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Abstract. Land surface models (LSMs) are critical compo-
nents of Earth system models (ESMs), enabling the simula-
tion of energy and water fluxes that are essential for under-
standing climate systems. Soil hydraulic parameters, derived
using pedotransfer functions (PTFs), are crucial for model-
ing soil-plant—water interactions; they introduce uncertain-
ties in soil moisture simulations. However, a key knowl-
edge gap exists in understanding how specific soil hydraulic
properties contribute to these uncertainties and in identi-
fying the regions most affected by them. This study con-
ducts an intra-model sensitivity analysis within the Commu-
nity Land Model version 5 (CLMS), examining how alterna-
tive soil parameter settings influence soil moisture variabil-
ity across the contiguous United States (CONUS) using em-
pirical orthogonal function (EOF) analysis. The EOF anal-
ysis revealed dominant spatial and temporal patterns of soil
moisture across multiple experimental configurations, high-
lighting the impact of soil parameter variability on hydro-
logical processes. The results showed significant discrepan-
cies in soil moisture simulations, particularly in the central
Great Plains, which may be attributed to the combination
of arid climatic conditions and limitations in modeling satu-
rated hydraulic conductivity and soil water retention curves.
Seasonal soil moisture dynamics showed broad similarity

to ERAS-Land patterns, with differences in magnitude and
phase, indicating the importance of refined parameterization,
particularly in the representation of infiltration and drainage
processes. Comparisons with ERA5-Land, used here solely
as a model-based reference for pattern consistency, revealed
stronger similarity in regions with consistent climatic gradi-
ents but persistent differences in hydrologically complex ar-
eas, particularly in areas with arid climates, such as the Great
Plains, where hydrological processes remain difficult to rep-
resent. Because CLMS is forced by GSWP3, whereas ERAS-
Land is an offline HTESSEL replay forced by ERAS, differ-
ences reflect both forcing and structural contrasts in addi-
tion to parameter effects. This research demonstrates the ne-
cessity to refine soil parameter representations, utilize high-
resolution datasets, and consider climatic variability to in-
form the model development of LSMs. Importantly, these
findings also pave the way for future efforts that incorporate
dynamic soil properties into LSMs. This work illustrates the
influence of soil properties on simulated variability. While
the analysis documents their importance, a future direction
will be to develop approaches that allow these properties to
vary dynamically within LSMs. This study contributes to on-
going efforts toward more integrated modeling frameworks
that capture soil-hydrology—climate interactions.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Land surface models (LSMs) are essential components of
Earth system models (ESMs), offering critical insights into
the movement and partitioning of energy and water across the
Earth’s surface, which are fundamental processes in under-
standing and simulating climate systems accurately (Kang
and Hong, 2008; Zhao et al., 2017; Guimberteau et al., 2017,
Hagemann et al., 2013; Dagon et al., 2020). Designed to op-
erate on large spatial scales, LSMs rely on parameterizations
of land processes, including the use of pedotransfer functions
(PTFs) to parameterize soil hydraulic properties. PTFs, as
described by Van Looy et al. (2017) and De Lannoy et al.
(2014), are mathematical formulations that use extensive soil
hydraulic databases to establish empirical relationships be-
tween soil particle and soil hydraulic parameters, such as
field capacity, permanent wilting point, saturated hydraulic
conductivity, pore-size distribution, and soil water retention
curves (McNeill et al., 2018; Vereecken et al., 2010; Weber
et al., 2020). These PTFs range in complexity from basic lin-
ear models to advanced machine learning algorithms such as
artificial neural networks (da Silva et al., 2023; Schaap et al.,
1998). These soil hydraulic parameters are fundamental to
the quantification of soil moisture and water flow, as well
as soil-plant—water interactions and their effects on climate,
agriculture, hydrology, and environmental engineering.

PTFs play a crucial role in converting readily available soil
texture data into soil hydraulic parameters, addressing the
difficulties of acquiring accurate soil moisture data at larger
scales (Fu et al., 2023). However, many soil hydraulic param-
eters are derived from laboratory or small-scale field studies,
which often fail to capture the full heterogeneity of larger
areas, limiting their representativeness (Lai and Ren, 2016;
Godoy et al., 2018). To overcome this limitation, global soil
texture maps enhance PTFs’ predictive capabilities, enabling
their application in regions where field measurements are
unavailable and making them indispensable for land mod-
eling (Tafasca et al., 2020; Dai et al., 2019). Soil moisture, a
key output of these models, is a vital variable governing the
exchange of water and energy between the land and atmo-
sphere. It has profound impacts on climate systems, vegeta-
tion dynamics, and extreme events, including droughts and
floods (Zhang et al., 2021).

The influence of soil hydraulic properties on soil mois-
ture simulations is well documented. For example, Fu et al.
(2023) demonstrated that these properties significantly af-
fect soil moisture simulations at the ELBARA field site
in the northeast of the Tibetan Plateau, using the one-
dimensional (1D) Richards equation. Similarly, Fu et al.
(2022) noted that the numerical solution approach of the
Community Land Model (Lawrence et al., 2019) produces
a narrow range of soil hydraulic property values, which sug-
gests a relatively weak influence on soil moisture simulations
within this range. However, when optimized hydraulic prop-
erties are used, potentially derived to capture site-specific
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variability or improve model similarity beyond this narrow
range, they can exert a more substantial influence on soil
moisture dynamics. Furthermore, Feki et al. (2018) showed
that saturated hydraulic conductivity exhibits the highest sen-
sitivity to temporal changes in environmental factors, such
as precipitation or temperature variability, significantly af-
fecting soil moisture variability, as shown in the FEST-WB
model simulation of a maize field in the Secugnago region.
These findings underline the importance of accurately rep-
resenting soil hydraulic properties, which directly influence
the partitioning of water into runoff, infiltration, and evapo-
transpiration (Ye et al., 2023), as well as the temporal and
spatial variability in soil moisture. However, uncertainties in
parameterizations, such as the soil water retention curve that
links water potential to volumetric soil moisture, continue to
challenge the predictive capacity of LSMs, especially under
extreme climatic conditions (Koster et al., 2004; De Lannoy
et al., 2014). Improving the representation of soil moisture
and its underlying hydraulic properties is critical, as it af-
fects global hydrological cycles, vegetation health, and en-
ergy flows, all of which are essential for understanding and
mitigating the impacts of climate events (Oleson et al., 2010).

In addition to these complexities, scaling point-scale or re-
gional observations of soil moisture to the coarser resolutions
of LSM outputs presents a persistent challenge. While ob-
servational networks and remote-sensing missions have ex-
panded the availability of soil moisture data, the heteroge-
neous nature of soil properties combined with varying re-
trieval algorithms and coverage gaps can introduce signif-
icant uncertainties, both in terms of the accuracy of satel-
lite products and their limitations for validating LSM outputs
(Famiglietti, 2014; Brocca et al., 2017). Moreover, uncertain-
ties in parameterization make it challenging to accurately
simulate soil moisture dynamics, as noted by Reichle et al.
(2004) and Kato et al. (2007), limiting the ability of LSMs to
replicate observed soil moisture datasets. This discrepancy in
spatial resolution and data precision can make model calibra-
tion more challenging, increase uncertainties in estimating
parameters, and (as a result) weaken confidence in simulation
outputs. Emerging evidence further complicates this issue by
highlighting that soil properties can change over relatively
short timescales due to shifts in climate and land cover. The
dynamic nature of soil properties introduces additional pres-
sure to understand soil-hydraulic relationships better and in-
tegrate these temporal dynamics into LSMs, as demonstrated
by studies indicating how climate and land cover changes in-
fluence soil processes (Hirmas et al., 2018; Koop et al., 2023;
Caplan et al., 2019; Sullivan et al., 2022; Hauser et al., 2022).
Addressing these complexities requires robust, data-driven
approaches and dimensionality reduction techniques to dis-
entangle the effects of parameterization on soil moisture pat-
terns across various ecosystems and climatic conditions.

A major challenge to addressing these uncertainties is the
high dimensionality of LSM simulations when applied to
continental or global scales, making it difficult to isolate the
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effects of specific parameters on soil moisture from other
factors such as meteorological forcings and modes of cli-
mate variability (Ji et al., 2023; Li et al., 2013; Zeng et al.,
2021). Therefore, we present an intra-model sensitivity anal-
ysis within CLMS5, focusing on how alternative soil hydraulic
parameter datasets propagate into regional soil moisture pat-
terns and variability, without treating any external product
as the ground truth. Specifically, we ask the following ques-
tions:

1. How do soil hydraulic parameters influence large-scale
spatial patterns in soil moisture associated with well-
characterized climate variability modes?

2. How do these parameters shape the temporal dynam-
ics of soil moisture during climate extremes, such as
droughts and floods?

Using empirical orthogonal function (EOF) analysis, we sys-
tematically evaluate the impact of soil hydraulic parameter-
izations in CLMS5 simulations over the contiguous United
States (CONUS). We compare the spatial and temporal pat-
terns of CLMS with those in ERAS5-Land using pattern-
similarity metrics (e.g., correlation, Taylor diagrams, and Eu-
clidean distance). ERA5-Land is used solely as a model-
based reference for patterns; it does not assimilate soil mois-
ture observations and is not treated as the ground truth. We
note an upfront forcing and structural mismatch: our CLM5
experiments are driven by GSWP3, whereas ERA5-Land is
an offline HTESSEL replay forced by ERAS; therefore, the
differences reflect both forcing and structural contrasts, as
well as parameter effects. (Neither product includes irriga-
tion, so agricultural hotspots should not be overinterpreted.)
We aim to transparently document where parameter uncer-
tainty most affects simulated soil moisture patterns and vari-
ability across CONUS and to provide disciplined evidence
to inform model use and development. We next outline the
data sources, EOF methods, and computational steps; present
principal findings on soil moisture variability and parameter
sensitivity; and detail the broader implications for land sur-
face modeling and climate dynamics.

2 Data and methods
2.1 Study region

The study region for this analysis encompasses the CONUS,
spanning from the Atlantic Ocean to the Pacific Ocean and
bounded by Canada to the north and Mexico to the south
(Fig. 1). This domain encompasses a wide range of lati-
tudes, elevations, and climatic regimes, providing an ideal
natural laboratory for assessing spatial variability in land
surface processes. The CONUS encompasses major climate
zones, including humid continental, Mediterranean, subtrop-
ical, arid, and alpine, all of which are influenced by dif-
ferences in latitude, topographic relief, and proximity to
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moisture sources such as the Gulf of Mexico and the Pa-
cific Ocean. These climatic gradients play a critical role in
controlling soil moisture dynamics by modulating processes
such as infiltration, evaporation, and water retention. To-
pographic features, including the Rocky Mountains, Sierra
Nevada, Cascade Range, and Appalachian Mountains, have a
significant influence on precipitation regimes and surface hy-
drology. These orographic barriers modify storm tracks and
induce spatial variability in rainfall and snowpack accumu-
lation, ultimately affecting soil water availability. The land
cover across the CONUS is equally heterogeneous, ranging
from forested regions in the Northeastern United States and
Pacific Northwest to urbanized corridors and sparsely vege-
tated deserts in the Southwestern United States. This hetero-
geneity in land cover introduces additional complexity into
soil moisture behavior, as vegetation, impervious surfaces,
and soil types interact to determine local infiltration and stor-
age dynamics.

To support spatially disaggregated analysis of soil mois-
ture variability and its driving mechanisms, we adopt the re-
gional classification scheme proposed by Giorgi and Fran-
cisco (2000), which partitions CONUS into four climati-
cally and geographically coherent macro-regions: western
North America (WNA), central North America (CNA), east-
ern North America (ENA), and northern Central America
(NCA). This classification provides a physically grounded
framework for evaluating the sensitivity of modeled soil
moisture to soil hydraulic parameterizations across distinct
hydroclimatic zones. As shown in Fig. 1, each region cap-
tures distinct physiographic and climatic attributes, including
the arid basins and mountain ranges of WNA, the agricultural
plains and grasslands of CNA, the humid subtropical and de-
ciduous forest zones of ENA, and the transitional climatic
conditions present in NCA. The utility of this framework is
twofold: first, it facilitates regional intercomparison of soil
moisture patterns and their controls, enabling consistent eval-
uation across diverse landscapes; second, it improves the in-
terpretability of EOF modes by linking observed spatial vari-
ability to regional climatic drivers, soil texture distributions,
and vegetation structure. This regionalized approach is par-
ticularly valuable given the goal of disentangling parameter-
driven soil moisture responses from broader meteorological
forcings. By leveraging the CONUS domain and its subdi-
visions, the study advances understanding of how soil hy-
draulic parameter uncertainty manifests across large-scale
gradients and informs the development of improved land sur-
face model parameterizations.

2.2 Data description

The Soil Parameter Intercomparison Project (SP-MIP), ini-
tiated at the GEWEX-SoilWat workshop in Leipzig (2016),
aims to quantify the variability in land surface model (LSM)
output caused by differences in soil parameters and struc-
tures. Following the Land Surface, Snow, and Soil Mois-
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Figure 1. Regional divisions of the CONUS area into four major zones: western North America (WNA), central North America (CNA),
eastern North America (ENA), and northern Central America (NCA), as defined by Giorgi and Francisco (2000), based on climate variability
and geographical features. Prominent subregions and geographical landmarks, such as mountain ranges and plains, are also depicted.

ture Model Intercomparison Project (LS3MIP) protocol
(van den Hurk et al., 2016), SP-MIP brought together eight
leading LSMs — CLMS5, ISBA, JSBACH, JULES, MAT-
SIRO, MATSIRO-GW, NOAH-MP, and ORCHIDEE - for
a series of global simulation experiments (Gundmundsson
and Cuntz, 2017). These models were run on a 0.5° grid and
forced with Global Soil Wetness Project Phase 3 (GSWP3)
meteorological data for 1980 to 2010. We use CLMS5 out-
put produced by the National Science Foundation (NSF) Na-
tional Center for Atmospheric Research (NCAR) for SP-MIP
(Thornton, 2010; Lawrence et al., 2019). The dataset covers
global landmasses at 0.5° resolution (25920 grid cells, ex-
cluding waterbodies and permanent snow/ice) and includes
41 land surface variables such as evapotranspiration, soil
temperature, and runoff, spanning 30 years (1980 to 2010).
The global soil profile reaches a depth of 41.998 m with
25 layers; however, for this study, soil moisture was extracted
from depths (0—1.0 m) containing the most roots (root zone)
of the CONUS region, covering 6413 grid cells. The focus
is on the variable water content of soil layers (mrsol) to ex-
plore soil moisture variability and distribution. Importantly,
irrigation is not represented; all simulations are under rainfed
(naturalized) conditions to isolate the influence of soil hy-
draulic parameterizations without additional anthropogenic
water inputs. ERAS-Land (ECMWF) is also used as a model-
based pattern reference (not the ground truth). It is an offline
land surface replay forced by ERAS and does not assimi-
late soil moisture observations. For consistency, ERA5-Land
fields were regridded to 0.5° to match CLMS5. Note the forc-
ing mismatch (CLMS5: GSWP3; ERAS-Land: ERAS), so dif-
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ferences reflect both forcing and structural contrasts as well
as parameter effects.

2.2.1 Experimental designs

Four experimental designs were implemented to isolate the
effects of soil properties on hydrological and energy balance
variables. Soil parameters for Experiment 1 (EXP1) and soil
textures for Experiment 2 (EXP2) were derived at a 0.5° res-
olution, based on dominant soil classifications within the 0—
5 cm layer of SoilGrids data (Hengl et al., 2014) at a Skm
resolution. The Brooks—Corey parameters are derived from
Table 2 of Clapp and Hornberger (1978), while the Mualem—
van Genuchten parameters represent ROSETTA class aver-
age hydraulic values as cited by Schaap et al. (2001), with
soil textures taken from Table 1 of Cosby et al. (1984).
For experiments 4a—d (EXP4a—-EXP4d), the USDA soil cat-
egories used are loamy sand, loam, silt, and clay, as de-
fined by Montzka et al. (2011). These experiments employ
identical transfer functions for the Brooks—Corey and the
Mualem-van Genuchten parameters, as applied in Experi-
ment 1 (EXP1). CLMS solves the Richards equation for the
movement of soil water. The provided soil parameters and
textures are uniform throughout the entire soil column. For a
detailed description of the SP-MIP dataset, please refer to
Gundmundsson and Cuntz (2017). The schematic (Fig. 2)
summarizes the CLMS5 workflow and experimental grouping,
which consists of four designs yielding seven runs (EXPI,
EXP2, EXP3, and EXP4a—EXP4d), used to assess how soil
hydraulic parameterizations influence soil moisture variabil-

1ty.
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Figure 2. Experimental setup for evaluating soil moisture variability in CLM5. The model utilizes GSWP3 forcing data and conducts
multiple experiments with varying soil hydraulic parameterizations. EXP1 applies standardized parameters, EXP2 derives parameters from
soil texture, EXP3 uses default CLMS settings, and EXP4a—EXP4d assign uniform parameters for different soil types.

Table 1. Soil parameters for the three selected water retention curves were supplied by SP-MIP as input for experiments 1 and 4a—d.

Parameter long_name (netCDF) Unit
name

he air entry potential m

mbc Brooks—Corey m parameter = Clapp—Hornberger b —

thetar residual soil moisture m? m~3
thetas saturated soil moisture, porosity m3m—3
ks Hydraulic conductivity at saturation or at air entry ms~!
lambdac Corey A parameter -
alphavg van Genuchten « parameter m~!
nvg van Genuchten n parameter -

mvg van Genuchten m parameter -
thetafcbc Brooks—Corey field capacity m3m—3
thetafcvg van Genuchten field capacity m3 m—3
thetapwpbc ~ Brooks—Corey permanent wilting point m? m~3
thetapwpvg  van Genuchten permanent wilting point m3 m—3

Table 2. Soil textural characteristics supplied by SP-MIP for exper-
iment 2.

Parameter long_name (netCDF) Unit
name

fclay fraction of clay -

fsilt fraction of silt -

fsand fraction of sand -

rhosoil dry bulk density kg m—3
omsoil organic matter content  g(C) kg_l

https://doi.org/10.5194/gmd-18-7707-2025

To assess the influence of soil hydraulic parameterizations
on soil moisture variability within the CLMS5, a series of
simulations were conducted following the SP-MIP frame-
work (Gundmundsson and Cuntz, 2017). Although SP-MIP
was designed for multi-model comparisons, we adapted it
to evaluate intra-model variability within CLMS by vary-
ing soil hydraulic parameter sets. All simulations used con-
sistent meteorological forcing (GSWP3), spatial resolution
(0.5°), and spanned 1980 to 2010, with a standardized spin-
up routine to ensure reliable initial conditions. Below, we
describe the four experimental setups, their objectives, con-
figurations, hypotheses, and expected outcomes, focusing on
how parameters are applied within CLMS5. Each experiment
followed the standard CLMS5 spin-up procedure to ensure
that carbon, water, and energy state variables reached quasi-
equilibrium prior to the simulation period, thereby minimiz-
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Table 3. Summary of the SP-MIP experimental configurations analyzed in this study. EXP1-EXP2 use prescribed SP-MIP inputs at 0.5°;
EXP3 uses CLMS5 defaults; EXP4a—EXP4d are globally uniform design soils. Analyses use root-zone soil moisture extracted from each

experiment from 1980 to 2010.

EXP  Soil input Parameter setting

Purpose

1 SP-MIP parameter maps Prescribed parameter maps from SP-MIP; Baseline with spatially varying prescribed

uniform with depth

parameters to isolate CLMS5 sensitivity

2 SP-MIP soil texture maps ~CLMS derives parameters from texture via Assess sensitivity to texture-to-parameter
native PTF/lookup; spatially varying; uniform translation in CLM5
with depth

3 CLMS5 default maps CLMS5 default parameter datasets; spatially Benchmark CLMS5 default configuration
varying; uniform with depth against EXP1 and EXP2

4a Design soil: loamy sand Globally uniform parameter set (loamy sand); Texture sensitivity: low retention/high
uniform with depth conductivity

4b Design soil: loam Globally uniform parameter set (loam); Texture sensitivity: intermediate properties
uniform with depth

4c Design soil: clay Globally uniform parameter set (clay); uniform  Texture sensitivity: high retention/low
with depth conductivity

4d Design soil: silt Globally uniform parameter set (silt); uniform Texture sensitivity: intermediate to high
with depth retention

ing the influence of initial conditions on soil moisture dy-
namics (Lawrence et al., 2019). Spin-up followed SP-MIP
protocol guidelines to ensure equilibrium prior to the 1980
to 2010 simulation period (Gundmundsson and Cuntz, 2017).
For clarity, Table 3 summarizes the soil inputs, parameter set-
tings, and purposes of EXP1-EXP4a—EXP4d (root-zone soil
moisture, 1980 to 2010). The specific experiments used are
as follows:

1. EXPI — soil hydraulic parameters provided by SP-MIP.
This experiment serves as a baseline simulation, ap-
plying soil hydraulic parameters provided by SP-MIP
(Table 1). These parameters, derived from PTFs such
as Brooks—Corey (Clapp and Hornberger, 1978) and
Mualem-van Genuchten (Schaap et al., 2001), are ap-
plied uniformly across all grid cells in the CONUS at
a 0.5° resolution using GSWP3 meteorological forcing
data (1980 to 2010). The objective is to establish an in-
ternal reference for soil moisture simulations by elimi-
nating spatial variability in soil properties, allowing the
isolation of CLM5’s response to a consistent soil param-
eter set. The hypothesis is that SP-MIP soil hydraulic
parameters will produce uniform soil moisture patterns,
serving as a control to quantify the effects of parameter
variations in other experiments. The expected outcome
is a consistent baseline for intra-model comparisons,
highlighting CLMS5’s sensitivity to parameter changes
rather than inter-model differences.

2. EXP2 — texture-derived soil hydraulic parameters. In
this experiment, CLM5 uses SP-MIP-provided soil tex-
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ture inputs (Table 2), such as fractions of clay, silt,
sand, dry bulk density, and organic matter content, to
derive soil hydraulic parameters internally via its native
PTFs and lookup tables. These parameters vary spatially
across the CONUS domain based on textural classes.
The objective is to assess how CLMS5’s standard ap-
proach to translating soil texture into hydraulic proper-
ties influences soil moisture outputs. The hypothesis is
that spatial variability in texture-derived parameters will
introduce heterogeneity in soil moisture patterns, re-
flecting the default parameterization practices of CLMS5.
The expected outcome is a simulation that mirrors oper-
ational CLMS runs, allowing for comparison with EXP1
to assess the impact of texture-to-parameter translation
on hydrological variability.

3. EXP3 — CLMS5 default configuration. This experiment

employs CLMS5’s default soil hydraulic parameters, as
defined by its operational input datasets, applied to all
soil layers across CONUS. Unlike EXP1’s standard-
ized parameters or EXP2’s texture-derived parameters,
EXP3 reflects CLMS’s inherent configuration without
external constraints. The objective is to evaluate the
model’s intrinsic variability due to its standard soil pa-
rameter settings, providing a benchmark for CLMS5’s
default behavior. The hypothesis is that CLMS5’s default
parameters, which vary spatially based on its native soil
maps, will produce distinct soil moisture patterns com-
pared to the controlled setups in EXP1 and EXP2. The
expected outcome is a simulation that highlights the in-
fluence of CLM5’s built-in assumptions on soil mois-

https://doi.org/10.5194/gmd-18-7707-2025



K. Silwimba et al.: Soil-parameterization-driven discrepancies in LSM soil moisture predictions

ture, allowing quantification of parameter-driven vari-
ability within a single model.

4. EXP4a-EXP4d — uniform soil texture simulations.
These four experiments (EXP4a: loamy sand; EXP4b:
loam; EXP4c: clay; and EXP4d: silt) each involve a
separate CLMS5 simulation with uniform soil hydraulic
parameters from SP-MIP (Table 1) applied across the
entire CONUS domain. The parameters, derived from
PTFs for each USDA soil class (Montzka et al., 2011),
are spatially constant within each experiment but dif-
fer across the four runs based on soil type. The objec-
tive is to test CLMS5’s sensitivity to distinct soil textures
and their associated hydraulic properties, such as poros-
ity, saturated hydraulic conductivity, and water reten-
tion curves, and to evaluate their impact on hydrological
(e.g., soil moisture) and energy balance (e.g., evapotran-
spiration) outputs. The hypothesis is that each soil type
will produce unique soil moisture patterns, reflecting
texture-dependent hydrological behavior. The expected
outcome is a set of simulations that isolate the effects of
soil texture on CLM5’s outputs, providing insights into
parameter-driven variability across diverse soil types.

2.2.2 Model-based reference for pattern comparison:
ERAS-Land

ERAS5-Land, produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF), is used here as a spa-
tially complete, model-based reference for pattern compari-
son; it is not treated as a ground truth or a validation dataset.
Note the forcing and structural contrasts: our CLM5 exper-
iments are forced by GSWP3, whereas ERAS-Land is an
offline HTESSEL replay forced by ERAS; therefore, differ-
ences reflect both forcing and model structure, not parameter
effects alone. ERAS-Land does not assimilate soil moisture
observations; it is an offline land surface replay forced by
ERAS atmospheric reanalysis fields (Mufioz-Sabater et al.,
2021). Thus, land surface states are governed by HTESSEL
physics and driven by ERAS meteorology. Although ERAS-
Land involves no land data assimilation, it is often used as
a spatially consistent model product for pattern comparison
due to its global coverage and frequent updates. However,
studies have identified certain discrepancies, such as a wet
bias in its soil moisture measurements relative to ground-
based and Soil Moisture Active Passive (SMAP) satellite
data, particularly in heavily vegetated and humid areas (Lal
et al., 2022). Additionally, neither our CLM5 configuration
nor ERAS-Land includes irrigation, which can significantly
affect soil moisture in intensively cultivated regions. As doc-
umented in previous studies, the absence of irrigation in the
HTESSEL land surface model used by ERA5-Land has been
linked to the underestimation of soil moisture in irrigated
areas and is a known limitation when interpreting results
over agricultural landscapes (Wipfler et al., 2011; Lavers
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et al., 2022; Tang and McColl, 2023). These characteristics
and known biases underline the need for careful interpreta-
tion when using ERAS-Land for hydrological analyses and
pattern comparison. Despite these issues, its capacity to re-
flect broad spatiotemporal patterns ensures its effectiveness
in assessing model similarity and conducting extensive hy-
drological research. While alternative datasets such as the
North American Land Data Assimilation System (NLDAS)
could provide a higher resolution and are region-specific
to CONUS, ERAS5-Land was selected for its global consis-
tency, frequent updates, and ability to offer a broader per-
spective that facilitates comparison across varying climatic
conditions. Additionally, ERAS5-Land provides a direct con-
nection to global atmospheric reanalysis, enabling robust as-
sessments of large-scale interactions between soil moisture
and climate processes. The ERA5-Land data were regridded
to match the CLMS5 0.5° grid.

2.3 EOF analysis for soil moisture variability

EOF analysis is a widely utilized statistical method in
geophysical sciences for extracting dominant spatiotempo-
ral patterns from high-dimensional datasets (Jollife, 2002;
Bjornsson and Venegas, 1997). Initially introduced by
Lorenz (1956) in the context of meteorology, EOF analysis
has evolved into a foundational tool for analyzing climate
and hydrological variables such as precipitation, evapotran-
spiration, and soil moisture (Monahan et al., 2009; Korres
et al., 2010). The method works by decomposing a dataset
into orthogonal spatial patterns (EOFs) and their corre-
sponding temporal amplitudes (principal components, PCs)
through linear algebra techniques such as singular value de-
composition (SVD) (Hannachi et al., 2007; Dawson, 2016).
In this study, EOF analysis is applied to soil moisture out-
puts from CLMS5 across the CONUS domain. The objective
is to assess how varying soil hydraulic parameterizations in-
fluence both the spatial structure and temporal evolution of
soil moisture, particularly in the context of seasonal to inter-
annual climate variability and hydrologic extremes, such as
droughts and floods. EOF analysis is well suited to this ob-
jective because it captures the internal covariance structure
of spatial fields and retains dominant modes of variability
that simpler diagnostics, such as RMSE or mean bias, may
obscure.

EOF analysis provides a unified framework for comparing
spatial and temporal patterns across different experimental
setups (EXP1, EXP2, EXP3, and EXP4a-EXP4d) and rela-
tive to a model-based pattern reference (ERAS-Land; used
only for pattern comparison, not the ground truth). This fa-
cilitates the detection of parameter-sensitive regions and im-
proves the mechanistic understanding of how soil hydraulic
properties modulate model behavior. Such insights are partic-
ularly valuable in hydroclimatically complex regions, includ-
ing the central Great Plains and the arid western CONUS,
where soil—climate interactions display high spatial hetero-
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geneity. Moreover, EOF techniques have proven effective for
diagnosing how land surface processes, especially soil mois-
ture dynamics, interact with large-scale atmospheric telecon-
nections such as the El Nifio—Southern Oscillation (ENSO),
the Pacific Decadal Oscillation (PDO), and the North At-
lantic Oscillation (NAO) (Jimma et al., 2023; Kuss and Gur-
dak, 2014). In this context, EOFs help reveal persistent spa-
tiotemporal modes and teleconnection pathways that underlie
soil moisture memory and seasonal predictability (Orth and
Seneviratne, 2012; Perry and Niemann, 2007). These proper-
ties support both pattern-oriented comparison and the inter-
pretation of hydroclimatic variability from a process-oriented
perspective.

However, care must be taken in interpreting EOF results.
The orthogonality constraint can produce modes that are sta-
tistically optimal but not necessarily tied to discrete physical
processes (Hannachi et al., 2007). To address this limitation,
our study complements EOF analysis with additional pattern-
similarity diagnostics, such as Euclidean distance metrics
and Taylor diagrams, to evaluate spatial pattern similarity
and the sensitivity of model output to parameter perturba-
tions. All EOF analyses are performed using the open-source
Python package eofs (Dawson, 2016), which is optimized for
climate and Earth system data. This ensures a reproducible,
efficient, and physically interpretable workflow for quantify-
ing parameter-driven variability in land surface model simu-
lations.

2.3.1 Computation of EOF using singular value
decomposition

Singular value decomposition (SVD) is a robust linear al-
gebra technique widely employed for matrix factorization,
enabling the decomposition of any n x m matrix, Y,,, with-
out explicitly solving an eigenvalue problem or constructing
a covariance matrix (e.g., Linz and Wang, 2003; Dawson,
2016; Bjornsson and Venegas, 1997). In this study, SVD is
utilized to compute the EOF modes by decomposing the ma-
trix of soil moisture anomalies, Y, into orthogonal compo-
nents. The decomposition is represented as follows:
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where U(n x n) contains the left singular vectors (spatial
EOFs), V(m x m) contains the right singular vectors (tem-
poral principal components, PCs), and I'(n x m) is a diago-
nal matrix with non-negative singular values y; (I';; = &;; ;).
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Figure 3. tSVD applied to the soil moisture anomaly dataset.
The matrix Yy (n x m) is decomposed into U, (n x p) for EOFs,
fp(p x p) for singular values, and \A’g (p x m) for PCs. The trunca-
tion level p is chosen such that p < min(n, m).

The singular values y; quantify the variance captured by each
EOF mode; p = min(n, m) determines the number of non-
zero singular values.

For this analysis, the soil moisture data matrix Y,, consists
of area-weighted anomaly values simulated by CLMS5, where
the mean at each grid point has been removed to highlight
variability. The matrix has n rows representing time steps
and m columns corresponding to spatial grid points. To re-
duce redundancy and focus on the most significant patterns,
we apply truncated SVD (tSVD), retaining only the top p sin-
gular values and their corresponding singular vectors:

Y, ~U,[,VT, 3)

where ﬁp (n x p) contains the leading EOFs, f'p(p X p) is the
diagonal matrix of the largest singular values, and \A’g (pxm)
represents the corresponding principal components. Singu-
lar vectors associated with smaller singular values are dis-
carded, improving computational efficiency while preserving
the dominant variability patterns (Fig. 3).

The singular values from tSVD are used to calculate the
explained variance (%EV;) for each EOF mode, quantifying
their contribution to the dataset’s variability:

Vi

D Vi
j=1

%EV; = x100%, i=1,2,...,p. 4)

The first EOF mode typically explains the largest fraction
of variance, representing the dominant spatial pattern, while
subsequent modes capture progressively smaller uncorre-
lated patterns. This hierarchical decomposition provides a
powerful framework for analyzing spatiotemporal variabil-
ity in soil moisture anomalies and assessing the relative con-
tributions of soil hydraulic parameters and climate drivers.
EOF analysis, through tSVD, ensures that the representation
of dominant patterns is efficient and interpretable, enabling
robust physical insights into the factors controlling soil mois-
ture variability.
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2.3.2 Quantifying similarity of spatial EOF modes
using Euclidean distance

The Euclidean distance metric was employed to assess the
similarity or dissimilarity between spatial EOF modes de-
rived from distinct datasets. This metric, commonly used in
mathematics and data analysis, calculates the straight-line
distance between two points in Euclidean space, providing
a direct and interpretable measure of the geometric prox-
imity between patterns (e.g., Elmore and Richman, 2001).
Its simplicity and intuitive interpretation make it particularly
suitable for comparing spatial variability patterns obtained
through EOF analysis. A smaller Euclidean distance indi-
cates a high degree of similarity between the EOF modes,
suggesting a closer similarity of the underlying spatial pat-
terns. Conversely, a larger distance reflects greater dissimilar-
ity, indicating distinct spatial characteristics or variability be-
tween the datasets. In this study, the Euclidean distance was
used to compare the spatial EOF modes from the ERAS5-Land
model output and the CLM5 SP-MIP experiments, repre-
senting different data decomposition results. The Euclidean
distance for two spatial EOF modes, X (ERAS5-Land) and
Y (SP-MIP), was computed using the following equation:

EucD(X,)) = | (X =I)7, 5)
i=1

where n is the number of spatial elements (grid points) in
each EOF mode.

This approach enabled the identification of regions within
the CONUS domain where the spatial EOF patterns differed
significantly, highlighting areas requiring improved parame-
terization of soil properties in LSMs. By quantifying these
differences, the Euclidean distance analysis provides action-
able insights into the spatial scales and regions where soil
parameter settings have the most significant impact, thereby
supporting targeted model refinements and enhanced soil
moisture simulations.

2.3.3 Taylor diagram for evaluating spatial EOF modes

Taylor diagrams (TDs) (Taylor, 2001) were employed to
evaluate spatial EOF modes, providing a clear and intuitive
representation of three key statistical measures: correlation
(COR), standard deviation (STD), and root-mean-square er-
ror (RMSE). These diagrams are extensively employed in
geophysical sciences to evaluate and compare model sim-
ilarity across various dimensions (e.g., Qiao et al., 2022).
Their ability to display, simultaneously, the relationship be-
tween modeled and reference patterns makes them particu-
larly useful for examining the variability and accuracy of spa-
tial EOF modes. In this research, Taylor diagrams were used
to compare the spatial EOF modes of the ERAS-Land dataset
against the SP-MIP model experiments. The standard devia-
tion of the ERA5-Land spatial modes served as a reference
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for assessing the variability in the SP-MIP modes. The dia-
grams assessed the similarity of the patterns using three met-
rics: the correlation coefficient, which evaluates the similar-
ity of spatial patterns; the centered RMSE, which measures
the magnitude of pattern differences; and the standard devia-
tion, which indicates the amplitude of variability within each
mode. These combined metrics offer a thorough assessment
of spatial pattern differences. Taylor diagrams help iden-
tify specific EOF modes where SP-MIP experiments differ
from the ERA5-Land reference, pinpointing areas for possi-
ble model improvement. By incorporating these metrics into
a single framework, the diagrams facilitate focused improve-
ment of soil parameterizations in LSMs, thereby better cap-
turing essential spatial variability patterns in soil moisture.

3 Results and discussion

3.1 Spatial variability in annual mean soil moisture
across CONUS

Despite consistent forcing data (GSWP3) and model resolu-
tion (0.5°), the experiments reveal notable differences in soil
moisture spatial patterns due to variations in soil parameter
derivation, which underline the critical role of soil parame-
ters in shaping simulations. These differences are reflected
in the annual mean soil moisture across the CONUS region,
which ranged from = 195 to 380 kg m~2, calculated by av-
eraging daily soil moisture from 1980 to 2010 (Fig. 4). The
spatial distribution of soil moisture across all experiments re-
flects well-established precipitation gradients and tempera-
ture variability, with higher soil moisture levels over the cen-
tral Great Plains and ENA regions and lower values in the
arid southwest. These findings align with previous studies
that have documented the relationship between soil mois-
ture, precipitation, and temperature in these regions (Welty
and Zeng, 2018; Koster et al., 2004; Koukoula et al., 2021;
Melillo et al., 2014; Chatterjee et al., 2022). The pronounced
variability in soil moisture in the Great Plains is consistent
with continentality, where greater distances from large water-
bodies amplify seasonal precipitation and evaporation differ-
ences (Gimeno et al., 2010). Among the experiments, EXP3
(Fig. 4d) simulates the highest soil moisture levels, followed
by EXP2 (Fig. 4c) and EXP1 (Fig. 4b). These differences
reflect the impact of soil parameter treatments, with EXP1
producing lower soil moisture magnitudes, EXP2 resulting
in moderate values, and EXP3 yielding the highest levels.
The results of EXP4 highlight the role of soil texture in
modulating soil moisture distribution. For example, EXP4a
(loamy sand; Fig. 4e) exhibits low soil moisture in the arid
southwest and NCA, consistent with the limited water reten-
tion capacity of loamy sand. EXP4b (loam; Fig. 4f) shows
a more balanced soil moisture distribution, with drier condi-
tions in WNA and wetter conditions in ENA, reflecting the
moderate water-holding characteristics of the loam. EXP4c

Geosci. Model Dev., 18, 7707-7734, 2025



7716 K. Silwimba et al.: Soil-parameterization-driven discrepancies in LSM soil moisture predictions

[a] ERA5-Land: Annual Mean SM kgm™2 [b] EXP1: Annual Mean SM kgm~2
49°N § T T = N7 = = 0] 8537 - " T —
44°N | j P q
e Lo i}

39°N 1 "

W I

F g i
34°N 1 == 5 o

N . L ] : o |

TR
29°N . il '
. )
24°N S .
[c] EXP2: Annual Mean SM kgm=2 XP3: Annual Mean SM kgm~—2

49°N T E—T— = 3 — —
44°N
39°N 1
34°N 1
29°N 1
24°N 4

[f] EXP4b-Loam: Annual Mean SM

[e] EXP4a-Loamy-Sand: Annual Mean SM
= 5 1 1

T = ] Iy

49°N 5
- i - e . " s %
o "
44°N B

ECRYE A
. s :
34°N ] L : L/
= !
29°N ] o L "
= 9 ‘-’5
24°N 4 2 X,
[g] EXP4c-Clay: Annual Mean SM
49°N i k™ T T e O
S
aa°N] Jo X S
w = 'l\
39°N A By P,
i = | LY 3 I

34°N ] =
29°N] ; . ~

L -

2 o b
24°N | 3 ] : : o, . . s ] . . :

120°W 110°W 100°W 90°W 80°W 70°W 120°W 110°W 100°W 90°W 80°W 70°W
200 225 250 275 300 325 350 375

Soil Moisture [kgm~2]

Figure 4. Annual mean soil moisture (1980 to 2010) over the CONUS region, simulated from four experiment types with differing soil
parameter settings: EXP1 (b; uniform SP-MIP parameters); EXP2 (c; texture-derived, spatially varying); EXP3 (d; CLMS5 defaults, spatially
varying); and EXP4 — sub-experiments, including EXP4a loamy sand (e), EXP4b loam (f), EXP4c clay (g), and EXP4d silt (h), each uniform
by texture class. The color bar represents the range of soil moisture values (kg m~2), with warmer colors (red and orange) indicating lower
soil moisture levels and cooler colors (blue and purple) representing higher soil moisture levels.

(clay; Fig. 4g) shows higher soil moisture levels over ENA cate that uncertainties in soil parameterization have a signifi-

due to the high water retention capacity of clay. In contrast, cant impact on soil moisture simulations in the CLM5 model,
EXP4d (silt; Fig. 4h) exhibits heterogeneous soil moisture consistent with the findings of Brimelow et al. (2010). Our
patterns influenced by environmental variability and the in- work furthers this research area by systematically evaluating
termediate hydraulic properties of the silt. These results indi- the role of distinct soil textures (loamy sand, loam, clay, and
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silt) in shaping soil moisture variability across different cli-
matic zones. Unlike previous studies, this analysis integrates
the spatial distribution of soil moisture with climatic gradi-
ents, providing a more comprehensive assessment of how pa-
rameterization impacts hydrological processes at a continen-
tal scale. Variations in soil parameter settings not only in-
fluence soil moisture magnitudes but also alter spatial distri-
butions, affecting the model’s ability to capture hydrological
processes at the continental scale. The findings of EXP4 fur-
ther emphasize the importance of soil texture in controlling
the soil moisture distribution, highlighting the need for pre-
cise parameterization in LSMs. This has important implica-
tions for improving water resource management, agricultural
planning, and climate impact assessments.

3.2 Interannual soil moisture anomalies

Interannual root-zone soil moisture anomalies over the
CONUS region from 1980 to 2010, derived from CLMS5
simulation experiments (EXP1, EXP2, EXP3, and multiple
EXP4 configurations) and ERAS5-Land model output (model-
based pattern reference), are shown in Fig. 5. Anomalies
are computed as deviations from the daily annual mean over
the 30-year reference period, following established method-
ologies for hydrological variability assessment (Tuttle and
Salvucci, 2016; Koster et al., 2004; Welty and Zeng, 2018).
The top panel of Fig. 5 presents anomalies for EXP1, EXP2,
EXP3, and ERAS-Land, while the bottom panel includes ad-
ditional EXP4 parameterizations representing different soil
textures (loamy sand, loam, clay, and silt).

Across all configurations, soil moisture anomalies fluctu-
ate around a long-term mean of zero, with values ranging
approximately from —20 to +40 kg m~2. Positive anomalies
signify wetter-than-average conditions, while negative val-
ues indicate drier conditions. The CLMS experiments exhibit
pronounced interannual variability, capturing key hydrolog-
ical extremes, including droughts and wet periods, as repre-
sented in ERAS5-Land patterns. CLM5 simulations reproduce
the timing of major interannual features present in ERAS-
Land patterns, such as drought and wet periods, but consis-
tently underestimate their magnitude. As shown in Fig. 5,
all CLMS configurations produce tightly clustered time se-
ries, lacking the broader spread in ERAS5-Land. This visual
clustering illustrates a key discrepancy: ERAS5-Land exhibits
a broader interannual amplitude, with anomalies reaching
up to +40kg m~2, whereas CLMS5 simulations are typically
confined to a +20kg m~2 range; note that differences can
also reflect forcing and structural contrasts (GSWP3-forced
CLMS vs. ERA5-forced HTESSEL in ERAS-Land) in addi-
tion to parameter effects.

This variability gap likely stems from structural limita-
tions in CLMS, including the use of static soil hydraulic
parameters, diffusive vertical redistribution, and the absence
of data assimilation factors known to constrain the dynamic
range and persistence of soil moisture anomalies in LSMs

https://doi.org/10.5194/gmd-18-7707-2025

(Koster et al., 2009; Muiioz-Sabater et al., 2021). The un-
derestimation is particularly concerning for hydrologic ex-
tremes, as it suggests that CLMS5 may inadequately simu-
late the severity of soil moisture deficits during droughts
or surpluses during wet years. These limitations can prop-
agate into downstream processes such as evapotranspira-
tion, runoff, and land—atmosphere coupling, thereby reduc-
ing the model’s ability to capture feedback mechanisms crit-
ical to hydroclimatic variability (Koster et al., 2004; Berg
and Sheffield, 2018). Figure 6 supports this interpretation,
showing that CLM5 anomaly values are compressed along
the 1 : 1 line when compared to ERAS5-Land, reinforcing the
conclusion that the model’s soil moisture response is system-
atically dampened. Finally, while ERA5-Land’s higher peaks
— particularly in positive extremes — may partly reflect an
overestimation in vegetated regions due to unresolved pro-
cesses such as irrigation or enhanced surface fluxes (Lal
et al., 2022), the muted variability in CLMS indicates the im-
portance of improved parameter calibration and multi-source
reference datasets in future work.

The relationship between daily soil moisture anomalies
from CLMS5 and ERAS5-Land is further examined in Fig. 6.
These scatterplots compare CLM5-simulated anomalies with
ERAS5-Land on a point-by-point basis. The distribution of
points is closely aligned along the 1 : 1 line, with coefficient
of determination (R?) values ranging from 0.7 to 0.8 across
experiments. These correlations confirm that CLMS5 success-
fully captures much of the variability present in ERAS-Land
patterns, albeit with some systematic biases. Specifically,
ERAS5-Land tends to exhibit larger positive anomalies rela-
tive to CLMS, reinforcing the trend seen in the time-series
plots. The EXP4 configurations (Fig. 6b) show similarity
to EXP1-EXP3, indicating that soil texture variations only
moderately impact anomaly correlations at an aggregated
scale.

The results indicate significant interannual variability in
soil moisture anomalies, with distinct peaks and troughs cor-
responding to extreme hydrological events. These fluctua-
tions are likely driven by large-scale climatic influences, such
as ENSO, which modulate regional hydrological conditions
(Gimeno et al., 2010; Welty and Zeng, 2018). While peri-
odicity in anomalies suggests a possible linkage to climate
oscillations, further spectral analysis would be required to
confirm such relationships. Additionally, the lack of a dis-
cernible long-term trend indicates that soil moisture anoma-
lies remained relatively stable over the study period, with
variability largely governed by short- to medium-term hy-
drological cycles. This aligns with findings from Lesinger
and Tian (2022), who noted that, while interannual fluctua-
tions in soil moisture can be significant, multi-decadal trends
over CONUS tend to be weak or spatially constrained. Over-
all, the time series (Fig. 5) and scatterplots (Fig. 6) collec-
tively demonstrate that CLMS reasonably captures the timing
and structure of interannual soil moisture variability, but it
consistently underestimates its magnitude relative to ERAS-
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Land patterns, with strong correlations. However, ERAS-
Land’s systematic overestimation of positive anomalies in-
dicates a potential bias in reanalysis products, necessitat-
ing further evaluation of the mechanisms driving such de-
viations. Accordingly, we interpret the ERAS5-Land compar-
ison strictly as a pattern-based reference. Similarities indi-
cate that CLMS5’s parameter choices reproduce timing, phase,
and spatial covariance seen in an independent model product,
whereas systematic departures highlight parameter-sensitive
regions; neither case is taken as validation of absolute soil
moisture levels. Future work should assess regional patterns
in soil moisture dynamics and quantify biases across differ-
ent land cover types to improve pattern similarity.

3.3 Seasonal variability in soil moisture

As evident in Fig. 7, notable differences emerge between
ERAS5-Land patterns (model-based pattern reference) and
CLMS simulations, particularly with respect to the amplitude
of seasonal variability. ERAS-Land exhibits the strongest
seasonal cycle, with a sharp rise in soil moisture from Febru-
ary through May, peaking in June, followed by a pronounced
decline into the late-summer and early-autumn months. In
contrast, EXP1, EXP2, and EXP3 form a tightly clustered
group with relatively flattened seasonal curves. These con-
figurations consistently underestimate the springtime peak
and summer drawdown, suggesting that their soil moisture
response to seasonal climate forcing is muted. Among them,
EXP2 (green line) shows the lowest amplitude, while EXP3
(red line) offers a slightly improved but still subdued repre-
sentation.

Notably, EXP4a (dashed black line) deviates from this
pattern. It shows greater similarity to ERA5-Land seasonal
patterns, especially from March to September, capturing a
steeper ascent in spring and a deeper trough in late summer.
This improved responsiveness is likely due to the loamy sand
texture used in EXP4a, which promotes rapid infiltration and
drainage, thereby amplifying soil moisture variability in re-
sponse to precipitation and evapotranspiration. In contrast,
EXP4b—-d (loam, clay, and silt) progressively dampen the
seasonal signal, with EXP4c and EXP4d showing the low-
est variability due to their high water retention capacities.

These differences indicate that, while it reproduces the
general phasing of the seasonal cycle, CLMS5 substantially
underrepresents the amplitude of variation in ERAS-Land
patterns. This underestimation is especially critical during
the peak moisture accumulation (March—June) and depletion
(July—October) phases, and it highlights the importance of
hydraulic conductivity, retention characteristics, and vertical
redistribution in modulating soil moisture seasonality. Al-
though ERAS-Land may overestimate soil moisture in cer-
tain vegetated regions (Lal et al., 2022; Lesinger and Tian,
2022), its higher amplitude suggests a more dynamic land
surface response that current CLMS configurations, partic-
ularly EXP1-EXP3, fail to capture adequately. Addressing
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this discrepancy through improved parameter tuning and
structural adjustments could enhance CLM5’s ability to sim-
ulate land—atmosphere coupling and surface hydrological
processes across seasons.

3.4 EOF analysis of soil moisture variability
3.4.1 Explained variance and mode contributions

This study applies EOF analysis to soil moisture anomalies
from the CLMS5 simulations (EXP1, EXP2, and EXP3) and
the ERAS-Land model output (model-based pattern refer-
ence, with no soil moisture assimilation and no ground truth)
to investigate how soil parameterization influences soil mois-
ture variability in the CONUS region. Figure 8 presents the
percentage of variance explained by the first 10 EOF modes
for each dataset, illustrating both individual and cumula-
tive contributions. The EOF modes are ranked by variance
percentage, with EOF-1 capturing the highest variance and
representing the most significant spatial variability. Across
all experiments, EOF-1 explains slightly more variance than
EOF-2, suggesting limited separation between these modes
and potential mode mixing. The explained variance gradu-
ally declines in subsequent modes, with EOF-10 contributing
less than 2 %, as summarized in Table 4. EOF-1 explains a
similar percentage of variance in EXP1 (11.45 %) and EXP2
(11.66 %), indicating comparable spatial variability patterns.
However, in EXP3, EOF-1 captures only 10.84 % of the vari-
ance, with mode mixing shifting variance from EOF-1 to
EOF-2 (Table 3, arrows). These differences highlight the im-
pact of soil parameterization on representing dominant soil
moisture variability. ERA5-Land, used here as a pattern ref-
erence, exhibits a larger EOF-1 contribution (17.5 %), in-
dicating a more dominant leading mode than in the CLM5
runs; differences can also reflect forcing (ERAS vs. GSWP3)
and structural (HTESSEL vs. CLMS) contrasts, not parame-
ter effects alone. The cumulative explained variance (Fig. 8,
green line) shows how efficiently the leading modes summa-
rize variability in each dataset.

While the first five modes account for about 40 % of the
variance in ERA5-Land, the CLMS simulations require ap-
proximately six modes to reach the same threshold. This dis-
tribution suggests that the simulations spread variance more
evenly across modes, reflecting differences in spatial patterns
between CLMS5 simulations and ERAS5-Land. To facilitate
cross-dataset comparison, we re-ordered EOF modes where
necessary so that the dominant spatial patterns were aligned
across datasets. For instance, shifts in EXP3 and ERA5-Land
were necessary to match the dominant spatial patterns, such
as the swaps of EOF-1 and EOF-2 (indicated by arrows in
Table 3). These adjustments highlight the sensitivity of EOF
rankings to mode mixing and the challenges of directly com-
paring different model products (CLMS5 and ERAS5-Land).
In addition, Appendix A (Fig. A1) provides additional EOF
analysis results for EXP4a—EXP4d, detailing variance ex-

Geosci. Model Dev., 18, 7707-7734, 2025



7720

K. Silwimba et al.: Soil-parameterization-driven discrepancies in LSM soil moisture predictions

SP-MIP and ERA5-Land SM: Monthly Mean Seasonal Cycles (1980 -- 2010)
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Figure 7. Monthly mean seasonal cycles of standardized root-zone soil moisture for the period from 1980 to 2010 across the CONUS. CLM5
simulations (EXP1-EXP3 and EXP4a—-EXP4d) are compared with ERA5-Land (model-based pattern reference). ERAS-Land exhibits the
largest seasonal amplitude, with sharp increases during spring (March—June) and steep declines during summer (July—October). In contrast,
EXP1-EXP3 form a tightly clustered group with flattened seasonal cycles, underestimating both the spring moisture accumulation and
summer drawdown. EXP4a, which uses a loamy sand texture, shows greater seasonal responsiveness and greater similarity to ERAS-Land
seasonal patterns. The remaining EXP4 configurations (loam, clay, and silt) progressively dampen seasonal variability, reflecting the influence

of soil texture on water retention and hydrologic dynamics.

Table 4. Percentage of variance explained (%Expl. Var.) by the first
10 EOF modes for the EXP1, EXP2, and EXP3 model runs and for
ERAS-Land reference data. Arrows and superscripts indicate EOF
mode swaps (flagged in bold) for consistent comparisons across
datasets (see Fig. 9).

EOF mode EXP1 EXP2 EXP3 ERAS-Land
%Expl.  %Expl. JoExpl. J%Expl.

Var. Var. Var. Var.

EOF-1 1145 1166 10.84,2 17.5,2
EOF-2 1040 1060  9.85¢! 8.48,3
EOF-3 8.81 8.25 9.08 7.8311
EOF-4 5.69 5.83 5.73 5.75
EOF-5 4.37 4.59 448 5.61
EOF-6 3.49 3.56 3.48 3.64
EOF-7 3.26 3.23 3.24 3.10
EOF-8 2.51 2.53 2.63 2.86
EOF-9 2.14 2.16 222 2.76
EOF-10 1.96 1.99 1.95 2.22
Total Cumul. %Expl. Var. 54.07 54.4 53.49 59.77

plained across experiments. The findings reinforce the influ-
ence of soil parameterization on the spatial distribution of
soil moisture, emphasizing that comparisons are interpreted
in terms of similarity to ERAS-Land patterns rather than val-
idation of absolute levels.

3.4.2 Spatial and temporal analysis of EOF modes for
soil moisture variability

We show the spatial distribution of the first three EOF modes

from soil moisture anomalies in CLMS5 simulations (EXP1,
EXP2, and EXP3) and ERAS5-Land (model-based pattern ref-
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erence). The maps in Fig. 9 show correlation coefficients be-
tween the PC time series of each EOF mode and the soil
moisture anomaly time series at each grid point. These corre-
lation maps indicate the spatial strength and direction of the
association between local anomalies and the broader tempo-
ral mode represented by the PC. This representation facil-
itates interpretation by highlighting regions that co-vary in
phase (positive correlation) or in antiphase (negative corre-
lation) with the dominant temporal pattern, thereby reveal-
ing the spatial structure of soil moisture variability linked to
each EOF mode. EOF-1 patterns (Fig. 9d, g, and j) reveal
strong positive correlations in central and southeastern ENA,
highlighting a dominant mode of variability. Negative cor-
relations are seen in WNA and CNA, indicating contrasting
modes of soil moisture variability in the CONUS region. The
variance explained by EOF-1 ranges from 9.85 % (EXP3)
to 11.66 % (EXP2), with ERA5-Land showing a larger vari-
ance contribution (17.5 %). These spatial patterns align with
large-scale climatic influences, such as precipitation and tem-
perature gradients, as well as geographic features. For ex-
ample, Gaffin and Hotz (2000) noted that the Appalachian
Mountains exhibit strong precipitation gradients due to storm
systems lifting moist southerly winds, enhancing soil mois-
ture in ENA. The corresponding principal components (PC-
1; Fig. 10a) indicate temporal variability, with notable peaks
during 2003-2004 and 1988-1999, corresponding to docu-
mented climatic events such as ENSO-driven precipitation
anomalies (Ye et al., 2023; Gimeno et al., 2010). The close
agreement of PC-1 across all experiments indicates the ro-
bustness of EOF-1 in representing the dominant variability in
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K. Silwimba et al.: Soil-parameterization-driven discrepancies in LSM soil moisture predictions

[a] EXP1: EOF %Explained Variance

124 mmm Individual explained variance
r 50
10 1
= 3
= 8 40
e :
"] | .
= 2
W —— Cumulative explained variance w
> 6 o
© 303
> o
© =3
> £
T 44 (s}
< 4
F 20
2 B
ol - 10
4 6
EOF index
[c] EXP3: EOF %Explained Variance
B Individual explained variance
F 50
10 A
e . —_
.°__, 8 F40
_Q_ .
X g
& ' 2
g 6 —— Cumulative explained variance i
Q
© 3032
=) K}
e >
2 g
- 3
o 4 o
£
F 20
24
- 10
0 p

EOF index

7721
[b] EXP2: EOF %Explained Variance
12 { M Individual explained variance
F50
101
S -
= F40 X
< 8 0%
i s
o 5
g —— Cumulative explained variance o
6 o
= =
g 0%
el S
> £
2 4 °
F20
2 4
0- F10
4 6
EOF index
[d] ERA5-Land: EOF %Explained Variance
175 M- Individual explained variance I 60
15.0
r50
R 1251 -
= 8
a o
©
d e
. 10.0 . . : La0g
g —— Cumulative explained variance i
3
5 2
=} o
e >
> £
k<] (s}
£

EOF index

Figure 8. The variance explained by each EOF (red bars); the cumulative variance (green line) shows the cumulative proportion for the initial

10 EOF modes.

soil moisture, although slight differences suggest some sen-
sitivity to parameterizations.

EOF-2 (Fig. 9e, h, and k) exhibits a distinct dipole pat-
tern, with positive correlations in the central Great Plains and
negative correlations over ENA, reflecting a wide spread in
soil moisture variability. This dipole nature, which explains
10.40 % to 10.84 % of the variance, is consistent with re-
gional climatic processes such as precipitation and evapo-
transpiration dynamics influenced by terrain and hydrologi-
cal conditions. For example, positive correlations in the cen-
tral Great Plains may result from localized convective precip-
itation; however, isotope studies indicate that precipitation in

https://doi.org/10.5194/gmd-18-7707-2025

this region is influenced by moisture transported from exter-
nal sources, such as the Gulf of Mexico, rather than solely
from local convection (Sanchez-Murillo et al., 2023). Nega-
tive correlations in ENA could reflect the influence of evap-
otranspiration or soil drainage patterns (Famiglietti, 2014).
In particular, EXP3 exhibits a stronger positive correlation in
the desert southwest, suggesting a greater sensitivity to soil
parameters in arid regions, which can influence soil water re-
tention and infiltration rates. Furthermore, EOF-3 (Fig. 9f, i,
and 1) highlights localized variability, with positive correla-
tions in the Pacific Northwest and negative correlations over
Texas in CNA. This mode explains less variance than EOF-1

Geosci. Model Dev., 18, 7707-7734, 2025
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Figure 9. Spatial correlation maps of the first three EOFs of soil moisture anomalies for the CONUS region, derived from ERA5-Land
(model-based pattern reference) and three CLMS5 experiments (EXP1, EXP2, and EXP3). Panels (a) to (c¢) represent EOF-1, EOF-2, and
EOF-3 from ERAS-Land, respectively. Panels (d)—(f), (g)—(i), and (j)—(I) show corresponding modes from EXP1, EXP2, and EXP3. The
colored shading represents the correlation coefficient between the PC time series of each EOF mode and the soil moisture anomaly time
series at each grid point. Positive values indicate in-phase variability with the PC (regions that co-vary with the dominant mode), while
negative values indicate antiphase behavior. These maps illustrate the spatial coherence and phase relationships of soil moisture variability

associated with each mode.

and EOF-2 (8.25 % in EXP2 to 9.8 % in EXP3) but captures
important regional processes. The Pacific Northwest patterns
may be influenced by orographic precipitation. At the same
time, negative correlations in Texas could reflect drought
conditions and the influence of fine-textured soils with higher
water-retention potential (Haverkamp et al., 2005). Although
the spatial patterns of EOF-3 are broadly similar between
experiments, slight shifts in correlation intensity and loca-
tion suggest localized impacts of soil parameterizations. The
PCs (Fig. 10c) show weaker temporal variability with oc-
casional peaks tied to distinct climate events, emphasizing
the regional specificity of EOF-3. The Appendix includes
Figs. A2 and A3, which offer additional results highlight-
ing the spatial and temporal variability in the EXP4a—-EXP4d
EOFs across experiments, further supporting the findings dis-
cussed. Lastly, the results emphasize the significant role that

Geosci. Model Dev., 18, 7707-7734, 2025

soil parameterizations play in soil moisture variability within
the CLMS model. Differences in the spatial and temporal pat-
terns of EOFs indicate the model’s sensitivity to these pa-
rameterizations, especially in areas with intricate terrain or
significant climate variability. The greater similarity of EOF-
1 to ERAS5-Land patterns underlines the robustness of the
model’s primary modes, while discrepancies in EOF-2 and
EOF-3 highlight regions where model refinements could en-
hance localized soil moisture predictions. This study stresses
the importance of improving soil parameterizations to im-
prove the representation of hydrological variability and ef-
fectively capture the interaction between soil moisture and
climatic elements.

https://doi.org/10.5194/gmd-18-7707-2025
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Figure 10. Temporal variability (PC) in corresponding EOFs over time (1980-2010) displaying the amplitude of the first four PCs: EXP1
(blue), EXP2 (green), and EXP3 (orange) derived from the soil moisture decomposition for each simulation experiment.

3.4.3 EOF modes: Euclidean distance analysis

We compute the Euclidean distance (Fig. 11) between the
spatial patterns of EOF modes derived from soil moisture
anomalies in the CLMS5 SP-MIP experiments (EXP1, EXP2,
and EXP3) and the corresponding modes from ERA5-Land
model output (model-based pattern reference; not the ground
truth). Euclidean distance quantifies dissimilarity between
spatial modes, with smaller values indicating greater sim-
ilarity to ERAS-Land patterns. Regions with hatched lines
denote areas where the distance falls below a threshold of
5, suggesting strong pattern similarity between the CLM5-
derived EOFs and the ERAS5-Land EOFs. EOF-1 (Fig. 11a,
d, g) exhibits the most consistent similarity across experi-
ments, particularly in the western and northwestern CONUS
(WNA). The hatched areas there indicate that the modeled
spatial variability shows close similarity to ERAS5-Land pat-
terns, consistent with large-scale hydrologic controls such
as precipitation gradients and topography (Gaffin and Hotz,
2000; Famiglietti, 2014). In contrast, the central Great Plains
consistently shows larger Euclidean distances for all three
EOF modes, indicating notable pattern differences between
CLMS5 and ERAS5-Land in this region. These differences may
reflect limitations in soil parameterizations and the com-
plexity of hydroclimatic processes (e.g., precipitation vari-
ability and soil moisture—precipitation feedbacks) (Koster
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et al., 2004; Welty and Zeng, 2018), as well as forcing
and structural contrasts between datasets (CLMS forced by
GSWP3 vs. ERAS5-Land as an offline HTESSEL replay
forced by ERAS). Relative to ERAS5-Land patterns, EXP1
shows greater similarity in WNA for EOF-1, while simi-
larity in other regions is mixed across experiments. EOF-2
(Fig. 11e, d, h) and EOF-3 (Fig. 11c, f, i) display larger dis-
tances with fewer hatched areas, indicating challenges with
respect to capturing smaller-scale structures and dipole pat-
terns (Hannachi et al., 2007; Monahan et al., 2009). These
findings underline the model’s sensitivity to soil parameter
choices and highlight the need for targeted improvements in
the central Great Plains and other regions with persistent pat-
tern differences. Refining soil parameter settings and incor-
porating independent datasets (e.g., SMAP, in situ networks)
as complementary references could help improve the repre-
sentation of regional soil moisture patterns.

3.4.4 EOF modes: Taylor diagram analysis

TDs (Fig. 12) summarize the similarity of EOF patterns
from different experiments to those in ERA5-Land (model-
based pattern reference) using three statistics: standard devi-
ation (dotted arcs), correlation coefficient, and centered root-
mean-square error (RMSE). Each marker’s position indicates
the degree of pattern similarity between a modeled EOF
mode and the ERAS5-Land EOF mode. For EOF-1 (Fig. 12a),

Geosci. Model Dev., 18, 7707-7734, 2025
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Figure 11. Euclidean distance between EOF modes from SP-MIP experiments (EXP1, EXP2, and EXP3) and ERAS5-Land (model-based
pattern reference). Hatched areas indicate regions where the distance is below 5, indicating greater similarity to ERAS5-Land patterns.

the standard deviations of the EOF modes for all model ex-
periments are relatively close to the reference EOF mode,
ranging between 4.0 and 6.5, which suggests close similar-
ity in variability. The pattern correlations range between 0.6
and 0.95, with EXP4d demonstrating the highest pattern cor-
relation. This indicates that the spatial pattern of EXP4d
shows greater similarity to the ERA5-Land EOF mode. In
EOF-2 (Fig. 12b), the standard deviations are comparable to
the reference EOF mode, while pattern correlations cluster
between 0.4 and 0.7, indicating moderate similarity for the
second mode. For EOF-3 (Fig. 12c), the EOF modes gener-
ally exhibit a pattern correlation of around 0.8 and a standard
deviation of approximately 5.0. However, the EXP4d EOF
deviates, centered around a lower standard deviation of 3.5.
These variations highlight the impact of soil parameter set-
tings in CLM5, demonstrating how parameter choices influ-
ence the similarity to ERA5-Land EOF patterns.

4 Conclusion and recommendations

This study examines the impact of soil parameterizations on
soil moisture simulations in the CLMS5 across the CONUS
for the period from 1980 to 2010, utilizing EOF analysis.
We compared CLMS simulations to ERAS-Land, used solely
as a model-based pattern reference, and quantified the sim-
ilarity of spatial and temporal patterns across soil param-

Geosci. Model Dev., 18, 7707-7734, 2025

eter configurations. The results showed that EXP3, which
used the default CLMS soil parameters, consistently sim-
ulated higher soil moisture levels than other experiments.
This finding highlights the model’s sensitivity to variations
in soil hydraulic properties, including saturated hydraulic
conductivity, soil water retention characteristics, and poros-
ity. Seasonal soil moisture dynamics showed broad consis-
tency across experiments, peaking in winter due to reduced
evapotranspiration, and declining in summer, when higher
temperatures intensified soil drying. However, distinct dif-
ferences emerged in the magnitude and phase of seasonal
cycles, revealing how variations in soil properties can influ-
ence processes such as water retention, drainage, and evap-
otranspiration fluxes. These insights align with previous re-
search, which demonstrated that soil moisture significantly
affects hydrological processes and land—atmosphere interac-
tions, particularly through feedback mechanisms that vary re-
gionally across the United States (Tuttle and Salvucci, 2016;
Koster et al., 2004). Furthermore, the amplified sensitivity
seen in the arid and semiarid regions of the CONUS suggests
that these areas may be particularly vulnerable to uncertain-
ties in soil parameterization.

Regarding the first question, EOF analysis revealed that
changes in soil hydraulic properties significantly altered the
spatial distribution of the dominant EOF modes, particularly
in regions such as the Great Plains and ENA, indicating that

https://doi.org/10.5194/gmd-18-7707-2025
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Figure 12. Taylor diagrams (TDs) for the leading three EOFs from multiple experiments (EXP1, EXP2, EXP3, EXP4a, EXP4b, EXP4c,
and EXP4d) and ERAS-Land. The diagrams summarize the standard deviation, correlation coefficient, and RMSE, with marker placement
indicating pattern similarity relative to ERA5-Land (model-based pattern reference).

parameterizations strongly influence modeled soil moisture
gradients. For the second question, principal component time
series associated with the leading EOFs captured interannual
anomalies and periods of extreme wetness or dryness that
coincided with known climate events (e.g., ENSO phases).
Variations in the amplitude and persistence of these temporal
patterns across experiments underlined the role of soil pa-
rameters in modulating the hydrologic response to climate
variability. These findings affirm that parameter choice not
only controls spatial representation but also influences the
sensitivity of soil moisture to climatic extremes, highlighting
the dual spatial-temporal impact of soil parameterization in
land surface modeling.

EOF analysis further revealed that the first few modes ac-
counted for most of the variance across experiments, and
EOF-1 consistently explained the most significant propor-
tion of variance. The spatial patterns of the first three EOF
modes exhibited similar broad-scale features among the ex-
periments, such as dominant moisture gradients across cli-
matic zones. However, notable differences in explained vari-
ance and spatial correlations pointed to the influence of soil
parameters on the physical processes driving regional mois-
ture variability. Compared with ERA5-Land patterns using
Euclidean distances and Taylor diagrams, the CLMS5 output
showed greater similarity in WNA, indicating closer corre-
spondence to ERAS5-Land’s representation of mountainous
and arid region dynamics. In contrast, persistent discrep-
ancies in the central Great Plains revealed challenges with
respect to representing complex interactions between soil
hydraulic properties, precipitation variability, and surface—
atmosphere feedbacks. These discrepancies are particularly
concerning given the region’s susceptibility to extreme hy-
drological events, including droughts and floods (Koster
etal., 2004; Ye et al., 2023). The Great Plains is characterized
by a highly variable continental climate, with strong seasonal
and interannual fluctuations in precipitation and tempera-
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ture, leading to frequent shifts between wet and dry extremes
(Basara and Christian, 2018; McDonough et al., 2020). This
climatic variability makes the region hydrologically com-
plex, requiring an accurate representation of soil moisture
dynamics for land surface hydrology modeling. Errors in soil
moisture estimation can propagate into predictions of crop
productivity, water resource availability, and flood risk. The
findings suggest that refining soil hydraulic parameteriza-
tions, such as incorporating high-resolution soil texture data
and accounting for heterogeneity, can significantly improve
the predictive capacity of CLM5 and other LSMs for climate
studies, ecosystem assessments, and resource management.
While our comparative framework assessed the aggregate ef-
fects of parameter set differences, we did not perform a for-
mal sensitivity analysis to isolate the influence of individual
soil hydraulic properties (e.g., saturated hydraulic conductiv-
ity, porosity, and van Genuchten parameters), which remains
an important area for future investigation.

This study is an intra-model sensitivity analysis; all com-
parisons are model-to-model and pattern-based, not valida-
tions against observations. We use ERAS5-Land only as a spa-
tially complete, temporally consistent, model-based pattern
reference to gauge the similarity of CLMS5 spatial and tem-
poral modes; it does not assimilate soil moisture observa-
tions and shows documented regional biases (e.g., wet bias
in humid and vegetated areas), so it is not the ground truth
(Mufioz-Sabater et al., 2021; Wu et al., 2021; Zhang et al.,
2023). Forcing and structural mismatches also limit attri-
bution: CLMS is forced by GSWP3, whereas ERAS-Land
is an offline HTESSEL replay forced by ERAS, so differ-
ences can reflect forcing and model-structure contrasts in ad-
dition to parameter effects. We chose ERA5-Land because it
provides CONUS-wide coverage at a resolution compatible
with CLMS5 (after regridding to 0.5°) and exhibits coherent
seasonal—interannual variability that aligns with our pattern-
oriented objectives. Finally, neither CLM5 nor ERAS5-Land
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includes irrigation; therefore, agricultural hotspots should be
interpreted cautiously. Future work will extend this diagnos-
tic framework by incorporating independent observational
datasets (e.g., SMAP, GLEAM, SMERGE, and MERRA-
2) to enable more comprehensive comparisons and targeted
parameter calibration (Martens et al., 2017; Tobin et al.,
2019; Reichle et al., 2017). For the present analysis, however,
ERAS5-Land provides a spatially complete, model-based ref-
erence for assessing the similarity of CLMS patterns across
diverse hydroclimatic regimes.

To address these challenges and improve the representa-
tion of soil moisture in CLMS, several strategies are recom-
mended. Refining the representation of soil moisture vari-
ability using advanced PTFs or machine learning-based ap-
proaches can help address uncertainties in soil hydraulic
parameters, particularly in hydrologically complex regions
like the Great Plains. Expanding the use of high-resolution
datasets from satellite missions (e.g., SMAP) together with
in situ soil moisture networks will provide complementary
information for calibration and evaluation, supporting more
targeted parameter adjustment and, thus, the targeted cali-
bration of model parameters (Famiglietti, 2014). Conducting
region-specific calibration of soil parameters and compara-
tive multi-model analyses will help address intra-model vari-
ability and optimize simulations for diverse climatic zones.
Accounting for vegetation feedbacks alongside soil moisture
variability may improve the representation of evapotranspi-
ration processes, given the strong influence of vegetation on
water exchange dynamics (Oleson et al., 2010; Ye et al.,,
2023). Establishing stronger connections between soil mois-
ture variability and large-scale climatic drivers, such as the
ENSO, can enhance seasonal forecasts and long-term predic-
tive capabilities (Gimeno et al., 2010; Tuttle and Salvucci,
2016). Understanding these links will facilitate better in-
tegration of climatic variability into land surface modeling
frameworks.

These findings provide insights that can guide future ef-
forts to incorporate dynamic soil properties into land surface
models such as CLMS5. The analysis indicates how soil prop-
erty representations influence simulated variability. A logi-
cal next step will be to develop approaches that allow soil
properties to vary dynamically within LSMs. This study adds
to ongoing efforts toward more integrated modeling frame-
works that better capture interactions among soil, hydrology,
and climate. Progress in soil hydraulic parameterization and
the use of high-resolution datasets will improve the ability
of models to capture both large-scale hydrological dynamics
and localized soil-climate interactions. Such improvements
can support applications including water resource manage-
ment, agricultural planning, and climate adaptation studies.
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Appendix A
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Figure Al. Contributions of variance by individual and cumulative EOFs in CLMS5 soil moisture experiments. The red bars indicate the
portion of variance each separate EOF mode accounts for, whereas the green line depicts the cumulative percentage of variance explained by
the first 10 EOF modes. These plots show that the leading EOF modes account for a large fraction of the variance. Panels (a)—(d) correspond
to EXP4a (loamy sand), EXP4b (loam), EXP4c (clay), and EXP4d (silt), respectively.
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Figure A2. Spatial correlation maps of the first three empirical orthogonal functions (EOFs) of soil moisture anomalies across the CONUS
domain for the EXP4 simulations. Panels (a)—(c) correspond to EXP4a (Loamy Sand), (d)—(f) to EXP4b (Loam), (g)—(i) to EXP4c (Clay), and
(j)—(1) to EXP4d (Silt). Each set shows EOF-1, EOF-2, and EOF-3, respectively. The colored shading represents the correlation coefficient
between the principal component (PC) time series of each EOF mode and the soil moisture anomaly time series at each grid point. Positive
values (red) indicate locations that vary in phase with the mode’s temporal evolution, while negative values (blue) indicate antiphase behavior.
The variance explained (VE) by each mode is noted in each panel. These correlation maps illustrate how the spatial structure of soil moisture
variability is influenced by distinct soil hydraulic properties associated with each texture class.
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Figure A3. Temporal variability in principal components (PCs) derived from the EOF analysis. The plots display the amplitude of the first
three principal components: PC-1, PC-2, and PC-3. Each line corresponds to one of the four experimental setups (EXP4a, EXP4b, EXP4c,
and EXP4d) or ERAS-Land (model-based pattern reference). PC-1 (top panel) captures the dominant mode of variability, while PC-2 (middle
panel) and PC-3 (bottom panel) represent the secondary and tertiary modes, respectively. The x axis shows the time period (1980-2010),
and the y axis indicates the standardized amplitude. These plots highlight the temporal dynamics of soil moisture variability as captured by

different experimental configurations,
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Figure A4. The Euclidean distance between EOF modes from SP-MIP experiments (EXP4a, EXP4b, EXP4c, and EXP4d) and ERAS-Land
(model-based pattern reference) is shown. Panels (a)—(c) illustrate results for EXP4a (Loamy Sand), while panels (d)—(f), (g)—(i), and (j)—
(1) pertain to EXP4b (Loam), EXP4c (Clay), and EXP4d (Silt), respectively. Each column showcases one of the first three EOF modes:
EOF-1, EOF-2, and EOF-3. The color bar represents the Euclidean distance, where lower values (yellow) reflect greater similarity to ERAS-
Land patterns, whereas higher values (red) denote more significant discrepancies. Regions with hatching signify distances of less than 5,
highlighting areas with greater similarity to ERA5-Land patterns. These observations reveal the spatial variability in model similarity across

different soil hydraulic parameter settings and EOF modes.
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study are publicly available for download at Zenodo:
https://doi.org/10.5281/zenodo.15078448  (Silwimba,  2025b).
This includes files on soil parameters and soil texture for EXP1,
EXP2, and EXP4a-EXP4d. Additionally, ERAS-Land can be
freely accessed at https://doi.org/10.24381/cds.e9c9c792 (Muiioz
Sabater et al., 2024). The code used to process the data, perform
the EOF analyses, and generate the results is available on Zenodo:
https://doi.org/10.5281/zenodo.14888812 (Silwimba, 2025a). The
Zenodo repository provides comprehensive documentation and
instructions for reproducing the analysis, and any future updates
or additional scripts will be hosted there. For any difficulties in
accessing these data or code or for requests for further information,
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