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Abstract. In geosciences, including hydrology and geomor-
phology, the reliance on numerical models necessitates the
precise calibration of their parameters to effectively trans-
late information from observed to unobserved settings. Tra-
ditional calibration techniques, however, are marked by poor
generalizability, demanding significant manual labor for data
preparation and the calibration process itself. Moreover,
the utility of machine-learning-based and data-driven ap-
proaches is curtailed by the requirement for the numerical
model to be differentiable for optimization purposes, which
challenges their generalizability across different models. Fur-
thermore, the potential of freely available geomorphologi-
cal data remains underexploited in existing methodologies.
In response to these challenges, we introduce a generaliz-
able framework for calibrating numerical models, with a par-
ticular focus on geomorphological models, named Iterative
Model Calibration (IMC). This approach efficiently iden-
tifies the optimal set of parameters for a given numerical
model through a strategy based on a Gaussian neighborhood
algorithm. Through experiments, we demonstrate the effi-
cacy of IMC in calibrating the widely used landscape evolu-
tion model CAESAR-Lisflood (CL). The IMC process sub-
stantially improves the agreement between CL predictions
and observed data (in the context of gully catchment land-
scape evolution), surpassing both uncalibrated and manual
approaches.

1 Introduction

Parameters of numerical (e.g., geomorphic) models play
a crucial role in predicting their behavior. These models
are usually calibrated based on observations at known data
points or settings. However, it is often necessary to forecast
how the system would behave at test data points or settings
where direct observations are not possible.

A qualitative calibration approach involves a manual com-
parison of model and field data, making it time-consuming
and less likely to reveal the optimal model parameter con-
figuration. On the other hand, a quantitative calibration of a
numerical model involves assessing the model’s error using
statistics and is more suitable for complicated models with
many parameters. Recently, there has been renewed interest
in developing such automatic calibration routines to explore a
model’s parameter space (Becker et al., 2019; Brunetti et al.,
2022; Beck et al., 2018; Tsai et al., 2021). Still, a large
number of conventional approaches suffer from limitations
like calibration of selective parameters, poor generalizabil-
ity, extensive manual components in data pre-processing and
model calibration, and restrictive assumptions like differen-
tiable and learning-data-driven surrogate numerical models.

We propose a novel calibration algorithm: Iterative Model
Calibration (IMC). The IMC is a fully automated calibration
approach, which needs minimal manual interference and re-
quires minimal data pre-processing. The method operates on
a simple but effective concept of Gaussian-guided iterative
parameter search. The process calibrates a defined list of pa-
rameters sequentially (high to low priority), with one param-
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eter being adjusted at a time, keeping others fixed. The pa-
rameter values are sampled from a Gaussian neighborhood
surrounding the latest parameter value. The model’s output
due to each predicted parameter is then compared to the ob-
served ground truth data, and an error is calculated. This error
serves as a fitness measure and a minimum threshold for fi-
nalizing the value corresponding to that particular parameter.

In the following segment, we present a brief review of con-
ventional approaches for calibrating geoscientific numerical
models, specifically concerning landscape evolution models
(LEMs) such as CAESAR-Lisflood (CL). Some qualitative
calibration strategies concentrate on one or a few chosen
model parameters for calibration. For example, in Ramirez
et al. (2022), the focus was on the “m value” of CL’s hydrol-
ogy model (TOPMODEL), which is responsible for control-
ling the change in soil moisture storage for ungauged primary
sub-catchments. They used a three-step approach: first, they
ran a 5-year simulation of the CL model with a 1km spa-
tial resolution. Second, they repeated this process for a sec-
ondary sub-catchment, using the same rainfall input and cal-
ibrated parameters, lumped and spatially distributed. Lastly,
they ran the calibrated primary sub-catchment hydrological
model, which had spatially distributed m values, for a cru-
cial short-term (3 h) extreme weather event, obtaining a sim-
ulated discharge from the primary sub-catchment.

In a study by Peleg et al. (2020), the hydrological TOP-
MODEL parameter m and Courant number were calibrated
through selective calibration. This was done by finding an op-
timal fit between simulated hydrographs of 14 d and observed
hydrographs. While carrying out this calibration, a number
of parameters were manually set, with the help of published
data from nearby locations and domain knowledge. In an-
other work by Wang et al. (2023), CL calibration was car-
ried out at selected locations by reproducing the geomorphic
changes and water depth driven by an extreme rainfall event.
The parameter settings were set manually, based on domain
knowledge and research data. Feeney et al. (2020) started
with choosing CL parameter values from prior published lit-
erature. They then tested various combinations of the values
to satisfy the two equations utilized in the lateral erosion al-
gorithm in CL. Additionally, during calibration, they modi-
fied one parameter at a time while keeping the others con-
stant. Skinner et al. (2018) employed the Morris method on
the CL model in two diverse catchments to discern the im-
pact of parameters on model behavior. Though centered on
sensitivity analysis, this work indirectly aids model calibra-
tion by pinpointing key parameters for effective adjustments,
thereby refining the calibration process.

The tool described in Beck et al. (2018) serves to cali-
brate the Lisflood hydrological model for designated catch-
ment areas, deliberately omitting the upstream catchment re-
gion. It employs a genetic algorithm, LEAP, for the cali-
bration process and is developed using Python. Neverthe-
less, a considerable amount of manual pre-processing of the
input files, specifically scripts, is necessary prior to initi-
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ating calibration runs. In contrast to previous approaches,
Tsai et al. (2021) proposed a data-driven differentiable pa-
rameter learning (dPL) framework. This approach involves
a parameter estimation module that maps raw input data
to model parameters. These parameters are then fed into
a differentiable model or its surrogate, such as a neural-
network-based model. Differentiability allows for gradient
calculation with respect to model variables or parameters,
facilitating the discovery of hidden relationships in high-
dimensional data through variable optimization. However,
many physical or numerical models are not fully differen-
tiable. Re-implementing a non-differentiable model into a
differentiable one demands significant domain knowledge
(Shen et al., 2023). Alternatively, a differentiable model can
be developed from data using neural networks as surrogate
models (Tang et al., 2020; McCabe et al., 2023), but this
method requires extensive, often costly, field data collection
and may struggle without specific historical data. These chal-
lenges limit the applicability and generalization of differen-
tiable models and data-driven surrogates to complex numer-
ical models like CL. A number of approaches leverage ma-
chine learning (ML) algorithms and general optimization al-
gorithms for calibration. Brunetti et al. (2022) introduce a
hybrid strategy calibration approach for hydrological mod-
els, combining precision ML algorithms like Marquardt—
Levenberg with comprehensive learning particle swarm op-
timization (CLPSO). Central to this approach is an objective
function aimed at reducing the gap between HYDRUS model
forecasts and empirical observations.

To sum up, the calibration of numerical models is hindered
by reliance on extensive domain knowledge and manual tun-
ing, and the high cost of data collection for ML approaches
restricts their effectiveness and applicability. The expertise
needed for model differentiation further limits widespread
usage, underscoring the demand for adaptable and data-
efficient calibration strategies in geoscientific modeling. A
large number of conventional calibration techniques are tai-
lored for hydrological models and have access to their wealth
of data from global networks. But they fall short for geo-
morphological models (Abbaspour et al., 2004; Jetten et al.,
2003) due to a lack of diverse and accessible data such as
DEMs and information on soil, sediment, vegetation, and ge-
ology. This data scarcity undermines traditional calibration
methods and hampers the use of newer data-driven ML in ge-
omorphology, which depends on large datasets for accuracy.
Our calibration approach aims to leverage limited DEM data
to effectively calibrate geomorphological models, addressing
a critical gap in current methodologies.

The IMC algorithm introduces the following unique con-
tributions:

1. Highly customizable approach. Due to the simplicity
of the underlying process of iterative-error-based search
and parameter calibration, the algorithm is adaptable to
any numerical model. Besides depending on the appli-
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cation, input—output files and loss functions may be cus-
tomized and substituted with ease.

2. Capable of calibrating a large number of parameters.
The IMC is highly scalable and can calibrate for any
number of numeric valued parameters of numerical
models.

3. Minimal manual involvement requirement with a com-
plete automated process. Apart from minimal data pre-
processing and parameter initialization, IMC can run
without any human supervision.

4. Generalizable for any numerical model. The algorithm
does not have any restrictions regarding the type of
numerical model. Being gradient-free, our approach
requires neither the differentiability of the numerical
model nor a neural-network-based surrogate. With its
generalization, it can be used as an add-on module and
patched with any numerical model for calibration.

In the following sections we elaborate on the IMC algo-
rithm for calibrating numerical models, specifically target-
ing geomorphological models. We showcase the effective-
ness of IMC by applying it to the landscape evolution model
CAESAR-Lisflood in the context of gully erosion modeling.
The rest of the paper is structured as follows: Sect. 2 intro-
duces the foundational concepts of model calibration tech-
niques and establishes a general mathematical framework for
addressing the problem. Section 3.1 is dedicated to a compre-
hensive exposition of our proposed IMC algorithm, including
a detailed description of the algorithm itself and a discus-
sion on each component of the IMC, referenced against the
functional diagram shown in Fig. 2. In Sect. 3.2, we offer
a concise rationale for choosing mean square error (MSE)
as the metric for performance evaluation in our IMC algo-
rithm. Section 4 outlines our case study, including the prob-
lem statement, details about the study location, and a dis-
cussion of the calibration results, supported by various ta-
bles and figures. In Sect. 5, we present a factual compari-
son of different calibration methods reviewed in this study
against our IMC, complemented by an in-depth experimen-
tal analysis and additional experiments. The paper concludes
with Sect. 6, where we summarize our findings and suggest
promising directions for future enhancements to our work.

2 Preliminaries of model calibration

Calibration is an essential process in which the parameters
of a model are adjusted to ensure that its output matches the
observed historical data. The objective is to determine a set
of parameter values enabling the model to produce data sim-
ilar to the studied system (Oreskes et al., 1994; Gupta et al.,
1998; Beven, 2006). Usually, a single fitness or loss value is
sought to summarize the relationship between the predicted
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and observed data. As shown in Fig. 1, the model’s parame-
ters are adjusted repeatedly until the difference between the
model output and the observed data is reduced below a cer-
tain threshold. Once a predetermined level of accuracy or er-
ror is attained, the calibration process is concluded, and the
model is deemed effective in simulating the real system or
scenario.

When it comes to simple models, adjusting parameters and
calculating errors is usually straightforward. However, nu-
merical geomorphic models, e.g., landscape evolution mod-
els, are more complex and have many configurable param-
eters. These model parameters can often have inter-related
nonlinear effects on the model’s behavior, making it chal-
lenging to anticipate how the model will behave with new pa-
rameter configurations (Skinner et al., 2018; Tucker and Han-
cock, 2010; Coulthard et al., 2007; Braun and Willett, 2013).
As a result, doing trial-and-error matching of a model’s pa-
rameters to specific field conditions is often complex, intri-
cate, and time-consuming.

Furthermore, LEMs often exhibit equifinality, where di-
verse parameter sets yield similar outcomes, highlighting
the complexity of interpreting these models (Phillips, 2003).
This phenomenon suggests multiple evolutionary pathways
can lead to comparable landscapes, challenging model so-
Iution uniqueness and necessitating meticulous calibration
and validation efforts (Beven and Freer, 2001). Additionally,
equifinality may result in seemingly accurate landscape rep-
resentations for incorrect reasons, pointing to the oversimpli-
fication of geomorphic processes (Lane et al., 1999).

Here we introduce mathematical notation to explain the
calibration mechanism in general. Let p and 6 denote the
vectors of constant and calibration input parameters of di-
mension d| and d; respectively of a certain numerical model
M. Constant input parameters stay the same over the whole
calibration process, while the calibration parameters are se-
quentially optimized by the IMC algorithm. Also, let S rep-
resent a collection of all input data, typically constituting
DEMs, rainfall and soil data, etc. Formally we can describe
the mapping of the constant and calibration input parameters
and input data to the expected model output as follows:

y(p.0,8) =n(p,0,5)+&,

where & represents the inherent randomness in the output of
the numerical model, which is the uncertainty or variability
that arises due to certain features within the simulation pro-
cess. Sources of inherent randomness include system vari-
ability, incomplete knowledge, model imperfections, and nu-
merical approximations. Here, the output of the numerical
model is denoted by y(.), which is a function of constant and
calibration input parameters as well as input data. When cal-
ibrating a certain numerical model (M), we assume we have
certain information available to us:
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Figure 1. Overview of a typical calibration process.

1. the n observations of the real system (e.g., natural pro-
cesses) response x = {xy, ..., x,}, corresponding to n
initial condition data B; = {S,..., S, };

2. the n outputs generated by the numerical model y =
{y1, ..., yu} for n given input (initial condition) data and
constant and calibration parameter vectors, i.e., By =
{(S1,p1,01), ..., (Sn, Py, 00)}-

The objective of the calibration algorithm is to iteratively
search for the unknown true calibration parameter vector 6*,
which is the @ that parameterizes the numerical model to best
match the observation of the real system or physical process.
This naive calibration approach or direct calibration may be
typically formulated as the following optimization problem:

mingee L(x,y(p,0,S)),

where the goal is to find € such that it minimizes the above
loss L(.). The loss is calculated considering the observed re-
sponse x and the model-generated output y(p, @, S).

3 Iterative Model Calibration (IMC)
3.1 Details of IMC algorithm

Figure 2 presents a high-level overview of the interface of
the IMC (proposed calibration algorithm) with the numeri-
cal model and their connection with other components and
operations.

The following list briefly introduces the primary compo-
nents of the setup:

1. The parameter list and prior data (PD) file contains a list
of all the parameters @ that need to be calibrated. Along
with the list, the file also contains prior best-known val-
ues of these parameters, the value’s lower—upper limits
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Figure 2. The calibration algorithm with a LEM numerical model
presented here works in the following way. Firstly, the algorithm
reads information regarding parameters from a PD file and updates
the parameter suggestions in the XML file. Then, the numerical
model reads the parameter values from the XML file and generates
the output. The generated and target data are then compared, and the
error is calculated based on a loss function. This loss is fed back to
the algorithm, which uses it to set or update its loss threshold. The
algorithm uploads a new parameter suggestion in the XML. This
cycle continues until a stopping criterion is reached.

(upy,lwp), and standard deviation oy values, which are
used to range the Gaussian search neighborhood. For
more details on the contents and structure of this file,
refer to the appendix and Table Al.

2. The calibration algorithm is the proposed IMC algo-
rithm that initiates by reading the calibrated parameter
list, corresponding prior best-known values, value lim-
its, and constraints (from the PD file) and outputs a new
parameter value. This parameter value is then passed on
to the XML configuration file, which updates its param-
eter vector and forwards it to the numerical model. The
IMC later reads the error calculated from comparing the
model output and observed data.
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3. The XML configuration file holds the intermediate pa-
rameter values after being generated by the calibration
algorithm. The numerical model reads the updated pa-
rameter vector from this file and generates simulated re-
sults accordingly. After the completion of the calibra-
tion process, the same file serves as the output, since the
final calibrated values of the parameters are updated to
the file.

4. The numerical model (M) is the model whose param-
eters are being calibrated. The model loads the con-
stant and calibrated parameter vector sets (p, #) along
with input data S(= sgem U styp) and generates output
y(p,0,S). Here sgem refers to the initial-year DEM (i.e.,
DEM year 0), and sy, represents all the other types of
typical data inputs that are loaded by the model, e.g.,
rainfall data and soil data.

5. The error calculation is based on a predetermined loss
function. This module compares the observed system
response (x) with the model’s output and quantifies the
difference or similarity between them through a numer-
ical value or score. We used mean square error (MSE)
as the error-generating function, which is represented as
follows:

1 a a
L(x.y(p.0.8) = —-[ZL, B2, (K(q.r), P(g,n7P,

where x = K(.) and y(.) = P(.) are the ground truth
and model-predicted 2D numeric arrays respectively of
dimension i x j.

In the below explanation and the algorithm that follows,
we have relaxed the dependence of y on input data S from the
notations, but it is understood that outputs are with respect to
these inputs.

In the IMC algorithm, each model parameter is numeri-
cally adjusted through a search process within its latest Gaus-
sian neighborhood. A Gaussian neighborhood refers to the
local region around a current parameter value, defined by the
spread of the Gaussian distribution (typically within 1 stan-
dard deviation of the mean). Initially, the mean and standard
deviation are set as prior values, establishing a Gaussian dis-
tribution for each parameter. This distribution guides the ex-
ploration of parameter space during the calibration process.
For each parameter #; € @ wherei =1, ..., d>, the algorithm
conducts a series of searches to find the optimal parameter
value. Specifically, it performs J x C rounds of searching,
where J is the number of iterations for each parameter, and
C is the number of rounds in each iteration. The optimal pa-
rameter search is represented by rounds, where a model pa-
rameter value from its latest Gaussian neighborhood is se-
lected and tested in the numerical model. Here, the parame-
ter refers to the specific value being tested to see how well it
performs. An iteration consists of a set of such rounds (= C),
representing multiple parameter searches. At the end of each
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iteration, if a better numerical model parameter is found that
reduces the loss (beyond a certain threshold), the mean of its
Gaussian distribution is updated. This update process refines
the distribution, improving the chances of selecting better nu-
merical model parameters in future rounds. Therefore, the
number of iterations represents the number of instances (for
each parameter) where the Gaussian distribution’s parameter
is considered for an update.

The calibration is sequential, and while calibrating for a
certain parameter, say ;, all other #\0; parameter values are
kept constant. Each jth iteration (where j =1,...,J) runs
multiple rounds of random searches in the Gaussian neigh-
borhood of the last best-known parameter value. The Gaus-
sian neighborhood is determined by the parameter’s best-
known value Qib (known as prior information or passed on
from previous iteration) and its fixed standard deviation oy,
ie, N (9}’, 0p,). A randomly sampled data point (y) from this
neighborhood serves as the parameter value for the current
round. It is also ensured that the sampled value y is well
within the upper and lower value limits of the current param-
eter, 1.e., upy, <y < lwg, .

Each iteration also keeps track of the best parame-
ter value Ql.b/’c across its C rounds, based on the mini-
mum loss scored L. . Besides a minimum loss thresh-
old, £ is also maintained across all iterations and pa-
rameters. After each iteration, if Lfnin < L, then its corre-
sponding best parameter 9ib " is saved as the best value
of the current parameter 6;, i.e., 9}’ <~ Glb/’c, and the
minimum loss threshold is updated, i.e., £ <« Lfnm. The
whole process is elaborated as an algorithm as follows.

Algorithm 1 The complete IMC algorithm.

Require: Read parameter list 0, its corresponding values (prior),
SD (0p), and value limits upy, lwy from file.
Ensure: Updated values for 6 based on optimization criteria.
for all ; € {6} do
for j =1toJ do
forc=1to C do
Obtain Gl.c <y, where y ~N (Ql.b, 0p;) such that
lwg, <y <upy,
Calculate y(p, 6), where 6 = (6\6;) U Gic
Evaluate loss LS = L(y(p, 6;), x;)

Update BI.C'H <~ 6f
Save (L. 67

if L€ . 3"2: tilen
min ,
Update Ql.b <~ Hl.b “and £ « LS.
end if
end for
end for
end for
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3.2 Choosing LEM performance evaluation metric

Assessing model performance is crucial for accurately de-
picting geomorphic changes. Choosing the right evaluation
metrics, like the MSE of DEMs, is an efficient metric since
it directly measures topographic accuracy, a fundamental as-
pect of landscape studies.

LEM performance can be evaluated through various
lenses, including erosion and deposition rates, sediment
yield, hydrological accuracy, and more. These metrics serve
to assess different facets of landscape dynamics and pro-
cesses simulated by the model (Hancock and Willgoose,
2001; Tucker and Slingerland, 1997; Skinner et al., 2018;
Barnhart et al., 2020; Skinner and Coulthard, 2023). Each
metric focuses on specific attributes of landscape evolution,
from the quantification of sediment transport to the replica-
tion of hydrological responses under varying climatic con-
ditions. Notably, topographic accuracy emerges as a funda-
mental criterion, as it encapsulates the geomorphological fi-
delity of model simulations in replicating real-world land-
scapes (Temme and Schoorl, 2009).

The rationale for employing MSE between observed and
LEM-estimated DEMs as a metric lies in its direct quan-
tification of the discrepancy in topographical features. This
approach allows for a granular assessment of model perfor-
mance in simulating the spatial configuration of landscapes.
Given the critical role of topography in governing hydrolog-
ical and geomorphic processes, the accuracy of DEM simu-
lations directly influences the reliability of LEM outputs in
representing erosion patterns, sediment transport, and hydro-
logical dynamics.

Moreover, the use of MSE aligns with the principle of
evaluating model efficiency through quantitative measures
that provide clear benchmarks for improvement (Nash and
Sutcliffe, 1970). By quantifying errors in elevation across the
landscape, MSE offers a comprehensive overview of model
performance in capturing the intricate details of terrain mor-
phology.

Additionally, the comparison of DEMs through MSE fa-
cilitates the identification of systematic biases or inaccura-
cies in model simulations, guiding further calibration and re-
finement of LEM parameters (Beven and Binley, 1992). This
aspect is particularly crucial in landscape evolution model-
ing, where the spatial distribution of elevation changes sig-
nificantly influences erosion and sedimentation processes.

4 Case study: Calibration of LEMs for predicting gully
evolution

4.1 Problem statement
Our primary objective is to calibrate the numerical model

(here CL) using geomorphological data from 2 distinct years,
2019 and 2021, including DEMs and soil and rainfall data.

Geosci. Model Dev., 18, 803-818, 2025

IMC calibration aims to enhance the model’s reliability by
ensuring its outputs closely match observed data. Achieving
this alignment is essential for gaining accurate insights into
landscape evolution dynamics. Additional objectives include
comparing our calibration method with existing approaches
to highlight its broader applicability and reduced human ef-
fort. We aim to conduct experiments with varying calibration
run lengths to assess their impact on calibration quality, fo-
cusing on erosion volume and spatial accuracy. Furthermore,
we seek to evaluate the efficiency of the proposed IMC algo-
rithm in re-estimating known parameter values from deliber-
ate perturbations, demonstrating its accuracy and robustness.

4.2 Study area and data

The study area is a gully catchment region situated 20 km
to the east of Mount Abbot National Park (Scientific) in the
Bowen Basin region of Northern Queensland at a location
20°13'S, 147°33'20” E; see Fig. 3. For hourly rainfall data
(see Fig. 3b), we used pluviometer readings from the Ernest
Creek pluvio of Burdekin Basin, Queensland (WMIP, 2024),
between the dates 1 July 2019-2021. The DEMs are col-
lected using airborne laser scanning (ALS) by the Depart-
ment of Agriculture, Water and the Environment, Australia,
under project names Bogie 2019 and Strathbogie 2021 and
are hosted on an online repository (ELVIS, 2024). The re-
quired DEMs are downloaded from the mentioned source
with the following specifications: resolution, 0.5 m; verti-
cal accuracy, +0.15m at 67 % CI; and horizontal accuracy,
+0.3m at 67 % CI. For ease of computation, we used a
downsampled version (i.e., 1 m) of the original DEMs in all
our experiments.

We chose gully erosion in Australia as a case study due
to its environmental significance, the availability of exten-
sive data, and the unique challenges posed by Australia’s cli-
mate and soil. The study aims to inform local policymakers
and land managers, fill research gaps, and develop targeted
strategies for erosion mitigation. Additionally, the insights
gained from this specific context can illustrate the frame-
work’s adaptability and transferability to other regions facing
similar environmental challenges.

4.3 Calibration experiments and results

In the following sections, we introduce the study area and
present the essential parameters and settings used for run-
ning IMC in CL parameter calibration. Additionally, we pro-
vide comparative results from the experiments, including
CL with uncalibrated parameters, CL with manually cal-
ibrated parameters, and CL with manually calibrated and
IMC-calibrated parameters.

4.3.1 Calibration details and experimental setup

We present Table 1, which summarizes essential informa-
tion regarding the primary parameters of the CL numerical

https://doi.org/10.5194/gmd-18-803-2025
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Figure 3. Study site information. (a) Satellite image of the Bowen Basin, with the yellow box highlighting the study location. Inset shows
the location of the Bowen Basin (yellow star) in Australia. (b) Hourly rainfall data between July 2019-2021, pluviometer reading. (Source:
basemap and data provided by Esri and its Community Map contributors. The pluviometer reading is from the Ernest Creek pluvio of
Burdekin Basin, Queensland (WMIP, 2024), between the dates 1 July 2019-2021). (¢) Magnified (zoomed-in) view of the study region. (d)
Observed DEM of the year 2019 in color map, used as CL’s input. (e) Observed 2021 DEM in color map.

model, including numerical values from existing literature.
Additionally, the table shows the prior values used to initial-
ize the IMC for each parameter to be calibrated in the PD file.
In the IMC’s calibration process, the loss function is very
important. As mentioned in Sect. 4, we consider the MSE
of ground truth target data and CL-predicted data in image
format, for calculation of errors in each round. We explore
different forms of ground truth and CL-predicted data (such
as DEMs and DEM of difference, i.e., DoD) and show how
they can be purposed for specific experimentation.

Our primary experiments investigate the effectiveness of
the IMC approach in calibrating the parameters of CL, with
a particular focus on accurately predicting erosion volume.
This is important because erosion volume impacts landform
stability, environmental health, and cost-effectiveness and is
significant for landform design and risk assessment. We use
the input and predicted DEMs (i.e., DEM year0O, DEM yearT,
and DEMyearT) to generate the target and predicted differ-
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ence of DEMs, i.e., DoD and D6D, as follows:

DoDrarget = DEMyear0 — DEM yearT,
DoDpregicted = DEM year0 — DEM yearT.
In order to focus the calibration on the erosion volume, we
multiplied the DoDs by a mask (= m(e, f)), which can be
defined as follows:
m(e, f) =0, val(e, f) <0,

=1, val(e, f) > 0,

where (e, f) represents a location on a DoD, and val(e, f)
represents the signed magnitude of that data point. The final
DoDs can then be written as

DODTarget = DODTarget xmle, f),
DoDpredicted = DODpredicted X m(e, f).

In later experiments (Sect. 5.3), we also investigated the

accuracy of IMC-based calibration of CL’s default parame-
ters. In the experiments we try to estimate a single parameter

Geosci. Model Dev., 18, 803-818, 2025
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Table 1. Primary CL parameters, their manually calibrated values, values from the literature, and their model’s sensitivity. Sensitivity scoring
uses asterisks (*) to indicate the impact of parameters on model outcomes, from very high (***) to low (**). The table also presents the

default parameter and prior values assumed by the IMC algorithm.

Parameter names Model sensitivity CL reference Tin Creek  IMC algorithm IMC priors

(Skinner et al., 2018)  manual (Australia) search range (u,0)
Max erode limit (m) ook 0.01 (10m) 0.001-0.003 0.001-0.01 0.003,0.001
In-channel lat erosion ook 5-50, 200-1000 10.0-30.0 10.0-30.0 20,05
Vegetation crit. shear stress (Pa) ok Not specified 2.0-7.0 2.0-7.0 3,1
Min Q for depth calculation (m) ook DEM resol. / 100 0.025-0.075 0.009-0.01 0.01, 0.001
Slope failure threshold (°) ok Not specified 40-50 40-60 50,5
Evaporation rate (md—1) ook Not specified 0.0025-0.01 0.002-0.01  0.005,0.001
Soil creep rate (myr—!) o 0.0025 0.00125-0.00375 0.001-0.004  0.0025,0.001
In—out difference allowed (m3s~1)  ** Not specified 0.1-0.4 0.1-0.4 0.2,0.1
Slope for edge cells ok Not specified 0.0025-0.0075 0.002-0.01 0.005, 0.001
Manning n ok Variable 0.03-0.04 0.005-0.2 0.01,0.001
Grass maturity rate (yr) * From 0 to 1 0.5-2.0 0.1-2.0 0.5,0.1
m value * 0.02,0.005 - 0.005-0.02 0.01,0.001

at a time from a perturbed value, keeping all other parameters
fixed. In that context we have simply considered the follow-
ing:

DEMTyrget = DEMyearT,
DEMpredicted = DEM yearT.

See the relevant section for more details on the experiments.

The code for the proposed IMC algorithm with CL as a
case study, along with the data used in this study, is archived
for easy accessibility (Banerjee, 2024).

4.3.2 Calibration results

In this section, we present and discuss the results of the cal-
ibration process. Comparative results are presented in Ta-
ble 2 and Fig. 4, highlighting the differences between the CL
model results obtained using different variations in calibrated
and uncalibrated parameter sets. For the uncalibrated set, we
consider the default CL parameters and simply adapt them to
our study area and DEM dimension. In the manual calibra-
tion set, we use existing literature-based knowledge of para-
metric values with respect to the study area and update the
default CL parameter set. Finally, in the manual + IMC set
(also referred to as IMC for brevity), we start or initialize the
IMC calibration process with the manual calibration set data.
Additionally, Table 3 provides comprehensive results of the
IMC calibration process for all CL parameters, across three
separate calibration runs of the same length (5 x 5).

In detail, Table 2 numerically shows that IMC-based cali-
bration of CL parameters encourages the CL to predict future
erosion volume with substantial accuracy as compared to the
CL’s results with uncalibrated and manually calibrated pa-
rameters. We also show that using only basic knowledge of
the value range of parameters of the study region, two tempo-
rally separated DEMs (i.e., 2019 and 2021), and the rainfall
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data over this period, the IMC can calibrate the CL param-
eters, evident by its prediction of the target erosion volume.
The target erosion volume is derived from the difference be-
tween the 2021 DEM and the 2019 DEM.

In Fig. 4, we further elaborate on the numerical results
presented in Table 2 through extensive visual comparison.
Here, we compare the CL’s prediction of erosion volume us-
ing three different sets of parameters: uncalibrated, manual,
and manual + IMC. The results demonstrate that the combi-
nation of basic manual calibration with the automated IMC
process significantly enhances CL’s accuracy in predicting
the target erosion volume.

In Fig. 5b we present a detailed side-by-side comparison of
DoD value distributions across various calibration settings,
benchmarking them against observed DoD values. To effec-
tively summarize statistical variations in DoD, we use box-
plots representing 1D vectors derived from flattened 2D DoD
arrays. These boxplots offer a concise visual summary of
central tendencies, spread, and outlier behavior across cal-
ibration settings, allowing us to assess how each calibra-
tion scenario aligns with observed DoD and identify sys-
tematic biases or deviations. The comparison of DoD val-
ues across different calibration settings reveals improve-
ments with the manual +IMC approach, which better ap-
proximates observed DoD values. The uncalibrated model’s
DoD shows a narrow whisker range (—0.002460, 0.0024)
and a median of —0.000080, reflecting minimal variabil-
ity (IQR = 0.001214) and suggesting underestimation of ob-
served terrain changes. In contrast, in the manually calibrated
model, the median shifts to 0.000024 and broadens the IQR
to 0.002129, capturing more terrain variability. The man-
ual + IMC approach further refines the model, with a near-
zero median (—0.000001) and expanded IQR (0.002826), in-
creasing sensitivity to subtle changes. While observed data
display a much wider IQR (0.056000) and whisker range
(—0.270000, —0.0460), reflecting significant erosion, the
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Figure 4. The left column shows the DoD between the 2019 and 2021 DEMs, focusing only on erosion volume. This erosion data are overlaid
on the 2021 DEM hillshade to provide spatial context. Areas with nearly zero erosion volume are shown as transparent to highlight regions
with more significant erosion. The right column presents corresponding 3D plots of the DoD, focusing on erosion volume. Compared to all
other approaches, the manual 4+ IMC calibration (d) shows the closest resemblance of erosion volume to the observed (a), both spatially and
volumetrically (DEM source: ELVIS, 2024).
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Table 2. Comparison of total erosion volume and corresponding MSE loss: observed data vs. CL using uncalibrated, manually calibrated,
and IMC-calibrated parameters. The results presented below are from three separate calibration runs, each with fixed-length runs (5 x 5) and
taking around 5 h. Due to the stochastic nature of the calibration process, the mean values are reported along with their standard deviations

(mean =+ SD).

Case Erosion volume (In3) MSE
DoD observed 49.551 -
DoD uncalibrated parameters 21.756 -
(CL config. adapted for 1 m DEM, DEM ours, rain ours)

DoD calibrated parameters (manual) 38.819 -
DoD calibrated parameters (manual + IMC) (mean 4 SD) 50.068 £2.161  0.000333 2.1 x 107°
DoD Calibrated parameters (manual 4+ IMC) (best) 51.495 0.000328

Table 3. CL parameters calibrated via IMC across three separate calibration runs of a fixed length (5 x 5), denoted as Run_01, Run_02, and
Run_03. The IMC initial value column presents the parameter initialization value for each run. The last two columns display the mean with
standard deviation and the coefficient of variation (CV). The CV, a standardized measure of dispersion, is defined as the ratio of the standard
deviation to the mean, expressed as a percentage. It is useful for comparing the relative variability of parameters with different units or scales.
High variability is observed in parameters 1 to 4, indicated by higher CV values (see also Fig. 5a). The concluding row showcases MSE loss,

which identifies Run03 as the optimal calibration run.

Slno. Parameter names IMC Separate IMC calibration runs Mean£SD  Coefficient of variation (%)
initial value Run_01 Run_02 Run_03
1 Slope of edge cell (initialq) 0.005 0.00452 0.00657 0.00238 0.0045 £ 0.0020 45.37
2 Max erode limit (m) 0.3 0.0087 0.005 0.00358 0.0057 £ 0.0026 45.61
3 Evaporation rate (md— ) 0.005 0.004 0.005 0.00905  0.0060 £ 0.00267 44.50
4 In—out difference (initscans) (m3 s’l) 0.2 0.2619 0.15967 0.11447 0.1787 £0.0755 42.24
5 In-channel lat erosion 20 15.554 12.893 24.1937  17.5469 £+ 5.9080 33.67
6 Grass maturity rate (yr) 0.5 0.3509 0.515 0.6736 0.5131£0.1613 31.43
7 m value 0.01 0.00687 0.0118 0.00862 0.0091 £ 0.0024 26.37
8 Manning n 0.01 0.0111 0.012 0.00714 0.0101 £0.0025 24.55
9 Vegetation crit. shear stress (Pa) 3 4.0934 2.765 3.6401 3.4995 4+ 0.6752 19.29
10 Soil creep rate (myr—!) 0.0025 0.00343 0.0039 0.00397 0.0038 £ 0.0003 8.47
11 Min Q (m) 0.01 0.00965 0.0097 0.01059  0.0099 £ 0.00052 5.25
12 Slope failure threshold (°) 50 41.2818 40.372 40.2236  40.6258 +0.5729 1.41
- MSE loss — 0.000332 0.000329 0.000328 - -

widened whiskers (—0.005645, 0.005661) in manual + IMC
(133.44 % broader than uncalibrated and 33.02 % broader
than manual calibration approaches) show improved ro-
bustness, thus enabling reflection of real-world geomorphic
changes more accurately, improving the sensitivity to natural
variations and localized changes in terrain.

5 Comparisons and experimental analysis
5.1 Comparison with existing calibration approaches

The majority of calibration approaches surveyed so far cal-
ibrates for specific and partial parameters only, involves a
considerable human effort towards parameter value selec-
tion/customization (Wang et al., 2023; Peleg et al., 2020;
Ramirez et al., 2022; Feeney et al., 2020), and operates for
a particular type of numerical model, e.g., Lisflood (Beck
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et al., 2018), CAESAR-Lisflood (CL) (Wang et al., 2023;
Peleg et al., 2020; Ramirez et al., 2022; Feeney et al., 2020),
HYDRUS (Brunetti et al., 2022), and Victoria (Tsai et al.,
2021).

The usability and generalizability of a certain approach di-
rectly depend on the set of input data required during param-
eter calibration. The requirement of data in addition to the
ones used by the target numerical model increases the com-
plexity to adapt the calibration for different settings and adds
a heavy overhead. Table 4 summarizes the differences be-
tween the existing calibration approaches for LEMs, specifi-
cally CL.

5.2 Experimental analysis
In this section we discuss experiments with different lengths

of calibration runs, which are equal to the total rounds (=
rounds x iterations) of calibration operated per parameter (see
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Figure 5. (a) Comparison of parameter variability across three calibration runs, using standardized standard deviation (SD). Standardized
SD represents the z score of the standard deviation of each parameter’s repeated experiment (three individual calibration) values. This metric
quantifies how many standard deviations a parameter’s variability deviates from the mean variability of all parameters, facilitating a direct
comparison of consistency and stability among different parameters. Lower standardized SD values indicate parameters with variability
below the average, signifying higher consistency, while higher standardized SD values indicate greater variability relative to the repeated
experiment average. (b) Comparison of DoD data distribution across various calibration settings of CL parameters. The uncalibrated CL data
cluster near zero, demonstrating low accuracy. In contrast, manual calibration — especially when combined with IMC — enhances the results,

capturing greater variability in the data.

Fig. 6); refer to Sect. 3.1 for an explanation of the terms
round and iteration. It is important to understand that the
quality of calibration of CL parameters using IMC would be
reflected through a couple of quantities: first, the proximity of
the predicted and the observed DoDs in terms of the total vol-
ume of erosion (numerically). Second, both volumetric and
spatial similarity of the erosion and its location of occurrence
are quantifiable by the MSE loss.

Moreover, the similarity of total erosion volume of the pre-
dicted and observed DoDs/DEMs does not alone guarantee
actual similarity, and they still may be far apart if their MSEs
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are substantially different. This phenomenon can be seen in
Fig. 6b, where the calibrations with a shorter calibration (i.e.,
2 x5 and 5 x 2) duration have a close enough erosion volume
to the observed but show higher MSE. This portrays that the
parameter exploration has been inadequate, and due to the se-
lection of sub-optimal parameters, the end resulting erosion
volume, though numerically similar, is spatially misplaced or
distributed on the surface.
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Table 4. Comparison of different calibration approaches.

Reference Input files and preliminary assumptions Param. calibrated ~ Manual comp.  Target model

Beck et al. (2018) Time series (TS) observed discharge, static maps (DEM, land use, etc.) ~ All High Lisflood
TS input meteo variables over calibration period

Wang et al. (2023) Typical CL inputs Hydrology param.  Very high CL

Peleg et al. (2020) Typical CL inputs, hydrograph Hydrology param.  Very High CL

Ramirez et al. (2022)  Typical CL inputs Hydrology param.  Very High CL

Feeney et al. (2020) Typical CL inputs Partial Very high CL

Skinner et al. (2018)  Typical CL inputs All Low CL

Brunetti et al. (2022)  Hydrology parameters - Low HYDRUS, Simunek et al. (2016)

Tsai et al. (2021) Typical model inputs All Low VIC model, Hamman et al. (2018)
Differentiable model or NN-based model surrogate

Ours Typical CL inputs All Very low CL (customizable)
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Figure 6. Calibration run/duration. Panel (a) shows comparison of error or calibration losses for different lengths of calibration runs (=
rounds X iterations) run for 1 m resolution DEM. Panel (b) shows a side-by-side comparison of the total time taken by different calibration

runs and the erosion volume achieved (target being 49.551).

5.3 Further experiments: evaluating IMC’s efficiency
in CL parameter re-estimation

In this experiment, we want to show how accurate and effi-
cient IMC is at re-estimating known (referred to as bench-
mark) parameter values for CL software after deliberately
changing them. These known parameter values are the de-
fault settings provided with the CL software distribution.
We use the default CL parameters, the initial DEM (as
DEMyeur0), and other provided data and create a future (or
DEMyear) DEM. Next, we use these two DEMs to re-
estimate the parameters with IMC, starting from their delib-
erately perturbed versions. We intend to show that IMC can
accurately return to the known parameter values.

To ensure the experiment remains both insightful and man-
ageable, we focus on two key parameters: maximum erode
limit and lateral erosion rate. They are selected due to CL’s
pronounced sensitivity to these, as seen in Skinner et al.
(2018) and listed in Table 1. In this experiment, we start with
producing a target DEM (i.e., DEMyeqr, Where T = 2 years)
entirely using CL’s default parameters and dataset (provided
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with distribution, Coulthard et al., 2024). Next, we individu-
ally alter each of these two key parameters mentioned earlier,
maintaining the rest at their original values. Subsequently, we
employed the IMC algorithm to accurately estimate the true
values of these parameters from their altered states.

The parameters are estimated through individual IMC cal-
ibration runs, which are repeated three times to account for
the stochastic nature of the process. The mean value of the
repeated runs is calculated and presented alongside the best
value, which is closest to the observed. Refer to Fig. 7 for a
visual representation of these data.

At the beginning of each calibration, we set the values of
the maximum erode limit and lateral erosion rate parameters
to their respective IMC initial values, which are deliberately
perturbed from observed values. We conducted the experi-
ments using IMC initial values selected from positions both
proximal (termed near seed) and distal (termed far seed) rela-
tive to the observed values of each parameter. This approach
was designed to affirm IMC’s effectiveness irrespective of
the initial proximity of the IMC initial values to their ob-
served counterparts.
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Table 5. Calibration data regarding CL known parameter re-estimation experiment, detailed in Sect. 5.3.

IMC initial
(far seed)

Benchmark
value

IMC initial
(near seed)

IMC search
range

IMC priors
(n,0)

Max erode limit (m) 0.02 0.05
Lateral erosion rate 10 18

0.03 0.01-0.06
13 8-20

(IMC initial, 0.01)
(IMC initial, 5)

0.06
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Figure 7. Estimating known numerical values (benchmark) of CL
parameters from their deliberately perturbed versions. (a) Estima-
tion of max erode limit parameter and (b) estimation of lateral ero-
sion rate parameter. Benchmark refers to the known CL parameter
value, and IMC initial is the perturbed version of the same, from
where the IMC starts calibrating. The IMC is run at different lengths
(=round X iteration) repeatedly, and the best and average (of the
three separate calibration runs) of estimated parameter values are
presented.

The experimental outcomes are detailed in Fig. 7, with cor-
responding calibration data provided in Table 5. These results
illustrate IMC’s capability to accurately re-estimate the true
values of both the parameters. Specifically, for the maximum
erode limit, we observe a minimum absolute error of 0.0028
(= |Benchmark — Estimated|), with the best-estimated value
being 0.0228 (2 x 5 (best)) compared to the observed value
of 0.02. In the case of the lateral erosion rate, the minimum
absolute error recorded was 0.302, where the best-estimated
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value reached 10.302 (5 x 5 (best)), closely aligning with the
observed value of 10.

The slight deviations in accurately estimating the observed
parameter values can potentially be linked to the sensitiv-
ity of the MSE loss function to noise, wherein minor dis-
crepancies could be amplified into seemingly larger differ-
ences. Moreover, the intricate nonlinear relationship between
a parameter in the CL model and its resultant geomorphic
output can occasionally lead IMC into local optima traps.
These challenges could be mitigated by adopting a tailored
loss function specifically designed to capture the complex
geomorphological dynamics more effectively. Additionally,
incorporating strategies such as stochastic perturbation and
advanced optimization techniques may facilitate overcoming
the hurdles of local minima, thereby enhancing the fidelity of
parameter estimation in geomorphological simulations.

6 Conclusions

This study introduces a versatile, adaptable, and scalable
calibration algorithm for numerical models, demonstrated
through its application in calibrating the landscape evolution
model CAESAR-Lisflood.

The outcome of this calibration is the generation of geo-
morphic data for a gully catchment landscape evolution sce-
nario, with significantly closer predictions to observed data
compared to uncalibrated and manual approaches.

The proposed calibration technique is adaptable to vari-
ous numerical models and requires minimal extra input be-
yond conventional CL inputs. However, it has its limitations.
Although erosion volumes are similar to target patterns in
both space and volume, discrepancies remain. Specifically,
the manual 4 IMC approach tends to spread erosion volume
across the study area in small amounts, affecting calibration
precision. Additionally, the calibration process is inherently
stochastic, resulting in non-unique, varying parametric vec-
tors across calibration sessions, even under identical condi-
tions. We used mean square error (MSE) for its ease and abil-
ity to emphasize large errors, widely applied in areas such
as computer vision. However, MSE’s equal treatment of all
data points overlooks differences in regional importance, po-
tentially resulting in high MSE scores that fail to reflect true
perceptual resemblance.

In future work, the development of a custom loss func-
tion tailored to intricately capture the dynamic complexities
present in geomorphic imagery is proposed. Such advance-
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ment aims to refine the measure of similarity between mod-
eled and real landscapes, resulting in a more accurate and
precise loss function. This enhancement is anticipated to sig-
nificantly improve calibration accuracy within geomorpho-
logical modeling. It is important to highlight that our IMC
framework offers flexibility and can readily accommodate al-
ternative evaluation metrics, should they better suit the user’s
specific requirements.

However, exploring the applicability and effectiveness of
the IMC approach in calibrating other physical or numerical
models beyond the CL model warrants investigation. Assess-
ing the IMC method’s performance across diverse geomor-
phic environments, spanning various geographical locations
and temporal scales, is crucial. Such comprehensive evalua-
tion will illuminate the strengths and potential limitations of
the IMC approach when applied to specific geomorphic con-
texts or environmental settings. Additionally, it would be in-
triguing to create a synthetic final landscape or DEM. Inves-
tigating how the IMC method autonomously calibrates CL or
other numerical geomorphic models to achieve this predeter-
mined end state could offer novel insights into the method’s
predictive capabilities and its utility in forward modeling ge-
omorphological changes.

Appendix A
Al Parameter list preparation and value selection

In Table A1, we present the exact structure of the PD file for
reference. The names of all the parameters that need to be
calibrated are included in the top row. In the second row,
we include the names of these parameters as represented
in the CL configuration XML file; e.g., the parameter max
erode limit is represented using “maxerodelimit”. The next
two rows present the numeric upper and lower limits of the
IMC search for a certain parameter. Finally, the last two rows
present the prior (u, o) and (mean, SD) values that define the
Gaussian distribution from where the IMC starts its search.
The prior (mean), also called the IMC initial values, can be
adjusted with the help of values published in the literature.
The prior (SD) value is set on intuition and may be updated
based on the search space and the scale of values for a certain
parameter.

Table A1. Structure and default values of the parameter list and prior data (PD) file.

Parameter name Maximum In-channel  Vegetation critical Min Q  Slope failure  Evaporation  Soil creep 1/p O/P Slope  m value
erode limit  lateral erosion shear stress threshold rate rate  difference edge cells

Parameter name max- lateral- vegcritshear minq slopefailure-  evaporation  creeprate initscans initialg  mvalue
(in CL config. file)  erodelimit erosionrate threshold

Lower limit 0.001 15 80  0.001 20 0.002 0.0015 0.3 0.001 0.0057
Upper limit 0.005 25 120 0.015 85 0.006 0.0035 0.7 0.1 0.02
Prior (mean) 0.003 20 100 0.01 50 0.004 0.0025 0.5 0.01 0.005
Prior (SD) 0.001 5 10 0.001 10 0.001 0.001 0.1 0.001 0.001
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A2 Procedure to set up the calibration
A2.1 Data preparation

The DEMs should be aligned, have the same resolution, and
have all no-data values set to —9999. One can use the setnull
tool from ArcGis Pro for this purpose. We tested with DEM
rasters that have been converted to Esri ASCII text files (with
.tXt extension).

A2.2 Initializing the calibration

As mentioned before, the XML file serves as a read—write
center for the calibration algorithm and the numerical algo-
rithm. Thus, we follow the following two-step process for
initiating the calibration process:

— Prepare your template XML and take care of all warn-
ings. Open a CL (orig.) exe and load the template
XML file. Next, browse and select each of the relevant
DEM and rainfall time series data files. Finally, save the
changes back to the XML template and load the data to
check for warnings.

Some parameters also need to be adjusted depending
on the data/DEM and the temporal separation between
DEM year 0 and DEM year T. Calculate the hour (h)
and minute (min) equivalent of the time difference be-
tween the two DEMs. Update parameter “Save file every
min” with minutes and all other time parameters on the
“Files” page on CL (orig.). Next, on the “Numerical”
page, update “max run duration” with hours+ 1. For ex-
ample, in the case where DEM year 0 (July 2019) and
DEM year T (July 2021), i.e., a difference of 3 years, so
h = 17544 and min = 1052 640.

Resolve all the warnings and exit.

These changes can also be made directly in the template
XML file through an XML editor, but using the CL GUI
is more efficient and error-free.

— Use updated template XML. Now this template XML is
updated with the relevant file locations and other data
relevant to the experiment. It should be placed in the
Calibration-alg. package, and calibration may be initi-
ated from the console.

Code and data availability. Source code is maintained on GitHub
at https://github.com/cbanerji/IMC (last access: 16 December
2024), and the exact version used in this study (including exe-
cutable code, data, and other relevant files) is archived on Zenodo
at https://doi.org/10.5281/zenodo.12747679 (Banerjee, 2024).
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