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Abstract. This study presents the High Order Prediction
Environment (HOPE), an automatically differentiable, non-
oscillatory finite-volume dynamical core for shallow water
equations on the cubed-sphere grid. HOPE integrates five
key features: (1) arbitrary high-order accuracy through gen-
uine two-dimensional reconstruction schemes; (2) essential
non-oscillation via adaptive polynomial order reduction in
discontinuous regions; (3) exact mass conservation inher-
ited from finite-volume discretization; (4) automatically dif-
ferentiable and (5) GPU-native scalability through PyTorch-
based implementation. Another innovation is the develop-
ment of a two-way coupled ghost cell interpolation method.
This approach incorporates information from adjacent pan-
els on both sides of the boundary, thereby overcoming the
integration instability inherent in one-sided ghost cell in-
terpolation approaches when using high-order reconstruc-
tion. Leveraging the linear operator nature of this interpola-
tion scheme, we optimized its computation: information ex-
change across the panel boundary is achieved through a sin-
gle matrix-vector multiplication instead of iterative coupling,
without accuracy loss. Numerical experiments demonstrate
the capabilities of HOPE: The 11th-order scheme reduces
errors to near double-precision round-off levels in steady-
state geostrophic flow tests on coarse grids. Maintenance
of Rossby–Haurwitz waves over 100 simulation days with-
out crashing. A cylindrical dam-break test case confirms the
genuinely two-dimensional WENO scheme exhibits signifi-
cantly better isotropy compared to dimension-by-dimension
approaches. Moreover, normalized conservation errors in to-
tal energy, total potential enstrophy, and total zonal angu-
lar momentum significantly reduce with increasing order of

the reconstruction scheme. Two implementations are devel-
oped: a Fortran version for convergence analysis and a Py-
Torch version leveraging automatic differentiation and GPU
acceleration. The PyTorch implementation maps reconstruc-
tion and quadrature operation to 2D convolution and Einstein
summation respectively, achieving about 2× speedup on sin-
gle NVIDIA RTX3090 GPU versus Dual Intel E5-2699v4
CPUs execution. This design enables seamless coupling with
neural network parameterizations, positioning HOPE as a
foundational tool for next-generation differentiable atmo-
sphere models.

1 Introduction

Recent years have witnessed a surge in research integrating
numerical weather prediction (NWP) with artificial intelli-
gence (AI) techniques. A prominent advancement in this do-
main is the hybrid modeling paradigm, which synergizes the
complementary strengths of both approaches. This frame-
work implements numerical dynamical cores within AI soft-
ware platforms such as TensorFlow or PyTorch, thereby
enabling seamless integration of AI models into the nu-
merical solution process for atmospheric dynamical partial
differential equations (PDEs). Unlike the fully surrogated
methods, such as Pangu-Weather (Bi et al., 2022), FengWu
(Chen et al., 2023), GraphCast (Lam et al., 2023), Nowcast-
Net (Zhang et al., 2023), hybrid model integrates traditional
PDE-based dynamical cores with neural network (NN)-based
physical parameterizations. The auto-differentiable nature
of the dynamical core enables training losses to propagate
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through the entire model during backpropagation, allowing
the NN-based parameterization module to access more com-
prehensive residual information. NeuralGCM (Kochkov et
al., 2024) exemplifies this hybrid approach by combining
a spectral numerical dynamical core with NN-based physi-
cal parameterizations. The governing equation-based dynam-
ical core imposes rigorous physical constraints within the
framework, effectively mitigating the blurriness characteris-
tic of purely data-driven models. Furthermore, NeuralGCM
demonstrates superior power spectra performance compared
to conventional data-driven meteorological models. While
the implementation of a spectral dynamical core in Neural-
GCM theoretically enables infinite-order accuracy, the global
nature of spectral expansion restricts the method’s scala-
bility. Furthermore, in contrast to finite-volume algorithms
which inherently ensure strict mass conservation, achieving
strict mass conservation with NeuralGCM’s spectral dynam-
ical core requires supplementary modifications.

To address these shortcomings, we present the High Order
Prediction Environment (HOPE) dynamical core with fol-
lowing contributions:

1. A new-generation shallow-water model architecture in-
tegrating:

i. Arbitrary high-order accuracy (up to 13th-order
verified) via tensor product polynomial (TPP).

ii. A finite-volume scheme requiring only informa-
tion from a local stencil surrounding each cell to
perform state updates, enabling massively parallel
scalability.

iii. Inherent mass conservation from finite-volume dis-
cretization.

iv. A WENO (Weighted Essentially Non-Oscillatory)
based, adaptive polynomial order reduction for es-
sential non-oscillation.

2. A novel two-way coupled ghost cell interpolation
scheme achieving:

i. Arbitrary odd-order convergence through central
stencil interpolation.

ii. Single sparse matrix-vector operation replacing it-
erative procedures (Eq. A.12).

iii. Overcome numerical instability beyond 7th-order
accuracy.

3. PyTorch-based high performance differentiable imple-
mentation featuring:

i. GPU acceleration through convolution/einsum op-
erator in PyTorch, 2× speedup on single RTX3090
GPU vs. Dual Intel Xeon 2699v4 CPUs.

ii. Automatic ghost cell interpolation matrix genera-
tion via native auto-differentiation.

iii. Seamless integration with NN modules for hybrid
modeling.

In the following part of the introduction, we intro-
duce the relevant work on constructing the HOPE model, and
from this, we elaborate on the challenges and motivations for
establishing the algorithm of the dynamical core. High-order
accuracy is an extremely appealing trait for the design of a
dynamical core, particularly in high-resolution atmospheric
simulations. A dynamical core model with high-order accu-
racy produces significantly less simulation error in smooth
regions compared to a low-order model. Furthermore, even
when the resolution is equivalent or coarser, a high-order
model is capable of resolving finer details than a low-order
one.

A high-order finite volume model was developed on cubed
sphere, named MCORE (Ullrich et al., 2010; Ullrich and
Jablonowski, 2012). High-order reconstruction requires in-
formation from cells external to panel boundaries (com-
monly termed ghost cells). Due to coordinate discontinu-
ities across the six panels of the cubed-sphere grid, MCORE
implements an interpolation scheme for ghost cells based
on one-side information. This approach employs a two-
dimensional reconstruction stencil to interpolate prognostic
variables onto Gaussian quadrature points within each cell,
followed by integration to obtain cell-averaged values. The
authors assert that MCORE’s convergence rate can theoret-
ically be of arbitrary order. However, during the design of
the ghost cell interpolation for HOPE, we initially attempted
to use a one-sided reconstruction stencil similar to MCORE.
While stable integration was achieved with the 3rd-, 5th-
, and 7th-order schemes, the model became unstable when
schemes of 9th-order or higher were used. In other words,
for HOPE, overcoming the 7th-order accuracy limitation ne-
cessitated the development of a new ghost cell interpolation
scheme.

Therefore, we designed a bilateral interpolation algorithm.
This algorithm employs an iterative procedure that incorpo-
rates information from both adjacent panels of the cubed-
sphere grid simultaneously. This enabled stable model inte-
gration even with higher-order schemes. Though not detailed
in the paper, our testing confirmed stable integration even at
13th-order accuracy.

In this article, we devise the reconstruction based on ten-
sor product polynomial (TPP). When the stencil width is k,
our method achieves kth order accuracy, surpassing MCORE
by one order of accuracy with the same stencil width. In ad-
dition, we have developed a new class of ghost interpola-
tion schemes that abandon the use of one-sided stencils and
instead adopt central stencils. This new approach enables
the scheme to overcome the non-physical oscillations aris-
ing from interpolation at panel boundaries. Our method al-
lows for arbitrary order of accuracy while the field is smooth
enough, and we have verified this by testing up to the 11th or-
der.
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Nevertheless, higher-order reconstruction does not invari-
ably yield superior simulation outcomes, as elucidated by an-
alyzing the properties of the Taylor series remainder term.
The accuracy of approximating a function via a Taylor series
requires two essential conditions: (1) the existence of higher-
order derivatives of the function at the expansion point, and
(2) the convergence of the series within the relevant domain.
When the field exhibits poor continuity – where higher-order
derivatives either do not exist or lead to increasing residuals
with series order – employing higher-order approximations
can introduce significant errors. Therefore, for reconstruction
schemes based on polynomial functions, high-order accuracy
should only be adopted when the field is sufficiently smooth.
Conversely, for discontinuous or poorly continuous fields, re-
ducing the reconstruction order is necessary to maintain nu-
merical stability and effectiveness.

The Weighted Essentially Non-Oscillatory (WENO)
scheme is an adaptive limiter widely employed in com-
putational fluid dynamics (CFD) to address this challenge.
Originally developed for one-dimensional problems (Liu
et al., 1994), WENO was later extended to two dimen-
sions by Shi et al. (2002) using two distinct approaches:
a genuinely two-dimensional (WENO2D) scheme and a
dimension-by-dimension reconstruction. In this work, we
implement WENO2D scheme to enforce the non-oscillatory
property. This approach effectively suppresses non-physical
oscillations near sharp discontinuities while preserving high-
order accuracy in smooth regions.

The remainder of this paper is organized as follows:
Sect. 2 details the governing equations on the cubed-
sphere grid. Section 3 presents the numerical methods, in-
cluding reconstruction schemes, panel boundary treatment
method, and temporal marching scheme. Section 4 focuses
on HOPE’s high-performance implementation leveraging
PyTorch’s built-in operators for GPU acceleration. The adop-
tion of PyTorch simultaneously enables automatic differenti-
ation capabilities through its computational graph construc-
tion. Section 5 validates model performance through stan-
dard test cases, followed by conclusions and future directions
in Sect. 6.

2 Governing equation on cubed sphere

The cubed-sphere grid partitions the spherical domain into
six panels, each with a structured and rectangular computa-
tional space. This configuration facilitates high-order spatial
reconstruction and efficient massive-thread parallelism (see
Fig. 1). Early work on solving the primitive equations on the
cubed-sphere grid dates back to Sadourny (1972). In recent
decades, the cubed-sphere grid has been widely adopted in
high-order-accuracy atmospheric models. For instance, Chen
and Xiao (2008) developed a shallow water model using
the multi-moment constrained finite volume method on the
cubed sphere, achieving 3rd–4th order accuracy. Ullrich et

al. (2010) designed a high-order finite volume dynamical
core based on this grid, Nair et al. (2005a, b) implemented
a discontinuous Galerkin model on the cubed sphere.

In this study, we also employ the equiangular cubed-
sphere grid. Although the mesh is non-orthogonal, the com-
putational space can still be treated as a rectangular grid by
adopting a generalized curvilinear coordinate system. In this
section, we present the shallow water equations in gener-
alized curvilinear coordinates and discuss specialized treat-
ments for topography.

Shallow water equation set on gnomonic equiangular
cubed sphere grid is written as
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The gnomonic equiangular coordinates are represented
by (x, y, p), where (x,y) ∈

[
−
π
4 ,

π
4

]
are local equiangular

coordinate of each panel and p = 1, 2, 3, . . . , np is panel in-
dex as shown in Fig. 1b; np = 6 is the number of panels.
φ = gh is geopotential, h is fluid thickness, u and v are the
contravariant wind components in the x and y directions, re-
spectively, g is gravity acceleration. ψM, ψC, ψB are the met-
ric term, Coriolis term and bottom topography influence term
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where X = tanx,Y = tany,δ =
√

1+X2+Y 2,
f = 2�sinθ is Coriolis parameter, φs = ghs is surface
geopotential, and hs is surface height.

sinθ =

 Y/δ, p ∈ {1,2,3,4}
1/δ, p = 5
−1/δ, p = 6

(5)

The contravariant metric on cubed-sphere is
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The covariant metric
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Figure 1. Cubed sphere grid. (a) Physical space; (b) computational space. Six panels are identified by indices from 1 to 6.

and the metric determinant is given by

√
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√
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)
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δ3 . (8)

r is radius of earth.
The contravariant wind vectorV = (u,v) can be convert to

wind vector on spherical LAT/LON coordinate V s = (us,vs)

by the following formula(
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)
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(9)

where J is a 2×2 conversion matrix, the expressions are dif-
ferent in each panel
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where λ, θ are longitude and latitude. The relation between J
and Gij is

Gij = JT J. (12)

To discretize and solve the equation system, we first per-
form reconstruction on the prognostic variables to obtain
their values at the cell interfaces. These reconstructed values
are then used within a Riemann solver to compute the numer-
ical fluxes. During the numerical experiments, we observed
that reconstructing

√
Gφ directly leads to non-physical oscil-

lations. This occurs because topography may induce discon-
tinuities in the variable φ, while high-order reconstruction
fundamentally requires smoothness of the field.

To address this, inspired by the approach mentioned by
Ii and Xiao (2010), we instead reconstruct

√
Gφt , where

φt = φ+φs is total geopotential. The detailed formulation
of this reconstruction method is presented in Sect. 3. Cru-
cially,

√
Gφt is used exclusively during the reconstruction

step. The prognostic variable remains
√
Gφ to ensure exact

mass conservation.
The momentum equations need to be modified as follow
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and the bottom topography influence term is now expressed
as
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The reconstruction variables are (
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We write the governing equation set to vector form
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Figure 2. (a) Adjacent area of panels 1, 4 and 5. (b) 5×5 reconstruction stencil nearby panel corner is represented by shade. The cell contains
red dot is the target cell on panel 4; the magenta points are overlapped GQPs shared by panel 1 and panel 5; red solid lines are boundary
of panel 4, red dash lines are extension line of panel 4 boundary line. A and C are points on dash line, B is the upper right corner point of
panel 4.

3 Numerical discretization

The finite volume method computes the temporal tendency
of cell-averaged quantities by evaluating the net flux across
cell interfaces. The interfacial flux is obtained through Gaus-
sian quadrature, where the field values at quadrature points
are reconstructed spatially and then processed by a Riemann
solver to determine the flux magnitude.

In this section, we present two distinct spatial reconstruc-
tion approaches: (1) a two-dimensional tensor product poly-
nomial (TPP) method, and (2) a two-dimensional weighted
essentially non-oscillatory (WENO2D) scheme based on ten-
sor product polynomials. Each reconstruction yields two po-
tential values at every Gaussian quadrature point (GQP).
These values are then resolved into a single flux value us-
ing the Low Mach number Approximate Riemann Solver
(LMARS) (Chen et al., 2013) or AUSM+-up (Liou, 2006;
Ullrich et al., 2010). Even with an approximate Riemann
solver like LMARS, the scheme preserves high-order be-
cause it combines high-order reconstructions from both sides
of the cell interface to determine the flux. Finally, the total
flux across each cell edge is computed by applying linear
Gaussian quadrature integration along the interface.

According to the finite volume scheme, average Eq. (15)
on cell i, j , we have
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∂t
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F
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2 ,j
−F
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Figure 3. Function points on cell. Red points are edge quadra-
ture points (EQP) or called flux points, green points are inner cell
quadrature points (CQP).

G
i,j− 1

2
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1
1x

∫
e

j−

1
2

Gdx, G
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2
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where �i,j represents the region overlapped by cell (i, j ),
e
i− 1

2
, e
i+ 1

2
, e
j− 1

2
, e
j+ 1

2
are left, right, bottom, top edges of

cell (i, j ).
The physical interpretation of equation Eq. (17) is that the

average tendency of prognostic field q within cell (i, j ) is
governed by the average net flux and average source. In this
study, we calculate these averages using Gaussian quadra-
ture, the function points within each cell are illustrated in
Fig. 3, the EQPs are share by adjacent cells, and CQPs are
exclusive for each cell.
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Average on edge by 1D scheme:

F
i+ 1

2 ,j
≈

me∑
ξ=1

wξF ξ = w
−→
F (21)

where me is the number of quadrature points on each edge,
w = (w1, w2, . . ., wme) is the 1D Gaussian quadrature co-
efficient vector.

−→
F = (F 1, F 2, . . ., Fme)

T is the vector of
flux, the elements of

−→
F represent the flux on EQPs.

Average in cell by 2D scheme:
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mc∑
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−→
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where mc is the number of quadrature points on each cell,
W = (W1, W2, . . ., Wmc) is the 2D Gaussian quadrature co-
efficient matrix,

−→
S = (S1, S2, . . ., Smc)

T is the vector of
source term, the elements of S represent the source value on
GQPs, superscript T stands for transpose matrix.

HOPE employs an equiangular cubed-sphere grid, where
each panel undergoes uniform angular discretization into
nc× nc cells. In the computational space (equiangular coor-
dinates), each cell spans an angular interval of π

2nc
, therefore

1x =1y =
π

2nc
. (23)

This uniformity ensures that all cells are geometrically
identical in the computational space, thereby avoiding the
need for cell-specific treatment during reconstruction studies.
In the following part of this section, we set a new computa-
tional space for reconstruction process. The local coordinate
system (x̂, ŷ) is established such that within each reconstruc-
tion stencil, the origin (0, 0) is located at the stencil center,
the central cell spans [−0.5, 0.5] in both x̂ and ŷ directions,
as shown in Fig. 4a. All of the cells have the same size in x̂,
ŷ directions:

1x̂ =1ŷ = 1. (24)

On the cubed-sphere grid, a fixed reconstruction scheme
yields consistent stencils across all cells. This structural ho-
mogeneity renders the reconstruction operation computation-
ally equivalent to two-dimensional convolution, thereby en-
abling efficient GPU acceleration through PyTorch’s built-in
conv2d function.

3.1 Tensor product polynomial (TPP) reconstruction

HOPE employs genuinely two-dimensional reconstruction,
simultaneously incorporating information in both spatial di-
mensions to minimize dimensional splitting errors. For com-
putational efficiency, reconstruction algorithms using square
stencils are computationally equivalent to convolution oper-
ations. This equivalence allows efficient implementation via
PyTorch’s conv2d function for acceleration.

To construct genuinely 2D reconstructions, the functional
form of the reconstruction basis must be selected. A bivari-
ate polynomial of degree d contains (d+1)(d+2)

2 terms. As
illustrated in Fig. 4b, the 6 terms of a bivariate quadratic
polynomial (d = 2) are insufficient to cover a square sten-
cil. To address this, we adopt Tensor Product Polynomials
(TPP) as basis functions. We denote a TPP function con-
taining n× n terms as TPPn. Determining the coefficients
of TPPn requires information from a n× n block of cells.
When using a TPP reconstruction stencil of size n×n, HOPE
achieves fifth-order accuracy when simulating smooth flow
fields. We therefore designate a TPP reconstruction stencil of
size n× n as an nth order TPP stencil, the 3rd and 5th order
TPP stencils are shown in Fig. 4c and d.

A TPPn polynomial is expressed as

p
(
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)
=

n∑
ĵ=1

n∑
î=1

ak x̂
î−1ŷ ĵ−1

=

N∑
k=1

akck
(
x̂, ŷ

)
(25)

where n is width of stencil. ak is the coefficient of each
term, the term index k = î+ n(ĵ − 1), and ck(x̂, ŷ)= x̂α ŷβ ,
α = k− int

(
k−1
n

)
n− 1, β = int

(
k−1
n

)
, “int” is equivalent

to Fortran’s intrinsic function int( ) that truncates to in-
teger values. N = n2 is the cell number in stencil and
also the term number of the TPP. We define column vec-
tors c(x̂, ŷ)= {ck(x̂, ŷ)|k = 1, 2, 3, . . ., N} and a = {ak|k =
1, 2, 3, . . ., N}, the point value on (x̂, ŷ) can be written as

p
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)
= c

(
x̂, ŷ

)
· a. (26)

The volume integration average (VIA) of prognostic field q
on cell �i,j is represented by

qi,j =
1

1x̂i,j1ŷi,j

∫ ∫
�i,j

p
(
x̂, ŷ

)
dx̂dŷ. (27)

1x̂i,j , 1ŷi,j are length of edges x̂, ŷ of cell �i,j in compu-
tational space. The VIA value qi on each cell is predicted
by time integration, we wish to determine the coefficient
vector a by these VIA values. HOPE employs an equian-
gular cubed-sphere grid, wherein each cell in computational
space can be considered a perfectly identical square, accord-
ing to Eq. (24), we may assume without loss of generality
that 1x̂i,j =1ŷi,j = 1, and Eq. (27) becomes

qi,j =

∫ ∫
�i,j

p
(
x̂, ŷ

)
dx̂dŷ =

∫ ∫
�i,j

c ·adx̂dŷ = ψ i,j ·a (28)

where

ψ i,j =

∫ ∫
�i,j

cdx̂dŷ =



∫ ∫
�i,j

c1dx̂dŷ∫ ∫
�i,j

c2dx̂dŷ

...∫ ∫
�i,j

cNdx̂dŷ


,
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Figure 4. Reconstruction coordinate and polynomial terms on stencils. (a) Local reconstruction coordinate (the red points denote cell centers);
(b) 2nd degree polynomial stencil; (c) TPP3 stencil; (d) TPP5 stencil.

combining N cells. We have following linear system

Aa = q (29)

A=


ψT1
ψT2
...

ψTN

 , q =

q1
q2
...

qN

 (30)

and polynomial coefficient a can be obtain by solving
Eq. (29).

a = A−1q (31)

The reconstruction values on M points can be obtained by
following formula

p = Ca = CA−1q = Rq (32)

where p =


p
(
x̂1, ŷ1

)
p
(
x̂2, ŷ2

)
...

p
(
x̂M , ŷM

)
 , C=


cT1
cT2
...

cTM

, cTm =

cT (x̂m, ŷm), m= 1, 2, . . ., M , superscript T stands for

transpose matrix, (x̂m, ŷm) represents the mth function point
on target cell. The reconstruction matrix

R= CA−1. (33)

In practical implementation, the reconstruction matrix R
needs to be computed only once during model initialization
and stored in memory. Crucially, a fundamental advantage of
our cubed-sphere grid dynamical core implementation lies in
employing a globally shared reconstruction matrix R. This
unification signifies that a single instance of R applies iden-
tically to all grid cells, thereby significantly reducing mem-
ory/VRAM requirements, and enabling straightforward uti-
lization of PyTorch’s conv2d for accelerated reconstruction.
For example, the TPP reconstruction procedure can be di-
rectly formulated as a two-dimensional convolutional opera-
tion using R as the convolution kernel.

3.2 Genuine two-dimensional WENO

Weighted Essentially Non-Oscillatory (WENO) represents
an adaptive algorithm that dynamically preserves high-order
approximation accuracy in smooth flow regions while au-
tomatically degenerating to robust low-order reconstruc-
tion near discontinuities for effective shock capturing. Shi
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Figure 5. Stencils of 3rd order WENO 2D. The high order sten-
cil contains cells No. 1–9, blue ones represent the cells in sub-
stencils (1)–(4).

et al. (2002) mentioned two different approaches for con-
structing a fifth-order finite volume WENO scheme: the
“Genuine 2D” method and the “Dimension by Dimension”
method.

For HOPE, within the Genuine 2D framework, nth order
accuracy WENO scheme employs a n×nmaster stencil par-
titioned into (n+1)2

4 distinct (n+1)
2 ×

(n+1)
2 sub-stencils, for ex-

ample:

a. WENO3: third-order reconstruction utilizes a 3× 3 cell
stencil that decomposes into four 2× 2 sub-stencils.

b. WENO5: fifth-order accuracy employs a 5× 5 master
stencil partitioned into nine distinct 3× 3 sub-stencils
(complete schematic representations of these decompo-
sition strategies are provided in Figs. 5 and 6).

The scheme’s theoretical order of accuracy fundamentally
depends on the proper determination of optimal linear
weights for the multidimensional stencil combination. These
weights, when correctly derived, enable the weighted super-
position of sub-stencils to recover full high-order accuracy in
smooth solution regions. While Shi et al. (2002) indicated the
theoretical possibility of computing these weights through
Lagrange interpolation basis analysis, they omitted spe-
cific implementation details. In this section, we present the
methods for constructing genuine two-dimensional WENO
(WENO 2D) schemes using least squares method.

We construct WENO 2D based on TPP and square sten-
cil. As mentioned in previous section, a nth order stencil
contains N = n2 cells, and the full stencil (also called high-
order stencil) width is h= n. Decomposing the high-order

stencil into s =
(
n+1

2

)2
sub-stencils, there are sc = s cells

in each sub-stencil (also called low-order stencil), and the
sub-stencil width is l = n+1

2 . We define pH as the high- or-
der reconstruction polynomial, and pi represents ith sub-
stencil reconstruction polynomial, they share the same ex-
pression as Eq. (25) with different stencil width and co-
efficient a. For the reconstruction point (x̂, ŷ), suppose

Figure 6. Stencils of 5th order WENO 2D. The high order sten-
cil contains cells No. 1–25, blue ones represent the cells in sub-
stencils (1)–(9).

pH(x̂, ŷ) is the reconstruction value of high-order stencil,
the reconstruction values of sub-stencils are stored in vec-
tor p = (p1(x̂, ŷ),p2(x̂, ŷ), · · ·, ps(x̂, ŷ))

T . The intention of
constructing the optimal linear weights is to determine the
unique weights γ = (γ1, γ2, · · ·, γs), such that

pH = RHq = γ ·p (34)

where the elements of vector q = (q1, q2, · · ·, qN )
T repre-

sent VIA of each cell in high-order stencil. RH = (rHj ),
j = 1, 2, . . ., N is the reconstruction matrix of high-order
stencil.

It should be noted that Eq. (34) appears overdetermined at
first glance. However, subsequent analysis demonstrates that
the solution obtained via the least squares method satisfies
Eq. (34) exactly. Specifically, in the case of square stencils,
the rank of the system defined by Eq. (34) becomes s, result-
ing in a unique solution for the linear system. This finding
aligns with observations presented in Hu and Shu (1999) re-
garding their research on Triangular Meshes.

The computation of γ requires the integration of both
high-order and low-order reconstruction matrices into a uni-
fied linear system. For each sub-stencil i we define the recon-
struction matrix Ri = (rik), k = 1, 2, . . ., sc (computed via
Eq. 33). and RLi = (rLij ), j = 1, 2, . . ., N is the extension
matrix of Ri . The matrix relationship is expressed as

(Ri)1×sc(E)sc×N =
(
RLi

)
1×N (35)

where the subscripts denote matrix dimensions. The
correspondence matrix E= (eij ), i = 1, 2, . . ., sc; j =

1, 2, . . ., N encodes the cell relationships between stencils:
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when the ith cell in low-order stencil is the same as the
j th cell in high order stencil, eij = 1, otherwise, eij = 0.

Substitute Eq. (32) into Eq. (34), yield

RHq =

s∑
i=1

RLiγiq. (36)

We set RL = (RL1 , RL2 , . . ., RLs)
T , Eq. (36) becomes

RLγ = RH. (37)

The unknown optimal weights vector γ can be determined
by following least square procedure

γ =
(

RTL RL

)−1
RTL RH. (38)

However, the elements of γ could be negative, which would
cause unstable. A split technique mentioned by Shi et
al. (2002) was adopted to solve this problem. The optimal
weights can be split into two parts:

γ̃+ =
θ |γ | + γ

2
, γ̃− = γ+− γ (39)

where the constant θ = 3. For keeping the sum of weights
to 1, γ̃± and new value of γ± can be rescaled as:

σ± =

s∑
i=1

γ̃±i (40)

and

γ±i =
γ̃±i

σ±
i = 1, 2, . . ., s (41)

where γ̃±i is the ith element of γ̃±, γ±i is the ith element
of γ±.

The WENO scheme adaptively assigns nonlinear weights
ωi , (i = 1, 2, . . ., s) to each candidate stencil to suppress un-
physical oscillations during high-order reconstruction. Es-
sentially, it gives greater weight to stencils identified as
smooth over the local cell, while suppressing the influence
of those containing discontinuities by assigning them smaller
weights. Several nonlinear weighting schemes have been de-
veloped to meet these criteria, including WENO-JS (Jiang
and Shu, 1996), WENO-Z (Borges et al., 2008), WENO-
Z+ (Acker et al., 2016), WENO-Z+M (Luo and Wu, 2021),
among others.

In this work, we employ the WENO-Z formulation as our
baseline scheme. While most existing WENO schemes were
originally developed for one-dimensional problems, we pro-
pose a two-dimensional extension of WENO-Z through mod-
ification of τ , a crucial coefficient that governs the scheme’s
higher-order accuracy properties.

For stencil i the nonlinear weight is given as

ω±i =
α±i
s∑
i=1
α±i

(42)

α±i = γ
±

i

[
1+

(
τ

βi + ε

)2
]

(43)

τ =
2

(s− 1)s

s−1∑
η=1

s∑
ψ=η+1

∣∣βψ −βη∣∣ (44)

where ε = 10−14 is introduced to prevent division by zero.
The smooth indicators βi quantify the smoothness of recon-
struction functions within the target cell. We employ a for-
mulation analogous to that described in Zhu and Shu (2019).

As mentioned in Eq. (24), all cells participating in re-
construction within HOPE’s computational space can be
treated as identical unit squares with 1x̂ =1ŷ = 1. Thus,
the smooth indicator for sub-stencil i is expressed as:

βi =

l∑
ζ=1

∫ ∫
�

[
∂ζ

∂x̂ζ1∂ŷζ2
pi
(
x̂, ŷ

)]2

dx̂dŷ (45)

where ζ1+ ζ2 = ζ and ζ > 0, ζ1, ζ2 ∈ [0,n], and l is the sub-
stencil width.

The reconstruction value on point (x̂, ŷ) is expressed by:

q
(
x̂, ŷ

)
=

s∑
i=1

(
σ+ω+i − σ

−ω−i

)
pi
(
x̂, ŷ

)
. (46)

3.3 Treatment of the panel boundaries

The cubed sphere grid comprises 12 panel boundaries, and
the flux across the interface between any two panels must
be computed at the quadrature points situated on the edges
of the boundary cells, as depicted in Fig. 7a. However, a
challenge arises because the coordinates across these panel
boundaries are discontinuous. Given that the TPP reconstruc-
tion necessitates a square stencil, the values of the cells out-
side the domain (referred to as ghost cells) must be computed
through interpolation within the adjacent panel, as illustrated
in Fig. 7b. While Ullrich et al. (2010) proposed a one-sided
interpolation scheme, our testing with the HOPE model re-
vealed that using a similar one-sided ghost cell interpola-
tion approach around panel boundaries resulted in instability
when scheme exceeded 7th order of accuracy. To address this
limitation, we redesigned the ghost cell interpolation scheme
to incorporate information from both panels adjacent to the
boundary. This modified approach ensures stable integration
even for very high-order schemes, as validated in tests up to
13th-order accuracy.

3.3.1 Ghost cell interpolation

To achieve arbitrary high-order accuracy, we propose a ghost
cell interpolation scheme that incorporates information from
both sides of the panel boundary. Since the ghost cell values
are inherently unknown prior to interpolation, our approach
involves an initial estimation through an iterative process.
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Figure 7. Points and cells close to panel boundary. (a) Flux points (red points) on the interface between Panel 1 and Panel 4, the flux across
each panel at these points are determined by Riemann solver, which merges the reconstruction outcomes from both panels into a single flux
value; (b) ghost cells (shaded cells) out of Panel 4 boundary, with green points representing the GQPs in these cells; (c) cells requirement for
5th order ghost cell interpolation stencil, red points represent the GQPs located in the ghost cell on Panel 4, the blue shaded region represents
the TPP reconstruction stencil (on Panel 1) to interpolate these red GQPs.

Specifically, the method iteratively performs ghost cell in-
terpolation until the increments of the cell values converge to
within a specified tolerance.

Through mathematical analysis (detailed in the Ap-
pendix), we demonstrate that this iterative process can be ex-
pressed as a linear mapping, thereby eliminating the need for
actual iterations. However, direct computation of the map-
ping matrix requires inversion of a large matrix, which poses
significant computational and memory challenges. To ad-
dress this, we implement the iterative interpolation process
using PyTorch and leverage its automatic differentiation ca-
pability to efficiently obtain the interpolation matrix.

The complete methodology, as derived in the Appendix,
proceeds as follows:

1. Initialization: all ghost cell values are initialized to zero
(denoted as g(0) = 0, where the superscript indicates the
iteration number).

2. Interpolation: the Gaussian quadrature points (GQPs) in
the ghost cells are interpolated using the Tensor Product
Polynomial (TPP) stencil. For instance, considering two
adjacent panels (Fig. 7a), any out-domain cell in Panel 4
(shaded cell in Fig. 7b) contains GQPs that physically
reside in Panel 1. These GQPs are interpolated using
the TPP stencil shown in Fig. 7c, which incorporates
relevant ghost cells from Panel 1.

3. Update and convergence check: after interpolating all
GQPs, the ghost cell values are updated via Gaussian
quadrature (Eq. 22), yielding g(1). The L2-norm resid-
ual r(k) =

∥∥g(k+1)
−g(k)

∥∥
2 is then computed. Steps 2–

3 repeat until r(k) < ε, where ε = 1× 10−14 for double
precision and ε = 1×10−5 for single precision. In prac-

tice, convergence typically occurs within 10 iterations,
so we fix the iteration count at 10 for consistency.

This process establishes a linear mapping G : q→ g

from known cell values to ghost cell values. As proven in
Eq (A12), the mapping’s linearity implies that G = ∂g

∂q
forms

a matrix, which we efficiently compute using PyTorch’s au-
tograd functionality. This approach avoids explicit matrix in-
version while maintaining numerical precision.

It is important to note that overlapping GQPs occur at the
corner positions of the cubed-sphere grid, as illustrated by
the magenta points in Fig. 2b. These points lie on the inter-
face shared by adjacent panels (e.g., Panel 1 and Panel 5).
Consequently, during ghost value interpolation, two distinct
interpolated values are obtained at these overlapping points
– one from each adjoining panel. The final interpolated value
is computed as the average of these two values. Since the in-
terpolation performed on each individual panel is high-order,
the approximation order is preserved when taking this aver-
age.

G is a sparse matrix containing many zero entries. To
avoid unnecessary memory costs, we adopt the Compressed
Sparse Row (CSR) format for storing G. Furthermore, the
size of G is extremely large-making direct application of
“torch.autograd.functional.jacobian” to generate G compu-
tationally infeasible. Our implementation for generating
ghost cell interpolation matrix achieves significant acceler-
ation and substantially reduces VRAM demand compared to
PyTorch’s native “torch.autograd.functional.jacobian” func-
tion. The key optimizations are:

1. Parallel Multi-Row Computation: utilizing
“torch.vmap” to encapsulate “torch.func.vjp”, en-
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abling simultaneous computation of multiple matrix
rows.

2. CSR Compression and Incremental Disk Storage:

a. Employing Compressed Sparse Row (CSR) for-
mat for matrix representation.

b. Implementing incremental disk storage, where
computed data batches are immediately written to
disk after processing, avoiding prolonged VRAM
retention.

3. Tunable Batch Processing: adjusting the number of
rows processed per iteration maximizes GPU utiliza-
tion while respecting VRAM constraints (e.g., 24 GB
on NVIDIA RTX 3090).

It should be note that the model grid does not change dur-
ing simulation, the ghost interpolation matrix G needs to be
calculated only once in initialization progress.

3.3.2 Fields conversion between panels

Due to the differing coordinate systems across panels, field
variables must be appropriately transformed when transfer-
ring information between adjacent panels. To illustrate this
process, we consider the interface between Panel 1 and
Panel 4, as depicted in Figs. 2a and 7a. Although flux points
are shared between the two panels, their coordinate represen-
tations are discontinuous across the interface.

To ensure consistency, two key transformations are re-
quired:

1. Metric reset for mass variables: the mass-related prog-
nostic quantities must be recomputed in the target
panel’s coordinate system to maintain metric consis-
tency.

2. Wind vector transformation: velocity components (or
other vector quantities) must be converted from the
source panel’s local coordinate frame to that of the tar-
get panel.

This coordinate conversion ensures proper continuity and
physical consistency when interpolating or exchanging data
across panel boundaries.

Suppose q1 = [(
√
Gφ)1, (

√
Gφu)1, (

√
Gφv)1]

T and
q4 = [(

√
Gφ)4, (

√
Gφu)4, (

√
Gφv)4]

T represent the fields
on panel 1 and 4. The mass field conversion from panel 4 to
panel 1 is expressed by

(
√
Gφ)14 =

√
G4
√
G1
(
√
Gφ)1 (47)

the subscript represents the target panel and the superscript
stands for source panel.

The transformation of momentum vectors between panels
is performed in two sequential steps to maintain proper ten-
sor consistency. The contravariant momentum components

in Panel 1 are first projected onto the global spherical coordi-
nate system using the transformation matrix J, as defined in
Eq. (10). The resulting spherical momentum components are
then transformed into the contravariant representation spe-
cific to Panel 4, ensuring compatibility with the target panel’s
local coordinate system. (√

Gφus

)
1(√

Gφvs

)
1

= J1

[
(
√
Gφu)1

(
√
Gφv)1

]
(48)

[
(
√
Gφu)4

(
√
Gφv)4

]
= J−1

4

√
G4
√
G1

 (√
Gφus

)
1(√

Gφvs

)
1

 (49)

where J1 is the J matrix on panel 1, J−1
4 is the inverse ma-

trix of J on panel 4. (us, vs) are zonal wind and meridional
wind, (u, v) are contravariant wind components. Since the
vector conversion is linear process, Eqs. (48) and (49) can be
merged into following equation[
(
√
Gφu)4

(
√
Gφv)4

]
= C1,4

[
(
√
Gφu)1

(
√
Gφv)1

]
(50)

where matrix C1,4 =
√
G4√
G1

J−1
4 J1, the subscript stands for

converting vector form panel 1 to panel 4.
The mass and vector are also need to be converted on

GQPs in the same manner.

3.4 Riemann solver

Following spatial reconstruction, discontinuous solutions
arise on either side of each flux point location. Since the
majority of atmospheric flow speeds correspond to small
Mach numbers, we adopt the Low Mach number Approxi-
mate Riemann Solver (Chen et al., 2013) and AUSM+-up
(Liou, 2006; Ullrich et al., 2010) as Riemann solvers to de-
termine the flux at the edge quadrature points (EQPs).

3.4.1 Low Mach number approximate Riemann
solver (LMARS)

Spatial reconstruction gives the left and right state vector,

qL =

 (
√
Gφ)L

(
√
Gφu)L

(
√
Gφv)L

 , qR =

 (
√
Gφ)R

(
√
Gφu)R

(
√
Gφv)R

 . (51)

First of all, we convert the contravariant wind u to physical
speed u⊥ that is perpendicular to the cell edge.

u⊥ =
u
√
G
ii
, i =

{
1, x direction
2, y direction (52)

For example, in x direction, u⊥ = u
√
G

11 , and there is no sum-

mation over i in Eq. (52).
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The wind speed m∗ and geopotential φ are calculated by

m∗ =
1
2

(
u⊥L + u

⊥
R −

φR−φL

c

)
(53)

φ =
1
2

[
φL+φR− c

(
u⊥R − u

⊥
L

)]
(54)

c =
cL+ cR

2
(55)

cL =
√
φL, cR =

√
φR. (56)

c is the phase speed of external gravity wave, the sub-
script “L”, “R” represent the left and right side of cell edge.

Oncem∗ is determined, we convert it back to contravariant
speed by

m=m∗
√
G
ii
. (57)

We define the pressure-driven flux as

P =
1
2

√
Gφ2

t . (58)

The flux across the cell edge is then given by

F =
1
2
m
[(
qL+ qR

)
− sign(m)

(
qR− qL

)]
+P (59)

P =

 0
G1iP

G2iP

 , i = { 1, x direction
2, y direction . (60)

For calculation of G (the flux in y direction) the method is
similar.

3.4.2 Advection upstream splitting method for all
speeds (AUSM+-up)

The differences between AUSM+-up and LMARS lie in the
method of determining the wind speed m∗ and pressure-
driven flux P . In AUSM+-up

m∗ = cM (61)

where c denotes the gravity phase speed defined in Eq. (55).
Mach number M is expressed as

M =M+(4) (ML)+M
−

(4) (MR)−Kpmax
(

1− σM
2
,0
)

PR−PL

c2φ
(62)

where ML =
u⊥L
c

, MR =
u⊥R
c

, M
2
=

(u⊥L )
2
+(u⊥R )

2

2c2 , and

M±(4)(M)=

{ 1
2 (M ± |M|), |M| ≥ 1
M±(2)(M)

[
1∓ 16βM∓(2)(M)

]
, |M|< 1

(63)

M±(2)(M)=±
1
4
(M ± 1)2. (64)

The pressure-driven flux is expressed as

P =P+(5) (ML)PL+P
−

(5) (MR)PR+−2KuP+(5) (ML)

P−(5) (MR)φc
(
u⊥R − u

⊥
L

)
(65)

where PL =
1
2φ

2
L, PR =

1
2φ

2
R, and

P±(5) ={ 1
2 (1± sign(M)), |M| ≥ 1
M±(2)(M)

[
(±2−M)∓ 16αMM∓(2)(M)

]
, |M|< 1

(66)

The mathematical meaning of sign(M) (returning−1, 0, or 1
based on the sign ofM) is standard. The coefficients take the
values: σ = 1, α = 3

16 , β = 1
8 , Kp = 1

4 , Ku = 3
4 .

Oncem∗ and P are computed, the flux across the cell edge
can be calculated using Eqs. (57) to (60).

3.5 Temporal integration

We use the explicit Runge–Kutta (RK) as time marching
scheme, Wicker and Skamarock (2002) described a 3rd order
RK with three stages (achieves third-order accuracy exclu-
sively when applied to linear problems). For the prognostic
fields q, the integration step from time slot n to n+ 1:

q∗ = qn+
1t

3

(
∂qn

∂t

)
(67)

q∗∗ = q∗+
1t

2

(
∂q∗

∂t

)
(68)

qn+1
= qn+1t

(
∂q∗∗

∂t

)
(69)

where 1t is the time step, and temporal tendency terms ∂q
∂t

can be obtain by Eqs. (15) and (16). In our numerical exper-
iments, the choice of different time marching schemes influ-
enced only the integration stability; it had no significant im-
pact on the simulation norm errors, non-oscillatory property,
or conservation property.

4 High performance implementation and automatic
differentiation

The spatial operator and temporal integration of HOPE can
be easily implemented using PyTorch. Specifically, the spa-
tial reconstruction given by Eq. (32) is implemented as a con-
volution operation, while the Gaussian quadrature can be ef-
ficiently expressed as a matrix-vector multiplication. Lever-
aging PyTorch’s highly optimized built-in functions for both
convolution and quadrature operations ensures superior per-
formance on GPUs.

Furthermore, PyTorch’s role as a versatile AI develop-
ment platform provides automatic differentiation capabilities
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across the entire computation graph. This streamlines imple-
mentation and enables efficient gradient computation for all
components.

For the reconstruction implementation. Suppose the cubed
sphere grid comprises nc cells in x-direction within each
panel, including ghost cells. The panel number is np, and the
shallow water equation involves nv prognostic variables per
cell, we write the cell state tensor q with the shape (nv, np,
1, nc, nc). The TPP reconstruction weight tensor R has shape
(npoc, 1, sw, sw), where npoc is the number of points required
to be interpolated within each cell (including EQP and CQP),
sw denotes the stencil width (same as the stencil width repre-
sented by n in Sec. 3.1). The reconstruction can be executed
by a simple command (pseudo-code):

qrec =torch.nn.functional.conv2d
(
q · view

(
nvnp,1,nc,nc

)
,

R)view
(
nv,np,npoc,nc,nc

)
(70)

where the shape of qrec is (nv, np, npoc, nc, nc).
We exclusively demonstrate the flux computation proce-

dure at cell edges as an illustrative example, where Gaus-
sian quadrature is employed to obtain edge-averaged fluxes.
The analogous procedure applies to source term integration
at CQPs. The edge state tensor qe, corresponding to the EQPs
along each cell edge, is subsequently expressed as:

qe = qrec(. . ., pes : pee, :, :) (71)

where subscript “e” represents edges on cell including
L(left), R(right), B(bottom), T (top). “pes, pee” are start and
end point indices on edge e. The shape of qe (including qL,
qR, qB, qT) is (nv, np, npoe, nc, nc). npoe denotes the number
of edge quadrature points (EQPs). This value is computed
as npoe = pee− pes in PyTorch implementations, whereas in
Fortran it is calculated as npoe = pee−pes+1, reflecting the
difference in array indexing conventions between the two
languages.

After spatial reconstruction, the resulting data is utilized
in the Riemann solver for EQPs and for source term compu-
tation on CQPs. Subsequently, integration is performed on
both EQPs and CQPs to calculate the net flux and the cell-
averaged source term tendency. The cell-edge flux tensor F
with dimensions (nv, np, npoe, nc, nc) is obtained after the
Riemann solver.

There is a dimensionality mismatch between the flux ten-
sor and weight tensor during using matrix multiplication. For
the Gaussian quadrature implementation, consider an edge
Gaussian quadrature weight tensor ge with shape (npoe), if
an edge flux tensor F̃ has shape (nv, np, nc, nc, npoe), the
Gaussian quadrature can be expressed by:

F g = torch.matmul
(
F̃ ,ge

)
(72)

where the shape of F g(nv,np,nc,nc) is the average flux on
edge. In this operation, npoe must occupy the last dimension

of F̃ , to permit “torch.matmul” execution. We note, however,
that in the flux tensor F obtained from the Riemann solver,
npoe corresponds to the third dimension, direct matrix multi-
plication is therefore not feasible.

To address this dimensionality issue, two methods are
available. The first method involves rearranging the npoc di-
mension to the last position using the “torch.tensor.permute”
operation in PyTorch, this allows Gaussian integrations to
be naturally implemented through the “torch.matmul” op-
eration. The second method, which avoids the need for the
“permute” operation, maintains the original dimension se-
quence. Instead, Gaussian integrations are performed using
the “torch.einsum” function. This function sums the product
of the elements of the input arrays along dimensions speci-
fied using a notation based on the Einstein summation con-
vention.

F g = torch.einsum
(
′vnpij,p→ vnij ′,F ,ge

)
(73)

We have conducted performance tests comparing the two
methods, and the results indicate that the second method is
approximately 5% faster than the first. Specifically, the first
method took 649 seconds, while the second method took
616 s. The test was set as a one-day steady state geostrophic
flow (with details provided in Sect. 5.2) simulation at a reso-
lution of C900 (1x =1y = 0.1°), using 3rd order accuracy
reconstruction stencil. The time step was 30 s, and the default
data type used was “torch.float32” (single precision).

The Riemann solver implementation on flux points is way
easier, only needs to call “torch.sign” for Eq. (59), while
all other operations can be executed using basic arithmetic:
addition, subtraction, multiplication, and division. During a
Runge–Kutta sub-step, there are no dependencies, and nei-
ther “for” loops nor “if” statements are required in the HOPE
kernel code. This algorithm fully leverages the capabilities of
the GPU.

5 Numerical experiments

The HOPE dynamical core is evaluated using the standard
test cases (Test 1, 2, 5, and 6) for the spherical shallow wa-
ter model as described in Williamson et al. (1992), along
with the perturbed jet flow case proposed by Galewsky et
al. (2004). Additionally, a dam-break experiment is designed
to demonstrate the HOPE model’s capability in capturing
shock waves.

In our experiments, the grid resolutions are denoted by
the count of cells along one dimension on each panel of the
cubed sphere; for instance, C90 signifies that each panel is
subdivided into a 90×90 grid, corresponding to a grid inter-
val of 1x =1y = 1°.

We measure the conservation errors by defining the nor-

malized error εr of the variable η as εr =
Ig(η

n)−Ig(η
0)

Ig(η0)
, where

η0 and ηn stand for η value at initial time and time slot n, re-
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spectively. The global integral is defined as:

I (η)=

np∑
p=1

nc∑
j=1

nc∑
i=1

√
Gi,j,pηi,j,p (74)

where ηi,j,p represents the average value of η in cell (i, j , p).
We use three kinds of norm errors to measure the simula-

tion errors,

L1 =
I
[
φ(i,j,p)−φref(i,j,p)

]
I
[
φref(i,j,p)

] (75)

L2 =

√√√√I
[
(φ(i,j,p)−φref(i,j,p))

2]
I
[
φ2

ref(x,y,p)
] (76)

L∞ =
max |φ(i,j,p)−φref(i,j,p)|

max |φref(i,j,p)|
(77)

the subscript “ref” represents reference state.

5.1 Cosine bell advection

The Solid Body Rotation Cosine Bell (Case 1 from
Williamson et al., 1992) is commonly employed to assess
noise generated by panel boundaries, as noted by Chen and
Xiao (2008) and Ullrich et al. (2010). The wind field is given
by

us = u0(cosθ cosα+ cosλsinθ sinα) (78)
vs =−u0 sinλsinα (79)

where us, vs are zonal wind and meridional wind, earth radius
is a = 6371220 m, basic flow speed u0 =

2πa
12·86 400 m s−1.

The initial height is defined as

h(λ,θ)=

{
h0

(
1+ cos πds

R

)
, r < R

0, r ≥ R
(80)

where λ, θ are longitude and latitude. The basic height
h0 = 1000 m. The great circle distance between (λ, θ ) and
the initial center point of cosine bell (λc, θc)= (3π/2,0) is
expressed by ds = a · arccos[sinθc sinθ + cosθc cosθ cos(λ−
λc)]. The radius R = a/3.

Figure 8 presents the norm errors for a 12 d simulation at
α = 0; results for α = π/2 are identical. The temporal evo-
lution of L1 and L2 norm errors does not exhibit a pro-
nounced signature attributable to panel boundaries. In con-
trast, the L∞ norm error evolution shows significant sen-
sitivity to panel boundaries, varying considerably with grid
resolution and reconstruction order. When using low reso-
lution and low reconstruction order (TPP3 with C30 grid),
oscillations induced by panel boundaries are relatively weak.
However, as the model resolution or reconstruction order in-
creases, the influence of panel boundaries on the L∞ norm

error manifests as a distinct four-peak pattern, correspond-
ing to the four longitudinally aligned panel boundaries of the
cubed-sphere grid.

Figure 9 shows the 12 d simulation norm errors for α =
π/4. In this test configuration, the cosine bell initially moves
alone the interface between Panel 1 and Panel 5, and sub-
sequently moves along the interface between Panel 3 and
Panel 6. The temporal evolution of L1 and L2 norm errors
display two gentle peaks, corresponding to the errors gener-
ated as the cosine bell crosses these panel interfaces. Sim-
ilar to Fig. 8, theL∞ norm error progressively exceeds the
L1 and L2 norm errors as grid resolution and reconstruction
order increase.

Because the Cosine Bell field lacks infinite continuity, the
convergence rate of the norm errors cannot exceed second
order in our tests, regardless of the reconstruction order em-
ployed. This observation aligns with the key point empha-
sized in our paper: high-order numerical methods achieve
their design accuracy only when the flow field is sufficiently
smooth. Discontinuities in the flow field violate the funda-
mental premise of polynomial reconstruction (as discontinu-
ities impair the continuity of higher derivatives, leading to
non-convergence of the Taylor series). This inherent sensitiv-
ity to smoothness is precisely the factor causing norm errors
to be influenced by cubed-sphere panel boundaries. When us-
ing low-order reconstruction schemes at low resolutions, the
Tensor Product Polynomial (TPP) reconstruction employs
lower-degree polynomials and is consequently less sensitive
to the smoothness of the flow field. Conversely, high-order
TPP reconstruction requires the flow field to possess higher-
order continuity to maintain accuracy; it is thus more sensi-
tive to discontinuities. Insufficiently smooth flow fields can
introduce numerical oscillations with high-order schemes.
Therefore, while TPP5 and TPP7 yield lower L∞ norm error
magnitudes than TPP3, they exhibit more pronounced oscil-
lations caused by the cubed-sphere panel boundaries.

5.2 Steady state geostrophic flow

Steady state geostrophic flow is the 2nd case in Williamson
et al. (1992), it provided an analytical solution for spherical
shallow water equations, it was widely used in accuracy test
for shallow water models. The analytical solution is a steady
state, which means the initial filed is the exact solution. The
initial wind field replicates the formulation given in Eqs. (78)
and (79), while the initial geopotential is expressed as

φ = φ0−

(
a�u0+

u2
0

2

)
(−cosλcosθ sinα+ sinθ cosα)2 (81)

where�= 7.292×10−5 s−1 is the earth rotation angular ve-
locity, basic geopotential φ0 = 29400 m2 s−2, α = 0 denotes
the rotation angle transcribed between the physical north pole
and the center of the northern panel on the cubed-sphere grid,
and gravity acceleration g = 9.80616 m s−2. The conversion
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Figure 8. The variation of norm errors during simulation days for the cosine bell advection test case, with direction parameter α = 0. The
rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, C45, C90 and C180.

between the spherical wind (us, vs) and contravariant wind is
given by Eq. (9).

We simulated the steady state geostrophic flow over one
period (12 d) to test the norm errors and corresponds con-
vergence rate. Since the norm error becomes too small to
express by double precision number, all of the experiments
were based on the quadruple precision version of HOPE.
Time steps were set to1t = 600, 400, 200, 100, 50 s for C30,
C45, C90, C180 and C360, respectively.

As shown in Fig. 10, errors near the panel boundaries of
the cubed-sphere grid are significantly higher than those in
the central regions, confirming the presence of grid imprint-
ing. Furthermore, we implemented the AUSM-up+ Riemann
solver (consistent with the scheme described in Ullrich et al.,
2010) as an alternative to LMARS. While computationally
more complex, AUSM+-up substantially reduces simulation
errors. Comparative analysis of Fig. 10a and b demonstrates
that the maximum absolute error decreases from 8.792×105

(LMARS) to 2.413× 105 (AUSM+-up), while convergence
rates remain unchanged.

Performance benchmarks using HOPE’s Fortran imple-
mentation on a C90 grid show that simulating 12 d with a
200 s integration time step requires 49.4 s for LMARS ver-
sus 57.34 s for AUSM+-up. This demonstrates that Riemann
solver selection critically impacts simulation outcomes, con-
sistent with the discussions in Ullrich et al. (2010).

In Table 1, we present the geopotential simulation errors
and convergence rate of different order accuracy schemes
at various resolutions. It is evident that HOPE is capa-
ble of achieving the designed accuracies in all tests. When
the resolution exceeds C180, the errors obtained from the
TPP7, TPP9 and TPP11 schemes have surpassed the lim-
its expressible by double-precision numbers. This demon-
strates HOPE’s excellent error convergence for simulating
smooth flow fields. It should be noted that high-order ac-
curacy schemes do consume more computational resources.
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Figure 9. The variation of norm errors during simulation days for the cosine bell advection test case, with direction parameter α = π/4. The
rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, C45, C90 and C180.

Figure 10. Numerical errors (simulation result minus exact solution) of geopotential for steady state flow with Riemann solvers (a) LMARS
and (b) AUSM+-up. The reconstruction scheme is TPP5, and the model resolution is C90.
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HOPE has proven the feasibility of ultra-high-order accuracy
finite volume methods on cubed sphere grids. However, in
simulating the real atmosphere, a balance between compu-
tational efficiency and error must be considered. We believe
that 3rd or 5th order accuracy schemes will be more prac-
tical for subsequent developments in baroclinic atmosphere
model.

At lower resolutions, the simulation error of WENO3 is
significantly higher than that of TPP3. However, as the res-
olution increases, the error of WENO3 progressively ap-
proaches that of TPP3. Comparing WENO5 and TPP5 re-
sults reveals a marginal increase in norm errors for WENO5,
while maintaining 5th-order convergence rates. This con-
firms WENO5’s capability to preserve high accuracy when
simulating smooth flows.

It should be noted that HOPE achieves extremely small
errors in simulating smooth flow fields even on very coarse
resolutions. These errors can be so minute that they fall be-
low the 16 significant digits representable in double preci-
sion. Under these conditions, conducting precision tests us-
ing double precision alone fails to accurately capture the true
convergence rate. To obtain correct error measurements and
convergence rate, we must employ FP128 (real (16) in For-
tran). However, PyTorch’s underlying architecture is built on
NVIDIA CUDA, which currently supports only up to FP64
(double precision). Consequently, the PyTorch implementa-
tion cannot provide correct simulation errors when utilizing
ultra-high-order schemes.

5.3 Zonal flow over an isolated mountain

Zonal flow over an isolated mountain is the 5th case men-
tioned in Williamson et al. (1992), this case was usually be
implemented to test the topography influence in shallow wa-
ter models. The initial condition is defined by Eqs. (79)–(81),
but h0 = 5960 m, φ0 = h0g, u0 = 20 m s−1. The mountain
height is expressed as

hs = hs0

(
1−

ds

R

)
(82)

where hs0 = 2000 m; R = π
9 ; ds =√

min[R2, (λ− λc)2+ (θ − θc)2]. λc =
3π
2 θc =

π
6 are the

center longitude and latitude of the mountain, respectively.
HOPE is able to deal with the bottom topography cor-

rectly, as shown in Fig. 11, all of the simulation result is
consistent with prior researches such as (Nair et al., 2005a;
Ullrich et al., 2010; Chen and Xiao, 2008) and so on. Further-
more, as discussed in Bao et al. (2014), some high order Dis-
continuous Galerkin (DG) method exhibit non-physical os-
cillation during simulating the over mountain flow, the addi-
tional viscosity operators are necessary to alleviate this issue.
However, HOPE does not require any explicit viscosity oper-
ator to suppress vorticity oscillations, the vorticity fields are
smooth all the time as illustrated in Fig. 11j–l. We have tested

other schemes as well, including TPP3, TPP7, WENO3, and
WENO5, all of the schemes are able to achieve similar sim-
ulation results.

In the 15 d simulation of zonal flow over an isolated
mountain the total energy exhibited a gradual increase over
the integration time, while the total potential enstrophy
showed gradual dissipation as the simulation progressed.
The AUSM+-up scheme demonstrated stronger energy dis-
sipation compared to the LMARS scheme, as illustrated in
Fig. 12.

5.4 Rossby–Haurwitz wave with 4 waves

Rossby–Haurwitz (RH) wave is the 6th test case introduced
by Williamson et al. (1992), the RH waves are analytic solu-
tion of the spherical nonlinear barotropic vorticity equation,
the reference solution is the zonal advection of RH wave
without pattern changing, the angular phase speed is given
by
c =

R(R+ 3)ω− 2�
(R+ 1)(R+ 2)

(83)

where R = 4 is the zonal wavenumber, ω = 7.848×
10−6 s−1; the earth rotation angular speed �= 7.292×
10−5 s−1. Therefore, we have the period T ≈ 29.52 d. The
initial condition expressed as

φ = φ0+ a
2 [A(θ)+B(θ)cosRλ+C(θ)cos2Rλ] (84)

u= aωcosθ + aKcosR−1θ
(
Rsin2θ − cos2θ

)
cosRλ (85)

v =−aKRcosR−1θ sinθ sinRλ (86)

A(θ)=
ω

2
(2�+ω)cos2θ +

1
4
K2cos2Rθ[

(R+ 1)cos2θ + 2R2
−R− 2− 2R2cos−2θ

]
(87)

B(θ)=
2(�+ω)K

(R+ 1)(R+ 2)
cosRθ [R2

+ 2R+ 2

− (R+ 1)2cos2θ ] (88)

C(θ)=
1
4
K2cos2Rθ

[
(R+ 1)cos2θ −R− 2

]
(89)

where λ, θ are longitude and latitude, K = ω, φ0 = gh0,
h0 = 8000 m, and a = 6371220 m is the earth radius.

According to the study by Thuburn and Li (2000), the
Rossby–Haurwitz (RH) wave with wavenumber 4 is inher-
ently dynamically unstable and prone to collapse. This in-
stability can be triggered by minute perturbations, such as
those arising from grid structure (breaking initial symme-
try), initial condition imperfections, or numerical errors (e.g.,
truncation or roundoff). Similar conclusions have been ver-
ified in subsequent research. In tests conducted by Zhou et
al. (2020), the TRiSK framework based on the SCVT grid
could only sustain the RH wave pattern for 25 d without col-
lapse. In contrast, Li et al. (2020) successfully maintained
the RH wave pattern for 89 d using a similar algorithm on
a latitude-longitude grid. Ullrich et al. (2010) developed the
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Table 1. Norm errors and convergence rates of steady state geostrophic flow at day 12, with LMARS as Riemann Solver.

TPP3 C30 C45 C90 C180 C360

L1 error 1.8853× 10−3 5.6474× 10−4 7.0960× 10−5 8.8777× 10−6 1.1099× 10−6

L1 rate 2.9731 2.9925 2.9988 2.9998
L2 error 2.1484× 10−3 6.4171× 10−4 8.0500× 10−5 1.0069× 10−5 1.2588× 10−6

L2 rate 2.9802 2.9949 2.9991 2.9998
L∞ error 4.3242× 10−3 1.2932× 10−3 1.6201× 10−4 2.0275× 10−5 2.5350× 10−6

L∞ rate 2.9770 2.9968 2.9983 2.9997

TPP5

L1 error 3.6122× 10−6 4.7493× 10−7 1.4827× 10−8 4.6322× 10−10 1.4474× 10−11

L1 rate 5.0039 5.0014 5.0004 5.0002
L2 error 5.2427× 10−6 6.9169× 10−7 2.1627× 10−8 6.7584× 10−10 2.1119× 10−11

L2 rate 4.9954 4.9992 5.0000 5.0001
L∞ error 1.6810× 10−5 2.2451× 10−6 7.0534× 10−8 2.2070× 10−9 6.8985× 10−11

L∞ rate 4.9652 4.9923 4.9982 4.9996

TPP7

L1 error 8.1697× 10−8 4.7967× 10−9 3.7678× 10−11 2.9547× 10−13 2.3125× 10−15

L1 rate 6.9922 6.9922 6.9946 6.9974
L2 error 8.7991× 10−8 5.1644× 10−9 4.0507× 10−11 3.1728× 10−13 2.4823× 10−15

L2 rate 6.9931 6.9943 6.9963 6.9979
L∞ error 1.4741× 10−7 8.6376× 10−9 6.7814× 10−11 5.3387× 10−13 4.1901× 10−15

L∞ rate 6.9971 6.9929 6.9889 6.9934

TPP9

L1 error 7.8909× 10−10 2.1780× 10−11 4.3925× 10−14 8.6359× 10−17

L1 rate 8.8537 8.9538 8.9905
L2 error 9.5638× 10−10 2.6409× 10−11 5.3341× 10−14 1.0494× 10−16

L2 rate 8.8526 8.9516 8.9896
L∞ error 2.3946× 10−9 6.6773× 10−11 1.3547× 10−13 2.6644× 10−16

L∞ rate 8.8285 8.9452 8.9899

TPP11

L1 error 1.1908× 10−10 1.3799× 10−12 6.7696× 10−16 3.3197× 10−19

L1 rate 10.9943 10.9932 10.9938
L2 error 1.3084× 10−10 1.5186× 10−12 7.4489× 10−16 3.6500× 10−19

L2 rate 10.9904 10.9934 10.9949
L∞ error 2.4204× 10−10 2.8579× 10−12 1.4147× 10−15 6.9567× 10−19

L∞ rate 10.9479 10.9803 10.9898

WENO3

L1 error 2.6438× 10−3 7.2239× 10−4 7.7012× 10−5 8.9622× 10−6

L1 rate 3.1998 3.2296 3.1032
L2 error 4.0817× 10−3 9.7196× 10−4 9.5476× 10−5 1.0553× 10−5

L2 rate 3.5390 3.3477 3.1775
L∞ error 2.5439× 10−2 7.7486× 10−3 9.6110× 10−4 1.0723× 10−4

L∞ rate 2.9319 3.0112 3.1640

WENO5

L1 error 3.6191× 10−6 4.7551× 10−7 1.4829× 10−8 4.6322× 10−10

L1 rate 5.0056 5.0030 5.0006
L2 error 5.2659× 10−6 6.9252× 10−7 2.1630× 10−8 6.7585× 10−10

L2 rate 5.0033 5.0008 5.0002
L∞ error 1.6873× 10−5 2.2466× 10−6 7.0539× 10−8 2.2070× 10−9

L∞ rate 4.9727 4.9932 4.9983
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Figure 11. TPP5 (with LMARS) simulation result of the isolated mountain wave on C90 grid. The rows stand for variables: geopotential,
zonal wind, meridional wind and relative vorticity, respectively. The columns represent simulation day 5, 10, 15. Geopotential contour from
5050 to 5950 m with interval 50 m. Zonal wind contour from −30 to 50 m s−1 with interval 10 m s−1. Meridional wind contour from −30
to 30 m s−1 with interval 10 m s−1. Relative vorticity contour from −3× 10−5 to 4× 10−5 s−1 with interval 1× 10−5 s−1.

high-order accuracy finite volume model based on a cubed-
sphere grid, which was able to sustain the RH wave for up to
90 d. In the most of our experiments, the ability of HOPE to
maintain the Rossby–Haurwitz (RH) wave significantly im-
proved with increased order of accuracy and grid resolution.
All of the simulation results are based on LMARS in this
section.

In the TPP3 simulation, we found that the duration for
which the RH wave is maintained increases with higher grid
resolution, as exhibit in Fig. 13. When the grid resolution is
low (C45, C90), an obvious dissipation phenomenon can be
observed. When the resolution reaches C180, the dissipation
is significantly reduced, but the waveform has completely
collapsed by day 90. When the resolution reaches C360, the
simulation results are further improved, with dissipation fur-
ther reduced, and the RH wave waveform can still barely be
maintained on day 90.

A 100 d simulation of the Rossby–Haurwitz wave was
conducted using a C90 grid (1° resolution). The total en-
ergy simulated with the TPP3, TPP5, TPP7, and TPP9

schemes underwent dissipation to varying degrees. By
day 100, the normalized total energy errors reached −1.49×
10−3, −1.33× 10−5, −1.71× 10−6, −4.20× 10−7, respec-
tively, indicating significantly stronger dissipation for the
TPP3 scheme compared to the other higher-order schemes
(Fig. 14a). Figure 14b presents a scaled view of the en-
ergy evolution for TPP5, TPP7, and TPP9, clearly demon-
strating that increasing the reconstruction order progressively
reduces energy dissipation. Furthermore, following the RH
wave collapse, a significant drop in total energy was observed
for the TPP5 scheme (after approximately 90 d) and the TPP7
scheme (after approximately 95 d).

Analysis of the normalized total potential enstrophy er-
ror (Fig. 14c) and the normalized zonal angular momen-
tum error (Fig. 14d) over time yields conclusions consistent
with those for total energy. Specifically, the TPP3 scheme
exhibited substantially higher dissipation than the higher-
order schemes, confirming that employing higher-order re-
construction schemes effectively minimizes dissipation. No-
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Figure 12. Time series of normalized conservation errors for the zonal flow over isolated mountain simulation on the C90 grid over days 0
to 15. (a) Normalized total energy error. (b) Normalized total potential enstrophy error. (c) Normalized total zonal angular momentum error.

tably, significant dissipation surges occurred in these quanti-
ties following the RH wave collapse.

In Fig. 15, we compare the impact of order-of-accuracy on
the simulation capability of RH waves by fixing the resolu-
tion. By comparing row by row, it can be observed that when
the accuracy reaches 5th order or higher, the dissipation is
significantly reduced. Both the TPP5 and TPP7 simulations
show signs of waveform distortion on day 90, and the wave-
form completely collapses by day 100. However, when using
TPP9 for the simulation, the waveform is well maintained
even until day 100.

Figure 16 presents the simulation results on the 80th day
for different resolutions and reconstruction schemes. The
dissipation decreases as the resolution and reconstruction
order improve. At the C45 resolution, both the TPP3 and
TPP5 simulations exhibit significant dissipation. Although
the TPP7 simulation shows a notable improvement in dissi-
pation, the waveform is severely distorted. The TPP9 scheme
produces the best simulation results. As the resolution in-
creases, the simulation performance also improves signifi-

cantly. When using the C360 resolution, all TPP schemes
yield good simulation results.

Significant differences were observed between the 2D
WENO scheme and the TPP schemes in this test. Regard-
less of the specific WENO order employed (3, 5, 7, or 9),
all WENO variants maintained the Rossby–Haurwitz (RH)
wave pattern for a shorter duration compared to their TPP
counterparts of equivalent order. We infer that the nonlin-
ear processes inherent within the WENO scheme introduce
asymmetries that disrupt the computational stencil symme-
try, leading to a premature collapse of the RH wave.

5.5 Perturbed jet flow

The perturbed jet flow was introduced by Galewsky et
al. (2004), this experiment was desired to test the model abil-
ity of simulating the fast and slow motion. the initial field is
defined as

u(θ)=

{
umax
en
e

1
(θ−θ0)(θ−θ1) , θ ∈ (θ0,θ1)

0, otherwise
(90)
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Figure 13. Geopotential of Rossby–Haurwitz wave simulated by TPP3 scheme. The rows represent grid C45, C90, C180 and C360, the
columns stand for simulation day 14, 30, 60, 90. Contours from 8100 to 10 500 m with interval 200 m.

φ(λ,θ)= φ0+φ
′(λ,θ)−

θ∫
−
π
2

au(θ ′)

[
f +

tanθ ′

a
u(θ ′)

]
dθ ′ (91)

φ′(λ,θ)= gĥcosθe
−

(
λ
α

)2
−

(
θ2−θ
β

)2

, λ ∈ (−π,π) (92)

where λ, θ represents longitude and latitude, a = 6371220 m
is radius of earth, umax = 80 m s−1, θ0 =

π
7 , θ1 =

5π
14 , θ2 =

π
4 , en = e

−4
(θ1−θ0)2 , α = 1

3 , β = 1
15 , and ĥ= 120 m. We adopt

LMARS as Riemann solver in all of the simulation in this
section.

As mentioned in Chen and Xiao (2008), the perturbed jet
flow experiment poses a particular challenge for the cubed-
sphere grid model. Firstly, the jet stream is located at 45° N,
which is very close to the boundaries of panel 5 of the cubed-
sphere grid, resulting in a large geopotential gradient in the
ghost interpolation region, which leads to larger interpolation
error. Furthermore, the location of the geopotential pertur-
bation φ′ coincides with the boundary between panel 1 and
panel 5, which also leads to greater numerical computation
errors.

Figure 17 displays the HOPE simulation outcomes at
day 6 for varying levels of reconstruction order and resolu-
tions. The four rows correspond to the TPP5, TPP7, TPP9

and TPP11 schemes in terms of reconstruction order. The
three columns, meanwhile, represent the resolutions of C45,
C90, and C180, respectively. Upon comparing the different
columns, it is evident that the perturbed jet flow test case con-
verges as the resolution increases. Figure 17a, d, g, and j il-
lustrate that, with an increase in reconstruction order, the vor-
ticity field patterns become increasingly similar to the high-
resolution results shown in the second and third columns of
Fig. 17. Notably, HOPE enhances the simulation results by
utilizing both higher reconstruction order and higher resolu-
tion.

5.6 Dam-break shock wave

In this section we introduce a dam-break case for testing the
capability of HOPE to capture the shock wave and compar-
ing the difference between 1D and 2D WENO schemes. The
initial condition is configured as a cylinder with a geopoten-
tial of 30 000 m2 s−2, as shown in Fig. 18a. The geopotential
is given by

φ (ds(λ,θ))=

{
2φ0, r < rc
φ0, otherwise (93)

where ds =
√
(λ− λc)2+ (θ − θc)2λc = π , θc = 0, rc = π

9 ,
φ0 = 30000 m2 s−2, and the earth rotation angular speed
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Figure 14. Time series of normalized conservation errors for the Rossby–Haurwitz wave simulation on the C90 grid over days 0 to 100, with
LMARS scheme as Riemann solver. (a) Normalized total energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total energy normalized
error for TPP5, TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d) Normalized total zonal
angular momentum error for TPP3, TPP5, TPP7 and TPP9.

�= 0. We adopt LMARS as Riemann solver in all of the
simulation in this section.

In this experiment, we compare WENO5 (WENO scheme
with reconstruction width 5) on both 1D and 2D schemes,
the WENO-Z (Borges et al., 2008) is adopted as WENO 1D
scheme, and WENO 2D scheme is consist with Sect. 3.2.
Due to the initial condition being a cylinder, the resulting
shock wave should maintain a circular feature. In the sim-
ulation results of WENO 1D, numerous radial textures ap-
pear (Fig. 18b). The simulation results using the WENO 2D
scheme exhibit a smoother circular shape, Fig. 18c. This
outcome arises because the 1D reconstruction scheme suf-
fers from dimension split error, whereas the fitting function
in the 2D reconstruction scheme incorporates cross terms.
Therefore, when simulating fluid fields characterized by
isotropic features, the 1D scheme lacks the capability to ac-

curately represent diagonal directional features. Conversely,
the 2D scheme correctly captures the inherent isotropic char-
acteristics.

6 Conclusions

This paper presents HOPE, an innovative finite-volume
model capable of achieving arbitrary odd-order convergence
rate. Through comprehensive numerical experiments, we
demonstrate that HOPE exhibits excellent convergence prop-
erties when applied to smooth flow fields, with simulation
errors decreasing rapidly as the order of accuracy increases.

The model’s performance has been rigorously evaluated
across several benchmark cases:

Geosci. Model Dev., 18, 8175–8201, 2025 https://doi.org/10.5194/gmd-18-8175-2025
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Figure 15. Geopotential of Rossby–Haurwitz wave on C90 grid, the rows represent the spatial reconstruction scheme with TPP3, TPP5,
TPP7 and TPP9 the columns stand for simulation day 30, 60, 90 and 100. Contours from 8100 to 10 500 m with interval 200 m.

1. In Rossby–Haurwitz wave simulations, HOPE demon-
strates superior waveform preservation capabilities that
scale with both spatial resolution and accuracy order.

2. For perturbed jet flow scenarios, the model successfully
resolves both fast and slow dynamical features, with sig-
nificant improvements in solution quality observed at
higher orders and finer resolutions.

3. Mountain wave simulations confirm HOPE’s ability
to accurately represent orographically-forced gravity
waves.

4. In the dam break test case featuring cylindrical shock
fronts, the two-dimensional WENO reconstruction
scheme proves more effective than dimension-split ap-
proaches in maintaining circular symmetry.

In the case of steady geostrophic flow, Both WENO3 and
WENO5 achieve the expected 3rd-order and 5th-order con-
vergence rates, respectively. However, the computed norm
errors for WENO schemes are marginally larger than those
obtained with the TPP3 and TPP5 schemes. This observation
confirms that the 2D WENO scheme preserves the designed
convergence rate in smooth flow regions. Concurrently, in
the Dam-Break Shock Wave case, the 2D WENO scheme

demonstrates its robust capability for handling discontinuous
flow fields. These combined results align perfectly with the
primary motivation for introducing the WENO scheme: its
adaptive oscillation suppression capability. Specifically, the
scheme preserves the high convergence rate in sufficiently
smooth regions while automatically reducing the reconstruc-
tion order near discontinuities to effectively suppress the de-
velopment and propagation of non-physical oscillations.

A key innovation of HOPE lies in its computational ar-
chitecture. The algorithm is specifically designed to harness
GPU acceleration through (1) implementation of spatial re-
constructions as convolutional operations, and (2) formula-
tion of integration steps as matrix-vector products. These de-
sign choices leverage computational patterns widely adopted
in machine learning frameworks. By developing HOPE
within PyTorch, we inherit automatic differentiation capabil-
ities, enabling straightforward coupling with neural network
systems.

This integration facilitates the development of hybrid pre-
diction models that combine a high-order, high-performance
dynamical core, and Neural network-based physical param-
eterizations. Current research efforts have successfully ex-
tended this algorithmic framework to a two-dimensional
baroclinic model (X–Z dimensions).
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Figure 16. Geopotential of Rossby–Haurwitz wave at simulation day 80. The rows represent spatial reconstruction with TPP3, TPP5, TPP7
and TPP9. The columns stand for grid C45, C90, C180 and C360. Contours from 8100 to 10 500 m with interval 200 m.

Figure 17. Relative vorticity of perturbed jet flow. (a)–(c) represent the results of TPP5 scheme with resolutions C45, C90, C180. (d)–
(f) represent the results of TPP7 scheme with resolutions C45, C90, C180. (g)–(i) represent the results of TPP9 scheme with resolutions C45,
C90, C180. (j)–(l) represent the results of TPP11 scheme with resolutions C45, C90, C180.
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Figure 18. Geopotential of dam-break test case on C90 grid at 2nd hour. (a) Initial condition, (b) WENO 1D, (c) WENO 2D. The horizontal
resolution for both schemes is C90. Shaded and contour from 3.2× 104 to 6× 104 m, with contour interval 103 m.

Future work will focus on developing a global, fully com-
pressible baroclinic model using the HOPE algorithm, fur-
ther demonstrating its versatility and advantages for mod-
eling complex atmospheric dynamics. The model’s unique
combination of physical conservation, computational effi-
ciency, and machine learning compatibility positions it as a
powerful tool for next-generation atmospheric modeling.

Appendix A

In this appendix, we introduce a novel boundary ghost cell
interpolation scheme for cubed sphere, which is able to sup-
port HOPE to reach the accuracy over 11th order or even
higher.

There are two types of cells, in-domain and out-domain
(also named ghost cell, as show in Fig. 7b), we define the set
of in-domain cell values qd×1 = (q1, q2, . . ., qd)

T , the set of
out-domain cell values gh×1 = (g1, g2, . . ., gd)

T , and the set
of Gaussian quadrature point values (green points in Fig. 3)
in out-domain cells is define as vp×1 = (v1, v2, . . ., vp). To
identify the shape of the arrays, we denote the array shape
using subscripts (this convention will be followed throughout
the subsequent text). The purpose of ghost cell interpolation
is using the known cell value q to interpolate the unknown g.

Define a new set includes the values of domain cell values
and ghost cell values

q̃(d+h)×1 = q
⋃
g = (q1, q2, . . ., qd , g1, g2, . . ., gh)

T

(A1)

Similar to the describe in section 0, we can use a TPP to
reconstruct the ghost quadrature points

vp×1 = Ap×(d+h)q̃(d+h)×1 (A2)

where Ap×(d+h) is the interpolation matrix that can be obtain
by the similar method to Eq. (29). The ghost cell values are

calculated by Gaussian quadrature

gh×1 = Bh×pvp×1 (A3)

where Bh×p is the Gaussian quadrature matrix.
q̃(d+h)×1 can be decomposed as the linear qd×1 and vp×1

q̃(d+h)×1 =

(
Id×d 0
0 Bh×p

)(
qd×1
vp×1

)
= B̃(d+h)×(d+p)q(d+p)×1 (A4)

where Id×d is an identity matrix, and

B̃(d+h)×(d+p) =
(

Id×d 0
0 Bh×p

)
(A5)

q(d+p)×1 =

(
qd×1
vp×1

)
. (A6)

Substitute Eq. (30) into Eq. (26), we have

vp×1 = Ap×(d+h)B̃(d+h)×(d+p)q(d+p)×1

= Ãp×(d+p)q(d+p)×1 = Ãp×(d+p)
(
qd×1
vp×1

)
. (A7)

We found that matrix Ãp×(d+p) can be decomposed into two
parts

Ãp×(d+p) =
(

Ap×d Cp×p
)
. (A8)

Such that

vp×1 = Ap×dqd×1+Cp×pvp×1. (A9)

Therefore(
Ip×p −Cp×p

)
vp×1 = Ap×dqd×1. (A10)

We set Dp×p = Ip×p −Cp×p, then vp×1 can be determined
by

vp×1 = D−1
p×pAp×dqd×1. (A11)
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Substitute Eq. (A11) into Eq. (A3), we establish the rela-
tionship between ghost cell values and in-domain cell values

gh×1 = Bh×pvp×1 = Bh×pD−1
p×pAp×dqd×1

= Gh×dqd×1 (A12)

where Gh×d = Bh×pD−1
p×pAp×d . It is clear that Eq. (A.12)

is linear, and only rely on the mesh and Gaussian quadrature
scheme. Therefore, we need to compute the projection matrix
Gh×d only once for a given mesh and accuracy, this matrix
can be computed by a preprocessing system and save it to
the hard disk.

Code and data availability. The core data underpinning our find-
ings are outputs produced by the HOPE code (including ghost
interpolation weights and simulation results). With this code,
the data can be accessed and regenerated. The digital ob-
ject identifier (DOI) for the HOPE shallow water model is
https://doi.org/10.5281/zenodo.16635583 (Zhou, 2025).
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