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Abstract. The flow of fluids within porous rocks is an impor-
tant process with numerous applications in Earth sciences.
Modeling the compaction-driven fluid flow requires the so-
lution of coupled nonlinear partial differential equations that
account for the fluid flow and the solid deformation within
the porous medium. Despite the nonlinear relation of poros-
ity and permeability that is commonly encountered, natural
data show evidence of channelized fluid flow in rocks that
have an overall layered structure. Layers of different rock
types have discontinuous hydraulic and mechanical proper-
ties. We present numerical results obtained by a novel space-
time method, which can handle discontinuous initial porosity
(and permeability) distributions efficiently. The space-time
method enables straightforward coupling to models of mass
transport for trace elements. Our results indicate that, un-
der certain conditions, the discontinuity of the initial poros-
ity influences the distribution of incompatible trace elements,
leading to sharp concentration gradients and large degrees of
elemental enrichment. Finally, our results indicate that the
enrichment of trace elements depends not only on the chan-
nelization of the flow but also on the interaction of fluid-filled
channels with layers of different porosity and permeability.

1 Introduction

The flow of fluids in the Earth’s subsurface is important for
many applications. Examples of such applications include,
but are not limited to, the migration of magma (McKen-
zie, 1984; Barcilon and Richter, 1986), the flow of glaciers
(Fowler, 1984), the integrity of subsurface reservoirs (Räss

et al., 2018; Yarushina et al., 2022), and the efficiency of
geothermal systems (Utkin and Afanasyev, 2021). A distinc-
tive aspect of the fluid flow within the deep Earth is that
rocks cannot be treated as purely elastic or rigid, requiring
consideration of their bulk (volumetric) viscous deformation
(McKenzie, 1984; Scott and Stevenson, 1986). In fact, recent
experiments have confirmed that the viscous/viscoelastic be-
havior of rocks can be observed also at near-surface condi-
tions (Sabitova et al., 2021). Thus, the volumetric deforma-
tion and the associated fluid flow need to be considered in
a coupled fashion since (de)compaction can drive fluid flow
and vice versa (Connolly and Podladchikov, 1998; Vasilyev
et al., 1998). In the latter studies, porosity waves were ob-
served numerically. Such waves reflect the propagation of
porosity perturbations (and the associated volumetric defor-
mation) in a wave-like fashion with minimal dissipation. The
transport of fluid-filled porosity in a non-dissipative fashion
has been at the focus of research by geoscientists since it has
important implications for the geochemical anomalies that
are observed near the surface of the Earth (Richter, 1986;
Navon and Stolper, 1987; Jordan et al., 2018).

The shape of porosity waves has been shown to depend
very sensitively on the nonlinear behavior of the bulk (vol-
umetric) viscosity. For example, in cases where the com-
paction/decompaction behavior is associated with significant
changes in the effective viscosity, porosity waves take a
channel-like shape (in two or three dimensions) that is re-
sponsible for the focusing of the flow towards the Earth’s
surface (Räss et al., 2018; Connolly and Podladchikov, 2007;
Räss et al., 2014, 2019; Yarushina and Podladchikov, 2015;
Yarushina et al., 2015, 2020). The focusing of the flow pro-
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duces “chimney-like” features that resemble geophysical ob-
servations (Räss et al., 2018; Yarushina et al., 2020). The oc-
currence of such features is very important in the quantifica-
tion of fluid flow and the associated geochemical anomalies
(Spiegelman and Kelemen, 2003).

An essential feature of geological formations is that rocks
are typically found in layers (strata). The layers are often
composed of rock types that have different physical prop-
erties, such as porosity and permeability. It is exactly this
change in permeability that is responsible for the formation
of geological reservoirs. For example, a typical underground
reservoir must be composed of rocks of high porosity (and
permeability) and must be covered by rocks of negligible
porosity (and permeability) that act as a “seal” to the underly-
ing rock units. This configuration typically requires the con-
sideration of porosity (and permeability) jump discontinu-
ities across the lithological boundaries. However, the meth-
ods used to solve the respective poro-viscoelastic equations
numerically cannot handle a discontinuous initial porosity,
and hence only approximate it by a continuous function with
steep gradient. This approach leads to smoothing effects and
does not preserve the discontinuous nature of solutions. Re-
solving the solution behavior next to a discontinuity is crucial
in all the applications where the quantification of the fluid
flow is needed and can thus be important for safety analyses
in geoengineering applications (Yarushina et al., 2022).

Here, we consider a poro-viscoelastic model that general-
izes the one introduced in Connolly and Podladchikov (1998)
and Vasilyev et al. (1998) for the interaction of porosity and
pressure. For modeling sharp transitions between materials,
as caused, for example, by stacked rock layers, it is impor-
tant to be able to treat porosities with jump discontinuities.
These discontinuities turn out to be determined mainly by the
initial condition, as it was shown in Bachmayr et al. (2023)
based on results from Simpson et al. (2006) for smooth initial
porosities. In addition, we utilize a newly-developed space-
time method that has been shown to be more accurate in solv-
ing this particular problem in the presence of jump disconti-
nuities (Bachmayr and Boisserée, 2025). Our approach can
be used to benchmark methods that do not include discon-
tinuities and quantify the error between the two approaches.
An additional advantage of the space-time method is that it
can be coupled to simple models of chemical-tracer trans-
port (see, for example, Richter, 1986; Jordan et al., 2018)
as a post-processing step, since the entire porosity-pressure
history is saved and the chemical transport problem does
not feedback into the porosity-pressure (hydro-mechanical)
model. The results obtained from this coupling allow us, for
the first time, to investigate the evolution of chemical anoma-
lies in the presence of channelized fluid flow, and their inter-
actions with porosity/permeability discontinuities. In partic-
ular, our results are relevant to the formation of ore deposits
and to the transport of trace elements in the subsurface.

1.1 The governing equations

The model for poro-viscoelastic flow on which we focus in
this work reads

∂tφ =−(1−φ)
(
φm

p

ηbσ(p)
+Q∂tp

)
, φ(0, ·)= φ0, (1a)

∂tp =
1
Q

(
divx

(
kb

µφnb
φn (∇xp+ (1−φ)δρged)

)
−φm

p

ηbσ(p)

)
, p(0, ·)= p0, (1b)

as previously described in Connolly and Podladchikov
(1998) and Vasilyev et al. (1998). Here, φ denotes the poros-
ity (void ratio), p is the effective pressure, σ accounts for
decompaction weakening (Räss et al., 2018, 2019), Q is
the compressibility (equal to K−1, where K is the bulk
modulus), and δρ = ρs

− ρf the density difference. Further-

more, ∇xf = (∂x1f, . . ., ∂xdf )
> and divxf =

d∑
i=1
∂xifi for

functions f : Rd→ R, f : Rd→ Rd as usual. For any func-
tion g(t,x), we denote g(0, ·) as the function g at a fixed time
t = 0 with varying x. Finally, t is time and ed is the vector
indicating the gravity acceleration direction (all symbols and
the respective units are given in Table 1). The problem is fur-
thermore supplemented with initial porosity φ0 :�→ (0,1)
and initial effective pressure p0 :�→ R.

An extension of the hydro-mechanical model from
Eqs. (1a) and (1b) is to consider the transport of a chemi-
cal tracer (such as a trace element) as described in Jordan
et al. (2018, Sect. 3). In particular, the trace-element trans-
port equations are chosen since we consider that the abun-
dance of trace elements does not affect the mechanical or the
hydraulic properties of the rock. As a consequence, the trace-
element transport problem depends on the hydromechanical
problem, but the opposite is not true. This allows us to treat
the chemical transport problem as a post-processing step af-
ter we have calculated the respective fluid velocities and the
porosity distribution. The amount of tracer is quantified using
the total concentration

C = φρfχ f
+ (1−φ)ρsχ s, (2)

and fulfills the transport equation

∂tC+ divx
(
veC

)
= 0. (3)

Here ve denotes the effective velocity and at the limit where
vs
≈ 0 holds, is given by

ve
=

vfφ

φ+ (1−φ)KD
,

vf
=

1
φ

kb

µφnb
φn (∇xp+ (1−φ)δρged) , (4)

where KD =
ρsχ s

ρfχ f describes the concentration ratio of the
tracer which is assumed to be constant as already indicated
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Table 1. Variables and physical quantities.

Symbol Meaning Unit Value

φ porosity
φb background porosity 10−3

p effective pressure Pa
C total concentration kg m−3

ηb bulk viscosity Pa s 1019

K bulk modulus Pa 3× 109

kb/µ permeability over fluid viscosity m2 Pa−1 s−1 10−17

n Carman–Kozeny exponent 3
m viscosity exponent 2
g gravity m s−2 10
ρf fluid density kg m−3 2500
ρs solid density kg m−3 3000
χ f fluid mass fraction
χ s solid mass fraction
KD concentration ratio ρsχ s

ρfχ f 10−3

vf fluid velocity m s−1

vs solid velocity m s−1

T total time s 4.73364× 1013 (1.5 Myr)

in Table 1. Note that, in this case, KD is a ratio of concentra-
tions and not of mass fractions. Furthermore, Eq. (3) assumes
that porosity is continuous and its derivation can be found in
Appendix A. For cases where porosity is discontinuous, the
jump condition must guarantee the conservation of mass at
the discontinuity (see Appendix B for details).

1.2 Applicability of assumptions

The previous hydro-mechanical system from Eqs. (1a)
and (1b) results from the simplification of the multiphase-,
viscoelastic-Stokes’ equations at the static limit. The static
limit occurs when no far-field stresses are imposed at the
boundaries, and the buoyancy stresses are relatively small
within the model domain. This limit is justified in cases
where the effective pressure is close to zero. In such cases,
the shear stresses that rocks can support are very small
and, in many applications, can be assumed to be negligi-
ble (Aharonov et al., 1997; Connolly and Podladchikov,
1998, 2007; Scott and Stevenson, 1984). Being close to the
static limit implies that the solid velocity for the mechanical
problem is taken at the limit where vf

� vs
≈ 0 (but gener-

ally divxvs
6= 0).

One particular process where the trace-element transport is
important is when melt is ascending within the Earth’s man-
tle (Richter, 1986). In regions such as in the mantle wedge or
within a mantle plume, the temperature does not change sig-
nificantly. In these geodynamic environments, the confining
pressure is large and the melt-filled porosity of the mantle
rock is very small, typically in the order of 0.001–0.01 (Sims
et al., 1999). To model the trace-element equilibrium and the
chemical interaction between solid and fluid, we use the par-

tition coefficient KD . The partition coefficient changes as a
function of the mineralogy of the rock, its pressure and its
temperature. However, for a given material, the variation of
the partition coefficient with pressure is very weak and can
be considered constant over several GPa of pressure (Taura
et al., 1998).

Having vf from Eqs. (1a) and (1b) allows the solution of
Eq. (3). The specific form of Eq. (3) is valid at the limit where
grain-scale chemical diffusion and hydro-dynamic disper-
sion are ignored. Previous studies indicate that, on the large
scales considered here, these phenomena can be neglected
(Richter, 1986; Stavropoulou et al., 1998).

1.3 Existing numerical methods

Various methods have been proposed to solve the hydro-
mechanical problem from Eqs. (1a) and (1b) numerically,
for example finite difference schemes with implicit time-
stepping in Connolly and Podladchikov (1998) and adap-
tive wavelets in Vasilyev et al. (1998). In a number of recent
works, pseudo-transient schemes based on explicit time step-
ping in a pseudo-time variable have been investigated. Due
to their compact stencils, low communication overhead and
simple implementation, such schemes are well suited for par-
allel computing on GPUs, so that very high grid resolutions
can be achieved to compensate the low order of convergence,
as shown for example in Räss et al. (2014, 2018, 2019),
Utkin and Afanasyev (2021), Yarushina et al. (2020) and
Reuber et al. (2020). Even though all of these schemes
are observed to work well for smooth initial porosities φ0,
their convergence can be very slow in problems with non-
smooth φ0, in particular in the presence of discontinuities
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(Bachmayr and Boisserée, 2025). Examples of this behavior
are also shown in Appendix C. In such cases, due to the
smoothing that is implicit in the finite difference schemes,
accurately resolving sharp localized features can require ex-
tremely large grids that are computationally inefficient.

1.4 Novel contributions

Our approach considers the utilization of a space-time
method to solve the hydro-mechanical problem from
Eqs. (1a) and (1b). This method was introduced for this par-
ticular problem in Bachmayr and Boisserée (2025), and has
the advantage that the entire solutions of porosity and effec-
tive pressure fields can be stored in a space-time grid. In ad-
dition, this approach can handle discontinuities in the poros-
ity φ without approximating it by a continuous function with
steep gradient. As a result, smaller grids and less compu-
tational effort are needed compared to continuous schemes
such as finite differences. Since the method generates effi-
cient approximations of the entire time history of a solution
to Eqs. (1a) and (1b) in a sparse format, its coupling to the
problem of chemical-tracer transport (CT) given by Eq. (3)
becomes straightforward. This is because the CT problem
does not give feedback to the model from Eqs. (1a) and (1b),
and thus solving it can be seen as post-processing step.

1.5 Outline

Since our results from the HM model in Eqs. (1a) and (1b)
are uncoupled to the results of the CT problem in Eq. (3), we
begin with a short description of the methods used to solve
the HM model. In Sect. 2 we introduce the methods to obtain
the numerical results both for the HM model in Sect. 3 and
for the CT problem in Sect. 4. We finish with a discussion
regarding the implication of our results for the porous fluid
transport in natural systems.

2 Methods

2.1 Hydro-mechanical model (HM)

To solve Eqs. (1a) and (1b) we consider the space-time adap-
tive method which was introduced in Bachmayr and Bois-
serée (2025) based on a combination of a Picard iterations
for Eq. (1a) and a particular adaptive least squares discretiza-
tion of Eq. (1b) which itself is based on Führer and Karkulik
(2021) and Gantner and Stevenson (2021, 2024). To make
this more precise, we start by introducing the new variable

ϕ =− log(1−φ), (5)

so that φ = 1− e−ϕ . The previous transformation allows the
investigation of cases where the porosity is larger than the
typical “small-porosity limit” (Vasilyev et al., 1998). The

system in Eqs. (1a) and (1b) can then be written in the form

∂tϕ =−

(
β(ϕ)

p

σ(p)
+Q∂tp

)
, ϕ(0, ·)= ϕ0, (6a)

∂tp =
1
Q

(
divx (α(ϕ)(∇xp+ ζ (ϕ)))−β(ϕ)

p

σ(p)

)
,

p(0, ·)= p0, (6b)

where

α(ϕ)=
kb

µφnb

(
1− e−ϕ

)n
, β(ϕ)=

1
ηb

(
1− e−ϕ

)m
,

ζ (ϕ)= e−ϕδρged. (7)

To solve Eq. (6b) for a fixed ϕ we consider a linearization,
that is, we solve

∂tp
(k)
=

1
Q

(
divx

(
α(ϕ)

(
∇xp

(k)
+ ζ (ϕ)

))
−β(ϕ)

p(k)

σ
(
p(k−1)

)), p(k)(0, ·)= p0, (8)

for p(k) given the previous iterate p(k−1). By defining

G
[
p(k−1)

](
p(k),ψ (k)

)

=

 1
Q

(
div
(
p(k),ψ (k)

)
+β(ϕ)

p(k)

σ(p(k−1))

)
ψ (k)+α(ϕ)∇xp

(k)

p(k)(0, ·)

 ,
R =

 0
−α(ϕ)ζ (ϕ)

p0

 , (9)

with div(p,ψ)= ∂tp+divxψ , we can reformulate Eq. (8) as
first-order system

G
[
p(k−1)

](
p(k),ψ (k)

)
= R. (10)

Note that the second row of Eq. (9) can be rewritten asψ (k) =
−α(ϕ)(∇xp

(k)
+ζ (ϕ)). Plugging ψ (k) into div(p(k),ψ (k)) in

the first row of Eq. (9) yields Eq. (8).
Numerically we now use the approach presented in

Führer and Karkulik (2021) and Gantner and Stevenson
(2021, 2024), and thus calculate a least squares minimizer
with respect to an appropriately chosen norm. Using the
numerical approximation of p[ϕ] from Eq. (10) we solve
Eq. (6a) by discretizing the iteration

ϕ(k+1)(t, ·)=Q
(
p0−p

[
ϕ(k)

]
(t, ·)

)
−

t∫
0

β
(
ϕ(k)

) p
[
ϕ(k)

]
(s, ·)

σ
(
p
[
ϕ(k)

]
(s, ·)

)ds. (11)
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Figure 1. Example of a porosity channel at T = 1.5 Myr (a) with the associated adaptive space-time grid (b); the color of each grid cell
denotes its refinement level.

which is based on integrating Eq. (6a) in time. For more de-
tails including proofs of convergence we refer to Bachmayr
and Boisserée (2025, Sects. 3 and 4).

This scheme can generate space-time grids correspond-
ing to spatially adapted time steps; an example of this can
be found in Fig. 1. Furthermore, the method provides com-
putable a-posteriori estimates of the error with respect to the
exact solution of the coupled nonlinear system from Eqs. (6a)
and (6b). Therefore, this method can be used to steer an adap-
tive grid refinement routine which yields efficient approxi-
mations of localized features of solutions, in particular in the
presence of discontinuities. In addition, one obtains optimal
convergence rates for φ and p independent of the presence of
discontinuities in φ, as observed in Bachmayr and Boisserée
(2025, Sect. 5.2).

2.2 Chemical-tracer transport model (CT)

To solve the chemical transport in Eq. (3), we follow its char-
acteristics. Namely, we consider

∂tx(t)= v
e(t,x(t)),

c(t)= C(t,x(t)). (12)

Then we calculate

∂tc(t)= ∂tC(t,x(t))+∇xC(t,x(t)) · ∂tx(t)
=−divx

(
ve(t,x(t))C(t,x(t))

)
+∇xC(t,x(t)) · ve(t,x(t))

=−divx
(
ve(t,x(t))

)
C(t,x(t))

=−divx
(
ve(t,x(t))

)
c(t), (13)

the previous yields a coupled system of ordinary differential
equations (ODEs)

∂tx(t)= v
e(t,x(t)),

∂tc(t)=−divx
(
ve(t,x(t))

)
c(t), (14)

that is used to solve Eq. (3). The solution is provided along
the characteristics given by ve starting with some initial

value x0 and initial concentration c0. We use an explicit Eu-
ler scheme to solve Eq. (14) for many different starting val-
ues x0. Note that this approach is highly parallelizable, since
we need to solve a high number of independent ODEs for
each starting value. By exploiting this we usually achieve
very low wall-clock times, even for many starting values cor-
responding to a high resolution. Note furthermore that this
approach only conserves the quantity C if ve is continuous.
For the discontinuous cases one needs to ensure continuity of
the flux and we refer to Sect. B for more details.

2.3 Model parameters

The model parameters can be derived by non-
dimensionalizing the physical models from Eqs. (1a),
(1b) and (3) with values given in Table 1. Choosing the
independent scales

xsc
= 104 m, δρscgsc

= 5× 03 kgm−2 s−2,

ηsc
b = 1019 Pas, (15)

yields the dependent scales

psc
= δρscgscxsc

= 5× 107 Pa,

t sc
=
ηsc

b
psc = 2× 1011 s,

ksc
b
µsc =

(xsc)2

ηsc
b
= 10−11 m2 Pa−1 s−1. (16)

Hence we end up with the nondimensional parameters

η̂b = 1,
k̂b

µ̂φnb
= 1000, δ̂ρĝed =

(
0
1

)
,

BQ̂=Qδρscgscxsc
=

1
60
, (17)

where B =Qscδρscgscxsc denotes a non-dimensional num-
ber that is the ratio of buoyancy stress to bulk modulus.
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Note that this may look similar to the Deborah number de-
fined in Connolly and Podladchikov (1998), however, the
lengthscale xsc is taken as an independent quantity in our
approach, while in other studies it is derived from the com-
paction length (Connolly and Podladchikov, 1998; Vasilyev
et al., 1998).

Due to the given length scale and time scale, we can di-
rectly translate physical times and domain sizes into our
model parameters if we divide by xsc or t sc, respectively. For
T = 1.5 Myr, this corresponds to

T̂ = T/t sc
=

1.5× 106
× 365.25× 24× 60× 60

2× 1011 = 236.682.

Note that, in the following, the “ˆ” symbols are omitted for
convenience. Furthermore, we consider σ , as suggested in
Räss et al. (2018, 2019), which is an expression of the form

σ(v)= 1−
1− c1

2

(
1+ tanh

(
−
v

c2

))
=
c1+ exp(2v/c2)

1+ exp(2v/c2)
, v ∈ R, (18)

and provides a phenomenological model for decompaction
weakening. Here c1 ∈ (0,1] and c2 > 0, where 1+ tanh can
be regarded as a smooth approximation of a step function tak-
ing values in the interval (0, 2). In the most well-studied case
c1 = 1, as considered in Vasilyev et al. (1998), one observes
the formation of porosity waves, whereas the case of c1 < 1
with appropriate problem parameters and initial conditions,
one can observe the formation of channels. With parameters
from the stated ranges, σ as in Eq. (18) fulfills (Bachmayr
et al., 2023, Assumptions 1), and hence we refer to Bach-
mayr et al. (2023, Sect. 4) for the well-posedness of Eqs. (1a)
and (1b).

In this work we consider two cases, namely c1, c2 = 1 (no
decompaction weakening) and c1, c2 = 0.002 (including de-
compaction weakening). The resulting functions read

σ a(v)= 1, σ b(v)=
0.002+ exp(1000v)

1+ exp(1000v)
, v ∈ R. (19)

3 Hydro-mechanical model results

In this part we show numerical results for solving the hydro-
mechanical problem from Eqs. (1a) and (1b) using the
method described in Sect. 2.1. We compare three different
initial porosities which are shown in Fig. 2, reflecting our
main focus on investigating the cases of jump discontinu-
ities in the initial porosity distribution. Taking an initial ho-
mogeneous porosity as a reference case (Fig. 2a), we con-
sider a drop (along x2; Fig. 2b) versus an increase (along x2;
Fig. 2c) in the initial porosity distribution. For the effective
pressure p, we assume homogeneous initial data p0(x)= 0.
Note that all calculations in this section are carried out on

larger grids, namely grids of size 30 km in x2 direction, to
avoid problems near the upper boundary. This, however, does
not affect the computation time significantly since the addi-
tional grid cells located above 20 km are generally not refined
because φ and p are almost constant there.

We start with the well-known scenario of the smooth ini-
tial porosity φa

0 as in Fig. 2a and compare the results with-
out decompaction weakening (σ a) and with decompaction
weakening (σ b) in Fig. 3. The resulting plots show the ex-
pected spreading of the fluid front in the case without de-
compaction weakening in Fig. 3a and c. In contrast, the fluid
flow is focused in the presence of weakening as one can see
in Fig. 3b and d. These results are used as reference and will
not be discussed further since they confirm previous findings
(Räss et al., 2018; Connolly and Podladchikov, 1998, 2007;
Yarushina et al., 2015).

Figure 4 shows the results of the two initial conditions φb
0

and φc
0 from Fig. 2b and c that consider an initial porosity

discontinuity.
Both results consider the case without decompaction

weakening. One can see very sharp transitions of φ at the
locations of the initial discontinuities. Note that the discon-
tinuity itself cannot move since the model from Eqs. (1a)
and (1b) was derived under the assumption that vs

≈ 0 and
porosity is a property of the solid. This agrees with the theo-
retical results shown in Bachmayr et al. (2023, Thm. 4.6). As
it is especially visible for the porosity distribution, the sign
of its transition (positive or negative) depends on whether
the initial porosity of the upper layer was smaller (negative
jump) or larger (positive jump) compared to the porosity of
the underlying layer. Figure 5 shows a cross section of Fig. 4
that shows the discontinuities in φ more clearly. In contrast,
the solution for p is continuous which aligns with the theory
derived in Bachmayr et al. (2023, Sect. 4).

Figure 6 shows the effect of decompaction weakening on
the same initial discontinuous configurations (case σ b). In
the case of the negative jump (φb

0 ), the channel has a slightly
higher maximal porosity compared to the continuous case.
Furthermore, Fig. 6a shows that there is a very steep increase
in porosity at the place of the discontinuity. On the other
hand, for the positive jump (φc

0), the channel focuses sig-
nificantly before spreading in the high-porosity/permeability
zone as it is shown in Fig. 6b.

This can be expected: we see a narrower channel in the
domain that has smaller porosity, but the channel spreads
quickly once the fluid enters the domain of high porosity and
permeability. This shows that the fluid does not need to chan-
nelize as much as in the less porous domain in order to travel
upwards.

4 Chemical-transport model results

An extension of the general model from Eqs. (1a) and (1b)
is to consider the transport of a chemical tracer by solving
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Figure 2. Three initial porosity distributions φa
0 (a), φb

0 (b) and φc
0 (c).

Figure 3. Porosity (a, b) and effective pressure (c, d) after
T = 1.5 Myr for a smooth initial condition (φa

0) without decom-
paction weakening (σ a) (a, c) and with decompaction weakening
(σ b) (b, d).

Eq. (3). This is achieved by following its characteristics as
described in Sect. 2.2. The natural range of partition coeffi-
cients can be very large (Irving, 1978) and their magnitudes
depend on several parameters (Karato, 2016). However, as
it was described in Sect. 1.2, it is reasonable to assume
that the partition coefficient can be approximated as constant
given a limited range of temperatures and constant miner-
alogical composition (that is implicitly assumed in our mod-
els). Without loss of generality, we examine the case where
KD = 10−3 (as already indicated in Table 1) to consider in-
compatible elements. Incompatible elements are those that
partition preferentially in the fluid. Solving for C and using
the prescribed values for ρs, ρf andKD from Table 1 directly
yields χ s and χ f as well.

Figure 4. Porosity (a, b) and effective pressure (c, d) without de-
compaction weakening (σ a) after T = 1.5 Myr for φb

0 (a, c) and
φc

0 (b, d).

In this part, we will only plot the normalized chemical
tracer C/C0. This allows us to quantify the overall enrich-
ment or depletion of a trace element with respect to the initial
configuration. Note that since we use a characteristics-based
approach for the advection of chemical elements, the chemi-
cal evolution is calculated only for the areas where the char-
acteristics are initialized. As a result, the domain where the
chemical evolution is calculated, changes in time depending
on the effective velocity ve. For simplicity, we consider con-
stant initial data C0(x)= 1 since C in Eq. (3) can be scaled
arbitrarily without affecting the solution.

Figure 7 shows the normalized tracer compositions C/C0
connected to the solutions shown in Fig. 3 (with φa

0) for
KD = 10−3.
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Figure 5. Cross section of Fig. 4 for x1 = 5 km with porosity (a, b) and effective pressure (c, d).

Figure 6. Porosity (a, b) and effective pressure (c, d) with de-
compaction weakening (σ b) after T = 1.5 Myr for φb

0 (a, c) and
φc

0 (b, d).

We see the distribution of an incompatible element that
prefers to stay with the fluid, and hence, it gets transported
efficiently while draining the area of origin. The role of de-
compaction weakening becomes more apparent in the case
of the channelization of the fluid flow, as shown in Fig. 7b.
In that case, we observe a more pronounced enrichment in
the region defined by the fluid-rich channel. It is important
to note that this enrichment occurs in both the solid and the
fluid, and it occurs at the expense of the trace element’s dis-
tribution in the source region.

The solution of the CT problem having initial discontinu-
ous porosity φ0 is shown in Fig. 8.

Figure 7. C/C0 after T = 1.5 Myr with an initially continuous
porosity (φa

0) without decompaction weakening (σ a) (a) and with
decompaction weakening (σ b) (b).

Figure 8. C/C0 without decompaction weakening (σ a) after T =
1.5 Myr for φb

0 (a) and φc
0 (b).

This figure is calculated based on the HM model (porosity-
pressure evolution) shown in Fig. 4 and assumes no decom-
paction weakening (σ a). The results generally agree with
the previous findings that show that the incompatible ele-
ments (KD = 10−3) travel further and enrich the upper layer.
Furthermore, this enrichment seems to be traveling slightly
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Figure 9. C/C0 with decompaction weakening (σ b) after T =
1.5 Myr for φb

0 (a) and φc
0 (b).

Figure 10. Cross section of Fig. 9 for x1 = 5 km with C/C0 on the
y axis.

faster in the region where the initial fluid content was higher
(central region of the domain). This requires that the prop-
agation velocity of the enrichment front is not constant and
moves further from the location of the porosity discontinu-
ity, which is located exactly at the middle of the domain
(x2 = 10 km). In contrast, for the case of the negative initial-
porosity jump, the enrichment is negligible and is located in
the area just above the discontinuity. A marked feature of
the discontinuous models shown in Fig. 8 is that, exactly at
the discontinuity, we observe a significant enrichment or de-
pletion of C depending whether we have a drop (φb

0 ) or an
increase (φc

0) in the initial porosity.
Finally, Figs. 9 and 10 show the resulting normalized

tracer element C/C0 for the case of decompaction weak-
ening (σ b) and an initially discontinuous porosity φ0. The
associated HM model can be found in Fig. 6. The result-
ing cases show marked differences and can be summarized
as follows. The case with negative jump discontinuity (φb

0 )
shows a marked enrichment with respect to the incompati-
ble element. In particular, there is a marked enrichment at
the discontinuity (at x2 = 10 km), and within the channel in
general. Interestingly, for the case of positive jump discon-
tinuity (φc

0), the enrichment of the incompatible element is
localized close to the discontinuity location (but is smaller
at the discontinuity itself). This is explained by the fact that
the fluid spreads beyond this point as it was shown in Fig. 6b
and d.

5 Discussion and conclusions

We have presented results for the case of compaction-driven
fluid flow in relation to fluid migration in the deep subsur-
face. Our method aims to resolve the effects of discontin-
uous porosity distributions as already discussed in Bach-
mayr and Boisserée (2025). The models confirm previous
findings for the cases of homogeneous initial porosity (φ0)
distribution (Räss et al., 2018; Connolly and Podladchikov,
1998, 2007; Yarushina et al., 2015). However, for the cases
when the φ0 has jump discontinuities, our method predicts
discontinuous solutions without artificial smoothing due to
numerical diffusion. Such results are useful for cases where
the mechanical variables, such as the effective and fluid pres-
sure, need to be quantified in applications (Räss et al., 2018;
Yarushina et al., 2022), and thus, our approach can be used
to provide a reference case for numerical benchmarks.

An additional advantage of the space-time method is that
the one-way coupling of the HM problem to the CT problem
can be easily solved using the pre-calculated results of the
HM problem. This allows for the investigation of the behav-
ior of various trace elements and the overall mass transport
in rock formations that have discontinuous porosity. Our re-
sults confirm previous data which suggest that incompatible
elements are the most mobile and can travel together with the
fluid (Richter, 1986). This selective enrichment in incompat-
ible elements becomes more prominent in cases where the
flow is channelized, leading to the formation of localized
geochemical and mineralogical anomalies. Although chan-
neling mechanisms have been discussed in previous works
(Aharonov et al., 1997; Spiegelman and Kelemen, 2003;
Schiemenz et al., 2011), the mechanism for the channeling
in our case is different. In the aforementioned studies, the
formation of channels was due to the selective dissolution of
matrix minerals (Schiemenz et al., 2011; Spiegelman et al.,
2001). In contrast, in our case the channeling is the result
of decompaction weakening (Connolly and Podladchikov,
2007; Yarushina et al., 2015, 2020). In any case, it becomes
apparent that, whatever the localization mechanism may be,
the localization of the fluid amplify the enrichment of incom-
patible elements significantly. Furthermore, our new results
also show the interaction of a fluid-filled channel with a jump
discontinuity in the initial porosity. This example is very rel-
evant for the case of fluid transport across heterogeneous lay-
ers. In particular, the results show a marked enrichment of the
incompatible trace elements at the initial porosity discontinu-
ity for the cases where the initial porosity exhibits a negative
jump (i.e. porosity drops sharply at the transition). In the case
of a positive jump, we observe a marked depletion at exactly
the same location. The results indicate that both porosity and
the incompatible-element enrichment, that are associated to
the discontinuity, do not move over time and remain at the
same location.

Our results indicate that the effects of the channeling of
the flow together with the presence of initial discontinuities
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will produce a variety of element-enrichment patterns that
can be investigated in future studies that focus on particu-
lar element behavior. These results can be very important in
targeted mineral exploration and in the understanding of ore-
formation processes.

Appendix A: Derivation of the chemical model

Starting with the conservation of mass in the two phases, we
get

∂t

(
φρfχ f

i

)
+ divx

(
φρfχ f

i v
f
i

)
= 0f

i , (A1a)

∂t
(
(1−φ)ρsχ s

i

)
+ divx

(
(1−φ)ρsχ s

i v
s
i

)
= 0s

i , (A1b)

for i = 1, . . . , n chemical elements, where 0f
i , 0

s
i denote re-

action terms. Note that
n∑
i=1
χ f
=

n∑
i=1
χ s
= 1 and 0f

i +0
s
i = 0

for all i = 1, . . . , n, since chemical elements can only be ex-
changed between the two phases. Defining the barycentric
velocities

vf
=

n∑
i=1

χ f
i v

f
i, vs

=

n∑
i=1

χ s
i v

s
i , (A2)

we rewrite Eqs. (A1a) and (A1b)

∂t

(
φρfχ f

i

)
+ divx

(
φρfχ f

i v
f
)

+ divx
(
φρfχ f

i

(
vf
i − v

f
))
= 0f

i , (A3a)

∂t
(
(1−φ)ρsχ s

i

)
+ divx

(
(1−φ)ρsχ s

i v
s)

+ divx
(
(1−φ)ρsχ s

i

(
vs
i − v

s))
= 0s

i , (A3b)

and use that for trace elements the diffusion fluxes obey the
Fickean limit

ρfχ f
i

(
vf
i − v

f
)
=−Df

i∇x

(
ρfχ f

i

)
, (A4a)

ρsχ s
i

(
vs
i − v

s)
=−Ds

i∇x

(
ρsχ s

i

)
(A4b)

for both the fluid and solid phase. For advection dominated
problems, the diffusion coefficients Di are very small and
hence we can cancel the corresponding terms in Eqs. (A3a)
and (A3b). Adding the resulting equations yields

∂t

(
φρfχ f

i + (1−φ)ρ
sχ s
i

)
+ divx

(
φρfχ f

i v
f
+ (1−φ)ρsχ s

i v
s
)

= 0f
i +0

s
i = 0. (A5)

Next, we define the concentration ratio K i
D =

ρsχ s
i

ρfχ f
i

as well

as the total concentration Ci = (φ+ (1−φ)K i
D)ρ

fχ f
i which

allows us to rewrite Eq. (A5) further as

∂tCi + divx
(
Cive

i

)
= 0 (A6)

where ve
i =

φvf
+(1−φ)vs

φ+(1−φ)K iD
. Note that this equation is equivalent

to Eq. (3) where we omitted the index i for convenience and
assumed that vs

≈ 0.

Appendix B: Handling discontinuous velocities

In order to solve Eq. (14) for a discontinuous velocity
field ve, we need to ensure mass balance at the discontinuity.
This is normally done via the Rankine-Hugoniot jump condi-
tion (see, for example, Anderson, 1990, Sect. 4.3 or LeVeque,
2002, Sect. 11.8), which in the case of Eq. (3) leads to

c+v
e
+ ·n= c−v

e
− ·n (B1)

where c+, c−, ve
+, ve

− denote the values of c and ve on both
sides of the discontinuity and n is the normal vector with re-
spect to the discontinuity. In the test cases shown in Figs. 8
and 9 we have n= e2, which simplifies the numerical calcu-
lations.

In practice, when running the explicit Euler code to solve
Eq. (14), we ensure that each time step does not advect the
total concentration accross the discontinuity. Once the total
concentration reaches the discontinuity, we recalculate the
mass flux and use it to evaluate the concentration jump (with-
out loss of generality we call it c−), as follows

c+ = c−
ve
− ·n

ve
+ ·n

. (B2)

Appendix C: Comparison with finite difference code

Here we compare our space-time approach with a classical
finite difference scheme. Note that for simplicity we chose
a one-dimensional test case without decompaction weaken-
ing. Hence, this is similar to the tests shown in Figs. 3a, c
and 4. In Fig. C1 one can see the error of the finite difference
scheme at the terminal time; note the very different rates for
the discontinuous and continuous test cases. This difference
is more pronounced for the porosity in Fig. C1a since the
correct solution is discontinuous whereas the corresponding
effective pressure is still continuous with a kink at the loca-
tion of the discontinuity. Hence, the convergence rates for the
pressure in Fig. C1b are higher than for the porosity, even
though they are still lower than in the case of a continuous
initial porosity. Note also that the rates in the continuous case
are the theoretically optimal ones. In comparison, the space-
time approach does not suffer from slow rates in discontinu-
ous cases as one can see in Fig. C2. In addition, the rates here
are optimal as well. However, we would like to emphasize
that a direct comparison is not possible. This is because the
space-time approach is fundamentally different from the fi-
nite difference one. For the finite differences, we measure the
L2(�)-error at the terminal time, whereas for the space-time
approach we considered a more complicated space-time error
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Figure C1. Errors of a finite difference approximation of the one-
dimensional hydromechanical model without decompaction weak-
ening for porosity (a) and effective pressure (b).

Figure C2. Space-time errors of the one-dimensional hydrome-
chanical model without decompaction weakening for porosity (a)
and effective pressure (b).

norm. In addition, the number of degrees of freedom (dofs) is
not directly comparable since in Fig. C1 they correspond to
the number of dofs at the terminal time (even though before
there were many time steps involved) and in Fig. C2 they cor-
respond to the total number of dofs for the entire space-time
grid. Finally, we note that the norms measuring the errors
of the porosity in Fig. C2a and of the effective pressure in
Fig. C2b are of different kind. In summary, even though the
convergence rates of the two methods are not directly com-
parable, the new space-time approach does not suffer from
reduced convergence rates in the presence of discontinuous
initial porosities.

Appendix D: Continuous approximation

In this section we want to compare the approximation of the
hydromechanical and chemical model for the discontinuous
initial function φb

0 and a continuous approximation of it. In
Fig. D1, we plot a cross section of both the discontinuous
initial function and its smooth approximation.

Figure D1. Cross section of initial porosity φb
0 (a) and its smooth

approximation (b) for x1 = 5 km.

In Fig. D2a and c, one can see the hydromechanical model
solution to discontinuous case (as in Fig. 6a and c) whereas in
Fig. D2b and d the results were obtained using the continuous
(even though very steep) initial function shown in Fig. D1b.

Figure D2. Porosity (a, b) and effective pressure (c, d) with decom-
paction weakening after T = 1.5 Myr for φb

0 (a, c) and its continu-
ous approximation (b, d).

Here, one can see no major difference between the two
approaches. This shows that the solution of the continuous
approximation indeed approximates the discontinuous one if
the continuous function is steep enough.

However, as it is shown in the cross section in Fig. D3, the
continuous approach still misses most of the steep gradient
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Figure D3. Cross section of Figure D2 for x1 = 5 km with poros-
ity (a, b) and effective pressure (c, d).

of φ at the position of the discontinuity. This can be improved
by using an even steeper approximation of φb

0 , which, on the
other side, increases the computational complexity and slows
the computation times.

A very similar behavior can be observed when looking at
the chemical enrichment patterns connected to the hydrome-
chanical model results. The chemical enrichment patterns are
shown in Fig. D4 and the corresponding hydromechanical
models are shown in Fig. D2.

Figure D4. C/C0 with decompaction weakening (σ b) after T =
1.5 Myr for φb

0 (a) and its continuous approximation (b).

Here, the smooth approximation results in a slightly
blurred version compared to the discontinuous problem.
Only when looking at the cross section in Fig. D5, we see a
considerable difference of the enrichment at the discontinu-
ity (at x2 = 10 km) which can, for example, have a significant
impact on the creation of ore deposits at specific layers in the
subsurface.

Figure D5. Cross section of Fig. D4 for x1 = 5 km with C/C0 on
the y axis. (a) corresponds to the discontinuous solution whereas
(b) corresponds to the continuous approximation.
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