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Abstract. Wetlands play a pivotal role in carbon sequestra-
tion but emit methane (CH4), creating uncertainty in their
net climate impact. Although process-based models offer
mechanistic insights into wetland dynamics, they require ex-
tensive site-specific parameterisation (e.g. soil carbon pro-
files, pore-water chemistry, vegetation-specific model pa-
rameters), as well as high-resolution hydrological and me-
teorological inputs that are often difficult to obtain outside
of well-instrumented research sites, which makes regional
upscaling challenging. In contrast, data-driven models pro-
vide a scalable alternative by leveraging available datasets
to identify patterns and relationships, making them more
adaptable for large-scale applications. However, their perfor-
mance can vary significantly depending on the quality and
representativeness of the data, as well as the model design,
which raises questions about their reliability and generaliz-
ability in complex wetland systems. To address these issues,
we present a data-driven framework for upscaling wetland
CO2 and CH4 emissions, across a range of machine learning
models that vary in complexity, validated against an exten-
sive observational dataset from the Sacramento-San Joaquin
Delta. We show that artificial intelligence (AI) approaches,
including Random Forests, gradient boosting methods (XG-
Boost, LightGBM), Support Vector Machines (SVM) and
Recurrent Neural Networks (GRU, LSTM), outperform lin-
ear regression models, with RNNs standing out, achieving

an R2 of 0.73 for daily CO2 flux predictions compared to
0.64 for linear regression, and an R2 of 0.53 for CH4 flux
predictions compared to 0.47 for linear regression. Interest-
ingly, linear regression performed better than random forest
for methane flux, which highlights the necessity for com-
parison. The, interannual variability is less well captured,
with annual mean absolute error of 176 gC m−2 yr−1 for CO2
fluxes and 9 gC-CH4 m−2 yr−1 for CH4 fluxes. By integrat-
ing vertically-resolved atmospheric, subsurface, and spectral
reflectance information from readily available sources, the
model identifies key drivers of wetland CO2 and CH4 emis-
sions and enables regional upscaling. These findings demon-
strate the potential of AI methods for upscaling, providing
practical tools for wetland management and restoration plan-
ning to support climate mitigation efforts.

1 Introduction

Wetlands provide a wide array of ecological, economic, and
environmental benefits (Costanza et al., 2014). They play a
crucial role in biodiversity conservation, water purification,
flood control, and climate regulation (Grande et al., 2023;
Sharma and Singh, 2021). Significant attention has been re-
cently given to wetland restoration due to their ability to se-
quester carbon from the atmosphere (Lolu et al., 2020; Upad-
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hyay et al., 2020). These ecosystems are highly effective at
storing carbon in their soils because the anaerobic condi-
tions in waterlogged soils suppress organic matter decom-
position, allowing carbon to accumulate over time (Mitsch
and Gosselink, 2015a). However, wetlands can also be sig-
nificant sources of CH4, a potent greenhouse gas (Brix et al.,
2001), leading to potentially net positive effects of wetlands
on climate warming. The most accurate way to determine the
carbon balance in natural ecosystems is through direct and
continuous measurements of carbon and GHG sources and
sinks (Baldocchi et al., 2001). This involves monitoring car-
bon dynamics using techniques such as eddy covariance (EC)
towers (Aubinet et al., 2012), soil carbon stock assessments
(Harrison et al., 2011), and lateral carbon transport measure-
ments (Ciais et al., 2008). However, these measurements are
time-consuming to carry out, costly, and require specialized
instruments and expertise, limiting their application to a few
representative sites globally (Hill et al., 2017; Kumar et al.,
2017). The Ameriflux network offers roughly 500 EC sites
comprising about 3600 site years of data, monitoring carbon
fluxes across various ecosystems such as forests, grasslands,
and wetlands (Pastorello et al., 2020). Eddy-covariance site
footprints range in scale and are typically determined by the
sensor height and atmospheric turbulence (Chu et al., 2021).
Data from these Ameriflux sites could potentially be up-
scaled and used for estimating fluxes from non-monitored
sites to obtain regional assessments of carbon balance for
various ecosystem types, including wetlands.

In this study, we focus on nontidal wetlands due to the
presence of a cluster of EC towers in a small region lo-
cated in the Sacramento-San Joaquin Delta, including three
sites, each with over a decade of continuous data. Re-
ported sequestration rates in wetlands vary widely, influ-
enced by factors such as climate, vegetation, and manage-
ment. For instance, reported sequestration rates range from
as low as 26 gC m−2 yr−1 in boreal rain-fed bogs (Villa
and Bernal, 2018) to as high as 797 gC m−2 yr−1 in con-
structed wetlands with emergent Phragmites in the Nether-
lands (de Klein and van der Werf, 2014). Similarly, temper-
ate wetlands in central Ohio exhibit a wide range of car-
bon sequestration rates depending on vegetation: forested
depressional wetlands dominated by Quercus palustris se-
quester up to 473 gC m−2 yr−1, while marshes dominated
by Typha sequester around 210 gC m−2 yr−1 (Bernal and
Mitsch, 2012). In Victoria, Australia, freshwater marshes
show varying sequestration rates from 91 gC m−2 yr−1 in
shallow marshes to 230 gC m−2 yr−1 in permanent open
freshwater wetlands (Carnell et al., 2018). More relevant
to this study, in the San Francisco Bay-Delta region, non-
tidal managed wetlands dominated by Schoenoplectus and
Typha species sequester carbon at rates of approximately
355± 249 gC-CO2 m−2 yr−1. This estimate is based on di-
rect calculations using Ameriflux data from sites with over
a decade of observations (US-Myb, US-Tw1, and US-Tw4).
For this calculation we used full-year annual averages and

their corresponding standard deviation to the annual mean,
to highlight the significant inter-annual variability, with the
standard deviation close to the mean. The unit reported for
these Delta sites is in gC-CO2 m−2 yr−1, as the EC tower di-
rectly detects CO2 exchange, which is convenient for GHG
assessment purposes. It is worth noting that, at these sites,
some years were a net CO2 source, due to site-specific dis-
turbances such as caterpillar infestations, drought, or when
vegetation cover was fully established (Anderson et al., 2018;
Knox et al., 2017; Rey-Sanchez et al., 2021). See Table S1 in
the Supplement for more detailed information and references
therein.

Although CO2 balance (photosynthesis minus community
respiration) is an important component of carbon seques-
tration, in many wetland systems sequestration benefits are
counterbalanced by CH4 emissions, a potent greenhouse gas,
with a warming potential 27 times higher than CO2 (Lee et
al., 2023) that can often offset climate mitigation efforts. CH4
emission rates also vary substantially over time and across
wetlands, from as low as 0.23 gC-CH4 m−2 yr−1 in saltwater
zones of estuarine environments (Abril and Iversen, 2002) to
as high as 270 gC-CH4 m−2 yr−1 in certain freshwater wet-
lands (Knox et al., 2021). For example, restored freshwater
wetlands in Maryland dominated by grasses and sedges emit
around 142 gC-CH4 m−2 yr−1 (Stewart et al., 2024). Tropi-
cal wetlands in Costa Rica exhibit some of the highest emis-
sions, with isolated and floodplain wetlands releasing be-
tween 220 and 263 gC-CH4 m−2 yr−1 (Mitsch et al., 2013).
The San Francisco Bay-Delta wetlands that have high carbon
sequestration rates also release CH4 at rates of 35± 13 gC-
CH4 m−2 yr−1(direct measurements from the eddy covari-
ance tower data, Arias-Ortiz et al., 2021). See Table S2 for
further information and reference therein. This dual role of
wetlands in both sequestering carbon and emitting CH4 re-
veals the complex effect they have on the global greenhouse
gas balance. Therefore, integrating CO2 and CH4 emissions
is critical to assess the net climate benefits of wetland con-
servation and restoration initiatives.

To evaluate how wetlands contribute to the atmospheric ra-
diation budget at larger scales, it is essential to quantify both
GHG emissions and carbon sequestration, especially at sites
where direct measurements are unavailable (Moomaw et al.,
2018). Upscaling models serve this purpose by allowing esti-
mation of sequestration and emission rates across larger spa-
tial scales than those covered by the original data sources
(Villa and Bernal, 2018) which provide GHG accounting
and net climate benefit assessments for specific wetland sites
(Nahlik and Fennessy, 2016). Moreover, it aids in targeting
wetland restoration efforts that aim to optimize sequestration
by identifying locations with the greatest potential for net
carbon uptake.

Process-based models have traditionally been used to esti-
mate sequestration and emissions (Mack et al., 2023; Zhang
et al., 2002). Models such as DNDC (Li, 1996), DayCent
(Parton et al., 1998), and Ecosys (Grant et al., 2017) have
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been applied to simulate biogeochemical processes in terres-
trial ecosystems, including modeling CH4 emissions, carbon
balances, and soil carbon and nitrogen cycling (Grant and
Roulet, 2002; Weiler et al., 2018; Zhang et al., 2002). While
these models can elucidate the processes that play a role in
carbon dynamics, they require extensive mechanistic param-
eterization to accurately represent the interactions in various
ecosystems (Pastorello et al., 2020; Yin et al., 2023). This ap-
proach often necessitates site-specific information and data
collection, making implementation over vast areas challeng-
ing (Saunois et al., 2025; Xu and Trugman, 2021). The ex-
tensive data needs associated with these process-rich models
showcase the need for alternative approaches that can effec-
tively upscale wetland emissions without such intensive re-
source demands.

Artificial Intelligence (AI) methods, such as machine
learning and deep learning, have been widely applied in eco-
logical modeling in recent years, alongside long-term, large-
scale data collection efforts (Perry et al., 2022). Recent deep
learning applications have demonstrated success in captur-
ing the complex dynamics of carbon and methane fluxes in
these systems (Ouyang et al., 2023; Yuan et al., 2022, 2024;
Zou et al., 2024). The availability of open-source modeling
platforms like TensorFlow and PyTorch has made advanced
computational techniques, such as neural networks, more ac-
cessible, enabling the rapid development and deployment of
a range of specialized modeling tasks (Xu et al., 2021). De-
spite several recent studies demonstrating the potential of
machine learning for large-scale carbon cycling in wetland
ecosystems, this remains a relatively young field. Moreover,
carbon dynamics in wetland ecosystems are temporally vari-
able and inherently nonlinear, making them particularly well-
suited for testing machine learning approaches (Arora et al.,
2019, 2022). We therefore emphasize the importance of eval-
uating and comparing various approaches within this domain
and their potential for large-scale assessment.

A pervasive challenge in model development is the abil-
ity to balance complexity with generalizability. While more
complex models can capture nonlinear relationships, they
also increase the risk of overfitting, where the model per-
forms well in the testing, but poorly on new conditions
(Hastie, 2009; Tashman, 2000). Furthermore, it is also im-
portant to use a robust validation framework. For the appli-
cation of upscaling, it is important that the model is able to
extrapolate spatially. For this purpose, a leave-one-site-out
(LOSO) validation approach is typically carried out, whereby
the models are trained on data that excludes a single site, with
the excluded site data saved for model testing (Bodesheim
et al., 2018; Tramontana et al., 2016). It is also important
to avoid data leakage, where information from the training
set inadvertently appears in the testing set (Kaufman et al.,
2012), a risk posed when splitting temporally adjacent data
points that are close in value, potentially inflating perfor-
mance statistics (Bergmeir and Benítez, 2012; Kaufman et
al., 2012). For example, daily rates of change relative to a

system where seasonal dynamics dominate, such as emis-
sions of CH4 emissions in vegetated wetlands (Knox et al.,
2021).

In this study, we introduce a model framework for coastal
nontidal wetland CO2 and CH4 emissions using several “off-
the-shelf” models. These models are trained and validated
against observational data, and results are compared to find
the most predictive model. The top performing model is then
used to upscale carbon sequestration and CH4 emissions in
nontidal wetlands at regional scale. The San Francisco Bay-
Delta serves as the area of interest, due to its network of EC
towers that have been operating for a relatively long time and
relevance to future wetland restoration efforts. We employ a
suite of models, ranging widely in complexity: (1) linear re-
gression; (2) Random Forests (Breiman, 2001), an ensemble
method that constructs multiple decision trees to reduce over-
fitting; (3) gradient boosting techniques such as LightGBM
(Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016),
which are scalable tree boosting systems able to handle com-
plex nonlinear relationships and variable interactions; (4)
Support Vector Machines (SVM) (Cortes, 1995), a kernel-
based technique that can approximate nonlinear boundaries
between data points and (5) the Recurrent Neural Network
(RNN) such as the Long Short-Term Memory (LSTM) neu-
ral network (Hochreiter, 1997), an advanced model designed
to process sequential data and capture non-linear interactions
over long-term dependencies. We also test a model with simi-
lar but simpler architecture, the Gated Recurrent Unit (GRU)
(Chung et al., 2014), which uses fewer parameters. Linear
regressions serve as a baseline to assess the applicability of
the more sophisticated methods. Random Forests have been
used to upscale northern wetland methane emissions (Peltola
et al., 2019), gradient boosting methods have demonstrated
success in ecological modeling (Ding, 2024; Räsänen et al.,
2021; Zou et al., 2024), and LSTM neural networks have
been successfully applied to model CO2 and CH4 fluxes in
ecosystems (Yuan et al., 2022, 2024; Zou et al., 2024). Our
proposed framework is designed to provide transparency,
easy determination of model practicality and applicability,
and contextualisation to model performances by comparing
to a baseline model (i.e. linear regression).

2 Methods

Our ultimate aim is to establish a robust modeling frame-
work for estimating wetland carbon fluxes in sites that are not
monitored. To achieve this, we compare a range of models,
from simple linear regression to advanced recurrent machine
learning neural networks. Since the goal is to predict unseen
sites, we emphasize cross-site predictability by validating
and testing the models at sites not included in training. Do-
ing so ensures predictions are applicable beyond the training
sites and addresses challenges often associated with model
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generalizability (Meyer and Pebesma, 2022). This strategy
serves several purposes:

1. Performance Contextualization. Starting with the sim-
plest type of model provides a baseline for performance
and helps evaluate the advantage (or lack thereof) for
using more complex models.

2. Practicality and Transparency. Advanced models may
offer better performance but often require significant ef-
fort to set up and may lack interpretability. By compar-
ing models of varying complexity using the same input
data, we assess whether the added complexity is justi-
fied.

3. Feature Evaluation. Training with different combina-
tions of relevant features helps us to understand which
features are dominating control, and the limitations of
the data in terms of predictive capacity.

2.1 Model targets

The model targets two key variables: CO2 (FCO2) and CH4
(FCH4) surface emissions. Both variables follow a sign con-
vention where positive values indicate emissions to the at-
mosphere (source) and negative values indicate sequestration
(sink). Both variables are available at half-hourly resolution
through the Ameriflux database.

The models we developed all operate on a daily time scale,
requiring target variables to be aggregated to the daily time
scale. This approach assumes that sub-daily variations have
a negligible non-linear contribution to longer time scales, an
assumption supported by the dominant seasonal signal typi-
cally observed in flux data from these systems (Knox et al.,
2021).

These target variables could then be used to calculate an-
nual NECB (Net Ecosystem Carbon Balance; gC m−2 yr−1)
and annual wetland net atmospheric radiative effect (FCO2e
(CO2-equivalent flux) gCO2e m−2 yr−1).The global warm-
ing potential (GWP) of non-fossil CH4 is 27.2 as per the
latest IPCC assessment (Lee et al., 2023). For this study,
we neglect contributions of lateral fluxes due to data limi-
tations, and that lateral transport at these sites is assumed to
be negligible due to the limited outflow from these specific
non-tidal wetland sites (Miller et al., 2008). FCO2e is defined
as annually averaged CO2 and CH4 emissions, adjusted for
the global warming potential (GWP) of each gas. A positive
FCO2e indicates that the ecosystem is contributing positively
to atmospheric warming, and vice versa. Here we consider
CO2 and CH4 emissions but neglect contributions from N2O
due to data limitations and because N2O emissions are con-
sidered negligible in Delta wetlands (Windham-Myers et al.,
2018).

2.2 Region of interest

The Sacramento-San Joaquin Delta was selected for this
study due to its high density of EC towers and extensive long-
term data. We selected sites for model training and validation
where data was collected for at least a decade to capture in-
terannual variability. Hence three restored wetland sites, US-
Myb (Matthes et al., 2025), US-Tw1 (Valach et al., 2024),
and US-Tw4 (Eichelmann et al., 2025) are selected in this
study. While data from two other sites (i.e., US-Sne and US-
Tw5) are available, the lack of sufficient temporal coverage
and, in the case of US-Sne, not fully established vegetation
cover, makes them less representative of a stable ecosystem.
Focusing on sites with over a decade of continuous data al-
lows for capturing long-term dynamics more effectively and
provides sufficient time for the wetlands to reach a stable
state. The dataset encompasses 35 full site-years of obser-
vations across the three sites within the Delta (Novick et al.,
2018) (Table 2, Fig. 1), with detailed mapping data sourced
from the Ecoatlas Database (Workgroup, 2019) which pro-
vides land use and vegetation surveys across wetlands in Cal-
ifornia.

The sites are dominated by Tules (Schoenoplectus), Cat-
tails (Typha), and invasive species such as Phragmites, which
are perennial emergent plants well suited to wetland envi-
ronments (López et al., 2016). The Delta itself is host to the
largest estuarine system on the US Pacific coast, spanning
approximately 3000 km2, and contains a diverse network of
wetland systems. Historically, much of the area was drained
and converted for agriculture (Laćan and Resh, 2016; Lund et
al., 2010), but recent restoration efforts have reclaimed select
portions of the landscape for environmental benefits.

2.3 Model features

The application of this work focuses on upscaling carbon
fluxes from similar wetlands at a regional scale. To achieve
this, we aim to predict fluxes at unmonitored sites using
widely available data that are expected to be key drivers of
FCO2 and FCH4. Since site-level measurements from EC
towers are not available at a larger spatial scale, we focus on
ecosystem drivers that can be accessed across broader spatial
extents.

The models utilize a comprehensive set of features from
two readily accessible datasets: (i) the Western Land Data
Assimilation System (WLDAS) (Erlingis et al., 2021) and
(ii) Landsat surface-reflectance products (Landsat, 2020). A
list of features can be found in Table S3. Initially surface re-
flectance products were derived from MODIS (Justice et al.,
2002), but we found better model performance with Landsat
features. WLDAS provides hydrological and meteorological
data at 1 km spatial and daily temporal resolution; we bilin-
early interpolate these fields to each tower coordinate (no ad-
ditional smoothing). Landsat offers 30 m pixels at a nomi-
nal 16 d revisit, although temporal resolution increases with
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Table 1. Model training sites.

Site Code Site Name Water Type Salinity Years of Data (Full) Start Date

US-Myb Mayberry Wetland Non-Tidal Fresh 13 2010
US-Tw1 Twitchell Wetland West Pond Non-Tidal Fresh 12 2011
US-Tw4 Twitchell Island East End Wetland Non-Tidal Fresh 10 2013

Table 2. An overview of the models that are applied to wetland fluxes.

Model Name Category Description Key Strengths

Linear Regression Regression Fits a linear relationship
between predictors and fluxes

Simple baseline, easily
interpretable (Breiman, 2001)

Random Forest
(Breiman, 2001)

Ensemble of Decision
Trees

Aggregates multiple decision
trees to enhance prediction
stability

Robust to nonlinearity, reduces
overfitting (Cortes, 1995)

Support Vector
Machine (Cortes,
1995) (SVM)

Kernel-Based Method Uses flexible kernels to find
optimal separating hyperplanes

Effective in high dimensions,
adaptable kernels (Ke et al.,
2017)

LightGBM (Ke et al.,
2017)

Gradient Boosting Employs iterative boosting
with efficient tree growth

Fast, memory-efficient, handles
large datasets

XGBoost (Chen and
Guestrin, 2016)

Gradient Boosting Improves boosting with
regularization and efficient
computations

Manages outliers, handles
sparse data well

LSTM Neural Network
(Hochreiter, 1997)

Recurrent Neural
Network

Captures temporal
dependencies in sequential data
inputs

Ideal for time-series, learns
long-term patterns

GRU Neural Network
(Chung et al., 2014)

Recurrent Neural
Network

Similar to LSTM but
streamlined with fewer
parameters

Efficient temporal modeling,
lower complexity

time as more satellites are added; we average a 3× 3 pixel
window centred on the tower, linearly interpolate the series
to daily resolution, and apply a centred 17 d running mean to
improve data continuity.

2.4 Model suite

To evaluate ML model performance in calculating FCO2
and FCH4, we implemented a suite of seven models rang-
ing from simple linear methods to more complex neural net-
works. These models have been used in various ecosystems
to study fluxes and collectively represent a broad spectrum
of methodological complexity. Table 3 summarizes the core
characteristics and advantages of each approach.

These models act to demonstrate a spectrum of model
complexity and how that can be leveraged to improve flux
prediction.

After performing simple grid searches we found that all
models were largely insensitive to hyperparameter tuning,
so we kept almost everything at the package defaults with

some minor exceptions. Model hyper-parameter choices can
be found in Brereton (2025).

2.5 Validation framework

To evaluate the models’ ability to generalize across sites, we
employed a Leave-One-Site-Out (LOSO) cross-validation
strategy. In LOSO, we train the models on data from all but
one site, and test the models on the excluded site. This ap-
proach is repeated for each site in the dataset and then aggre-
gated, ensuring that there are no spatio-temporal connections
between the training and testing data. While few models are
immune to overfitting, this approach minimizes the risk of
doing so.

An integral part of our modeling approach is the strategic
selection of input features to optimize the model’s perfor-
mance. We perform this selection by first selecting features
that are expected to be important, guided by mechanistic con-
siderations of wetland processes gained from fieldwork and
insights from mechanistic models (Table S3). Since the total
number of possible feature combinations is too large for an
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Table 3. Feed-forward feature selection process.

Target Variable Step Chosen Feature R2 RMSE r

FCO2 1 Soil-adjusted vegetation index (SAVI) 0.59 1.79 0.78
FCO2 2 (Upwards) sensible heat flux 0.73 1.46 0.86
FCH4 1 Canopy Temperature 0.48 0.054 0.70
FCH4 2 Soil temperature (10–40 cm) 0.52 0.052 0.73
FCH4 3 Normalized Difference Greenness Index (NDGI) 0.53 0.051 0.74

Figure 1. Map of the Sacramento-San Joaquin Delta’s wetland sys-
tem. The Eddy-covariance tower site locations outlined in Table 2
are shown in the red and purple boxes. Satellite image: © Google
Earth, accessed 2025.

exhaustive search, we adopt a feed-forward selection (FFS)
strategy. This method begins with a single feature and iter-
atively adds features that most improves the model’s perfor-
mance based on a chosen statistic. At each step, we evalu-
ate the model’s performance with each potential new feature
and select the one that provides the greatest improvement.
This process continues until adding additional features no
longer significantly enhances the model’s performance. By
using this approach, we efficiently identify the most influen-
tial predictors without the computational burden of testing all
possible combinations.

2.6 Validation

As suggested above, each model was trained using data from
two wetland sites and then validated on the third. Although
the number of sites was limited, each site offered over a
decade of observations accumulated to a daily time step, en-

suring exposure to a range of environmental conditions rep-
resentative of the wetland type and regional climate. For each
excluded site, the model’s predictions were compared against
measured FCO2 and FCH4 and we calculated R2 , Pear-
son’s r , and RMSE for that site. We then pooled all held-out
predictions from the three sites into one combined set and
recomputed R2 (as well as r and RMSE) on the full array
to give an overall cross-validation score. This process was
paired with the FFS method optimized to maximize R2.

After selecting LSTM as the model of choice, it was re-
trained using all available data from the three sites for up-
scaling. The Sacramento-San Joaquin Delta contains roughly
700 km2 of wetland area, including tidal and nontidal re-
gions. The upscaling domain encompasses approximately
25 km2 of nontidal wetlands in the region, dominated by veg-
etation types relevant to the training sites, specifically Tules,
Cattails, and Phragmites. The assumption is that the train-
ing sites used in this study are representative of the broader
conditions in the Delta, but we acknowledge that local vari-
ability in carbon dynamics, such as those caused by microcli-
mates prevalent in the area, may not be fully captured during
the ML model training. Improvements to the model might
be achieved if additional site data covering a wider range
of environmental conditions were incorporated. The feature
data used to optimize the model were spatially interpolated
onto the regional model grid and the model applied to yield
flux estimations. Although relatively modest in spatial ex-
tent, these wetlands are of particular interest given their role
in carbon sequestration and potential climate mitigation and
as targets for conservation and restoration.

3 Results

3.1 Model Validation

We tested six modeling techniques of varying complexities
(Table 3). Model performance scores for daily predictions
are shown in Fig. 2, demonstrating that nearly all machine
learning models outperformed the linear regression baseline
(R2
= 0.64 for FCO2 and R2

= 0.47 for FCH4). For FCO2,
LSTM and GRU achieved the highest R2 values (0.73 and
0.71, respectively), outperforming other methods. A similar
result was found for FCH4, with LSTM and GRU both scor-
ing R2 of 0.53. These results suggest that deep learning mod-
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els can provide tangible benefits over linear regression meth-
ods for upscaling flux predictions. The LSTM model was se-
lected for upscaling in this study as it scored highest consis-
tently, though other ML models scored comparably, so we do
not assert it as definitively the best model.

The feature selection process had access to 26 environ-
mental features from WLDAS and 7 features derived from
LANDSAT spectral bands (see Table S3 for full details).
These variables encompass a wide range of atmospheric, soil,
and vegetation characteristics, such as precipitation, temper-
ature, soil moisture, and spectral indices, key environmental
drivers known to influence carbon and methane flux dynam-
ics (Mitsch and Gosselink, 2015).

The feature selection routine converged on variables that
map directly onto the three main controls of wetland carbon
cycling – vegetation productivity, surface energy-water bal-
ance, and microbial temperature sensitivity, see Table 4. For
FCO2, the features selected were the Soil-Adjusted Vegeta-
tion Index (SAVI) and the upwards sensible heat flux, which
are proxies for gross primary production and the surface en-
ergy water balance (Anderson et al., 2016; Huete, 1988).
For FCH4, the features selected were canopy temperature,
soil temperature and Greenness Difference Vegetation Index
(GNDVI), which are proxies for short-term thermal forcing
and vegetation water status, the anaerobic root-zone temper-
ature that governs methanogenesis, and the supply of pho-
tosynthetically derived substrates for microbes, respectively
(Bubier et al., 1993; Knox et al., 2021; Whiting and Chanton,
1993; Yvon-Durocher et al., 2014).

Figure 3 shows both FCO2 and FCH4 results, including
time series and scatter plots comparing predictions to obser-
vations. Overall, the predicted values track the observations
reasonably well. For FCO2, predictions tended to regress to-
ward the mean, underestimating peak emissions at local max-
ima and overestimating at local minima, although reasonable
interannual variability was observed. The ML models also
displayed less interannual variability than the observations,
common in machine learning approaches (Ouyang et al.,
2023). For wetlands, this is likely due to limited subsurface
process information included in the machine learning mod-
els. Still, the scatter plot shows strong performance for FCO2
(r = 0.86, R2

= 0.73, RMSE= 1.46 gC-CO2 m−2 d−1), de-
spite a noticeable spread around the 1 : 1 line.

FCH4 predictions exhibited similar behavior, with low in-
terannual variability than the observations. At the US-Myb
site, for example, observed FCH4 were initially high (aside
from the first year, when vegetation cover had yet to be fully
established) but declined over time, stabilizing at lower val-
ues. The ML models captured this shift to some extent, pre-
dicting higher fluxes early in the time series and then modu-
lating to lower levels later on. However, predictions did not
fully replicate the magnitude of the observed downward an-
nual trend, introducing bias into the scatter plots at higher
and lower extreme values. This phenomenon is known as re-
gression to the mean, observed in similar machine learning

studies (Ouyang et al., 2023). Consequently, the FCH4 model
performance was weaker than the FCO2 model (R2

= 0.53,
r = 0.74, RMSE= 0.05 g C-CH4 m−2 d−1), indicating that
the processes controlling FCH4 in younger wetlands like
US-Myb may require more detailed subsurface information
(such as soil organic C, oxygen, or redox information) to
be accurately modeled. Restored Delta wetlands are often
net GHG sources for 1–3 years after flooding, before veg-
etation is fully established. Eddy-covariance measurements
show positive NEE of +201± 101 g C-CO2 m−2 yr−1 and
elevated CH4 emissions in the initial period, switching to
sinks of between−400 to−700 g C-CO2 m−2 yr−1 thereafter
(Hemes et al., 2019). A larger synthesis found that this can
persist decades in nontidal marshes because CH4 radiative
forcing outweighs CO2 burial (Arias-Ortiz et al., 2021). Sim-
ilar contrasts between 2 and 15-year-old wetlands (Knox et
al., 2015).

The annual bar plots presented in Fig. 4 highlight the
model’s difficulty in capturing the interannual variability of
carbon fluxes across the study sites. While the average FCO2
and FCH4 predictions are generally aligned with observed
average values with small overall mean bias, the model strug-
gles to reproduce the observed year-to-year variability. Al-
though direct subsurface measurements are available at cer-
tain sites, at the regional scale their limited spatial and tem-
poral coverage currently limits integration into models de-
signed for regional upscaling over inter-annual timescale. For
example, while spatial maps of wetland soil organic carbon
exist (Uhran et al., 2022), using only three sites for training
purposes would provide just three corresponding data points,
limiting model training. The LOSO validation approach re-
vealed that deep learning models, particularly LSTM and
GRU, consistently outperformed traditional linear regression
and other machine learning methods for both FCO2 and
FCH4 predictions. While nonlinear models demonstrated
clear advantages, the magnitude of improvement was rela-
tively modest, reflecting the inherent challenges of captur-
ing site-specific inter-annual dynamics of wetland emissions.
To improve model performance, additional techniques such
as feature transformations or attention mechanisms could be
implemented. However, the primary goal of this model suite
is to ensure reproducible results with “off-the-shelf” models,
which serves as a foundation for more advanced, nuanced
approaches.

3.2 Model Application: Upscaling

Upscaling was repeated 10 times for 10 separately trained
ML models using the same data, and the ensemble mean is
the value reported, as training includes stochasticity. Figure 5
displays spatial maps of annual flux estimates of Net Ecosys-
tem Carbon Balance (NECB), and the CO2 equivalent flux
rate (FCO2e) in the study domain, including zoom-in sub-
plots highlighting areas with more data. The results show that
carbon sequestration, indicated by negative NECB (green)
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Figure 2. Bar plot showing best model performance for each type of machine learning model based on R2 score (though other metrics are in
agreement, see Pearson r correlation and RMSE).

values, are typically dominant throughout the domain, al-
though the northern regions show more carbon sources. In
contrast, the FCO2e distribution shows variability across the
region, with sources and sinks found CO2e sink throughout .

Figure S1 plots the coefficient of variation (CV= σ/µ) of
the inter-model ensemble for both NECB and FCO2e. Higher
CV indicates locations where environmental conditions are
poorly represented in the training data – effectively a proxy
to determine model confidence. Across the study domain the
vast majority of pixels show low dispersion: ≈ 85 % of the
mapped area has a CV< 0.5 for NECB, and 69 % falls below
that same threshold for FCO2e.

Figure 6 shows averaged fluxes in the upscaling do-
main over the full study period. The results highlight the
Delta as an overall carbon sink, with NECB averaging
approximately −450 gC m−2 yr−1, indicating persistent se-
questration across multiple years. CH4 fluxes average 31 gC-
CH4 m−2 yr−1, and shows little spatial variability. Values
are consistent with those previously reported in the region
(Arias-Ortiz et al., 2021). Integrating these fluxes into a CO2-
equivalent metric, this regional wetland system remains a net
sink of CO2e, with approximately 600 gCO2e m−2 yr−1 se-
questered on average in the upscaling domain, with an in-
creasing trend with time.
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Figure 3. Time-series plots (left) of observed (blue) and predicted (orange) FCO2 and FCH4 fluxes for US-Myb, US-Tw1, and US-Tw4. The
scatter plot (right) compares observed vs. predicted values across all sites, with a 1 : 1 reference line with overall and site-only performance
metrics (R2 ).

4 Discussion

This study demonstrates the development and evaluation of
a data-driven framework to upscale terrestrial CO2 and CH4
flux estimates for non-tidal wetlands in the Sacramento-San
Joaquin Delta. By systematically comparing models of vary-
ing complexity, including linear regression, ensemble meth-
ods, gradient boosting algorithms, and recurrent neural net-
works (RNNs), we presented a transparent assessment of
model performance. The goals were to identify the model
that best predicts CO2 and CH4 fluxes and critically appraise
whether incremental complexity is justified by improvements
in predictive capacity. Relevant cited works have included
many different machine learning approaches for predicting

emissions. This work aims to unify modelling efforts by es-
tablishing a standard framework for developing robust data-
driven models, particularly for upscaling purposes.

Our results indicate that non-linear and more advanced
models generally outperformed simple linear regression ap-
proaches. Among all tested models, the Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) neural
networks provided the highest overall skill in predicting both
CO2 and CH4 fluxes at daily timescales. This improvement
was marginal but consistent, supporting the notion that time-
series models, which inherently capture temporal dependen-
cies and non-linearities, can provide tangible benefits over
linear methods and traditional machine learning algorithms.
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Figure 4. Annual Observed and Predicted FCO2 and FCH4 Across Three Wetland Sites. Aggregated statistics for all sites are as follows:
For FCO2, the Mean Absolute Error (MAE) is 176 gC m−2 yr−1 and the Mean Bias Error (MBE) is 17 gC m−2 yr−1. For FCH4, MAE is
9 gC-CH4 m−2 yr−1 and the MBE is 1 gC-CH4 m−2 yr−1.

However, while these deep learning models performed
best, the performance gains were not as large as might be ex-
pected given their significantly higher complexity and com-
putational demands. Similar outcomes have been noted in
other ecological modeling applications, where advanced ma-
chine learning methods yield improvements that are statis-
tically significant yet modest in terms of performance gains
relative to linear models (Oh et al., 2022; Wood, 2022).

The deep learning models provided reasonable estimates
of daily fluxes but struggled to replicate the full range of
interannual variability observed in the field measurements,
which is a common issue for data-driven models in this field
(Nelson et al., 2024). This limited ability to capture long-

term trends and extremes mirrors common challenges in ma-
chine learning-based modeling, where the absence of explicit
mechanistic understanding limits extrapolation beyond the
conditions represented in the training data. The difficulty in
reproducing interannual fluctuations was particularly evident
for CH4 fluxes, an outcome consistent with the high spatial
and temporal complexity of CH4 cycling in wetland envi-
ronments and the limited availability of subsurface parame-
ters (e.g., oxygen concentration, redox conditions, substrate
availability) that drive CH4 production. This may not be sur-
prising as the number of annual cycles available in the train-
ing set was only 35 years.
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Figure 5. Mean annual Net Ecosystem Carbon Balance (NECB, left) and CO2-equivalent radiative forcing (FCO2e, right) averaged over all
model years. Main maps show the Delta area; dashed rectangles (1–3) correspond to zoom-in panels. Tidal wetlands are shaded dark blue,
non-tidal light blue. Positive values (red) indicate net carbon loss; negative values (green) net uptake. See Fig. 1 for reference to training
sites.

Figure 6. Bar plots and box plots of annual NECB, FCH4, and FCO2e fluxes, which have been spatially integrated over the study region, a
total of 25 km2 total land area vegetated primarily by Tules, but also Cattails and Phragmites. The left column shows annual fluxes for each
year, with negative fluxes in green and positive fluxes in orange. Daily fluxes, aggregated to annual totals, are overlaid as grey lines. The
right column shows box plots summarizing the distribution of annual fluxes, highlighting the range, median (blue line), and spread of values.
Each row represents a different flux variable: (a) NECB, (b) FCH4, and (c) FCO2e.
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The observed regression to the mean and the reduced dy-
namic range in model predictions may reflect insufficient
representation of key environmental drivers in the feature
set or inadequate temporal coverage and variability in the
training data. While publicly available datasets such as WL-
DAS and LANDSAT were effective at providing spatially
and temporally comprehensive inputs, the lack of direct sub-
surface and soil biogeochemical measurements likely limited
the model’s ability to capture critical internal processes that
are likely causing the observed differences between years.
Although the feed-forward selection process for the model
features had access to an extensive pool of relevant features,
results indicated that only a small subset of features was nec-
essary to maximise performance. This suggests that, while
there are many features that control CO2 and CH4, their con-
tribution to predictive accuracy may be redundant or captured
indirectly by other variables. The exclusion of particular fea-
tures, such as the water table depth for FCH4, illustrates the
trade-off between mechanistic intuition and data-driven op-
timization. Strong correlations between features with limited
independent variability can lead to features being left out that
would typically be considered ecologically relevant.

The feed-forward selection converges on a compact set of
features that are mechanistically expected to drive CO2 and
CH4 gas exchange in natural wetlands, adding qualitative
confidence to the model; see Table 4 for the list of features
selected. For FCO2; the model selected SAVI (Soil-Adjusted
Vegetation Index), which represents vegetation state and pho-
tosynthetic capacity, and upward sensible heat flux (Qh),
which is related to the rate of evapotranspiration. For FCH4,
canopy temperature and GNDVI (Greenness index) indicate
plant activity and substrate supply via plant-mediated trans-
port, while 10–40 cm soil temperature reflects anaerobic mi-
crobial production (methanogenesis) in the root zone.

After applying the chosen model (LSTM) to calculate CO2
and CH4 fluxes, we estimated NECB and CO2-equivalent
fluxes for similar wetland settings across the Delta region
(Fig. 5). The results show spatial heterogeneity and pinpoint
regions that act as stronger net carbon sinks, as well as areas
where CH4 emissions may offset climate benefits of net car-
bon sequestration. Such insights support targeted conserva-
tion and restoration strategies aimed at maximizing net car-
bon sequestration benefits, facilitating ongoing efforts to re-
store and manage wetlands to contribute to net-zero emission
goals.

A key advantage of the chosen approach is its reliance
on readily available, open-source data streams and standard
computational resources. The framework can be deployed
efficiently without specialized hardware, making it accessi-
ble to resource-limited organizations, practitioners, and re-
searchers.

The primary objectives of this study were to identify a suit-
able model, contextualize model performance by comparing
to a baseline linear regression, and highlight trade-offs be-
tween complexity, interpretability, and accuracy. By explic-
itly testing multiple models ranging from simple linear re-
gressions to advanced recurrent neural networks, we demon-
strated that complexity alone does not guarantee a substantial
increase in predictive power. Instead, complexity should be
adopted judiciously, based on the magnitude of performance
gains, the cost of model implementation, and the level of in-
terpretability.

We suggest that future modeling efforts should focus
on deriving mechanistically relevant predictors (Ouyang et
al., 2023), and incorporating hybrid modeling approaches
(Yao et al., 2023) that combine the strengths of process-
based and machine learning methods. Attention mechanisms
(Yuan et al., 2022), advanced architectures (e.g., Transform-
ers, Vaswani, 2017), or physics-informed machine learning
(Raissi et al., 2019) may also help address model perfor-
mance limitations.

5 Conclusions

This study provides a transparent, methodical demonstration
of an artificial intelligence approach to modeling wetland
carbon dioxide (CO2) and methane (CH4) emissions, using a
suite of “off-the-shelf” tools and establishing a standardized
benchmarking protocol for model performance evaluation. In
the study region (the Sacramento–San Joaquin Delta), inter-
model comparisons revealed modest but appreciable perfor-
mance differences when comparing advanced models with
a linear regression baseline. While there are tangible bene-
fits to employing machine learning for these purposes, it is
likely that the gap between simpler models and more so-
phisticated models will widen as data quantity and quality
continues to increase. Ultimately, this study lays the ground-
work for regional scale model benchmark testing, facilitating
the development of more advanced modeling approaches that
can guide wetland management, restoration planning, and
climate mitigation strategies.
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Appendix A

Figure A1. Coefficient of variation (σ/|µ|) of NECB (left) and FCO2e (right) across the 10 runs, showing relative inter-model uncertainty
in the predictions. Green areas show high model confidence and red areas shower either lower model confidence (or division by small µ).
This can be interpreted as a proxy for the confidence of the spatial upscaling.

Code and data availability. The current version of the RC-
CAT model is available on GitHub at https://github.com/
ashbre2/RCCAT (last access: 1 September 2025) under the
MIT License. The exact version of the model used to pro-
duce the results presented in this paper has been archived
on Zenodo https://doi.org/10.5281/zenodo.14933820 (Brereton,
2025). The code release includes prepared training data.
Sources: WLDAS and Landsat (detailed in the Supplement).
Other data sets (e.g., eddy covariance) are cited in the
manuscript (https://doi.org/10.17190/AMF/1246139, Matthes et al.,
2025; https://doi.org/10.17190/AMF/1246147, Valach et al., 2024;
https://doi.org/10.17190/AMF/1246151, Eichelmann et al., 2025).
All data is publicly available.
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