con-
figurations can be produced for a given ESM emulation, such
that an ensemble of simulations can then provide risk guid-
ance for climate impacts. Testing the robustness of timescales
and patterns across ensemble runs of the same model would
be beneficial in achieving this goal. Using emulations based
on existing ensemble spread as in Schwaab et al. (2024) or
including some variability into the emulator process pipeline
itself similar to what has been done on a global scale for the
FAIR simple climate model (Bouabid et al., 2024) are both
possible approaches to this.

METEORUVI.0 is tailored towards annual data. However,
for many applications, monthly or higher time resolution out-
puts are desirable. The methodology can be fairly easily gen-
eralised to monthly output (for example, by expanding the
dimensionality of the spatial dimension to include different
months), but further testing is required to ensure the realism
of emulated timeseries. Additional modules are planned to
model dominant modes of natural variability, and potentially
extreme value indicators.

There may be indications that extremely fast (sub-yearly,
near instantaneous), and very slow timescales (millennial)
are not captured by the current setup. Aiming to fit the for-
mer could be a targeted extension, but the latter might re-
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quire output from longer runs than are currently available for
most models. The assumptions made of exponentially longer
timescale lengths might also not be ideal, as local optima for
several shorter or comparable timescales may not be found.
A more thorough investigation of this may be needed, but
Appendix A does include a discussion and investigation of
the fits as a function of number of timescales included.

We provide METEOR as an open tool which we hope can
be of wider benefit to the community, contributing to a wider
body of emulation tools each of which provides unique ad-
vantages with ample scope for intercomparisons, coupling
and ensemble studies. Finally, we look forward to commu-
nity development of the METEOR platform to provide better
integration into ecosystems of fast climate modelling tools
which can be increasingly used in applications which re-
quire rapid turnaround, such as simulating regional climate
impacts in societal models.

Appendix A: Fitness depending on number of timescales

The METEOR model can be trained with an arbitrary num-
ber of timescales tx. In this paper we have shown results for
a setup which assumes three timescales for each forcer. How-
ever, the user can specify to train and use an arbitrary number
of timescales and corresponding spatial patterns. Figure Al
shows the effect of increasing the number of timescales on
the emulation fits. Panels a and d show each model’s results
as connected points, the RMSE of the fit to the abrupt4x-
CO; as the number of timescales increase. Panels b an e show
these values only for the multi model mean. The fitness in-
creases substantially for both temperature and precipitation
when going from one to two timescales, and a further slight
increase is observed when increasing to three timescales.
Panels (c¢) and (f) of Fig. A1, show the RMSE model mean
fit for temperature and precipitation with varying numbers of
both GHG and residual aerosol timescales to the SSP2-4.5
experiment. Annual values per model for global mean recon-
struction versus model output for each combination of GHG
and aerosol timescales are shown in Figs. A2 (temperature)
and A3 (precipitation). From this, we observe that a combi-
nation of three timescales for both aerosols and GHG pro-
vides a reasonable balance. When a single aerosol timescale
is used, we observe that the fit actually deteriorates as GHG
timescales are increased from two to three. We believe that
this is a consequence of the range constraints for timescales.
With one or two very slow GHG timescales, the residual
pattern includes timescale signals which do not quite fit the
SSP2-4.5 scenario. With only one very short timescale with
which to compensate for this, the residual can not compen-
sate. This does not mean that sulfate aerosols have very long
timescale mechanisms, but rather should serve to caution the
user on the interpretability of the emulator outputs. Since the
sulfate aerosol timescales and patterns are based on resid-
ual signals, they also include and have in them information
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which is just to do with the lack of accuracy of the abrupt4x-
CO; based GHG patterns and timescales to accurately map
the effect of everything else that happens in the model in
the historical and SSP2-4.5 scenario runs. This compensat-
ing factor lead us to find it reasonable to use three timescales
also for the aerosol patterns, and this shows the best overall
fits by these measures.

Figure A4 shows the contributions of the different
timescales and how they combine. Panels (a) (temperature)
and (c) (precipitation) show the global mean time evolution
of the reconstruction associated with each timescale, and
we can see that all GHG patterns are associate with posi-
tive contributions, whereas the aerosol residual patterns on
inter-annual and inter-decadal scales have negative contri-
butions, with the inter-centennial pattern giving a positive
contribution. Panels (b) (temperature) and (d) (precipitation)
show how the total reconstruction changes as subsequent
patterns are added starting with the shortest timescale for
GHG, adding longer GHG timescales first, before adding the
aerosol patterns in order of timescale length.

Geosci. Model Dev., 18, 8269-8312, 2025
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Figure A1. Evaluation of METEOR reconstruction as function of number of timescales. Panels (a) and (d) show the evolution of the RMSE
parameter for temperature and precipitation respectively in the reconstruction of the abrupt4x-CO, experiment as a function of increased
number of timescales for each individual CMIP6 model. Panels (b) and (e) show mean of the same numbers. Panels (c) and (f) show the same
mean RMSE but applied to the reconstruction of the SSP2-4.5 experiment and including a varying number of aerosol timescales modelled
from residual.
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Figure A2. Evaluation of ras for varying number of timescales. Columns left to right show increasing numbers of aerosol timescales from
04, while rows from top to bottom show increasing numbers of GHG timescales from 1-4. Each point represents a global mean value for
temperature for one model in the original CMIP6 data versus the METEOR reconstruction for SSP2-4.5. Model mean overall RMSE and
mean absolute error (MAE) are displayed for each timescale combination.

https://doi.org/10.5194/gmd-18-8269-2025 Geosci. Model Dev., 18, 8269-8312, 2025



8292 M. Sandstad et al.: METEORv1

a TorHg=1; Taer=0 b ToHe=1; Taer=1 c Tore=1; Taer=2 d Torne=1; Taer=3 e ToHe=1; Taer=4
le—6 le-6 le—6 le—6 le—6
c RMSE=0.32 e RMSE=0.21 c RMSE=0.19 c RMSE=0.17 5 < RMSE=0.17
S MAE=0.26 2o | S MAE=0.17 S MAE=0.15 Aw | S MAE=0.13 S MAE=0.13
= A S 524 «e'®) 524 52
9] ¢ 9] 9] L) 9] 9]
> > > Tl > >
fus fus ut (52 fut s \
-t - - L% o - k2
2 g 2 g g
S 5] s 01 o s 01 % c 01
[} 19} [9) DS () P Q P
Q Q Q Q Q
o« o« o« o« o«
_2 < T T _2 - T T _2 . T T
-2 0 2 -2 0 2 -2 0 2
Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6
f TorH=2; Taer=0 g Torn=2; Toer=1 h ToH6=2; Toer=2 i ToHe=2; Taer=3 j Tore=2; Taer=4
le—6 le—6 le—6 le—6 le—6
c RMSE=0.31 s RMSE=0.21 c RMSE=0.18 A RMSE=0.17 7 < RMSE=0.17
S MAE=0.25 S MAE=0.16 S MAE=0.14 w| o MAE=0.13 S MAE=0.13
= S 24 52 = =
[} (9] [} [} [}
> > > o} 3
- “ - - j-
+ - 0 - ) )
(%] 9] v n wn 1%}
c c 0 4 c 0 c c
[e] (o] Ot o e o o
O O s O o O
Q Q Q , Q Q
o 4 o« < <
-2+ T T -2 T T
-2 0 2 -2 0 2
Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6
k  TeHe=3i Taer=0 | Tore=3; Taer=1 m TeHe=3; Taer=2 n Tore=3; Taer=3 o ToHe=3; Taer=4
le—6 le-6 le—6 le—6 le—6
c RMSE=0.31 o RMSE=0.21 e RMSE=0.18 c RMSE=0.17 c RMSE=0.17 P
S MAE=0.26 ‘ S MAE=0.17 S MAE=0.14 S MAE=0.13 S MAE=0.13
52 = S 524 52
[} Q o o o
> > > > >
2 2 2 2 2
- - - -+ -
(%] 1] n %) vd wn
c c c S 04 09 S 0-
[e] (o] o o [had o
o o o o s o
(9]} [) U [} A () ~
o« o« 4 4 «
T _2 T T _2 < T T _2 e T T
2 -2 0 2 -2 0 2 -2 0 2
Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6
P Tenc=4; Taer=0 q ToHe=4; Taer=1 r ToHe=4; Taer=2 s Tenc=4; Taer=3 t Terc=4; Taer=4
le—6 le—6 le—6 le—6 le—6
c RMSE=0.33 o < RMSE=0.24 c RMSE=0.18 c RMSE=0.17 c RMSE=0.17 5
S MAE=0.27 S MAE=0.19 S MAE=0.15 S MAE=0.13 S MAE=0.13
=1 b= 52 F= b=
9] 9] 9] ) o 9]
o} > > o} o}
2 2 2 2 2
B o - ra B -+
[%2] (%] (9] P2 (9] (%]
c c S 0 o c [
o (e} o Vel o o
[} 19} [9] pg [} [9]
Q Q Q Q Q
o o< o< < <
-2 ¥ T T
-2 0 2
Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6 Original 1e—6

Figure A3. Evaluation of pr for varying number of timescales. Columns left to right show increasing numbers of aerosol timescales from
04, while rows from top to bottom show increasing numbers of GHG timescales from 1-4. Each point represents a global mean value for
temperature for one model in the original CMIP6 data versus the METEOR reconstruction for SSP2-4.5. Model mean overall RMSE and
mean absolute error (MAE) are displayed for each timescale combination.
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Figure A4. Multi-model mean per timescale contributions. With a model trained with three GHG and three aerosol timescales, we show
the model mean global reconstruction contributions from each timescale pattern when emulating SSP2-4.5. Panels (a) (temperature) and (c)
(precipitation) show the separate contributions from the inter-annual GHG (red), inter-decadal GHG (orange), inter-centennial GHG (green),
inter-annual aerosol (dark blue), inter-decadal aerosol (medium blue) and inter-centennial aerosol (turquoise) overlayed on top of the original
CMIP6 multi model data (grey). Panels (b) (temperature) and (d) (precipitation) show the result of summing the patterns in this order.
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Appendix B: Results for single model emulation

Here we include results per individual model emulated.
Table B1 lists all models included and the timescales
obtained for the main emulations of them. The model
selection criteria was mainly one of convenience, in-
cluding models that had data available from zarrr store
CMIP6 google-api (https://storage.googleapis.com/cmip6/
cmip6-zarr-consolidated-stores.csv, last access: 31 October
2025) for all of the experiments piControl, abrupt4x-CO»,
SSP1-2.6, SSP2-4.5, SSP3-7.0 and , SSP5-8.5. From this set,
some models were excluded for various issues with the data
available. Tables B2-B5 show ClimateBench-style (Watson-
Parris et al., 2022) error scores for all model and experiment
combinations.

Global mean reconstructions per model for each of the
four SSP experiments are shown in Figs. BI-B3 (tempera-
ture) and Figs. B5-B7 (precipitation). In addition, a smaller
selection of models which also had data for SSP5-3.4-over
were used to evaluate the performance of the emulation in
overshoot scenarios. Global mean reconstruction results for
these are shown individually in Figs. B4 (temperature) and
B8 (precipitation).

M. Sandstad et al.: METEORv1

We also show plots that illustrate the single model spatial
performance of METEOR, by comparing end of 21st cen-
tury emulation and CMIP6 data for all the standard scenarios
for one model for which METEOR had some of the overall
best performance (NorESM2-MM) in Figs. B9 and B11 and
for one for which METEOR had some of the overall worst
performance (CMCC-ESM2) in Figs. B10 and B12. For the
SSP5-3.4-over scenario, we display the end of century emu-
lation map comparison for all models in Figs. B13 and B14,
showing more of a spread in performance.

Table B1. METEOR pattern scaling timescales 7 split into inter-annual (0-10 years), inter-decadal (10-100 years) and inter-centennial (100—
1000 years) timescales provided for each CMIP6 model, for temperature and precipitation and greenhouse gas (GHG) and residuals (aer)
responses, respectively. Note that in METEORV1.0.1, the respective timescales are forced to fit within the specified ranges.

Earth System Model Temperature ‘ Precipitation
GHG ‘ aer ‘ GHG ‘ aer

7] %) | T %) | T %) | T %) 73
ACCESS-CM2 1.0 12.7 100.0 | 1.1 73.4 998.1 6.4 100.0 1000.0 1.2 95.4 719.1
ACCESS-ESM1-5 1.2 12.9 100.0 | 1.8 100.0 1000.0 1.0 10.0 996.0 2.4 100.0 1000.0
AWI-CM-1-1-MR 1.0 10.0 490.0 | 2.3 18.9 102.8 3.0 10.0  1000.0 2.0 10.0 163.4
BCC-CSM2-MR 1.0 10.0 974.1 | 1.0 10.0 100.0 1.0 10.0  1000.0 1.0 11.3 100.0
CAMS-CSM1-0 1.0 10.9 980.2 | 1.0 10.0 100.0 2.0 12.0  1000.0 1.0 100.0 1000.0
CAS-ESM2-0 1.0 12.2 298.0 | 1.4 100.0 1000.0 4.7 31.6 837.3 1.0 100.0 1000.0
CESM2 1.1 10.0 9934 | 23 100.0 1000.0 1.0 10.0 995.4 39 100.0 1000.0
CMCC-CM2-SR5 1.0 10.0 1233 | 1.0 100.0 538.3 6.9 100.0 1000.0 8.6 59.5 1000.0
CMCC-ESM2 1.0 10.0 2129 | 1.0 59.7 221.6 7.2 100.0 1000.0 | 10.0 41.0 179.6
CNRM-CM6-1 1.0 15.0 100.0 | 1.0 100.0 1000.0 7.7 100.0 1000.0 1.0 100.0 1000.0
CNRM-CM6-1-HR 1.1 15.1 1000.0 | 1.0 100.0 1000.0 1.0 10.5 687.8 1.0 100.0 1000.0
CNRM-ESM2-1 1.2 10.0 999.9 | 1.0 100.0 1000.0 | 10.0 99.0 711.3 1.0 100.0 1000.0
CanESM5 1.2 13.0 4299 | 5.7 100.0 1000.0 | 10.0 12.8  1000.0 4.5 99.1 281.6
EC-Earth3-Veg 1.0 10.9 100.0 | 1.0 100.0 1000.0 4.9 100.0 1000.0 1.0 100.0 1000.0
FGOALS-f3L 1.0 10.0 975.6 | 1.6 10.0 100.0 6.7 100.0 116.8 7.2 16.9 100.0
GFDL-ESM4 1.0 10.0 999.9 | 1.6 100.0 1000.0 | 10.0 100.0 791.5 1.0 100.0 1000.0
GISS-E2-1-H 1.0 10.0 9394 | 2.5 100.0 1000.0 | 10.0 24.0 100.0 1.3 100.0 1000.0
INM-CM4-8 1.0 14.2 964.7 | 1.0 10.0  1000.0 8.1 100.0 1000.0 9.3 100.0 1000.0
INM-CM5-0 1.0 10.7  1000.0 | 1.0 100.0 1000.0 | 10.0 49.5 100.0 | 10.0 100.0 1000.0
KACE-1-0-G 1.0 10.0 9394 | 2.5 100.0 1000.0 | 10.0 24.9 100.0 1.3 100.0 1000.0
MCM-UA-1-0 1.0 10.0 759.0 | 1.0 45.0 1000.0 2.9 18.9 999.9 43 100.0 1000.0
MIROC-ES2L 1.0 14.2 964.7 | 1.0 10.0  1000.0 8.1 100.0 1000.0 9.3 100.0 1000.0
MPI-ESM1-2-HR 1.0 10.7  1000.0 | 1.0 100.0 1000.0 | 10.0 49.5 100.0 | 10.0 100.0 1000.0
NorESM2-MM 1.0 10.0 1000.0 | 1.2 100.0 1000.0 4.2 13.3  1000.0 1.0 15.1 100.0
UKESM1-0-LL 1.6 100.0 1000.0 | 2.5 99.9 999.1 | 10.0 16.1 100.0 52 100.0 1000.0
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Table B2. METEOR performance for all models (A—CE) evaluated using the Climate bench evaluation metrics. Note that comparison is to
single ensemble members, so variability driven errors are included.

NRMSEy tas  NRMSE, tas  NRMSE; tas  NRMSE; pr  NRMSE; pr  NRMSE; pr

ACCESS-CM2 sspl126 0.114 0.037 0.298 0.079 0.003 0.096
ACCESS-CM2 ssp245 0.027 0.017 0.113 0.024 0.003 0.041
ACCESS-CM2 ssp370 0.087 0.068 0.429 0.097 0.004 0.118
ACCESS-CM2 ssp585 0.080 0.018 0.171 0.122 0.007 0.155
ACCESS-ESM1-5 ssp126 0.176 0.090 0.624 0.076 0.005 0.101
ACCESS-ESM1-5 ssp245 0.033 0.025 0.159 0.029 0.003 0.045
ACCESS-ESM1-5 ssp370 0.080 0.043 0.294 0.113 0.003 0.130
ACCESS-ESM1-5 ssp585 0.069 0.034 0.237 0.101 0.005 0.128
AWI-CM-1-1-MR ssp126 0.121 0.054 0.392 0.057 0.002 0.069
AWI-CM-1-1-MR ssp245 0.032 0.042 0.240 0.038 0.003 0.051
AWI-CM-1-1-MR ssp370 0.058 0.036 0.239 0.067 0.005 0.090
AWI-CM-1-1-MR ssp585 0.092 0.047 0.325 0.105 0.011 0.161
BCC-CSM2-MR ssp126 0.133 0.072 0.492 0.067 0.003 0.085
BCC-CSM2-MR ssp245 0.050 0.037 0.236 0.040 0.003 0.053
BCC-CSM2-MR ssp370 0.159 0.114 0.727 0.065 0.006 0.094
BCC-CSM2-MR ssp585 0.087 0.037 0.272 0.079 0.005 0.106
CAMS-CSM1-0 ssp126 0.152 0.126 0.785 0.060 0.007 0.094
CAMS-CSM1-0 ssp245 0.078 0.062 0.388 0.024 0.008 0.065
CAMS-CSM1-0 ssp370 0.080 0.062 0.390 0.064 0.007 0.101
CAMS-CSM1-0 ssp585 0.153 0.135 0.830 0.098 0.016 0.177
CAS-ESM2-0 ssp126 0.112 0.051 0.366 0.058 0.005 0.083
CAS-ESM2-0 ssp245 0.025 0.031 0.180 0.020 0.004 0.040
CAS-ESM2-0 ssp370 0.081 0.050 0.329 0.060 0.015 0.136
CAS-ESM2-0 ssp585 0.065 0.042 0.273 0.080 0.010 0.129
CESM2 sspl126 0.146 0.055 0.421 0.077 0.005 0.100
CESM2 ssp245 0.033 0.040 0.232 0.026 0.005 0.051
CESM2 ssp370 0.120 0.047 0.357 0.076 0.014 0.145
CESM2 ssp585 0.087 0.019 0.182 0.079 0.005 0.102

Table B3. METEOR performance for all models (CM—Can) evaluated using the Climate bench evaluation metrics. Note that comparison is
to single ensemble members, so variability driven errors are included.

NRMSE; tas  NRMSE, tas NRMSE; tas NRMSE; pr  NRMSEg pr  NRMSE; pr

CMCC-CM2-SRS5 ssp126 0.133 0.063 0.449 0.066 0.004 0.088
CMCC-CM2-SRS5 ssp245 0.039 0.038 0.229 0.022 0.005 0.046
CMCC-CM2-SRS5 ssp370 0.271 0.151 1.023 0.096 0.021 0.199
CMCC-CM2-SRS5 ssp585 0.170 0.081 0.574 0.078 0.011 0.132
CMCC-ESM2 sspl126 0.159 0.083 0.574 0.060 0.007 0.097
CMCC-ESM2 ssp245 0.045 0.033 0.211 0.024 0.005 0.049
CMCC-ESM2 ssp370 0.264 0.149 1.007 0.065 0.020 0.166
CMCC-ESM2 ssp585 0.177 0.085 0.601 0.083 0.013 0.146
CNRM-CM6-1 sspl126 0.155 0.069 0.499 0.056 0.004 0.078
CNRM-CM6-1 ssp245 0.052 0.052 0.311 0.026 0.005 0.051
CNRM-CM6-1 ssp370 0.112 0.074 0.483 0.062 0.007 0.095
CNRM-CM6-1 ssp585 0.073 0.048 0.312 0.061 0.005 0.089
CNRM-CM6-1-HR ssp126 0.116 0.050 0.367 0.053 0.003 0.068
CNRM-CM6-1-HR ssp245 0.048 0.021 0.153 0.029 0.003 0.045
CNRM-CM6-1-HR ssp370 0.111 0.039 0.306 0.051 0.006 0.080
CNRM-CM6-1-HR ssp585 0.127 0.053 0.392 0.060 0.007 0.094
CNRM-ESM2-1 ssp126 0.139 0.064 0.460 0.061 0.004 0.082
CNRM-ESM2-1 ssp245 0.086 0.060 0.384 0.025 0.005 0.049
CNRM-ESM2-1 ssp370 0.093 0.055 0.368 0.072 0.004 0.093
CNRM-ESM2-1 ssp585 0.064 0.029 0.208 0.063 0.005 0.087
CanESMS ssp126 0.152 0.064 0.471 0.087 0.006 0.117
CanESMS ssp245 0.027 0.029 0.170 0.026 0.003 0.043
CanESMS ssp370 0.102 0.076 0.480 0.099 0.003 0.115
CanESMS ssp585 0.104 0.039 0.297 0.120 0.004 0.142
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Table B4. METEOR performance for all models (E-I) evaluated using the Climate bench evaluation metrics. Note that comparison is to
single ensemble members, so variability driven errors are included.

NRMSE; tas  NRMSE, tas  NRMSE; tas NRMSE; pr  NRMSEg pr  NRMSE; pr

EC-Earth3-Veg ssp126 0.997 0.992 5.958 0.066 0.009 0.109
EC-Earth3-Veg ssp245 0.994 0.989 5.938 0.098 0.006 0.131
EC-Earth3-Veg ssp370 0.987 0.986 5.917 0.080 0.006 0.111
EC-Earth3-Veg ssp585 0.986 0.982 5.894 0.085 0.009 0.131
FGOALS-f3L ssp126 0.164 0.067 0.499 0.084 0.009 0.131
FGOALS-f3L ssp245 0.034 0.061 0.339 0.022 0.009 0.068
FGOALS-f3L ssp370 0.079 0.048 0.319 0.087 0.008 0.128
FGOALS-f3L ssp585 0.111 0.064 0.433 0.085 0.014 0.153
GFDL-ESM4 ssp126 0.118 0.071 0.471 0.070 0.006 0.098
GFDL-ESM4 ssp245 0.044 0.052 0.303 0.036 0.006 0.064
GFDL-ESM4 ssp370 0.086 0.049 0.331 0.065 0.008 0.105
GFDL-ESM4 ssp585 0.057 0.032 0.218 0.074 0.008 0.113
GISS-E2-1-H ssp126 0.180 0.058 0.472 0.081 0.011 0.138
GISS-E2-1-H ssp245 0.067 0.048 0.308 0.045 0.003 0.061
GISS-E2-1-H ssp370 0.107 0.050 0.357 0.111 0.021 0.215
GISS-E2-1-H ssp585 0.102 0.066 0.430 0.115 0.009 0.158
INM-CM4-8 ssp126 0.208 0.099 0.701 0.083 0.005 0.106
INM-CM4-8 ssp245 0.040 0.053 0.303 0.024 0.004 0.045
INM-CM4-8 ssp370 0.095 0.050 0.344 0.073 0.010 0.123
INM-CM4-8 ssp585 0.114 0.058 0.407 0.076 0.009 0.121
INM-CM5-0 ssp126 0.995 0.994 5.966 1.199 0.967 6.035
INM-CM5-0 ssp245 0.993 0.992 5.952 1.184 0.957 5.971
INM-CM5-0 ssp370 0.990 0.989 5.935 1.172 0.946 5.904
INM-CM5-0 ssp585 0.988 0.987 5.924 1.164 0.940 5.863

Table B5. METEOR performance for all models (K-Z) evaluated using the Climate bench evaluation metrics. Note that comparison is to
single ensemble members, so variability driven errors are included.

NRMSE; tas  NRMSEg tas NRMSE; tas  NRMSE; pr  NRMSEg pr  NRMSE; pr

KACE-1-0-G ssp126 0.283 0.069 0.628 0.067 0.003 0.084
KACE-1-0-G ssp245 0.061 0.045 0.285 0.029 0.004 0.051
KACE-1-0-G ssp370 0.114 0.056 0.396 0.074 0.010 0.126
KACE-1-0-G ssp585 0.114 0.056 0.393 0.078 0.007 0.114
MCM-UA-1-0 ssp126 0.115 0.072 0.475 0.064 0.004 0.083
MCM-UA-1-0 ssp245 0.059 0.042 0.270 0.028 0.004 0.050
MCM-UA-1-0 ssp370 0.114 0.051 0.369 0.067 0.006 0.096
MCM-UA-1-0 ssp585 0.118 0.068 0.457 0.083 0.009 0.126
MIROC-ES2L ssp126 0.158 0.070 0.505 0.057 0.005 0.084
MIROC-ES2L ssp245 0.062 0.016 0.142 0.022 0.002 0.034
MIROC-ES2L ssp370 0.101 0.069 0.444 0.056 0.004 0.075
MIROC-ES2L ssp585 0.096 0.061 0.403 0.068 0.010 0.120
MPI-ESM1-2-HR ssp126 0.181 0.090 0.633 0.064 0.003 0.079
MPI-ESM1-2-HR ssp245 0.041 0.030 0.189 0.022 0.003 0.037
MPI-ESM1-2-HR ssp370 0.093 0.050 0.344 0.053 0.004 0.074
MPI-ESM1-2-HR ssp585 0.075 0.023 0.188 0.060 0.005 0.085
NorESM2-MM ssp126 0.996 0.995 5.970 1.252 0.985 6.177
NorESM2-MM ssp245 0.993 0.992 5.953 1.240 0.976 6.121
NorESM2-MM ssp370 0.990 0.989 5.934 1.229 0.969 6.075
NorESM2-MM ssp585 0.987 0.986 5.916 1.210 0.955 5.984
UKESMI1-0-LL ssp126 0.136 0.051 0.394 0.070 0.004 0.091
UKESM1-0-LL ssp245 0.061 0.051 0.314 0.046 0.003 0.063
UKESM1-0-LL ssp370 0.076 0.028 0.217 0.102 0.005 0.125
UKESM1-0-LL ssp585 0.075 0.012 0.137 0.102 0.006 0.133
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Figure B1. GMST original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models, one
model per row. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual. From left to right the columns show SSP/-2.6
(out-of-sample), SSP2-4.5 (in-sample), SSP3-7.0 (out-of-sample) and SSP5-8.5 (out-of-sample) fits.
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Figure B2. GMST original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models, one
model per row. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual. From left to right the columns show SSP/-2.6
(out-of-sample), SSP2-4.5 (in-sample), SSP3-7.0 (out-of-sample) and SSP5-8.5 (out-of-sample) fits.
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Figure B3. GMST original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models, one
model per row. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual. From left to right the columns show SSPI-2.6
(out-of-sample), SSP2-4.5 (in-sample), SSP3-7.0 (out-of-sample) and SSP5-8.5 (out-of-sample) fits.
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Figure B4. GMST original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models that had
reasonable data quality for the overshoot scenario SSP5-3.4-over. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual.

Each sub-plot shows results for a single model.
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Figure BS. GMP original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models, one
model per row. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual. From left to right the columns show SSP1-2.6
(out-of-sample), SSP2-4.5 (in-sample), SSP3-7.0 (out-of-sample) and SSP5-8.5 (out-of-sample) fits.
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Figure B6. GMP original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models, one
model per row. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual. From left to right the columns show SSP1-2.6
(out-of-sample), SSP2-4.5 (in-sample), SSP3-7.0 (out-of-sample) and SSP5-8.5 (out-of-sample) fits.
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Figure B7. GMP original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models, one
model per row. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual. From left to right the columns show SSP/-2.6
(out-of-sample), SSP2-4.5 (in-sample), SSP3-7.0 (out-of-sample) and SSP5-8.5 (out-of-sample) fits.
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Figure B8. GMP original data (grey), fit reconstruction for only GHG (orange) and full reconstruction (purple) for single models that had
reasonable data quality for the overshoot scenario SSP5-3.4-over. The results were obtained using SSP2-4.5 to fit the aerosol sulfate residual.
Each sub-plot shows results for a single model.
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Figure B9. NorESM2-MM temperature emulation comparison. NorESM2-MM was found to be one of the models for which METEOR has
the best overall fit. Here we display the emulated patterns (a, d, g, j) compared to the CMIP6 data (b, e, h, k) and the difference between
them (c, f, i, 1) for the temperature emulation of the standard SSP scenarios at the end of the century; SSPI-2.6 (a, b, ¢), SSP2-4.5 (d, e, f),
SSP3-7.0 (g, h, i) and SSP5-8.5 (j, Kk, 1) for this model.

https://doi.org/10.5194/gmd-18-8269-2025 Geosci. Model Dev., 18, 8269-8312, 2025



8304 M. Sandstad et al.: METEORv1

METEOR METEOR-CMIP6

SSP-1.26

SSP-2.45

SSP-3.70

SSP-5.85

INGE  — ATIK]
-9 -6 -3 0 3 6 9

-45 -30 -15 00 15 3.0 45

Figure B10. CMCC-ESM2 temperature emulation comparison. CMCC-ESM2 was found to be one of the models for which METEOR has
the worst overall fit. Here we display the emulation patterns (a, d, g, j) compared to the CMIP6 data (b, e, h, k) and the difference between
them (c, f, i, 1) for the temperature emulation of the standard SSP scenarios at the end of the century; SSPI-2.6 (a, b, ¢), SSP2-4.5 (d, e, f),
SSP3-7.0 (g, h, i) and SSP5-8.5 (j, Kk, 1) for this model.
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Figure B11. NorESM2-MM precipitation emulation comparison. NorESM2-MM was found to be one of the models for which METEOR
has the best overall fit. Here we display the emulation patterns (a, d, g, j) compared to the CMIP6 data (b, e, h, k) and the difference between
them (c, f, i, 1) for the precipitation emulation of the standard SSP scenarios at the end of the century; SSP1-2.6 (a, b, ¢), SSP2-4.5 (d, e, ),
SSP3-7.0 (g, h, i) and SSP5-8.5 (j, Kk, 1) for this model.
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Figure B12. CMCC-ESM2 precipitation emulation comparison. CMCC-ESM2 was found to be one of the models for which METEOR has
the worst overall fit. Here we display the emulation patterns (a, d, g, j) compared to the CMIP6 data (b, e, h, k) and the difference between
them (c, f, i, 1) for the precipitation emulation of the standard SSP scenarios at the end of the century; SSP1-2.6 (a, b, ¢), SSP2-4.5 (d, e, ),
SSP3-7.0 (g, h, i) and SSP5-8.5 (j, Kk, 1) for this model.
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Figure B13. SSP5-3.4-over temperature emulation comparison. SSP5-3.4-over spatial temperature emulation patterns (a, d, g, j, m, p)
compared to the CMIP6 data (b, e, h, k, n, q) and the difference between them (c, f, i, 1, 0, 1, u) at the end of the century for each of the

models that had sufficient SSP5-3.4-over data available.
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Figure B14. SSP5-3.4-over precipitation emulation comparison. SSP5-3.4-over spatial precipitation emulation patterns (a, d, g, j, m, p)
compared to the CMIP6 data (b, e, h, k, n, q) and the difference between them (c, f, i, 1, 0, 1, u) at the end of the century for each of the
models that had sufficient SSP5-3.4-over data available.
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Code availability. Code is openly available on github at https:
//github.com/benmsanderson/METEOR (last access: 31 October
2025) under the Apache-2.0 license at the v1.0.2 tag with
https://doi.org/10.5281/zenodo.15732955 (Sanderson et al., 2025).

Data availability. Emissions input data are from the Reduced
Complexity Model Intercomparison (Nicholls et al., 2020), data
at https://doi.org/10.5281/zenodo.4016613 (Nicholls and Gieseke,
2019). CMIP6 data are available through the Earth Sys-
tem Grid Federation (ESGF; Cinquini et al., 2014) or via
the zarrstore google-api (https://storage.googleapis.com/cmip6/
cmip6-zarr-consolidated-stores.csv, last access: 31 October 2025).

Additional per model figures are available at
https://doi.org/10.5281/zenodo.15727973 (Steinert and Sanderson,
2025).
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