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Abstract. Various methods are available to measure wa-
ter storage across different landscape compartments, e.g.
cosmic-ray neutron sensing, remote sensing, or hydro-
gravimetry. All these methods provide integral estimates that
are representative of their corresponding measurement vol-
ume.

However, we typically do not know the true value of wa-
ter storage in these measurement volumes, which makes it
difficult to assess the accuracy of such methods.

In this study we suggest a synthetic virtual landscape that
allows for an exact definition of all variables of interest and,
consequently, constitutes the so-called “virtual truth” free of
knowledge gaps. Such a landscape can be explored in var-
ious “virtual field campaigns” using “virtual sensors” that
mimic the response and characteristics of actual devices. We
use dedicated physically based models to simulate the signal
a sensor would receive. These model outputs, termed “vir-
tual observations”, can be explored and also allow for the
reconstruction of water storage, which can then readily be
compared to the virtual truth. Insights from this comparison
could help to better understand real measurements and their

uncertainties and to challenge accepted knowledge about sig-
nal processing and data interpretation.

The Virtual Joint Field Campaign is an open collaborative
framework for constructing such landscapes. It comprises
data and methods to create and combine different compart-
ments of the landscape (e.g. atmosphere, soil, vegetation).
The present study demonstrates virtual observations of water
storage with cosmic-ray neutron sensing, hydrogravimetry,
and remote sensing in three exemplary landscapes. It enables
unprecedented opportunities for the systematic assessment of
the sensor’s strengths and weaknesses and even their com-
bined use.

1 Introduction

Soil moisture (SM) has been acknowledged as one of the key
variables governing the partition of water and energy fluxes
at the soil–atmosphere interface and is a crucial link be-
tween hydrological and biogeochemical processes (Senevi-
ratne et al., 2010; Peng et al., 2017b). Consequently, a thor-
ough understanding and measurement of SM dynamics are
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desirable in a wide range of subjects, including – but not lim-
ited to – climate feedbacks, carbon respiration, agriculture,
engineering, groundwater recharge, and flooding (Daly and
Porporato, 2005; Humphrey et al., 2021; Ran et al., 2022;
Scanlon et al., 2006). While numerous measurement tech-
niques for measuring SM at the point scale exist, each of
them is affected by different specific limitations in accuracy,
precision, coverage, and measurement volume (Susha Lek-
shmi et al., 2014). Even larger uncertainties arise whenever
point-based SM measurements are transferred to a larger spa-
tial scale. Due to the high spatial variability of SM, this re-
quires the use of a large number of sensors and the choice
of their optimal locations (Corradini, 2014). Usually, elec-
tromagnetically based sensor networks are employed for this
purpose. However, hundreds of (wireless) sensors, as sug-
gested by Bogena et al. (2007), come with considerable costs
and maintenance efforts, while they are still prone to inter-
sensor variability and usually not able to cover areas larger
than small catchments. To overcome this lack of point-scale
measurements, a number of techniques have emerged with
larger spatial resolution and measurement volumes (Corra-
dini, 2014):

1. hydrogeophysical methods, such as electrical resis-
tivity tomography (ERT) (Samouëlian et al., 2005),
electrical impedance spectroscopy and tomography
(EIT) (Kanoun, 2018), ground-penetrating radar
(GPR) (Klotzsche et al., 2018; Vanderborght et al.,
2013), and electromagnetic induction (EMI) (Altdorff
et al., 2018; Calamita et al., 2015; Martini et al., 2017);

2. remote sensing (RS), such as passive or active mi-
crowave sensors, operated from various remote sens-
ing platforms (Wang and Qu, 2009; Peng et al., 2017a;
Mengen et al., 2021; Dorigo et al., 2017; Wigneron
et al., 2017; Döpper et al., 2022b);

3. cosmic-ray neutron sensing (CRNS), which takes ad-
vantage of natural neutron fluxes and their dependence
on ambient hydrogen pools (Zreda et al., 2008);

4. gamma rays, measuring attenuation of in-situ-produced
gamma radiation being inversely related to soil moisture
(Loijens, 1980; Gianessi et al., 2024);

5. hydrogravimetry (HG), which, based on its capability
to observe (water) mass changes in an integrative way,
has emerged as a useful tool for hydrological observa-
tions (Creutzfeldt et al., 2010a; Kennedy et al., 2016).

All these methods have been developed and tested against
traditional measurements; however; the above-mentioned un-
certainties still remain. The inherent scale mismatch and
spatial-scale moisture variability (Famiglietti et al., 2008)
vastly reduce the reliability of any performance assessments
done so far (Franz et al., 2013). More systematic analyses
for specific conditions (e.g. the effect of varying vegetation

on sensor signal) are rarely possible, as suitable datasets are
still limited and can only be generated with large concerted
efforts (e.g. Fersch et al., 2020; Heistermann et al., 2022b).

Thus, we are facing situations where complex and po-
tentially powerful methods meet poor availability of ground
truth data at their corresponding scale. This dilemma is com-
mon but not exclusive to Earth and environmental sciences,
as detailed measurements are often unfeasible in natural sys-
tems due to large extents, inherent heterogeneity, and lo-
cal intricacies. In the field of meteorology, so-called observ-
ing system simulation experiments (OSSEs) (Gauthier et al.,
1993; Prive et al., 2021) have been an established approach
for creating perfectly known systems and generating specific
(but potentially error-prone) observations thereof (virtual ob-
servations). Examples of similar concepts can also be found
for hydrological modelling (Bárdossy and Singh, 2008), soil
erosion assessment (Jetten et al., 1996), nutrient export (Raat
et al., 2004), remote sensing (van Leeuwen et al., 2021), ecol-
ogy (Fernandes et al., 2019), plant physiology (Morandage
et al., 2021), hydrometry (Domeneghetti et al., 2012), and
also non-Earth sciences such as epidemiology (Vasiliauskaite
et al., 2022).

An important aspect of these OSSEs is that they allow for
free experimentation with sensor configurations to address
open questions without physical limits or real investments.
For example, with virtual measurements new hypotheses
about the topography effect on neutron sensors could be ad-
dressed (Schattan et al., 2019) by exactly defining height,
steepness, or distance of mountains, or the potential of air-
borne neutron sensing could be assessed without the need
for constructing and navigating real-world airships (Lausch
et al., 2019; Heistermann et al., 2022a).

In the context of SM measurements, a suitable OSSE and
its corresponding synthetic landscapes would ideally meet
requirements in the following aspects:

– Scale. The extent of the synthetic landscape is larger
than the support of the involved virtual sensors; i.e. it
can accommodate multiple “footprints” of such mea-
surements (e.g. cells of a remote sensing product, CRNS
footprints). At the same time, its spatial resolution
should still allow for the representation of typical vari-
ability at the sub-footprint scale.

– Variables. The OSSE defines all variables (i.e. physical
properties or landscape attributes) that affect the virtual
observations (e.g. albedo or atmospheric transmissivity
for remote sensing products).

– Usability and accessibility. The OSSE provides a large
range of optional settings, so new configurations can
easily be added. Existing prior data could readily be re-
combined and re-analysed. For maximum flexibility and
potential reuse, all necessary scripts and data should be
freely available.
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Compared to testing real sensors in a real environment,
such an SM-related OSSE has the following advantages:

– It allows one to construct landscape realizations in great
numbers and variety in a consistent way. Thus, ideal
conditions (which potentially cannot be found in the real
world) for testing specific hypotheses are available.

– Probing the landscape realizations with the virtual sen-
sors can be performed in an extent and density that
would not be possible in real-world situations. That
way, we can systematically explore the impact of spa-
tial measurement density on the success of the target
variable reconstruction.

– Sensors can be tested in “best-case” mode; alternatively,
any amount of noise that may arise in real-world situa-
tions could be imposed.

– The complete truth of the landscape realizations is
known. Hence, any attempt to reconstruct them from
the observations can directly be evaluated on the basis
of this truth (which would, in real-world contexts, come
with considerable uncertainty itself).

– The necessary steps in the OSSE setup and use involve
considerable effort and/or computational resources. By
standardizing workflows and formats and providing re-
spective templates for data and scripts, studies beyond
single case studies are facilitated. Preserving the respec-
tive data for later use also allows for novel multi-sensor
approaches and more general multi-site analyses.

To our knowledge, such a system does not exist for SM.
Therefore, this study aims to do the following:

– conceptualize a scalable framework for creating and or-
ganizing virtual landscapes

– implement a toolkit for creating and combining com-
partments of such landscapes and operating virtual sen-
sors therein

– present selected examples and first applications as case
studies

– propose a platform for sharing the respective tools and
results.

We name this framework the Virtual Joint Field Campaign
(vJFC), underlining its purely synthetic character by mim-
icking observations. “Joint” refers to the concomitant use
of multiple and interdisciplinary virtual observation meth-
ods and its open data structure for future community appli-
cations.

Section 2 describes the concept of the vJFC (Sect. 2.1)
and the details of its implementation (2.2). Section 3 presents
three case studies tentatively analysed with this framework.
Section 4 discusses future potential of the framework and its
limitations.

2 Methods

2.1 Concept of vJFC framework and terminology

The general idea of the vJFC is to generate a virtual syn-
thetic landscape from modular compartments, where the tar-
get properties are known (i.e. the virtual truth). This land-
scape is then probed with virtual sensors (i.e. simulation
models), which provide virtual observations, e.g. on neutron
counts, electromagnetic signatures, and gravimetric signals
(see Fig. 1). These virtual observations may hold an interest
in their own right. However, a typical workflow could also
include the application of methods for reconstructing the tar-
get variable (specifically SM but potentially also biomass).
Comparing these to the initially defined virtual truth allows
for the validation of these methods.

The respective steps are explained in more detail in
the following sections. At the current state, we considered
three techniques for measuring SM (see Sect. 1): cosmic-
ray neutron sensing (CRNS), remote sensing (RS), and hy-
drogravimetry (HG). This selection determines the current
choice of scale and variables (see Sect. 2.2.1). The over-
all idea was initially motivated from within the CRNS con-
text, which explains its current dominance in the present case
studies. However, the flexible structure of the framework al-
lows for the integration of other techniques as well, e.g. as
part of future extensions.

2.2 Components of the framework

The following subsections describe the individual parts of the
framework that are illustrated in Fig. 1.

2.2.1 Construction: extent, resolution, and
recombination

The current choice of virtual sensors (RS, CRNS, HG) re-
quires the following minimum of physical properties to be
defined: elementary material composition, density, and spec-
tral characteristics. These constitute the properties that effec-
tively determine the response of the simulated virtual sen-
sors; see details in Sect. 2.2.3.

The total size of the represented domain is 1000 m by
1000 m horizontally with 1 m resolution. This constitutes
a compromise to reflect the typical support volume (i.e.
footprint) of the sensors involved (CRNS: 101. . .102 m, RS:
10−2. . .104 m, HG: 102. . .103 m) and the typical scale at
which the natural attributes vary horizontally. Vertically, the
model can be set up with no fixed limit and flexible resolu-
tion to account for the fact that relevant processes may act
on a wide range of vertical spatial scales, i.e. from 10−2 (e.g.
penetration depth of electromagnetic waves in the top soil
layers) to 103 m (e.g. effects of atmospheric transmission for
incoming radiation).

Due to the involved heavy computational demands for
some of the virtual sensors, the vJFC does not consider any
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Figure 1. The concept of the vJFC and terminology used. Compartments are independent components of the landscape that can be constructed
with desired characteristics. Selected compartments are merged to form a specific realization of a landscape. This virtual landscape can then
be probed with different virtual sensors (i.e. models) to yield virtual observations. These observations can drive methods for reconstructing
the target variable of interest. The virtual observations directly and/or the estimates derived thereof can then be analysed, e.g. compared to
the original virtual truth.

continuous temporal dimension; i.e. all realizations refer to a
single fixed point in time. However, multiple snapshots over
time could be represented with different realizations.

For practical reasons in terms of modularization, the phys-
ical properties are specified via so-called compartments.
These are typical “building blocks” of a landscape tradition-
ally used in environmental sciences, e.g. relief, vegetation, or
soil properties. Depending on their role, they carry one or
more of the above-mentioned physical properties.

To represent the most influential landscape properties in an
independent manner, the vJFC uses the compartments atmo-
sphere, relief, snow, soil_physics, SM_distribution, ground-
water, and vegetation (see Table 1). Each of these compart-
ments defines specific properties in certain parts of the virtual
landscape; e.g. atmosphere defines the material and density
of the atmospheric layer.

For each compartment, multiple scenarios can exist, e.g.
for snow, the scenarios “none” (no snow) and “homoge-
neous_0_5” (0.5 m of homogeneous snow cover). All avail-
able options are listed in the central description table of the
data repository (see section “Data”). The compartments are
mostly independent of each other. However, some compart-
ments have an implicit dependence to prevent implausible
values (e.g. SM_distribution depends on soil_physics to en-
sure that soil moisture does not exceed available pore space).

Finally, some compartments may serve special purposes:
“detector” defines the arrangement of the virtual CRNS de-
tectors; “pattern” is a meta-component defining spatial pat-
terns, which can be referred to in the construction of other
compartments to create coherent spatial patterns. For exam-
ple, a pattern defining the extent of grassland and forest may
serve as a basis for generating coherent compartments of veg-
etation (grass and forest), soil density (medium and low), and

Table 1. Summary of implemented compartments serving as build-
ing blocks for assembling realizations of the virtual truth.

Component Number of
scenarios available

General

atmosphere 1
relief 5
snow 2
soil_physics 7
SM_distribution 11
groundwater 1
vegetation 5

Meta
detector 5
pattern 3

soil moisture (medium and low), corresponding to these areal
entities.

The compartments constitute the elementary building
blocks that can be combined freely to compose a realization
of the virtual truth, as described in the next section.

2.2.2 Combination: creating the virtual truth

Combining the compartments merges a set of these building
blocks (e.g. relief, vegetation, snow layer) to form a specific
realization of the virtual truth, represented by a 3D data cube
of the respective physical properties. Three cases of combi-
nation can be distinguished (see also Fig. 2):

a. No spatial overlap. The compartments are simply com-
bined in the joint data cube without further interaction,
e.g. the atmosphere compartment over a flat relief.
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Figure 2. Vertical cross-sections of 3D cubes, illustrating three dif-
ferent combinations of compartments and associated realizations.
The grey boxes denote empty cells, i.e. no data.

b. Stacking. An uneven compartment is overlaid with a
second one, e.g. soil_physics on a hilly relief and snow
layer on a layer of heterogeneous vegetation.

c. Merging. A prior compartment’s properties are replaced
or modified by overlaying a secondary layer; e.g. vox-
els of the vegetation compartment replace voxels of the
atmosphere compartment during their combination, and
SM_distribution alters properties of soil_physics.

So far, 17 realizations have been generated based on the
available compartments described in the previous section.
Among these, the three case studies described in detail (see
Sect. 3) can be found.

2.2.3 Virtual observations: probing the virtual truth
with virtual sensors

The data cube containing the virtual truth specifies all vari-
ables that influence the response of the sensor, e.g. the spa-
tial distribution of mass that affects a gravimeter. The virtual
sensor response is computed using dedicated models. For
this purpose, the respective model input files are generated
from the virtual truth (e.g. 3D matrix of mass distribution for
a gravimetric model). Note that model preprocessing might
imply mapping certain extra variables of the synthetic truth
to a comprehensive set of parameters as required by the re-
spective model. For example, for the radiative transfer model,
a simple vegetation type such as forest needs to be mapped
to a plethora of vegetation properties such as leaf area index,
height, leaf pigment content, etc.

In addition to the three presented case studies (see Sect. 3),
some but not all of the other realizations have been probed
with the virtual sensors; the respective availability is listed in
the central description table of the data repository (see sec-
tion “Data”).

So far, the following models serve to generate the output
of the three virtual sensors.

CRNS: neutron transport model URANOS

The method of cosmic-ray neutron sensing (CRNS) has been
introduced by Zreda et al. (2008) and relies on the measure-
ment of ground-albedo neutrons. The density of these cosmo-
genic neutrons in air is sensitive to the abundance of hydro-
gen in the vicinity of the neutron detector. Thus, soil moisture
can be estimated within a footprint of considerable horizon-
tal (200–500 m) and vertical (20–50 cm) extent (Schrön et al.,
2017).

To generate the virtual observations, neutron transport
simulations were conducted using the Monte Carlo code
URANOS (Köhli et al., 2023), which was specifically de-
signed for modelling neutron interactions within a natural
environment. The standard calculation routine features a ray-
casting algorithm for a single neutron propagation and a
voxel engine. To simulate the physics of neutron interac-
tions with atoms, URANOS makes use of a combination
of different databases, including ENDF/B-VIII (Chadwick
et al., 2011; Brown et al., 2018; Watanabe et al., 2011). In-
stead of extensively propagating particle showers in atmo-
spheric cascades, URANOS uses the analytically described
cosmic-ray neutron spectra from Sato (2016). This approach
considerably reduces the computational effort while keep-
ing the effect on the accuracy of the results negligible for
most CRNS applications. To mimic the response function of
real CRNS instruments, URANOS implemented virtual de-
tector characteristics of commonly used sensors (Köhli et al.,
2018). This option also serves to represent the virtual CRNS
measurements in the presented case studies, for simplicity
hereafter denoted as “epithermal counts”. Concerning spatial
discretization, URANOS uses a voxel concept which trans-
forms the simulation domain into a 3D stack of pixels, each
of which can contain materials like air, soil, rock, or snow
with variable densities and porosities. This allows for directly
transferring one or multiple input matrices with predefined
material values to a geometry definition that can be inter-
preted by the model. With this concept, the model is gen-
erated with a stack of layers of variable height, resolution,
and material but with common vertical and lateral extent. In
a 3D simulation domain, the virtual detector layers are also
superimposed over voxels of air. Typical output options are
neutron densities in different energy ranges from thermal to
high-energy domains, entire neutron tracks through the vir-
tual landscape, or tracks in areas of interest. URANOS can
be executed from the command line with the setup-specific
configuration files to efficiently operate on desktop or high-
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performance architectures (e.g. Schnicke et al., 2024). A
graphical user interface allows one to conveniently configure
the model parameters and visualize the simulations during
runtime. In this study, URANOS version 1.25 was used.

RS: radiative transfer model

Remote sensing exploits the fact that the presence of water
causes distinct changes in the spectra of the reflected elec-
tromagnetic radiation. These changes are caused not only di-
rectly by the influence of the water on the surface reflectance,
but also indirectly by the effect of the response of vegetation
to water stress. Despite the strengths of active microwave
sensors, we started with a focus on optical remote sensing
in the vJFC. Particularly considering the limited penetration
depth of active microwave sensors, optical imagery can re-
veal water-induced effects on vegetation vitality, thus poten-
tially integrating over the entire root zone. Corresponding
spectral indices are widely applied (e.g. Li et al., 2021), also
because of their usually higher spatial and temporal resolu-
tion (e.g. Buitink et al., 2020).

For the vJFC, the Soil Canopy Observation, Photochem-
istry and Energy Fluxes (SCOPE) model was used for sim-
ulating reflectance according to soil and vegetation proper-
ties (Yang et al., 2021; van der Tol et al., 2009). SCOPE
combines seven radiative transfer models to simulate spec-
tra in the optical and thermal domains for soil and vegetation
surfaces (leaf and canopy). The simulation starts by calculat-
ing soil reflectance using a brightness shape moisture (BSM)
model. Then, it calculates leaf reflectance, transmittance, and
fluorescence emission. These initial simulations combined
with canopy structure parameters are the inputs used to re-
solve the canopy reflectance (RTMo). The model assumes
that vegetation canopies are homogeneous and horizontally
infinite (1D).

Our simulations were focused on soil and canopy re-
flectance in the optical domain (400–2400 nm). SCOPE
utilizes several input parameters, including soil, leaf, and
canopy properties, as well as sun–observer geometry and
meteorological conditions. The most relevant inputs for this
study are leaf biochemical and biophysical parameters, such
as leaf pigment, water, and dry matter contents. Moreover,
canopy structural parameters, such as leaf area index (LAI)
and vegetation height (hc), play an essential role in the re-
sultant spectral signal. Geometry parameters such as zenith
angles and relative azimuth were kept as default based on the
sun incidence angle at noon in the summer as it may strongly
affect the remote sensing signals above the canopy. We used
the R package rSCOPE (Duarte Rocha, 2022) to run SCOPE
version 2.0 (MATLAB codes).

The soil and vegetation reflectance parameters are based
on the landscape properties of the realization hexland_tracks
(see Sect. 3). The bare soil spectra were simulated at the sur-
face level (z= 0), while the cropland and forest spectral sig-
nals are a function of the root zone SM parameter at differ-

ent depths (z=−0.3 and z=−1, respectively). The model
inputs are presented in Table A1, which shows the utilized
SM-induced parameters for the different land cover types.
The LAI was defined based on the given land cover and veg-
etation height for each land use class, while the dry mat-
ter was computed from the specified vegetation density. The
SM-induced leaf parameters vary according to the volumet-
ric soil moisture to simulate plant water stress. For bare soil
surfaces, LAI and vegetation height were set to zero, so their
spectral response is the sole function of ground reflectance.
For forest hexagons, canopy properties dominate, and ground
reflectance is practically negligible, as the soil background is
not visible through the dense canopy.

For hexland_tracks, the SCOPE modelling results in 66
combinations of simulated spectral reflectance with SM-
induced input parameters. The output was resampled to the
13 spectral bands of the Sentinel-2 satellite, as this is the
most widely applied sensor type for this application. Further-
more, the vegetation indices Normalised Difference Vegeta-
tion Index (NDVI) and Normalised Difference Water Index
(NDWI) were calculated. Additionally, an estimation of veg-
etation water content (VWC) based on the NDVI and a stem
factor per vegetation type was performed. A set of simulated
Sentinel-2 bands was mapped onto the respective hexagons
and then aggregated according to the band resolution (10 m
for B04/B08 and 20 m for B08A/B11) before the calculation
of vegetation indices.

HG: hydrogravimetric model

Observing variations in Earth’s gravitational acceleration due
to changes in Newtonian attraction with relative terrestrial
gravimetry (TG) allows for the non-invasive estimation of
total water storage changes, including the entire unsaturated
soil zone, groundwater, and surface water storage. As an in-
tegrative measurement, TG is sensitive to all (water) mass
changes within a certain footprint around the instrument. The
horizontal extent of this footprint highly depends on sur-
rounding relief (Creutzfeldt et al., 2008), but 95 % of the sig-
nal is typically generated by mass variations within a radius
of approximately 1 km2 (Van Camp et al., 2017), while 85 %
of the signal only depends on the first hundred metres. Grav-
ity changes caused by local hydrological mass variations can
mask other geodetic signals of interest (Creutzfeldt et al.,
2010b; Mikolaj et al., 2019). For these reasons, gravity time
series are often corrected for (local) hydrological influences
in order to study geophysical signal components of inter-
est (Kobe et al., 2019). Approaches have been developed to
quantify and remove hydrological effects (Creutzfeldt et al.,
2010c; Mikolaj et al., 2015; Reich et al., 2019). In turn, grav-
ity measurements can be used for investigating water storage
variations from field to landscape scale (Creutzfeldt et al.,
2010a; Pfeffer et al., 2013; Hector et al., 2015; Güntner
et al., 2017), studying groundwater dynamics (Tanaka and
Honda, 2018), hydrometeorological extremes (Creutzfeldt
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et al., 2012; Delobbe et al., 2019), and even average for-
est evapotranspiration as demonstrated by Van Camp et al.
(2016). However, distinguishing between different sources
of observed integral gravity variations is difficult (Creutzfeldt
et al., 2008, 2010b). This also applies for separating the grav-
ity signals of water storage components, such as variations in
water in the upper and lower unsaturated zone of the soil and
groundwater (Van Camp et al., 2017).

Forward modelling of gravity variations caused by differ-
ent hydrological and soil physical properties (e.g. soil bulk
density) in a virtual environment can therefore provide valu-
able information on how field measurements of gravity are
affected by different kinds of gravity changes within the foot-
print. A general forward-modelling procedure for calculat-
ing the gravity signal due to mass changes within a certain
spatial domain is to set up a grid of components of Newto-
nian attraction C, which can then later be multiplied by spa-
tially distributed values of mass. Leirião et al. (2009) intro-
duced the nested grid approach, a computationally low-effort
method for generating such a grid, which is adapted in this
study. Thus, gravity at each position depends on the magni-
tude and location of the mass change relative to the position
of the virtual instrument. Following Leirião et al. (2009), 3D
grids of attraction Ci were generated with the spatial extent
of the virtual landscape at each of the 1 m spaced locations of
the landscape (with the virtual gravimeter always in its cen-
tre). This leads to 1000× 1000 attraction grids in total. Each
attraction grid is then used to calculate the gravity effect of
soil moisture and soil density variations for its respective cell
by multiplication by the 3D grid of mass M . Summing over
M then yields the respective gravity for the cell. This proce-
dure is carried out for each of the 1 million grids, resulting
in the grid of gravity G. Average values of soil moisture and
soil density were used as complementary information for the
area outside of the domain of the virtual landscape to account
for the large footprint of the method and avoid edge effects.
However, as TG aims to assess the changes in mass (opposed
to the mass itself), the difference between two gravity grids
G1 and G2 needs to be considered.

2.2.4 Reconstruction: estimating the target variable

The data obtained from the virtual sensors, i.e. the virtual
observations, come in corresponding units, such as neutron
counts per second for CRNS, spectral reflectance for RS, and
gravity for HG. As intended, these observations are proxies
for the target variable of interest, i.e. SM or biomass. The
procedures required to convert these proxies into estimates
of the target variable vary between the sensors. Even for the
same sensor, multiple approaches may exist; e.g. SM of bare
soil may be derived differently from thermal- or microwave-
based indices. Thus, the chosen reconstruction methods are
specific to the case study. They are not elaborated on for the
case studies presented in this paper, as they focus on the pre-

sentation of the overall framework. Nevertheless, they are of
high relevance for envisioned follow-up studies.

2.2.5 Exploration: analysis of virtual observations and
reconstructions

The detailed data on the virtual observations allow for in-
depth analyses of sensor response per se, their resulting spa-
tial resolution, and the robustness of their signal when influ-
enced by detrimental conditions (e.g. RS observations influ-
enced by hazy atmospheric conditions). Thus, new insights
into the characteristics of the virtual observations described
in Sect. 2.2.3 – neutron count rates, gravimetric field, and
spectral response – can be gained.

Similarly, any of such effects propagate to the reconstruc-
tion of the target variable (see Sect. 2.2.4). As the target vari-
able is completely known, a comprehensive picture of the
error in these estimates can be obtained, potential influen-
tial factors can be identified, and correction methods can be
tested. This is conducted on three exemplary cases in the fol-
lowing sections.

To facilitate reproducibility and reusability of all parts of
the vJFC, all necessary scripts and data are publicly avail-
able. See details in Sect. 4.

3 Example case studies

The framework of the vJFC can accommodate an arbitrary
number of landscape realizations to address a wide range
of scientific questions. For illustrative purposes, we selected
three example case studies that give insight into preliminary
results (see Table 2): hexland_tracks (synthetic landscape
with maximized field-scale heterogeneity), sierra_neutronica
(synthetic landscape with high relief), and agia (realistic
Mediterranean landscape with orchards). The following sec-
tions describe the generation of the case studies and some
example results to demonstrate the potential of the concept
of the vJFC. Our focus was on the presentation of the frame-
work, not on specific case studies. We used one realiza-
tion (hexland_tracks) to demonstrate the applicability across
different sensor types. The other two case studies merely
underline the versatility of the framework across different
landscape realizations, specifically in representing terrain or
landscapes with realistic patterns of spatial heterogeneity.
The presented insights mainly serve exemplary purposes and
are by no means exhaustive.

3.1 hexland_tracks: a landscape with maximized
field-scale heterogeneity

Soil moisture is mainly governed by meteorological forcing,
soil properties, and vegetation. On the scale of small catch-
ments (i.e. 1 km2), its variability is mainly the result of the
variability of the latter two. The hexland_tracks case aims to
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Table 2. Overview of realizations presented as case studies

Realization Description
Generated virtual observations

CRNS RS HG

hexland_tracks synthetic landscape with max contrasts X X X
sierra_neutronica synthetic landscape with high relief X – –
agia realistic Mediterranean landscape X – –

compare all three sensor systems in a landscape that maxi-
mizes land use and soil heterogeneity at the field scale.

hexland_tracks includes pronounced variability of land
cover, soil density, soil moisture, and the vertical soil mois-
ture gradient. Each of these compartments (or attributes
thereof) is implemented in three to four levels, covering typ-
ical ranges of the respective attribute (see summary in Ta-
ble 3).

This variability is realized on field-scale-sized plots (i.e.
units of roughly 1.3 ha). These units are arranged as uniform
hexagons with 72.1 m radius (Fig. 3). This pattern exploits
the advantages of a hexagonal design suggested by Birch
et al. (2007): a low perimeter to area ratio, fewer neigh-
bours for points at the perimeter (maximum of two), and a
higher number of possible combinations of adjacent poly-
gons. Additionally, the borders are formed by three types of
tracks (none, gravel, asphalt), assigned to the track orienta-
tions SW–NE, NW–SW, and N–S, respectively.

3.1.1 Results: representation of spatial heterogeneity
by neutron sensing, hydrogravimetry, and remote
sensing

The realization hexland_tracks has been probed by all three
virtual sensors (CRNS, RS, and HG), making it a favourable
example for exploring the complementary properties of these
methods.

The virtual CRNS observations consist of neutron count
rates at different energy levels and altitudes. The shown re-
sults assume that each voxel at a certain altitude (ground level
and multiple altitudes) is a single CRNS sensor. This means
that any interaction between closely spaced CRNS sensors
that would appear in reality are disregarded here. Figure 4
shows the counts of epithermal neutrons, which corresponds
to the energy level most commonly used to infer soil mois-
ture. As mentioned before, the term epithermal refers to the
neutron flux as would be measured by a CRNS instrument.
The spatial pattern of these counts from the ground (i.e. at 1–
2 m; Fig. 4, top) is clearly dominated by the hexagonal pat-
tern of the prescribed hydrotopes and their soil moisture. De-
spite the typical footprint radius (usually considered to range
from 130 to 240 m, depending on soil moisture; see Köhli
et al., 2015), the results show that the signal of each virtual
sensor is dominated by its immediate surroundings. This ef-
fect is especially apparent for the 4 m wide north- to south-

oriented asphalt roads and, to a lesser degree, the NW- to
SE-oriented gravel tracks. This local signal change has been
called the “road effect” (Schrön et al., 2018), which implies
a strong measurement bias when mobile (“roving”) CRNS
sensors move along a road (unless elaborate corrections are
applied) or when stationary sensors are placed at field bor-
ders with different land use (Schrön et al., 2017). The vJFC
dataset would allow for a more detailed assessment of this
phenomenon.

Besides these near-range effects, the influence of the
large CRNS footprint is evident, especially at boundaries
of hexagons with very contrasting soil moisture: both high
and low count rates are smoothed towards their contrasting
neighbour. This smoothing effect is even more pronounced
for airborne detectors operated at 30 m altitude (Fig. 4, bot-
tom): mean count rates decrease, and smaller features such
as tracks can no longer be discerned, while the general pat-
tern of the hexagons is still well preserved. This confirms
the potential of airborne CRNS (e.g. Schrön, 2017; Heis-
termann et al., 2022a) if the accompanying challenges such
as stable flight altitude can be resolved. Additionally, land
cover effects can apparently alter the CRNS signal differ-
ently, as attested by the two distinct orange-coloured adjacent
hexagons NW of the centre with identical low SM and corre-
sponding high count rates at the ground. At 30 m, however,
the more northern hexagon covered by forest (cf. Fig. 3b)
experiences only intermediate count rates, which also indi-
cates that specific corrections need to be developed for such
a constellation. The more extended series of layers of air-
borne CRNS instruments in Fig. A2 shows directly how the
footprint extends with increasing height over ground. While
the hexagons are clearly distinguishable for a system typi-
cally placed at a 1 m distance to the soil, at 60 m elevation
the contrast between the different soil moisture topologies
vanishes. For the 200 m layer, the virtual detector averages
over nearly half of the domain. While airborne CRNS in-
creases the footprint, the dynamics of the signal, however, is
reduced as with increasing elevation the ground signal also
gets damped. More importantly, these results suggest that the
near-field effects disappear on a scale equal to the height of
the instrument.

Regarding remote sensing, the modelled spectra (Fig. A1
in appendix) clearly indicate that the direct spectral signal
of soil moisture is only preserved for bare soil. However,
when plant water stress is considered, soil-moisture-induced
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Table 3. Summary of landscape attributes implemented in the artificial landscape hexland_tracks.

Compartment Land cover Soil density Soil moisture SM profile gradient Tracks Total

bare light dry homogeneous none
agriculture medium 33 % sat. increasing gravel
forest dense 66 % sat. decreasing asphalt

saturated

No. of levels 3 3 8∗ 3 75

combinable exclusive

∗ Number of combination results from (dry)× (homogenous), (33 %, 66 %)× (homogenous), increasing, decreasing,
(wet)× (homogenous), i.e. 1+ 6+ 1= 8.

Figure 3. The landscape realization hexland_tracks mimics a landscape with large variability in soil, vegetation, and soil moisture conditions*
on the field scale, implemented on the scale of hexagons. It also features three levels of tracks on polygon boundaries (none, gravel, asphalt).
∗ >, soil moisture decreasing with depth; <, soil moisture increasing with depth; =, homogeneous soil moisture.
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Figure 4. Simulated counts of epithermal neutrons near the ground (1–2 m, a) and at 30 m (b) in hexland_tracks, an artificial landscape with
maximized heterogeneity. The black annotations indicate the soil moisture of the top layer prescribed to the hexagons.

Figure 5. Simulated vegetation indices mimicking Sentinel-2 images for realization hexland_tracks. Vegetation water content (VWC; 10 m,
a), Normalised Difference Vegetation Index (NDVI; 10 m, b), and Normalised Difference Water Index (NDWI; 20 m, c).

effects in the spectra can also be observed for cropland and
forest sites.

The simulated spectral indices and the reconstructed veg-
etation water content show different aspects of the virtual
landscape (Fig. 5). The VWC allows for a clear distinc-
tion between the three land cover classes as it is dominated
by the underlying assumptions on the stem factor constant
per vegetation type. It does not distinguish heterogeneous
VWC, which would be expected from different SM. Among
the spectral indices, NDVI can clearly distinguish vegetation
from bare soil, but visual separation between cropland and
forest or healthy and water-stressed vegetation is not straight-
forward. NDWI shows a smoother graduation, with its ex-
tremes at low soil moisture content (dry) in bare soil to satu-
rated (wet) soil in the forest.

This confirms that the performance of remote sensing
products for SM estimation cannot easily be retrieved from
single indices and is strongly affected by the land cover
type (Schmidt et al., 2024). Moreover, plant stress will be de-
tected for different levels of soil water deficit according to the
vegetation type, e.g. forest sites showing a much later spec-

tral response induced by soil moisture. Therefore, short-term
changes in soil moisture may not be detected by RS in veg-
etated surfaces. Additionally, soil moisture above 25 % may
not provoke visible changes in the spectra on vegetated sur-
faces (Döpper et al., 2022a). The downscaling to 20 m spatial
resolution creates mixed pixels, showing a border effect be-
tween different land covers and track surfaces.

For gravimetric modelling, the virtual observations repre-
sent absolute gravity values (in nm s−2) resulting from the
density information on all points of the virtual landscape
(see Fig. 6). Modelling was carried out once for a completely
dry soil with heterogeneous density (i.e. hexland_tracks_dry,
Fig. 6, centre: dry) and for the same soil with spatially vary-
ing soil moisture (i.e. hexland_tracks, Fig. 6, left: wet). The
difference between these two grids (wet to dry) reveals grav-
ity changes due to soil moisture information only (Fig. 6,
right side). These can be attributed to changes in water con-
tent within the upper 2 m of the soil. Since the virtual land-
scape is flat, we can express modelled values in relation to
a common assumption within hydrogravimetry: the Bouguer
anomaly (Pasteka et al., 2017). This Bouguer effect describes
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Figure 6. Simulated gravimetric anomalies for hexland_tracks (a) and the corresponding conditions with fully depleted soil moisture storage
hexland_tracks_dry (b). The difference (c) allows for the evaluation of the static soil moisture pattern.

the change in gravity due to mass changes in a horizontally
flat and infinite layer. Adding such a layer with a vertical ex-
tent of 1 m (entirely filled with water) would cause gravity
to increase by 420 nm s−2. The highest gravity change in the
virtual observations is 320 nm s−2, which is clearly below the
theoretical change for the equivalent of 2 m of water. As by
far not all of the soil is filled with water, this is reasonable
and furthermore verifies the magnitude of changes to be ex-
pected.

A total of 88 % of the observed gravity changes are above
50 nm s−2, which is the typical instrumental precision to be
expected of a device capable of carrying out such mapping
surveys (Scintrex, Ltd., 2017). This value corresponds to
specifications stated by the manufacturer; depending on op-
erators and post-processing, values as low as 10 nm s−2 are
feasible precision for relative gravity surveys.

If only mass changes within the first 50 cm of the soil
are considered from the modelling, the portion of distin-
guishable values decreases to 17 % (90 % for the more op-
timistic threshold of 10 nm s−2). Nevertheless, in an environ-
ment with real relief and well-selected gravity measurement
locations, this portion would increase.

The spatial pattern of soil-moisture-induced gravity
changes is generally dominated by the hexagon structure of
the input grids. This underlines the fact that the signal is al-
most exclusively subject to changes in the close vicinity of
the observation point. Even the tracks are visible in the ob-
served pattern. Evidently, a snapshot observation of a spa-
tially heterogeneous distributed water and soil density pat-
tern is not informative. Instead, the measurements yield their
value when looking at the changes in mass. For real-world
gravimeters, this is usually done in the time domain, but the
approach here illustrates this effect in the spatial domain: the
very wet hexagons at the very northwest and the northern
border can be clearly identified in the gravimetric pattern
(cf. Fig. 3), confirming the usefulness of relative gravime-
try. Edge effects of the virtual landscape could be effectively
mitigated by extending the landscape spatially with average
values, as there is hardly a perceivable effect along the bor-

ders of the domain. Overall, the results of the hydrogravimet-
ric approach show that for the modelled setting, a real-world
gravimetric hydrogravimetric survey should be able to mea-
sure the respective storage changes and even allow for the
identification of small-scale spatial patterns of (water) mass
changes.

3.2 sierra_neutronica: synthetic mountains to explore
topographic effects

Relief exerts an important control on soil moisture patterns,
mainly due to its influence on the generation and distribu-
tion of overland flow and the distance to the groundwater ta-
ble. Unfortunately, most SM measurement methods face nu-
merous methodological, technical, and practical challenges
under these conditions. For instance, all ground-based meth-
ods are affected by increased difficulties in accessing moun-
tainous areas, which hinders systematic verification. In the
context of the methods included in the vJFC, the following
challenges can be identified: for CRNS, altitude-dependent
incoming neutron flux and topographic shading effects; for
RS, effects of shadowing, variable incidence angles, and at-
mospheric thickness; and for HG, potentially complex inter-
actions of storages above and below the sensor and inhomo-
geneous lithology. As the understanding of relief effects on
the CRNS signal is especially limited, the sierra_neutronica
case focuses on exploring complex topographic effects on
neutron intensity at the ground. The respective results should
shed some light on the influence of altitude, slope, shading,
and exposure on neutron count rates, when all other land-
scape attributes remain constant.

For the sake of simplicity, sierra_neutronica features ho-
mogeneous bare soil of constant thickness and soil moisture
(1000 m deep, 5.5 % volumetric water content). The relief
spans an altitude range of 1000 m, representing an alpine val-
ley. It combines two gradients of various amplitudes (west–
east) and frequencies (radial and tangential), so a wide range
of topographical conditions is included (see Fig. 7).
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Figure 7. The landscape realization sierra_neutronica combines two gradients of various amplitudes (west–east) and frequencies (radial and
tangential) to create a large variety of topographical settings. Apart from a barometric pressure gradient with altitude, all other properties are
homogeneous, i.e. soil with 5.5 % SM and no vegetation. Panel (b) shows a vertical cross section (dotted line in a) to illustrate the detector
layer used in the neutron simulation (ignored otherwise).

The simulation of the neutron flux in steep terrain required
adjustments compared to those in flat conditions: as illus-
trated in Fig. 7, the detector layer was created parallel to
the ground while avoiding neutron-sensitive voxels in direct
or diagonal contact with the terrain surface. This resulted in
multiple detector voxels per vertical column for the steeper
parts of this landscape, visible for the left hill depicted in
Fig. 7. Consequently, this horizontally varying number of
detector voxels had to be accounted for by normalizing the
modelled count rates accordingly.

3.2.1 Results: topographic effects on CRNS

Figure 8 shows the count rates corrected for the varying num-
ber of stacked detector voxels. For large topographic struc-
tures (i.e. mountain in the SW), the count rates show a grad-
ual increase with altitude, which corresponds to the expected
increase in count rates caused by barometric effects. How-
ever, pronounced deviations from this trend can be observed
for the more complex parts of the landscape: the wider val-
leys, hill tops, and exposed ridges show higher count rates.
Figure 9 illustrates this effect by showing how much (in rel-
ative terms) the modelled count rates deviate from the ex-
pected increase solely explained by simple barometric cor-
rection (Zreda et al., 2012): apparently, deeper valleys, hill-
tops, and ridges experience additional effects of topographic
exposure and shielding (e.g. Dunne et al., 1999; Balco, 2014;
Schattan et al., 2019), which are not directly related to pres-
sure or altitude and deserve further detailed examination. Ap-
parently, steep hillslopes show a lower overall neutron flux
than expected from flat terrain, whereas steep valleys would
show an increase in count rate.

Figure 8. Simulated counts of epithermal neutrons in
sierra_neutronica, an artificial mountainscape.

3.3 agia: a realistic irrigated agricultural landscape in
Greece

CRNS has great potential to monitor and inform irrigation in
agriculture (Franz et al., 2020; Ragab et al., 2017; Finken-
biner et al., 2019). However, it has been shown that the qual-
ity of the information provided by CRNS strongly depends
on the type of sensor that is employed and environmental
factors, such as the amount of irrigated water, the dimension
of the irrigated field, and the SM conditions (Li et al., 2019;
Brogi et al., 2022). The agia case aims to investigate how
well CRNS could quantify soil moisture on irrigated plots
that are embedded on a heterogeneous and rather dry envi-
ronment by reproducing an agricultural setting found near
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Figure 9. Relative anomaly in simulated counts of epithermal neu-
trons in sierra_neutronica compared to expected pressure-corrected
counts.

the village of Agia (39.718° N, 22.741° E), Greece. This area
is characterized by a highly heterogeneous landscape, with
small fields that are irrigated at different times and complex
spatial variations in SM. Such an environment is challenging
for CRNS applications but can provide precious insights into
sub-footprint heterogeneity and the contribution of different
land patches to the CRNS signal (Schrön et al., 2023; Brogi
et al., 2022).

Within this area, in 2020, two apple orchards of approx-
imately 1.2 ha and separated by approximately 300 m were
equipped with extensive instrumentation to test the use of
CRNS in irrigation management (Brogi et al., 2023). A
1× 1 km2 domain (see Fig. 10) was centred between the
two fields, and eight land cover classes were digitized from
satellite images (ESRI, 2024). Land cover height was set to
6.0 m for trees, 4.0 m for apple orchards and buildings, 0.6 m
for bushes, 0.1 m for grass and asphalt roads, and 0.0 m for
bare soil and tracks. The vegetation biomass was set equal
to the URANOS material code tree gas (3.0 g cm−3) for ap-
ple orchards and trees and equal to plant gas (5.0 g cm−3)
for bushes and grass. The soil compartment is represented
by three layers of 0.3, 0.3, and 1.0 m thickness (maximum
depth of 1.6 m). Soil density is horizontally homogeneous,
increasing with depth (1.5, 1.6, and 1.7 g cm−3, resp.). In the
pilot irrigated fields, bulk density, porosity, and other soil hy-
draulic properties were obtained from soil sampling, labora-
tory analysis, and the use of pedotransfer functions (Rawls
and Brakensiek, 1985). These helped to estimate SM at field
capacity (maximum simulated SM) and wilting point (mini-
mum simulated SM) by using the Mualem–van Genuchten
model (van Genuchten, 1980). The surrounding irrigated
fields were assumed to have SM values that are the average of

the two irrigated pilot fields. In the non-irrigated areas, max-
imum and minimum SM was assumed to be that recorded by
SM sensors positioned at 5, 20, and 50 cm depth at a single
location.

Four different simulation scenarios are available. In these,
the vegetation remains constant, while the SM distribution
varies. The scenarios are (a) dry irrigated pilot fields and
surroundings (agia_dryout_dryin), (b) dry pilot fields and
wet surroundings (agia_wetout_dryin), (c) wet pilot fields
and dry surroundings (agia_dryout_wetin), and (d) wet pi-
lot fields and surroundings (agia_wetout_wetin). The reader
is referred to Brogi et al. (2023) for a more in-depth descrip-
tion of the study site and the process behind the production
of the data.

3.3.1 Results: detectability of irrigation in relation to
surrounding landscape variability

For the Agia site, four different realizations have been gen-
erated from four different scenarios of soil moisture patterns.
Two of these, agia_dryout_dryin and agia_dryout_wetin, are
shown in Fig. 11. The first scenario (top row) represents the
generally dry SM conditions in which the investigated area
can be found during the summer period, while the second
scenario (bottom row) shows an increased SM in the two pi-
lot apple orchards at the centre of the domain. This higher
SM is the typical consequence of weekly mini-sprinkler irri-
gation events that is applied to the entire field and can reach
up to 43 mm d−1 in the western pilot field and 54 mm d−1

in the eastern pilot field. In the simulated case, the irrigation
amount in the western pilot field is smaller than in the east-
ern one, but SM after irrigation is higher due to differences
in soil properties.

The result of the SM increase in agia_dryout_wetin is
a lower simulated count of epithermal neutrons near the
ground (Fig. 11, bottom left) within the irrigated fields. This
has an impact on the signal recorded by a CRNS positioned
within the irrigated field. However, the CRNS footprint is
larger then the investigated 1.2 ha fields, and neutrons that
have soil contact outside the field can strongly affect CRNS
measurements, thus reducing or masking the effects of ir-
rigation, especially at the borders of the field. A correction
developed by Brogi et al. (2023), which uses the simulated
contributions to the CRNS signal of the irrigated field and of
its surroundings, can be applied to exclude the effects of the
non-irrigated surroundings. The simulated realizations can
provide detailed information on such contributions for the
Agia site and could be further adapted to any other area of
interest via additional realizations.

Based on these results, the contributions to the neutron
count of the irrigated field and the surroundings, which are
necessary for irrigation corrections (Brogi et al., 2023), can
be extracted for a CRNS placed in any position within the
target fields. This also allows us to simultaneously investi-
gate multiple fields and identify (a) the most suitable loca-
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Figure 10. The landscape realization agia represents a realistic setting for a Mediterranean agricultural landscape. This figure shows the
common land use and the four soil moisture realizations, in which the surroundings and the pilot fields are set to low or high soil moisture,
respectively.

tions within each field, (b) the minimum number of CRNS
required to adequately monitor irrigation in one field or in a
given agricultural area, and (c) the most suitable CRNS de-
sign in terms of response function and sensitivity. Such re-
sults have ramifications for instrument selection and for the
estimation of costs and benefits that are tailored to specific
areas and irrigation techniques.

The left panels of Fig. 11 show strongly heterogeneous
patterns in epithermal neutron intensities for the ground-
based sensor (1–2 m height) that are the effect of both SM
and vegetation distribution. The right panels of Fig. 11 show
the epithermal neutron counts at 30 m above the surface. As
in the hexland_tracks case study (Sect. 3.1.1), these patterns
are much smoother than those recorded at the ground. How-
ever, the effect of irrigation in the two pilot apple orchards
is still clearly noticeable given the large drop in epithermal
neutron intensities 30 m above ground. This has implications
for airborne CRNS roving applications that are similar to
those discussed in the case of the hexland_tracks realiza-
tion. A general influence of the land use, when large areas
share similar cover, can be identified at this height. First, the
more natural landscape of the northwestern part of the do-
main, consisting of relatively low shrubs and grass, results
in a higher density of epithermal neutrons at 30 m height. In
contrast, the agricultural areas that are principally made of
orchards in the centre and southeastern parts of the domain
result in a generally low epithermal density at 30 m altitude.
Interestingly, the presence of buildings also results in rela-

tively low epithermal densities at 30 m and, more strongly,
at 1–2 m height within a few metres around the buildings.
The patterns of count rates registered by the ground-based
sensors shows their highest count rates for the meadow ar-
eas (e.g. crescent-shaped north–south structure). The count
rates seem especially increased towards the borders of the
meadows. Thin, more linear shapes seem especially affected
(e.g. thin meadows are in the NW sector, meadow strip south
of the eastern pilot plot). It remains to be analysed whether
these patterns are caused by exposure effects from surround-
ing higher land cover classes (similar to the phenomena ob-
served in sierra_neutronica; see Sect. 3.2.1) or whether they
need to be attributed to interactions with the neighbouring
plots.

Despite the relatively high resolution of the domain of 1 m,
there are simplifications that can have an impact on the re-
sults and the considerations made so far, such as land use
voxels in the current resolution of the 1× 1 m dimension,
which simplify certain structures. For example, a building is
represented by a homogeneous gas, and this may have a dif-
ferent impact on the result compared to a detailed structure
with separated walls and, especially, roof materials. Simi-
larly, a tree is also represented by a homogeneous gas and
does not distinguish between different organs. Although it
can be expected that a more detailed and complex represen-
tation will have an effect on the results, it has to be noted that
the presented complexity is higher than that of most studies
found in the literature, especially given the extent of the do-
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Figure 11. Simulated counts of epithermal neutrons near the ground (1–2 m, a) and at 30 m (b) in a realistic Mediterranean landscape under
conditions of low soil moisture variability (agia_dryout_dryin, a, b) and with irrigated fields in dry surroundings (agia_dryout_wetin, c, d).

main and the purpose of the vJFC setup. Nonetheless, these
considerations further motivate the representation and study
of realistic scenarios in an environment such as the vJFC, as
key insights can be gained for several CRNS applications and
beyond.

4 Conclusions and outlook

The Virtual Joint Field Campaign represents a framework
to design virtual landscapes in which we can deploy vir-
tual sensors (here CRNS, remote sensing, and hydrogravime-
try). Such a virtual sensor allows us to simulate the measure-
ment of variables (e.g. neutron intensity, reflected spectra,
gravimetric anomalies) that have a well-defined relationship
to an actual target variable of interest (e.g. soil moisture or
biomass). Based on such virtual observations, we can explore
the potential and restrictions for the spatio-temporal retrieval
of such target variables at the scale of 1 km2, in the presence
of different levels of landscape complexity. It represents, to
our knowledge, the first effort to define a comprehensive ob-

serving system simulation experiment in the context of soil
moisture and biomass observations.

The presented definitions and conventions allow for the re-
producible use of existing setups and recombinable creation
of new case studies from new or existing components. The
open data approach, comprising the free availability of all
generated data and respective scripts, provides a low barrier
for the scientific community, especially when aiming at com-
paring or combining different sensors.

This paper presented three case studies (H: hex-
land_tracks, S: sierra_neutronica, A: agia) with a different
thematic focus but is not intended to analyse their outcomes
in detail. Multiple aspects that merit further analysis have
been identified and outlined in the respective sections or can
be perceived (abbreviation of case study given in parenthe-
ses):

– How well can we estimate soil moisture based on per-
fect single-point calibrations and (im-)perfect knowl-
edge of biomass inventories and bulk density informa-
tion (H, A)?
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– How well can we estimate biomass (H, A)?

– How many CRNS probes are needed to obtain robust
SM information at the landscape scale? Can we give
recommendations for minimum instrument sensitivity
and minimum distances of CRNS sensor locations to
adjacent physiographic units to obtain unbiased count
rates (H, A)?

– Does the reconstruction of SM (e.g. using inversion
methods) based on hydrological units work? Under
which premises does it work (H, A)?

– How do roving sensor applications perform in differ-
ent parts of the landscape? How does the road ef-
fect (Schrön et al., 2018) affect estimates of adjacent
areas? How many and which routing of roving tracks
would be needed to capture the landscape average SM
distribution? What auxiliary information is required and
can be obtained alongside it (e.g. use of counts of ther-
mal neutrons for biomass estimation) (H)?

– How do relief and vertical structure influence count
rates? Are the current corrections (altitude via pressure,
(exposure?)) sufficient for our purpose (S)?

– How can a gravity survey be planned with realistic field-
work times (not too many measurement sites) in order
to meet the requirements of capturing spatial (possibly
isolated) features relevant for the area of interest (H, S)?

– What could be the basis of selecting such gravity mea-
surement sites in terms of quantity and spatial repre-
sentativeness in combination with landscape properties
such as topography, land use, etc. (H, S)?

– Is it feasible to capture the overall mass change dynam-
ics in a representative way with a more precise but spa-
tially fixed, permanent gravity observation site (given
the fact that the installed gravimeter is more precise than
field units), and how valuable would this information be
in combination with the other methods (H)?

– For both CRNS and microwave remote sensing, SM in-
versely affects penetration depth, and vegetation den-
sity and structure affect the sensor signal. How could
the consideration of passive and active microwave re-
sponses of different bands (X, C, S, L, P) improve the
understanding of both sensors (H, A)?

On the more general level, further scientific questions de-
serve consideration.

In real-world applications, measurement error or noise of-
ten poses severe restrictions on the usability of the sensor
signal (e.g. due to short counting intervals for CRNS, at-
mospheric transmissivity for RS, and instrument noise for
HG). The presented case studies assumed perfect measure-
ment conditions, i.e. no instrument error e.g. due to atmo-
spheric conditions. This decision was made for the sake of

keeping the examples simple. It is by no means a limitation
of the concept of the vJFC. On the contrary, systematically
assessing the limits of applicability or error-affected signals
could be greatly facilitated with the vJFC.

The analysis of the presented case studies focused on the
respective virtual observations; a subsequent reconstruction
of the target variable was not addressed but will be of ut-
most interest in follow-up studies. Additionally, the poten-
tial of multi-sensor use has hardly been investigated: (how)
would RS-derived SM estimates profit from CRNS-derived
training locations? Could the robustness of CRNS signals be
increased with additional information from RS?

Generating some of the virtual observations (namely run-
ning the neutron and hydrogravimetric simulations) requires
computation times of the order of several CPU days per real-
ization. Thus, the results of the presented case studies (plus
multiple other realizations simulated alongside) required a
massive computational effort. This wealth of simulated con-
stellations may provide valuable starting points for exploring
options to find a forward operator with low computational
requirements, e.g. by training machine learning methods on
the available data.

Whatever the focus, we invite the reuse of the available
data and happily accept contributions for further compart-
ments, realizations, and simulations to increase the joint
value of the dataset.

Data

The repository (https://b2drop.eudat.eu/s/
DoFfxQx6cWFSAPq, Francke, 2024b) uses a hierar-
chical folder structure corresponding to the described
compartments, realizations, and virtual observations (see
Sect. 2.2.1–2.2.3 and Fig. 12):

– The folder “0_compartments” contains subfolders of
each compartment (e.g. “atmosphere”, “groundwater”).
Each of these subfolders contains the different scenarios
for the respective compartment (e.g. “homogeneous”,
which represents a homogeneous atmosphere).

– The folder “1_realizations” contains the compiled real-
izations of the virtual landscape, e.g. hexland_tracks, as
described in Sect. 3.

– The folders “gravimetric_simulations”, “neu-
tron_simulations”, and “rtm_simulations” contain
subfolders for each realization of the virtual landscape
(e.g. hexland_tracks), as described in Sect. 3. Each of
these subfolders contains the specific model input files
to simulate the virtual sensor and the respective model
outputs.

At each folder level, readme files describe the respective
entities in the folder and other metadata.

The top-level spreadsheet file overview_vJFC.xlsx pro-
vides central description tables as an overview of all avail-
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Figure 12. Simplified view of the folder structure containing the
vJFC data.

able compartments, realizations, and the status of their simu-
lation. Data are stored in NetCDF format, as this standard is
very suitable for large multidimensional datasets and allows
for easy interchange with numerous other software. Details
on the employed data structure in the NetCDF are described
in the top-level readme file.

Scripts and external model code

Accordingly, the scripts for the generation of the data are or-
ganized at the same three levels evident in the folder struc-
ture:

– Compartment scenarios are generated using scripts and
data located in the respective subfolder “raw”. These
scripts (mostly in R language, R Core Team, 2018) can
be used as templates for creating other scenarios of the
compartments.

– Realizations are compiled from the compartments using
the Python package YULIA v1.01. Besides its original
functionality of systematically creating numerous sets
of URANOS parameterizations, YULIA allows merg-
ing selected compartments into a realization follow-
ing vJFC conventions. YULIA is available from https:
//gitlab.com/crns4snow/yulia (Schattan, 2024).

– Model input files for simulating the virtual observations
are generated with dedicated scripts for each virtual sen-
sor. The resulting files reside in the folders with the suf-
fix *_simulations:

– The Python package YULIA (see previous section)
serves to create the files for neutron modelling with
URANOS, stored in neutron_simulations. URA-
NOS, the model used for simulating neutron flux
(see Sect. 1), is available from https://gitlab.com/
mkoehli/uranos (Köhli, 2024).

– As the basis for gravimetric_simulations, gravity
grids are generated with scripts located in the sub-
folder scripts of the respective realization. These
Python scripts build on the Python package hygra
(provided as a zip file in the same directory), which
is also used to carry out the actual gravimetric mod-
elling.

– For RS modelling storage, the scripts can be found
under the folder named rtm_simulations/Scripts.
The script is written in R (R Core Team, 2018),
executing the RTM model from SCOPE (Yang
et al., 2021; van der Tol et al., 2009) by run-
ning the respective MATLAB code through the R
package rSCOPE (see https://github.com/AlbyDR/
rSCOPE, Rocha, 2024 and https://github.com/
Christiaanvandertol/SCOPE, van der Tol, 2024).
The spectral resampling to Sentinel-2 and the vege-
tation index calculation were performed using the
hsdar R package (e.g. Lehnert et al., 2019). The
simulated NDVI, NDWI, and VWC indices for hex-
land_tracks are in the same above-cited folder.

xmisc_scripts/ contains an example script for the gen-
eration of hexland_tracks. It also contains a script for in-
teractive visual inspection and exploration of the compiled
realizations and another for generating the figures of the
case studies. These scripts depend on Corny (https://git.
ufz.de/CRNS/cornish_pasdy, Schrön, 2024a) and uranos-
tools (https://github.com/cosmic-sense/uranostools, Schrön,
2024b).
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Appendix A: Simulated spectra for realization
hexland_tracks

Figure A1. Simulated spectra of the three main land cover classes, bare soil (a), cropland (b, d), and forest (c, e), in the hexland_tracks
realization. The top row (a, b, c) does not consider SM-related water stress in the vegetation, while the bottom row (d, e) includes this effect.

Table A1. Model input values to simulate spectra according to the land cover and vegetation water stress induced by soil moisture depletion.

Biochemical and biophysical parameters (canopy and leaf traits) Land cover

Bare soil Cropland Forest

LULC Leaf area index (LAI; m2 m−2) 0a 2 6
Vegetation height (hc; m) 0a 1 20
Dry matter content (Cdm; gcm−2) 0 0.0015 0.0022

SM Root zone soil moisture (SMC; %Vol)b 0 to 0.84 0.01 to 0.84 0.01 to 0.84

SM induced Chlorophyll AB content (Cab; µgcm−2) 0 11.6 to 72.1 11.6 to 72.1
Carotenoid content (Cca; µgcm−2) 0 2.3 to 14.4 2.3 to 14.4
Leaf water equivalent layer (Cw; cm) 0 0.002 to 0.019 0.002 to 0.019
Senescent material fraction (Cs; 0–1 index) 0 0 to 0.45 0 to 0.45

Note: a 0.001 was used instead of 0 (zero) to allow us to run the SCOPE model. b SM depth z= 0 for bare soil, z=−0.3 for cropland, and z=−1
for forest.
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Figure A2. Epithermal counts measured for the hexland_tracks realization at various sensor altitudes.

Code and data availability. To facilitate reproducibility and
reusability, all parts of the vJFC (data and scripts) are
publicly available from https://doi.org/10.23728/b2share.
b79db8297f4a463996dc14c0ef897c2c (Francke, 2024a).

As we envision further growth of included data and methods, fur-
ther amendments are constantly added to the more flexible repos-
itory at https://b2drop.eudat.eu/s/DoFfxQx6cWFSAPq (Francke,
2024b). Potential users are invited to use, modify, and analyse the
included data and scripts. We also welcome any substantial contri-
bution in terms of compartments, realizations, and related virtual
observations. By enriching the pool of available data, even more
comprehensive analyses are enabled.

Author contributions. TF coordinated the study, coded the major
scripts for creating and merging the compartments, and prepared the
first draft of the manuscript and the data repository. CB prepared
all necessary data for the Agia example. ADR and MF set up the
RTM model and conducted the RS simulations. TF and MH devel-
oped the basic concept of the vJFC; MH and MS provided support
with respect to programming scripts and generating figures. MK
implemented essential extensions to the neutron model, guided sci-
entific decisions in the respective parameterizations, and conducted
the simulations. MK and MS provided computational resources.

MR and DR designed and conducted the HG simulations. PS pro-
vided the code of YULIA as a basis for the core scripts of the vJFC.
LS pushed the development of the concept in its early stages. All
authors contributed to the development of the vJFC framework and
edited the final paper.
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