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Abstract. This study applies a multigrid beta filter (MGBF)
for covariance localization in ensemble-variational (EnVar)
data assimilation instead of the conventional recursive fil-
ter (RF) to achieve faster computation in a large number
of processors. The parallelization efficiency of the MGBF
is higher than that of the RF because all-to-all communica-
tion to change the computational region of each processor is
not necessary. However, the MGBF-based localization addi-
tionally requires horizontal variable exchange between pro-
cessors; its computational cost is proportional to the num-
ber of grid points and to the ensemble size, and is generally
more expensive than the RF. In this study, we implement the
MGBF-based localization both for the single-scale localiza-
tion and for the scale-dependent localization in the regional
atmospheric EnVar data assimilation system. In addition, we
clarify that applying a coarser filter grid and omitting filter-
ing except for the coarsest resolution make the computation
of the MGBF-based localization several times faster than that
of the RF-based one without significantly changing the En-
Var analysis.

1 Introduction

In ensemble-based atmospheric data assimilation (DA),
background error covariance (BEC) is one of the most im-
portant factors to determine the quality of the analysis. In
general, the flow-dependent BECs created by ensemble fore-
casts have large sampling error for a small ensemble size.
This sampling error is mitigated by the covariance local-

ization, which decreases the ensemble-based BECs between
analysis variables spatially far from each other (Hamill et
al., 2001; Houtekamer and Mitchell, 2001). In ensemble-
variational (EnVar, Hamill and Snyder, 2000; Lorenc, 2003)
DA, however, applying the localization for all analysis vari-
ables is computationally expensive in the simplest implemen-
tation, and this cost is even more expensive when using scale-
dependent localization (SDL; Buehner, 2012; Buehner and
Shlyaeva, 2015) to apply large localization lengths for the
long waves. Therefore, efficient calculation is an important
goal to be achieved for localization.

In EnVar, the covariance localization increases the rank
of the ensemble-based BEC matrix, which is attained by in-
creasing the effective ensemble size with the Schur product
of ensemble perturbations and the square root of the localiza-
tion matrix (Liu et al., 2009). Even in some other equivalent
formulations of localization (e.g., Lorenc, 2003; Buehner,
2005; Bishop and Hodyss, 2009), the square root of the lo-
calization matrix is required (Ishibashi, 2015). In the sim-
ple implementation, this square root of the localization ma-
trix is obtained by eigenvalue decomposition, where ignoring
the tiny eigenvalues makes the computation faster (Liu et al.,
2009).

If the shape of localization is set to Gaussian, the square
root of the localization matrix is also realized by a Gaus-
sian filter because it is self-adjoint and its convolution is also
Gaussian. Extending the earlier work of Hayden and Purser
(1995) to variational analysis, Purser et al. (2003a) proposed
the recursive filter (RF) as an efficient quasi-Gaussian filter
applied to realize the static BEC. This RF was extended to
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apply to the inhomogeneous and anisotropic BEC (Purser et
al., 2003b), and implemented in some operational DA sys-
tems as a method to realize the covariance localization as
well as the static BEC (e.g., Wang et al., 2008, 2013; Yokota
et al., 2024a). However, the RF is not necessarily parallelized
efficiently when a very large number of processors are to be
used because it needs to be calculated sequentially in each
specific direction.

Purser et al. (2022) proposed another method, the multi-
grid beta filter (MGBF), with the potential for higher compu-
tational efficiency than the RF when using a very large num-
ber of processors for parallel computation. Unlike the RF,
the MGBF is a bell-shaped filter with support of finite width,
where the response is a superposition of the variables filtered
at progressively coarser resolutions. Although the MGBF re-
quires horizontal variable exchange between processors, the
amount of the exchange is small in the coarser grids. Since
the filter is applied for each grid, it is efficiently parallelized
horizontally. It has been clarified that the MGBF makes the
computation of the static BEC and the ensemble covariance
localization faster (Rancic et al., 2022, 2025). However, the
detail of the impact of the MGBF for the ensemble covari-
ance localization, including SDL, has not been investigated
yet.

Based on the background above, this study applies the ho-
mogeneous isotropic MGBF for the localization, including
SDL, in the regional atmospheric DA system and clarifies
how to make the computation faster while keeping almost
the same quality of the analysis as with the RF-based local-
ization. Section 2 explains the formulation of the RF- and
MGBF-based localizations. Section 3 describes the experi-
mental design to clarify the impact of MGBF-based local-
ization in the regional DA system. Section 4 discusses the
results. Section 5 gives the conclusion.

2 Formulation

2.1 Ensemble-variational (EnVar) data assimilation
with scale-dependent localization (SDL)

This study focuses on covariance localization in the Grid-
point Statistical Interpolation (GSI)-based 3DEnVar (Wang
et al., 2008, 2013). In 3DEnVar with a pure ensemble-based
BEC, the analysis increment dx is obtained by minimization
of the cost function:
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where a; (k=1,...,K) is the N-dimension control vec-
tor, L is the covariance localization (N x N matrix), R is
the observation error covariance (M x M matrix), H is the
linearized observation operator (M x NV matrix), and d is
the M-dimension observation innovation vector (K : the en-
semble size; N: the number of grid points; M: the number
of assimilated observations; V: the number of analysis vari-
ables). x;" is the NV-dimension kth ensemble perturbation
vector (kth ensemble member subtracted by ensemble mean
and normalized by +/K — 1). In this formulation, the same
localization length is applied to all analysis variables.
In applying SDL (Buehner and Shlyaeva, 2015), the anal-
ysis increment §x (N V-dimension vector) is obtained as:

kv
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instead of Eq. (2), where a; is extended to the NW-
ai,1

dimension vector as a; = (W: the number of

ai,w
scales in SDL), x{" is separated to multiple scales as x}" =
ZW x;", . and L is extended to the NW x N W matrix as:

w=l1

L)/ 0 L 0
L= E L@
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where L, is the N x N localization matrix applied

for wth scale of ensemble perturbations x" ., and E =
I - 1

: . - | isthe NW x NW matrix to combine each
I - 1

scale for localizing cross-scale covariances in SDL (“Cross”

in Huang et al., 2021).

2.2 Recursive filter (RF)-based localization

The calculation of the localization L is accomplished by the
RF (Purser et al., 2003a) in the GSI-based 3DEnVar as shown
in Fig. 1a, where the square root of the localization matrix

L, (: L%U/ 2L5/ 2) is quasi-Gaussian and computed as:

L,/? = FieFieFie. 5)

FI){F,FI{F, and FI%F denote RFs in x-, y-, and z-directions,
respectively (self-adjoint N x N matrices). These RFs should
out

q;
be applied recursively; for example, to obtain : =

out
qn,
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is sequentially calculated from the smallest i, and after that,
id

g =g+ ) " gl )
is sequentially calculated from the largest i, where q}“, q?‘id
and q?‘“ (i=1,...,Nx) are Ny Nz-dimension vectors (Ny,
Ny, and Nz are the numbers of grid points in x=, -, and
z-directions, respectively, so N = Ny Ny Nz). q?ﬂ‘; i—j=<
0) and q?jfj (i +j = Nyx) are zero. The coefficients 8 and
aj (j=1,..., p; pis the order of RF) are set to make the
filtering kernel of Ff{F quasi-Gaussian as:

X2
Gp(x) = CGeXP<_S_2>7 (8)

where the coefficient c is set to satisfy [°_[G, (x)]zdx =

1. Since the resulting filtering kernel of Ff{F (Ff{F)T is the
self-convolution of G, (x) as:

o0

Gp*G,,(x)z/G,,(x—x/)G,,(x’)dx’
- .
o eXp<—F>, ©

s is the standard deviation of G %G o, (x), Which is the same
as the e~ 1/2-folding scale o

Since Eqgs. (6) and (7) are calculated sequentially, RF in
one-direction is efficiently parallelized only in the other di-
rection; for example, Ff{F is efficiently parallelized only for
Ny Nz and the parallelization for Ny is impossible. There-
fore, all-to-all communication to change the direction of
parallelization, which degrades the parallelization efficiency
with the large number of processors, is required to calculate
FI%FF ﬁFFf{F (e.g., between FﬁF and FKFFI){F). Note that L
itself is also calculated in parallel for the ensemble size K
considering the formulation in Eq. (1).

2.3 Multigrid beta filter (MGBF)-localization

This study suggests to calculate the localization L with
MGBEF instead of RF. Although the original MGBF (Purser
et al., 2022) superposes variables filtered in filter grids of
multiple resolutions g; (r =1, ..., T'; the grid interval of g,4
is twice coarser than g;), this study applies MGBF only for
the coarsest filter grid g7 for faster computation as shown in

Fig. 1b, where L,ll,/2 is computed as:

172 z Y X
Lw/ :DgoeglFBF(gl)DglegTFBF(gT)FBF(gT)DgT(—gl’ (10)
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where Dg, o (Ng; X Ng, matrix) is 2 x 2-points bilin-
ear interpolations with doubling the coefficients to satisfy
D, < ¢ Df, ., =1 whichis repeated from g (the finest fil-
ter grid) to g7 (the coarsest filter grid), D¢, < o7 (Ng; X Ny
matrix) is linearly weighted biquadratic horizontal interpo-
lations (down-sending) repeated from g7 to g1, and Dgj g,
(N X Ng, matrix) is bilinear horizontal and vertical interpo-
lations (mapping) from g; to the analysis grid go (Ng,: the
number of grid points in g;). The finest filter grid g; is the
same as the analysis grid go or coarser. Note that Dg; < ¢,
is required only in SDL because Dy, <_g]EDgT,T g =lin
single-scale localization. F]);F( ) FEF( )’ and FgF( 2) denote
isotropic line beta filters applied in each generation in x-, y-,
and z-directions, respectively (self-adjoint N, x Ng, matri-
ces); for example, the filtering kernel of Fl’g{F( 2) is:

By, (x)=cp,(1—4x2)" (X e %) (11)

where B, (x) =0 in X > 1/2, the coefficient cp; is set
to satisfy [ [Bp. (x)]zdx = w; (w;: weight of g; where

Z,Tzlwz =wr =1), and s is the standard deviation of the
self-convolution of B ; (x), which is the filtering kernel of

T
X X .
FBF( ) (FBF( g,)) and can be shown to have the form:

Bp,t*Bp,t (X)

= (1= XY a, XPT(1 4 X)Y

(X< : 12)
If we generalize the definition of binomial coefficients:

CG,J)=———7> (13)
=Ny
then the coefficients can be expressed,
ai,p
_ Zmin(i.,L(p—i)/ZJ) Cp.HC(p—i,2))CG,J) (14)
=0 C(@2p,2)) ’

where |-| is the floor function. In the particular case,
p =2, these coefficients are ap2 = a2 = az > = 1. The fil-

T
tering kernel of Fg, (ng( gr)) obtained as the self-
convolution of By 7 (x) can be expanded as:
By 7By 1 (%)

:(1—X)5<1+5X+9X2+5X3+X4)

x|
X = 1 , 15
( S«/ﬁi ) ( )

where s is the standard deviation of By 7xB> 1 (x). Unlike
RF, s is smaller than the e~/ 2-folding scale o in MGBF
(here, s /o ~ 0.92852).
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Figure 1. Schematics of procedures of (a) RF and (b) MGBF.

Table 1. List of physics schemes used in FV3LAM.

Forward
4-points linear
interpolation
Dgreg,

Adjoint
4-points linear
interpolation

E

Physics schemes Specification

Cloud microphysics

Thompson-Eidhammer Aerosol Aware Microphysics (Thompson and Eidhammer, 2014)

Planetary boundary layer

Mellor- Yamada-Nakanishi-Niino Eddy Diffusivity/Mass Flux (MYNN-EDMF; Nakanishi and

Niino, 2009; Olson et al., 2019; Angevine et al., 2020)

Surface layer

Mellor- Yamada-Nakanishi-Niino (MYNN) surface layer (Olson et al., 2021)

Gravity wave

Small Scale Gravity Wave Drag (SSGWD; Tsiringakis et al., 2017) and Turbulent Orographic

Form Drag (TOFD; Beljaars et al., 2004)

Land

Rapid Update Cycle Land Surface Model (RUC LSM; Smirnova et al., 1997, 2000, 2016)

Long and short-wave radiation
Tacono et al., 2008)

Rapid Radiative Transfer Model for Global Circulation Models (RRTMG; Mlawer et al., 1997,

In MGBF, not only ng( 1) but also FgF(gr_) and FgF(gT)
are parallelized for Ny Ny because Eq. (11) is independently
applied for each horizontal grid point only in the finite do-
main near the point. It indicates that communication between
processors is limited to the exchange of halo grid points with
spatially neighboring processors and all-to-all communica-

tion is not required in MGBF.

3 Experimental design

To compare the computation time and the 3DEnVar analy-
sis between RF- and MGBF-based localizations, this study
conducted hourly analysis-forecast cycling experiments. The
experiments consist of GSI-based pure 3DEnVar and the
limited area model capability for the non-hydrostatic finite-
volume cubed-sphere dynamical core (FV3LAM, Lin, 2004;

Geosci. Model Dev., 18, 7815-7829, 2025

Putman and Lin, 2007; Black et al., 2021) in a prototype
Rapid Refresh Forecast System (RRFS, Carley et al., 2023)
in National Centers for Environmental Prediction (NCEP).
The FV3LAM applied physics schemes listed in Table 1, and
covered the CONUS (contiguous United States) domain with
the horizontal grid interval of 3 km, where the number of grid
points in x-, y-, and z-directions are (1820, 1092, 65). The
lowest level thickness and the top of the model are 8 m and
2 hPa, respectively. In 3DEnVar, the number of analysis grid
points were set to (Nx, Ny, Nz) = (910, 546, 65); namely
the horizontal grid interval was twice as large as that of the
FV3LAM. The larger interval of the analysis grid reduces
the computational cost but makes the resolution of analysis
increments coarser and prevents to set the localization length
smaller than the grid interval.

https://doi.org/10.5194/gmd-18-7815-2025
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Figure 2. Schematics of analysis-forecast cycles with the RRFS.
Table 2. List of localization settings for pure 3DEnVar in sensitivity experiments.
Name Horizontal Vertical filter Number of the Weight Horizontal Vertical
filter finest filter (w1, w2, w3,w4)  localization localization
grids Ng, (“~” indicates no  length s (km) length s (grid
filtering) unit)
RF RF RF - - 82.158 3.0000
MGBF00 BF(g1) RF (910, 546, 65) 1,0,—,-) 82.158 3.0000
MGBFO01 BF(g4) RF (910, 546, 65) 0,0,0,1) 82.158 3.0000
MGBF02 BF(g4) RF (910, 546, 65) (-,0,0,1) 82.158 3.0000
MGBFO03 BF(g3) RF (280, 168, 65) (= 1,—--) 82.158 3.0000
MGBF04 BF(g7) BF(g1) (280, 168, 33) (= 1,—-) 82.158 3.0000
MGBF040 BF(g3) BF(g1) (280, 168, 33) (- 1,—--) 76.286 2.7856
RFSDL RF RF - - 328.63 3.0000
RF RF - - 82.158 3.0000
MGBF03SDL BF(g4) RF (280, 168, 65) (-,0,0,1) 328.63 3.0000
BF(g3) RF (280, 168, 65) (= 1,—,-) 82.158 3.0000
MGBF04SDL BF(g4) BF(g1) (280, 168, 33) (—=,0,0,1) 328.63 3.0000
BF(g3) BF(g1) (280, 168, 33) (- 1—--) 82.158 3.0000
MGBF040SDL  BF(g4) BF(g1) (280, 168, 33) (-,0,0,1) 305.14 2.7856
BF(g7) BF(g1) (280, 168, 33) (= 1,—--) 76.286 2.7856

Figure 2 shows the schematics of the sensitivity experi-
ments. The selected experimental period includes when Hur-
ricane Ian moved from the area northeast of Florida toward
South Carolina (Bucci et al., 2023). All cycling experiments
started from the same 1h FV3LAM deterministic forecast
initiated with the pure 3DEnVar analysis at 15:00 UTC, 29
September 2022, where the first guess as the initial condi-
tion (IC) was the 3 h forecast in the Global Forecast System
(GFS, horizontal grid interval ~ 13 km) in NCEP, and ensem-
ble BEC was created by the 9h 80 member global ensem-
ble forecasts in the Global DA System (GDAS, horizontal
grid interval ~ 26 km) in NCEP. After that, hourly analysis-
forecast cycles with pure 3DEnVar and FV3LAM forecasts
were repeated until 00:00 UTC, 30 September.

All ensemble BECs for the pure 3DEnVar analyses except
at 15:00 UTC were created by ensemble analysis-forecast cy-

https://doi.org/10.5194/gmd-18-7815-2025

cles (30 member hourly FV3LAM ensemble forecasts and
serial ensemble square root filter (EnSRF; Whitaker and
Hamill, 2002)) initiated with the 9 h ensemble forecast subset
(first 30 of 80 members) at 15:00 UTC in the GDAS. The cut-
off lengths of the Gaspari-Cohn localization function (Gas-
pari and Cohn, 1999) in EnSRF were set to 300 km hori-
zontally and 1.1 scale heights vertically. After each EnSRF
analysis (just before the next ensemble forecasts), the en-
semble mean was replaced with the variational analysis (re-
centering in Fig. 2) and the ensemble spread was inflated by
the relaxation-to-prior spread method (RTPS; Whitaker and
Hamill, 2012) with a factor of 0.85.

Both deterministic and ensemble analysis-forecast cycles
adopted the GFS forecasts as the lateral boundary condi-
tions (LBCs), and assimilated observations associated with
the Rapid Refresh (RAP; Benjamin et al., 2004, 2016) from

Geosci. Model Dev., 18, 7815-7829, 2025
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Figure 3. Analysis increment (color, hPa) and analysis (gray contours, every 4 hPa) of SLP at 16:00 UTC, 29 September 2022 in the single
surface pressure DA experiments ((a) RF; (b) MGBF04; (¢) RFSDL; (d) MGBF04SDL). Yellow dot is the position of the assimilated

observation.

METAR, rawinsondes, aircraft, and radial winds of Weather
Surveillance Radar-1988 Doppler (WSR-88D; Crum and Al-
berty, 1993, Liu et al., 2016). Although satellite radiance,
radar reflectivity, and lightning data were not assimilated di-
rectly, they were used in land-snow DA (Benjamin et al.,
2022) and non-variational cloud analysis (Benjamin et al.,
2021) to correct hydrometeors, temperature, and specific hu-
midity after each 3DEnVar analysis (just before the next de-
terministic forecasts).

The only difference among sensitivity experiments is how
to apply the localization for pure 3DEnVar (Table 2). In RF,
the RF-based single-scale localization (W = 1; p = 2; local-
ization length s: 82.158 km horizontally and 3 grids verti-
cally) was applied. In MGBF(00-04, the RF-based horizon-
tal localization in RF was replaced to the MGBF-based one
with the same localization length s and the exponent p as
that in RF. In MGBF00-02, the number of finest filter grids
Ng, was the same as that of analysis grid, where BF was
applied for the finest grid g; in MGBFOO but the coarser
grid g4 in MGBFO01-02. In MGBFO03-04, filter grids for g;
were horizontally coarser (Ng, was smaller) than those in
MGBF00-02 and the filter was applied for g,. In MGBF04,
the filter grids were coarser also vertically, and RF-based
vertical localization was replaced to MGBF-based one in
addition to the horizontal localization. The MGBF040 is
the same as MGBF04 except with the smaller localization
length s, which was decreased by the factor of 0.92852
to make the e~ !/2-folding scale o the same as that in RF.
RFSDL, MGBF03SDL, MGBF04SDL, and MGBF040 SDL
are the same as RF, MGBF03, MGBF04, and MGBF04o, re-
spectively, except for applying fourfold horizontal localiza-
tion lengths additionally as larger-scale SDL (W = 2). In all
MGBF-based localizations, g; (t =2,...,T) was calculated
in parallel after g;. Since the calculation of g; is meaning-

Geosci. Model Dev., 18, 7815-7829, 2025

less in case the weight for g; set to zero, it was skipped for
faster computation except in MGBF00-01. The number of
processors for the parallel computation was set to 735 (35 in
the x-direction and 21 in the y-direction) for all experiments.
Note that only the first pure 3DEnVar analysis at 15:00 UTC
applied the same localization as in RF for all experiments.

4 Results and discussion
4.1 Single observation data assimilation

In this subsection, the filter responses of the RF- and
MGBF-based localizations are compared with single pseudo-
observation DA. Here, a single surface pressure observation
was assimilated with —10 hPa innovation and 1 hPa observa-
tion error in the northern region of Hurricane Ian at 80°'W
and 31° N, where the first guess was the 1 h FV3LAM fore-
cast at 16:00 UTC, 29 September.

Figure 3 shows analysis increments of sea-level pressure
(SLP). Compared to the increments with the single-scale lo-
calization (Fig. 3a, b), the SDL created the larger scale flow-
dependent increments both for the RF- and MGBF-based
localizations (Fig. 3c, d) since the horizontal localization
length in the larger-scale SDL was set to fourfold. The dif-
ference between the RF- and MGBF-based localizations was
little compared to the difference between the single-scale lo-
calization and SDL.

To clarify the difference of the responses between the RF-
and MGBF-based localizations in more detail, the merid-
ional cross-section of the ratio of analysis increments with
and without the localization (analysis increments in REF,
MGBF00, MGBF04, and MGBF04¢ divided by the incre-
ment without the localization), which are regarded as the
filter responses of each experiment, are shown in Fig. 4.

https://doi.org/10.5194/gmd-18-7815-2025



S. Yokota et al.: Multigrid beta filter for faster computation 7821

1.2
---- Gaussian
RF
: : —— MGBF00
1.0 4 MGBF04
: / \ MGBF040

-300 -200 —-100 0 100 200 300

Figure 4. Meridional cross-section of analysis increment of SLP at 16:00 UTC, 29 September 2022 in the single surface pressure DA
experiments (cyan: RF; brown: MGBF00; pink: MGBF04; yellow: MGBF040) divided by that without spatial localization. The black dashed
line is Gaussian and the other dashed lines are the differences from Gaussian. The horizontal dotted line is e 0 (~0.60653) and the vertical
dotted line is the ¢ ~%-3-folding length of Gaussian (~ 82.158 km), respectively.
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Figure 5. Computation time for localization [green: vertical filtering (mapping between analysis and filter grids is included for MGBF);
blue: all-to-all communication (only for RF); orange: up-sending and down-sending between generations (only for MGBF); red: horizontal
filtering (weighting is included for MGBF)] averaged from 16:00 UTC, 29 September to 00:00 UTC, 30 September 2022 in each experiment.
Error bars show minimum and maximum.
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Figure 6. Analysis increment (color, hPa) and first guess (gray contours, every 4 hPa) of SLP at 16:00 UTC, 29 September 2022, in (a) RF and
(b) RFSDL, and difference of the SLP analysis (hPa) from RF or RFSDL ((c) MGBF04-RF; (d) MGBF04SDL-RFSDL; (e) MGBF040—RF;

(f) MGBF040 SDL-RFSDL).

While the response of RF (cyan line) was almost the same
as Gaussian, that of MGBFOO (brown line) was a little wider,
and almost consistent with Eq. (15). The difference between
MGBFO00 (brown line) and MGBF04 (pink line) was hardly
visible although it was slightly underestimated near the peak
in MGBF04 due to the coarser filter grid. Compared to
MGBF04 (pink line), the response of MGBF040 (yellow
line) was closer to Gaussian near the e~!/?-folding scale
while it was smaller far from the observation.

4.2 Analysis-forecast cycling experiments

In this subsection, the calculation time of the RF- and
MGBF-based localizations and the qualities of the result-

Geosci. Model Dev., 18, 7815-7829, 2025

ing analyses are compared. Figure 5 shows the computation
times for localizations in analysis-forecast cycling experi-
ments. The time for horizontal filtering in MGBF01-02 was
smaller than that of MGBFOO because it was applied in the
coarser filter grid g4; in MGBF02, it was about half of that in
MGBFO01 due to skipping the filter for g;. However, the total
time for the localization in MGBF00-02 was larger than that
in RF because the amount of the calculation and communi-
cation between processors in up-sending and down-sending
were proportional to the number of grid points, which were
large in MGBF(00-02. On the other hand, the time for the lo-
calization in MGBF03-04, which applied a coarser g; than
MGBF00-02, was shorter than that in RF. In particular, the
time for the localization in MGBF04, which applied verti-

https://doi.org/10.5194/gmd-18-7815-2025
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Figure 7. Mean absolute pressure tendency (hPah™!) of the 1h
forecasts from the analysis at 16:00 UTC, 29 September 2022 in
each experiment (cyan: RF; pink: MGBF04; yellow: MGBF040;
blue: RFSDL; red: MGBF04SDL; orange: MGBF040 SDL).

cal MGBEF in the coarser vertical grid, was about 20 % of
that in RF. In SDL, the total time for the localization was
roughly twice that of single-scale localization both for the
RF- and MGBF-based localizations, which means that the
reduction of the computation time by the MGBF-based local-
ization was also approximately twice in SDL. The reduction
rate of the computation time by the MGBF-based localization
was larger in the experiments with larger numbers of pro-
cessors (not shown), which indicates that parallelization effi-
ciency of the MGBF is higher than that of the RF including
the all-to-all communication. Hereafter, only RF, MGBF04,
MGBF040, RFSDL, MGBF04SDL, and MGBF040 SDL are
focused to show the small difference of the analyses with
computationally efficient MGBF from that with RF.

Despite the large reduction of the computation time, the
difference of analysis increments of SLP between the RF-
and MGBF-based localizations was small in both experi-
ments with the single-scale localization and the SDL (Fig. 6).
The relatively large difference near Hurricane Ian (Fig. 6¢c—f)
is reasonable due to the large increment there (Fig. 6a, b).
In the experiments with SDL, the difference is slightly larger
in the maritime area (Fig. 6d, f) probably because the differ-
ence between RF and MGBF is more obvious in the large
localization applied to the large-scale ensemble-based error
covariance, which is also large in the maritime area. Note that
the analysis increment was not spatially smoothed even in the
MGBF-based localization with the coarse filter grid because
the ensemble perturbations x,e(f‘w in Eq. (3) was not affected
by the MGBF. Moreover, the difference from RF (Fig. 6a)
was slightly smaller in MGBF0O40 (Fig. 6e) than that in
MGBF04 (Fig. 6¢), and the difference from RFSDL (Fig. 6b)
was also slightly smaller in MGBF040 SDL (Fig. 6f) than
that in MGBFO04SDL (Fig. 6d) even though the computation
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Figure 8. Same as Fig. 7 except for the first 1 h forecasts from the
analysis at 00:00 UTC, 30 September 2022.

times for MGBF040 and MGBF040 SDL were almost the
same as that for MGBF04 and MGBF04SDL, respectively
(not shown).

The impact of the MGBF-based localization on the dy-
namical balance of the analysis was also small. Figure 7
shows the mean absolute pressure tendency of the forecast
from the analysis at 16:00 UTC, 29 September. While it was
smaller in the experiments with SDL than that with single-
scale localization (consistent with Yokota et al., 2024b), the
impact of the MGBF-based localization was relatively small;
for example, the difference between RF (cyan line) and
MGBF04 (pink line) was smaller than that between RF (cyan
line) and RFSDL (blue line). However, this slight difference
between the RF- and MGBF-based localizations was accu-
mulated in the analysis-forecast cycle, and the pressure ten-
dency of the forecast from the last analysis with the MGBF-
based localization at 00:00 UTC, 30 September was larger
than that with the RF-based localization (Fig. 8) probably
because the MGBF was the compact-support filter and its
filter response was limited to the finite region. Neverthe-
less, MGBFO40 (yellow line) showed a smaller deviation
from RF (cyan line) than MGBF04 (pink line). Similarly,
MGBF040 SDL (orange line) was closer to RFSDL (blue
line) than MGBF04SDL (red line).

Figure 9 shows the first guess departure of assimilated
in-situ temperature and horizontal wind observations in the
whole analysis-forecast cycles. For temperature, the RMSE
and cold bias in the experiments with SDL were smaller than
those with single-scale localization (consistent with Yokota
et al.,, 2024b), and the differences between the RF- and
MGBF-based localizations were relatively small (Fig. 9a and
b). For horizontal wind, on the other hand, the degradation
of the RMSE by the MGBF-based localization (pink line in
Fig. 9c) were not necessarily smaller than the improvement

Geosci. Model Dev., 18, 7815-7829, 2025
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Figure 9. Vertical profiles of first guess departure (a, ¢) standard deviations (difference from RF) and (b, d) biases verified against assimilated
in-situ observations ((a, b) temperature (K); (¢, d) horizontal wind (m sfl)) in each cycling experiment (cyan: RF; pink: MGBF04; yellow:
MGBF040 ; blue: RFSDL; red: MGBF04SDL; orange: MGBF040 SDL) from 15:00 UTC, 29 September to 00:00 UTC, 30 September 2022.
Square marks indicate significantly different from RF (confidence level > 95 % in the ¢-test). The cyan lines are not shown in (a) and (¢) and

are almost superposed by the pink and yellow lines in (b) and (d).

by the SDL (blue line in Fig. 9c) probably because the impact
of SDL on horizontal wind was smaller than that on tem-
perature. However, the difference from RF (cyan line) was
smaller in MGBF040 (yellow line) than that in MGBF04
(pink line), and the difference from RFSDL (blue line) was
also smaller in MGBF040 SDL (orange line) than that in
MGBFO04SDL (red line).

Considering the results above, the quality of the analy-
sis in RF and RFSDL was closer to that in MGBF040 and
MGBF040 SDL than that in MGBF04 and MGBF04SDL, re-
spectively. It may indicate that the e ~%--folding scale of the
localization function o is more sensitive to the quality of the
analysis than the standard deviation s. Note that these differ-
ences of the analyses discussed here hardly affected the Hur-
ricane Ian forecasts. In fact, the track forecasts and associated
precipitation forecasts initiated with the last analyses with
the MGBF-based localization at 00:00 UTC, 30 September
were almost the same as those with the RF-based localization
(Figs. 10 and 11a). The minimum SLP forecasts with the RF-
and MGBF-based localizations were also almost the same
and the differences were smaller than that with and without
SDL (Fig. 11b).

5 Conclusions
This study applied the MGBF for the ensemble covariance
localization instead of the RF in the regional EnVar DA sys-

tem, and showed how to make the computation faster than the
RF. If the analysis grid was mapped to the coarser filter grid

Geosci. Model Dev., 18, 7815-7829, 2025

and the filter was applied only in the grid with the coarsest
resolution, the MGBF sped the computation of the localiza-
tion (approximately by five times with 735 processors) with-
out a significant degradation of the quality of the analysis,
both for the single-scale localization and for the SDL (Fig. 5).
Note that the analysis increment was not spatially smoothed
even in the MGBF-based localization with the coarse filter
grid.

Since this study applied the MGBF only on the grid with
the coarsest resolution, the filter response was the convolu-
tion of the strict beta function (Eq. (15) and Fig. 4). Unlike
RF, the e~ 9>-folding scale of this function was larger than
the standard deviation, which caused the small difference of
the quality of the analysis between the RF- and MGBF-based
localizations. However, this difference was mitigated by ap-
plying the smaller localization length for the MGBF to make
the e~!/2-folding scale the same as that in RF (Figs. 6-9).
An alternative would be to replace the simple beta filter with
the “tri-beta” line filter recently proposed by Purser (2024),
which produces a profile more closely conforming to the in-
tended Gaussian.

The idea to apply the compact-support filter with the
coarse resolution is the same as the Normalized Interpolated
Convolution from an Adaptive Subgrid (NICAS) adopted in
the Model for Prediction Across Scales-Atmosphere with the
Joint Effort for Data assimilation Integration (JEDI-MPAS,
Liu et al., 2022). The NICAS applies a localization matrix
on the unstructured coarse filter grid and interpolates it to the
analysis grid directly. On the other hand, the MGBF-based

https://doi.org/10.5194/gmd-18-7815-2025
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Figure 10. Composited radar reflectivity (color, dBZ) and SLP (blue contours, every 4 hPa) analyses at 00:00 UTC, 30 September 2022,
and Hurricane Ian track forecasts (black lines) in each experiment ((a) RF; (b) MGBF04; (c) MGBF040; (d) RFSDL; (e) MGBF04SDL,;
(f) MGBF040 SDL) and (g) Multi-Radar Multi-Sensor (MRMS; Smith et al., 2016) composite reflectivity and High-Resolution Rapid Refresh
(HRRR; Dowell et al., 2022) SLP analysis. White lines are Ian’s best track.

localization applies a filter on the structured coarse filter grid
and interpolates it from the coarsest filter grid gr to the anal-
ysis grid go step by step. One advantage of the MGBF-based
localization is high parallelization efficiency with the step-
by-step interpolation. However, note that the computational
cost of the analysis with small localization length in MGBF
is not necessarily smaller than that in RF since the interval of
the filter grid should be smaller than the localization length.

Despite the small difference of the analysis between the
RF- and MGBF-based localizations, it may be significant
after many analysis-forecast cycles since the impact of the
compact-support MGBF is accumulated (Fig. 8). To make
the MGBF-based localization further closer to the RF-based
one, it may be required to apply the MGBF also in the grid
with the finer resolution and calibrate the localization length
and the weight of each resolution.

https://doi.org/10.5194/gmd-18-7815-2025

This study showed similarity of RF and MGBF only in the
single case. However, the small difference even in the case of
the strong Hurricane implies the much smaller difference in
general cases. The longer cycling test for more reliable verifi-
cation is the future task since it requires huge computational
resources.

This study focused only on the computational efficiency of
the homogeneous isotropic MGBF. However, the advantages
of the MGBF compared to the RF are not only the computa-
tional efficiency but also the flexible settings for various filter
responses including inhomogeneity and anisotropy (Purser et
al., 2022). To make the shape of localization more sophisti-
cated within the MGBF is also one of the important future
tasks to be carried out.

Geosci. Model Dev., 18, 7815-7829, 2025
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Figure 11. (a) Location error verified against the best track (km) and (b) minimum SLP (hPa) of Hurricane Ian forecasts initialized at
00:00 UTC, 30 September 2022, in each experiment (cyan: RF; pink: MGBF04; yellow: MGBF040; blue: RFSDL; red: MGBF04SDL,;
orange: MGBF040 SDL). Black dotted line in (b) indicates the best track.
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