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Abstract. Within the New Copernicus Capability for Trophic
Ocean Networks (NECCTON) project, we aim to im-
prove the current data assimilation system by developing a
method for accurately estimating marine optical constituents
from satellite-derived remote sensing reflectance. We com-
pared two frameworks based on the implicit inversion of
a semi-analytical model derived from the classical radia-
tive transfer equation. The first approach employed an it-
erative Bayesian inversion with a Gaussian approximation,
which provides maximum a posteriori (MAP) estimates of
the optical constituents along with their associated uncer-
tainties. To improve the model performance, we optimized
the model parameters using historical in situ measurements
from the BOUSSOLE buoy and a Markov chain Monte Carlo
(MCMC) algorithm, which reduced the root mean square
error (RMSE) between the retrieved and observed values.
The second approach employed the stochastic gradient varia-
tional Bayes (SGVB) estimator, which is designed to approx-
imate the MAP estimates of the optical constituents while si-
multaneously optimizing the model parameters through max-
imum likelihood. This method resulted in faster computa-
tions than the iterative Bayesian inversion while maintaining
comparable RMSE values. While the iterative Bayesian in-
version provided reliable uncertainty estimates, the SGVB
estimator offered faster computations of the optical con-
stituents. Moreover, using a dataset of in situ sea surface
chlorophyll a concentrations across a broad region of the
northwestern Mediterranean Sea, we compared the inver-
sion techniques with a state-of-the-art algorithm used within
the Copernicus Marine Service, finding comparable per-
formances across methods. Notably, the SGVB estimator
showed the highest correlation between in situ measurements

and retrievals throughout the analyzed region. We conclude
that both inversion methods achieve a performance compa-
rable to existing state-of-the-art algorithms. The Gaussian
approximation offers robust uncertainty quantification, while
the SGVB estimator provides a reliable and computationally
efficient alternative.

1 Introduction

Operational systems, like Copernicus, use satellite-derived
data, combined with data assimilation techniques, to obtain
estimates of the marine ecosystem status. Traditionally, the
assimilated variable is the chlorophyll-retrieved data; nowa-
days, state-of-the-art biogeochemical models are progres-
sively including refined bio-optical models able to simulate
optical variables such as remote sensing reflectance, enabling
the direct assimilation of multispectral reflectance measured
by satellite sensors.

In this work, we aim to derive a framework to estimate
ocean inherent optical properties (IOPs), such as absorption
and scattering coefficients, from measurements of satellite-
derived apparent optical properties (AOPs), like irradiance
and remote sensing reflectance. IOPs are of interest in their
own right, as they carry key information about ecosystem
variables, such as chlorophyll, which can be used as indica-
tors of the trophic condition of large marine areas (Longhurst
et al., 1996). Most importantly, the framework is intended
to be employed as a module in a data assimilation scheme
(Bruggeman et al., 2024), within operational model services,
to perform remote sensing reflectance assimilation in a co-
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herent way, providing an aligned forward and inverse proce-
dure.

The retrieval of the IOPs of water bodies from measure-
ments of AOPs is referred to as the inverse problem of ocean
optics. This is crucially important since directly measuring
IOPs with an extended spatial coverage is very difficult (Gor-
don, 2002).

The first step in computing the IOPs is to establish the for-
ward relationship between the AOPs and the IOPs. In this
context, the AOPs are described as a function of the IOPs
using the radiative transfer equation (RTE). Due to the com-
plexity of the RTE, this computation is carried out in simple
scenarios, resulting in simplified equations that can be solved
analytically. Other approaches involve using semi-analytical
equations or empirical relations, where the latter are com-
bined with simplified expressions of the RTE. The inverse
problem is solved using these forward computations to esti-
mate the IOPs either explicitly, by analytically inverting the
forward process (Zaneveld, 1989; Leathers et al., 1999; Tao
et al., 1994; McCormick, 1996; Stramska et al., 2000; Salama
and Verhoef, 2015; Lazzari et al., 2024), or implicitly, by us-
ing an estimate of the IOPs in the forward process and then
iteratively adjusting the IOP values to match measurements
of the AOPs (Gordon and Boynton, 1997; Boynton and Gor-
don, 2000; Michalopoulou et al., 2009; Salama and Verhoef,
2015; Erickson et al., 2023; Lazzari et al., 2024).

In this work, we focused on an implicit inverse method
following Lazzari et al. (2024) but giving the method a prob-
abilistic interpretation, allowing for the uncertainty estima-
tion of the retrieved quantities. The forward model is the
bio-optical model presented in Dutkiewicz et al. (2015) and
described in Sect. 2.1, a three-stream semi-analytical irradi-
ance model. The IOPs from the bio-optical model are the
absorption, scattering, and backward-scattering coefficients
of four optical constituents: water, chlorophyll α (whose in-
crease or decrease is associated with changes in the concen-
tration of phytoplankton), colored dissolved organic matter,
and non-algal particles. We focused on finding the sea sur-
face concentration of these optical constituents, since we es-
timated the former IOPs as linear combinations of the lat-
ter. The model also depends on ad hoc parameters, originally
computed as part of empirical relations from different stud-
ies (Morel, 1974; Aas, 1987; Dutkiewicz et al., 2015; Ma-
son et al., 2016; Álvarez et al., 2023). We also optimized
these parameters such that the retrieved quantities are accu-
rate with respect to historical in situ observations.

We compared two different frameworks. The first one is
a Bayesian estimation, where we used a linearization of the
forward process to estimate the uncertainties of the optical
constituents, and Markov chain Monte Carlo (MCMC) (Chib
and Greenberg, 1995; Andrieu and Thoms, 2008) to estimate
the uncertainty of the parameters. This approach is described
in Sect. 4.

The second approach is based on variational Bayes by us-
ing the stochastic gradient variational Bayes (SGVB) estima-

tor, introduced by Kingma and Welling (2022) and described
in Sect. 4.4. It allows for the estimation of parameters while
also learning an estimate of the posterior distribution of the
optical constituents. The idea is to approximate the probabil-
ity distribution of the optical constituents given the satellite-
derived remote sensing reflectance using a neural network.
This is the same framework used to train generative mod-
els known as variational auto-encoders (VAEs), which have
also been used to solve inversion problems (Zhong et al.,
2020, 2021; Zhao et al., 2023; Shmakov et al., 2023). Orig-
inally proposed to solve inversion problems for cases where
the posterior distribution is intractable (practically impossi-
ble to compute), this framework provides a fast way of es-
timating optical constituents, which are consistent with the
forward model and the in situ observations.

We employed three data sources covering a period from
2005 to 2012: a dataset of historical satellite-derived remote
sensing reflectance; a dataset from the Ocean–Atmosphere
Spectral Irradiance Model (OASIM; used as boundary condi-
tions for the bio-optical model; Gregg and Casey, 2009); and
a set of in situ measurements from the BOUSSOLE buoy,
located in the Ligurian Basin of the northwestern Mediter-
ranean Sea (coordinates 43.22° N, 7.54° E) (Antoine et al.,
2008). A description of the different datasets is presented in
Sect. 3.

2 Bio-optical model

We now describe the bio-optical model (Aas, 1987; Ack-
leson et al., 1994; Dutkiewicz et al., 2015; Álvarez et al.,
2023), which details the interaction of the radiance with dif-
ferent constituents in the sea, called optical constituents. In
Sect. 2.1 we present the model of the water-leaving radiance,
based on the classical radiative transfer model (Dutkiewicz
et al., 2015). In Sect. 2.2, we use this model to compute the
theoretical remote sensing reflectance (RMODEL

rs ) (Aas and
Højerslev, 1999). The inversion problem aims to use this
model, named the forward model, and satellite measurements
to retrieve optical constituents that are consistent with future
observations. To this end, we used historical in situ observa-
tions described in Sect. 2.3.

2.1 Radiative transfer model

To simulate the water-leaving radiance, we followed
Dutkiewicz et al. (2015), using a one-dimensional, three-
stream radiance model, where the vertical component of the
radiance over the water column is decomposed into three in-
teracting components (see Fig. 1) following the system of
equations:
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dEdir(h,λ)

dh
=−

a(λ)+ b(λ)

cosθ
Edir(h,λ),

dEdif(h,λ)

dh
=−

a(λ)+ rsbb(λ)

vs
Edif(h,λ)

+
rubb(λ)

vu
Eu(h,λ)

+
b(λ)− rdbb(λ)

cosθ
Edir(h,λ),

dEu(h,λ)
dh

=−
rsbb(λ)

vs
Edif(h,λ)

+
a(λ)+ rubb(λ)

vu
Eu(h,λ)

−
rdbb(λ)

cosθ
Edir(h,λ). (1)

These three equations describe how the vertical direct ir-
radiance Edir(h,λ) is attenuated by absorption, where a(λ)
is the total absorption coefficient scattered into downward
Edif(h,λ) and upward irradiance Eu(h,λ); b(λ) is the total
scattering coefficient; bb(λ) is the total backward-scattering
coefficient; rd , rs , and ru are the effective scattering coef-
ficients normalized with respect to the backward-scattering
coefficients cos(θ); vs and vu are the average cosines of the
irradiance components; θ is the Sun zenith angle; h is the
depth; and λ is the wavelength.

Following Dutkiewicz et al. (2015), the values for rd , rs ,
ru, vs , and vu are approximated as constants (see Table 2).
See Dutkiewicz et al. (2015), Appendix B, for a derivation
starting from the classical radiative transfer equation. For
previous studies where similar transfer models have been
used, see Aas (1987), Ackleson et al. (1994), Salama and
Verhoef (2015), Álvarez et al. (2023), and Lazzari et al.
(2024).

The total absorption and scattering coefficients are mod-
eled as

a(λ)=aw(λ)+ aphy(λ)chla+ aCDOM(λ)CDOM

+ aNAP(λ)NAP,
b(λ)=bw(λ)+ bphy(λ)C+ bNAP(λ)NAP,
bb(λ)=bb,W(λ)+ bb,phy(λ)C+ bb,NAP(λ)NAP, (2)

where chla, NAP, and CDOM are the concentrations of the
optical constituents chlorophyll α, non-algal particles, and
colored dissolved organic matter respectively; aw(λ) is the
water-specific absorption coefficient; bw(λ) and bb,w(λ) are
the water-specific scattering and backward-scattering coef-
ficients; aphy(λ) is the chlorophyll-specific absorption co-
efficient of phytoplankton; bphy(λ) and bb,phy(λ) are the
carbon-specific scattering coefficients of phytoplankton (see
Table 1); C is the carbon concentration, which is derived as a
function of chlorophyll and irradiance (Geider et al., 1997),
with the chla : C ratio represented as a sigmoid curve depen-

dent on photosynthetic available radiation (PAR) as

C = chla
/(

20
chla

e−(PAR−β)/σ

1+ e−(PAR−β)/σ +2
min
chla

)
. (3)

20
chla, β, σ , and 2min

chla are constant parameters (see Table 2),
and aCDOM(λ), aNAP(λ), and bNAP(λ) are the mass-specific
absorption and scattering coefficients of CDOM and NAP re-
spectively (Álvarez et al., 2023), with the latter calculated as

aCDOM(λ)= dCDOMe
−SCDOM(λ−450),

aNAP(λ)= dNAPe
−SNAP(λ−440),

bNAP(λ)= eNAP

(
550
λ

)fNAP

, (4)

where SCDOM, dCDOM, SNAP, dNAP, eNAP, and fNAP are con-
stant parameters (see Table 2), and bb,NAP = br,NAPbNAP,
with br,NAP being the backscattering-to-scattering ratio of
NAP.

PAR was computed following Lazzari et al. (2021) as

PAR=
106

NAhc

700 nm∫
400 nm

(Edif(0,λ)+Edir(0,λ))λdλ, (5)

where NA is Avogadro’s number, c is the speed of light, and
h is Planck’s constant.

For the rest of this work, we assumed only one homo-
geneous layer with constant densities. For deep case 1 wa-
ters, like those studied in the present work, during winter, the
chlorophyll concentration in the first layer is approximately
constant due to mixing (see Mignot et al., 2011, Fig. 1), while
most of the downward irradiance comes from the first 10 to
20 m (see Simpson and Dickey, 1981, Figs. 1 and 2). Dur-
ing summer, there is no mixing, but there is still a region of
around 20 to 50 m with constant chlorophyll concentrations,
making the assumption justified.

2.2 Remote sensing reflectance

We used the system of equations in Eq. (1) subject to the
following boundary conditions:

Edir(0,λ)= EOASIM
dir (0,λ),Edif(0,λ)= EOASIM

dif (0,λ),

Eu(∞,λ)= 0, (6)

where EOASIM
dir (0,λ) and EOASIM

dif (0,λ) are the direct and
diffuse downward irradiance on the surface of the ocean.
For this work, we used the values from OASIM (Gregg and
Casey, 2009). By assuming an infinitely deep and homoge-
neous column of water (Ronald and Zaneveld, 1982), the sys-
tem of equations can be solved analytically, with the final
expression presented in Appendix A.

The remote sensing reflectance RMODEL
rs (λ) can be com-

puted from the solution Eu(0,λ) (Aas and Højerslev, 1999)
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Figure 1. Diagram illustrating the main components of Eq. (1), showing (a) the incoming irradiance (modeled using OASIM; see Sect. 3)
and how it interacts with chlorophyll, non-algal particles, and colored dissolved organic matter (CDOM), leading to the attenuation and
scattering of (b) the diffuse, (c) direct, and (d) upward components into upward and downward fluxes.

Table 1. Parameters dependent on λ used for the radiative transfer model evaluation, with the water-specific absorption coefficient aw(λ)
from Mason et al. (2016), the water-specific scattering and backward-scattering coefficients bw(λ) and bb,w(λ) with values interpolated from
Morel (1974), the phytoplankton-specific absorption coefficient aphy(λ) interpolated from the average values of different phytoplankton
functional types from Álvarez et al. (2023), and the carbon-specific scattering and backward-scattering coefficients bphy(λ) and bb,phy(λ)
from Dutkiewicz et al. (2015).

λ aw(λ) bw(λ) bb,w(λ) aphy(λ) bphy(λ) bb,phy(λ)

[nm] [m−1] [m−1] [m−1] [m2 (mgchla)−1] [m2 (mgC)−1] [m2 (mgC)−1]

412.5 0.00271 0.00535 0.002674 0.03713 0.00318 3.25× 10−6

442.5 0.00574 0.00437 0.002184 0.04019 0.00311 3.30× 10−6

490.0 0.01460 0.00284 0.001421 0.02741 0.00335 3.41× 10−6

510.0 0.03300 0.00247 0.001234 0.01981 0.00347 3.42× 10−6

555.0 0.06098 0.00167 0.000836 0.00917 0.00353 3.39× 10−6

as

RMODEL
rs (λ)=

Eu,λ(0)
Q(θ)

(
Edir,λ(0)+Edif,λ(0)

) , (7)

with

Q(θ)=Qae
−Qb sin(π/180(90−θ)), (8)

where Qa and Qb are constant parameters (see Table 2).
Due to the interaction in the interface between the sea sur-

face and the atmosphere, a correction has to be added to the
RMODEL

rs (Lee et al., 2002) with the following relation:

Rrs,down(λ)=
Rrs,up(λ)

T + γRrs,up(λ)
, (9)

where T and γ are constant parameters (see Table 2),
Rrs,down(λ) is the remote sensing reflectance just under the
sea surface, and Rrs,up(λ) is the remote sensing reflectance
just above the sea surface.

Thus, the final expression for RMODEL
rs is a model that de-

pends on the optical constituents and the boundary condi-
tions.

Since the satellite remote sensing reflectance measures are
a merged product of many satellite samples (see Sect. 3) dur-
ing the day, the direct and diffuse downward irradiances on
the surface of the ocean were computed as daily averages
only during hours with sun. For this reason, the densities in-
volved in the computation of Eq. (7) are also daily averages.

2.3 Model of the in situ observations

We aim to model chlorophyll α as the retrieved quantity from
the inversion problem. The particulate backward-scattering
coefficient (bb,p(λ)) is modeled as the contribution to back-
ward scattering from the phytoplankton and NAP:

bb,p(λ)= bb,phy(λ)C+ bb,NAP(λ)NAP, (10)

Geosci. Model Dev., 18, 7575–7602, 2025 https://doi.org/10.5194/gmd-18-7575-2025
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Table 2. Parameters independent of λ used for the radiative transfer model evaluation, rd , rs , ru, vs , vu, SCDOM, and dCDOM, from
Dutkiewicz et al. (2015), who took them from Aas (1987); 20

chla, 2min
chla, σ , and β computed as an empirical model from data at the BOUS-

SOLE site (Lazzari et al., 2024); SNAP, dNAP, eNAP, fNAP, and br,NAP from Álvarez et al. (2023); Qa and Qb from Aas and Højerslev
(1999); and T and γ from Lee et al. (2002).

Parameter name Symbol Value from the literature Units

Normalized effective scattering coefficient for direct irradiation rd 1.0 –
Normalized effective scattering coefficient for downward radiation rs 1.5 –
Normalized effective scattering coefficient for backward radiation ru 3.0 –
Average cosine for downward-scattered radiation vs 0.83 –
Average cosine for upward-scattered radiation vu 0.4 –
– 20

chla 0.03 mgchla (mgC)−1

– 2min
chla 0.005 mgchla (mgC)−1

– σ 20 (mmol)m−2s−1

– β 500 (mmol)m−2s−1

CDOM mass-specific absorption at 450 nm dCDOM 0.015 m2 (mgCDOM)−1

CDOM mass-specific absorption spectral slope between 350 and 500 nm SCDOM 0.017 nm
NAP mass-specific absorption at 440 nm dNAP 0.0013 m2 (mgNAP)−1

NAP mass-specific absorption spectral slope between 350 and 500 nm SNAP 0.013 nm
NAP mass-specific scattering at 550 nm eNAP 0.02875 m2 (mgNAP)−1

– fNAP 0.5 –
Backscattering-to-scattering ratio of NAP br,NAP 0.005 -
– Qa 5.33 –
– Qb 0.45 –
– T 0.52 –
– γ 1.7 –

where the carbon C is calculated as Eq. (3). The downward
light attenuation coefficient (kd ) is computed by the follow-
ing relation:

Edir(h,λ)+Edif(h,λ)=(
EOASIM

dir (0,λ)+EOASIM
dif (0,λ)

)
e−kdh. (11)

3 Data acquisition

3.1 Ocean–Atmosphere Spectral Irradiance Model
(OASIM)

OASIM (Gregg and Casey, 2009) uses cloud, aerosol, and
atmospheric conditions as input to simulate the propagation
of light in the atmosphere and return the irradiance at the
surface of the ocean. We used the validated outputs for the
BOUSSOLE site (Antoine et al., 2008) computed in Lazzari
et al. (2021) as the boundary conditions in Eq. (6). The out-
puts are the surface downward direct irradiance Edir and the
surface downward-scattered irradiance Edif, from which the
photosynthetic available radiation (PAR) can be computed
(Lazzari et al., 2021). The output from the model is in 33
wavelengths from 200 nm to 4 µm. As described in Lazzari
et al. (2021), these values are further interpolated at wave-
lengths 412.5, 442.5, 490, 510, and 555 nm.

3.2 Satellite-derived remote sensing reflectance

We used a Level 3 product provided by the EU Copernicus
Marine Service Information (CMEMS, 2023). This is a com-
bination of Level 2 remote sensing reflectance from different
satellite sources, as explained in Colella et al. (2025). This
product provides preprocessed remote sensing reflectance
with daily resolution and spatial resolution of 1 km at six
different wavelengths: 412, 443, 490, 510, 555, and 670 nm.
Due to the fact that the absorption of water for wavelengths
higher than 555 nm is dominant over the other constituents
(Lee et al., 2002) for oligotrophic and mesotrophic water, we
focus our attention on the data with wavelengths less than
or equal to 555 nm. The values at the wavelengths 412 and
443 nm were assumed to be the same as the values with wave-
lengths at 412.5 and 442.5 nm in order to match the values
computed with OASIM.

3.3 In situ observations

We used three in situ observations: chlorophyll α, the par-
ticulate backward-scattering coefficient, and the downward
light attenuation coefficient, with data from the BOUSSOLE
buoy (Antoine et al., 2008) retrieved as explained in Lazzari
et al. (2024).

The three sets of measurements had a 15 min resolution.
We used only measurements between 10:00 and 14:00 GMT
as representative data. First, we removed the data coming
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from the buoy if they reported an absolute tilt higher or lower
than 10°. We also removed the ones reported at a depth of
more than 2 m below the nominal values (4 and 9 m, de-
pending on the instrument of measurement). Next, the down-
ward light attenuation coefficient data were filtered with a
Butterworth high-pass filter using the SciPy package (Vir-
tanen et al., 2020) from the Python programming language
(Van Rossum and Drake, 2009), filtering the noise with a fre-
quency of less than 4 h. Finally, we proceeded to average the
daily values.

Due to low vertical variability, the measurements of
chlorophyll α and the particulate backward-scattering coef-
ficient were regarded as the values just below the water–air
interface, even if the instruments were at a depth of 9 m. The
former had measurements at wavelengths equal to 442, 488,
550, and 620 nm.

In contrast, due to the high vertical variability of the down-
ward light attenuation coefficient, the measurements were
considered to be at a depth of 9 m, with values at the wave-
lengths 412, 442, 490, 510, 555, 560, 665, 670, and 681 nm.

For the same reason described in Sect. 3.2, we only used
values less than or equal to 555 nm. The values at the wave-
lengths 412, 442, 488, and 550 nm were assumed to be the
same as the values with wavelengths at 412.5, 442.5, 490,
and 555 nm in order to match the values computed with
OASIM.

In other words, taking into account the previously men-
tioned assumptions and data availability, the in situ obser-
vations considered are sea surface chlorophyll, the 9 m deep
downward light attenuation coefficient in five wavelengths
(412.5, 442.5, 490, 510, 555 nm), and the sea surface par-
ticulate backward-scattering coefficient at three wavelengths
(442, 490, 510 nm).

4 Bayesian inverse problem

The model for the remote sensing reflectance (RMODEL
rs ) de-

pends on the concentration of the optical constituents chla,
NAP, and CDOM. The inverse problem consists of retrieving
these constituents from the forward model and the satellite
observations (ROBS

rs ). In Sect. 4.1 we formalize the problem
and introduce the nomenclature that is used in the next sec-
tions, and in Sect. 4.2 and 4.3 we introduce the Bayesian ap-
proach used to solve the problem (Rodgers, 2000) and the
approach used to optimize the model.

4.1 Formal statement of the problem

We proceed to call y ∈ Y the set of wavelength-dependent
satellite measurements, modeled with a forward model plus
noise:

y(λ)= RMODEL
rs (z,x(λ),λ;3)+ ε(λ), (12)

where

x(λ)=
(
EOASIM

dif (0,λ),EOASIM
dir (0,λ),θ,PAR

)
are the available simulated quantities, x ∈ X , gathered from
OASIM.

3= (rs, ru, rd ,vs,vu,aw(λ),aphy(λ),bw(λ),bphy(λ),

bb,W(λ),bb,phy(λ),dCDOM,SCDOM,dNAP,SNAP,

eNAP,fNAP,br,NAP,2
0
chla,2

min
chla,β,σ,Qa,Qb,T ,γ ),

The above is the set of parameters listed together with their
literature values in Tables 1 and 2, and

z= (chla,NAP,CDOM) (13)

is the set of unknown or latent quantities z ∈ Z , which are
the optical constituents.

By performing the inversion, we compute an estimate of
the unknown daily quantity zd , which only depends on the
measurements and OASIM data from the same day. Each
day, minimization is independent of the others, like screen-
shots of the state of the ocean, from which we aim to estimate
the average concentrations of the active optical constituents.

Since we have measurements for a discrete set of wave-
lengths (at a depth h= 0 m, except kd , at a depth h= 9 m),
the input of the forward model is discretized as a five-
dimensional vector, with each component representing val-
ues at different wavelengths. To distinguish between contin-
uous functions and their respective discretization, λ is used
as a subscript; e.g., Edir,λ represents a component of the five-
dimensional vector Edir, with magnitudes Edir(0,λ), where
λ= (412.5,442.5,490,510,555) nm. In a similar fashion,
xλ = (Edif,λ,Edir,λ,θ,PAR) is a component of the 4× 5 ten-
sor x. Using this notation, the measurements and OASIM
data of day d are written as (yd ,xd ).

The noise ε is added to the model to account for the differ-
ent sources of uncertainty. In this work, we assumed that ε is
a random Gaussian variable with a mean of 0 and covariance
6ε .

As a consequence, the model of the measurement is a ran-
dom variable with a Gaussian probability distribution:

y ∼ p3(y|z,x)=N
(
RMODEL

rs (z,x;3),6ε
)
. (14)

4.2 Bayesian approach to retrieve the latent variable

Under the Bayesian framework (Rodgers, 2000), the prob-
ability of the unknown quantity z, p(z|y,x), given the true
probability distribution of the measurement p(y|z,x), can be
retrieved using the Bayes theorem:

p(z|y,x)=
p(y|z,x)p(z|x)

p(y|x)
. (15)

The probability distribution p(z|y,x) is called the posterior
probability distribution, or just the posterior; p(y|z,x) is the
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Table 3. Root mean square difference (RMSD) between in situ mea-
surements and the satellite measurements of Rrs in the Mediter-
ranean Sea, obtained from a validation of the Copernicus dataset
(Colella et al., 2025).

Rrs,λ RMSD (Rrs,λ)

Rrs,412.5 1.5× 10−3 sr−1

Rrs,442.5 1.2× 10−3 sr−1

Rrs,490 1× 10−3 sr−1

Rrs,510 8.6× 10−4 sr−1

Rrs,555 5.7× 10−4 sr−1

likelihood; and p(z|x) is the prior probability distribution, or
just the prior.

Since we are dealing with random variables, computing
the posterior is equivalent to retrieving z. In the case where
this computation is not possible, common approaches at-
tempt to estimate the value of z that maximizes the posterior,
named the maximum a posteriori (MAP) estimate.

In the case where little is known about the value of z, it is
common practice to use an improper prior, p(z|x), as an un-
informative prior, where each value of z is equally probable.
With this choice of prior, the MAP is equivalent to finding
the maximum likelihood estimate (MLE).

In this work, we used a log-normal distribution prior
(Campbell, 1995) for the latent variable z, with parameters
µz and 6z. This is equivalent to making the change of vari-
able z̃= log(z) with a Gaussian prior with mean µz and co-
variance 6z. With this prior and the Gaussian likelihood,
which can be derived from the forward model RMODEL

rs , we
can define the loss function as

Lz,d(yd ,xd , z̃d;3)=−2log
(
p3(z̃

d
|yd ,xd)

)
=
(
yd −RMODEL

rs (ez̃
d

,xd;3)
)T

×6−1
ε

(
yd −RMODEL

rs (ez̃
d

,xd;3)
)

+ (z̃d −µz)
T6−1

z (z̃d −µz)+ c0, (16)

where c0 is a constant. It can be shown that minimizing the
loss function in Eq. (16) is the same as maximizing the pos-
terior (Rodgers, 2000). In other words, we are interested in
finding the z̃d that minimizes this loss function, as an esti-
mate of the true value for the optical constituents (under the
log-normal assumptions).

As an estimate of 6ε , we used a diagonal matrix with ele-
ments equal to the square of the root mean square difference
(RMSD) between in situ measurements and the satellite mea-
surements of Rrs in the Mediterranean Sea, shown in Table 3,
obtained from a validation of the Copernicus dataset (Colella
et al., 2025). This choice of 6ε is equivalent to assuming in-
dependence between measurements ydλ with different wave-
lengths.

For the prior parameters, we used µz = 0 and 6z = 1α,
with 1 being a diagonal matrix of dimension 3×3 and α be-

ing a hyperparameter to be determined. This choice of 6z is
equivalent to an `2 regularization. In Appendix B we explain
the criteria used to tune α.

To retrieve Z̃∗ = {z̃d∗}Dd=1, the MAP estimate of the latent
variable z̃ for each day d, we want to minimize Lz,d with
respect to z̃d for every day d. We can perform this retrieval
for all the historical data by minimizing the loss function;
i.e., we aim to find

Z̃∗ = argmin
Z̃
Lz

= argmin
Z̃

D∑
d=0

Lz,d(yd ,xd , z̃d;3). (17)

4.2.1 Estimation of the latent variable posterior

We performed the minimization of Lz using the Adam al-
gorithm, with a learning rate γ = 0.03, β1 = 0.9, and β2 =

0.999, which are the default momentum parameters from the
PyTorch library (Paszke et al., 2019) version 2.4.1. We used
90 % of all the historical data per iteration, selected randomly
across the entire period. The remaining 10 % were used as the
test set. A copy of the code availability for every algorithm
described in this work is in Soto (2025).

After Z̃∗ (the set of latent variables for the entire train-
ing set) was retrieved in order to estimate the uncertainty, we
linearized RMODEL

rs (ez̃
d
,x;3) around z̃d∗ as

RMODEL
rs (ez̃

d

,x;3)

≈RMODEL
rs (ez̃

d∗

,x;3)

+∇z̃dR
MODEL
rs (ez̃

d

,x;3)|(z̃d=z̃d∗)(z̃
d
− z̃d∗)

=RMODEL
rs (ez̃

d∗

,x;3)+K(z̃d − z̃d∗), (18)

where K is the Jacobian of RMODEL
rs (ez̃

d∗
,x;3) with respect

to z̃d . Then, as shown in Rodgers (2000), the covariance ma-
trix of the approximate posterior can be written as

6z̃d∗ =
(
KT6−1

ε K+6−1
z

)−1
. (19)

In this way, the standard deviation is computed as the root
square of the diagonal elements σz̃ of 6z̃d∗ .

Then, since the resulting retrieved values Z̃∗ are normally
distributed, Z∗ = exp(Z̃∗) has a log-normal distribution, and
the uncertainty can thus be computed with the 68 % confi-
dence interval (here we match the convention of using the
standard deviation as uncertainty for variables with normal
distribution).

The uncertainty for derived variables like kd and bb,p is
computed with standard error propagation (Arras, 1998); i.e.,
1F(x)2 =∇xF(x)6

x
∇xF(x)

T , where 1F(x) is the error
of a function F(x), ∇xF(x) is the Jacobian, and 6x is the
covariance matrix of x (in our case,6x =6z̃d∗ ). These equa-
tions assume that each component of x is not correlated with
the others and is only an approximation for nonlinear func-
tions.
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Algorithm 1 Algorithm for estimating the daily posterior
estimate of the unknown latent variable zd and the derived
quantities kdd and bbp

d :
Input: xd , yd .

1. Find z̃d∗ = argminz̃dL
z,d (yd ,xd , z̃d ;3) using a minimiza-

tion algorithm (for example, Adam).
2. Compute K, the Jacobian of RMODEL

rs (ez̃
d∗
,x;3), with re-

spect to z̃d .
3. Compute the covariance matrix of the approximate posterior
as 6z̃d∗ = (K

T6−1
ε K+6−1

z )−1.
4. The MAP estimate of the latent variable is equal to zd∗ =
ez̃
d∗

. The uncertainty can be found by computing the 68 % con-
fidence interval of the log-normal distribution. For this work,
only the diagonal elements of 6z̃d∗ were used, assuming inde-
pendence between the latent variables.
5. Use Eqs. (10) and (11) to compute bdbp and kdd respectively,
and use standard error propagation for their uncertainties.

The previous procedure is equivalent to estimating the la-
tent variable posterior with a log-normal distribution. A com-
parison of the true posterior and the estimated posterior can
be seen in Fig. 7, where the true posterior was computed by
sampling using the Metropolis–Hasting algorithm (see Al-
gorithm 2). The discrepancy between the mean and standard
deviation is due to the linearization step in Eq. (18). Algo-
rithm 1 summarizes the steps used for the posterior estimate.

4.3 Model optimization scheme

We retrieved the latent variable posterior in order to accu-
rately estimate the daily average of chlorophyll, non-algal
particles, and colored dissolved organic matter concentra-
tions. To assess the accuracy of the inversion, we used the in
situ observationsHOBS

= {(kdd,obs,bbp
d,obs,chlad,obs)}Dd=1,

where D is the number of days with available observa-
tions, kdd,obs is a five-dimensional vector containing daily
in situ observations of the downward light attenuation coef-
ficient, bbp

d,obs is a three-dimensional vector with observa-
tions of the particulate backward-scattering coefficient only
for the wavelengths λ= (442.5,490,555nm), and chlad,obs

is a scalar observation of sea surface chlorophyll concentra-
tion.

By comparing the modeled observation opera-
tor HMODEL

= (kd(zd;xd ,3),bbp(z
d
;xd ,3),chla)

with the daily observations, we aimed to optimize
the forward model RMODEL

rs (z̃,xd;3) by adjust-
ing the parameters 3. We looked for 3∗ such that∑D
d=1||H

MODEL(zd∗;xd ,3∗)−HOBS
|| is minimized for

some suitable choice of distance. Since observations are
not available every day and the observations corresponding
to some of the wavelengths are missing, we worked with
daily vectors with a dimension equal to the total number
of available observations; e.g., days with all observations

available correspond to vectors of dimension nine (five for
kdd , three for bbp, and one for chla), while days with fewer
observations correspond to lower-dimensional vectors.

Since we also want to estimate the uncertainty of the re-
trieved parameters, we used the standard deviation over all
the training data as a measure of the spread of each observa-
tion and defined the loss function as

LH =
D∑
d=0

(
HMODEL,d(Z∗;X,3)−HOBS,d)2

σ 2
OBS

, (20)

where σOBS is the standard deviation of the observations
computed only with the training data. We want to minimize
this loss function and obtain an estimate for the uncertainty
of the retrieved parameters. For this purpose, we proceed to
use a Markov chain Monte Carlo algorithm, described in the
next section.

4.3.1 Markov chain Monte Carlo algorithm for
optimizing the model parameters

In order to estimate the posterior distribution of the parame-
ters, p(3|HOBS, Ẑ,X), we used the Metropolis–Hasting al-
gorithm (Chib and Greenberg, 1995; Andrieu and Thoms,
2008).

The algorithm returns samples from a probability density
function π(x) by defining a Markov process with a transi-
tion probability p(x,y) of moving from state x to state y. It
can be shown that, with a suitable definition of this transition
probability, the Markov chain process can converge asymp-
totically to the target distribution π(x). The Metropolis–
Hasting algorithm uses the following transition probability:

p(x,y)= q(x,y)α(x,y),

α(x,y)=min
[
π(y)q(y,x)

π(x)q(x,y)
,1
]
, (21)

where q(x,y) is the proposal transition probability, and
α(x,y) is the acceptance probability. With this definition,
samples from π(x) can be drawn by following Algorithm 2.

Some drawbacks are known; for example, the iterations
have to be performed multiple times before the algorithm
converges to its asymptotical behavior or successive itera-
tions tend to be strongly correlated, so many iterations have
to be performed in order to obtain uncorrelated samples.
These difficulties increase as the dimensionality of the sam-
pling space gets higher. In our case, to mitigate some of
these effects, we did not perturb all the parameters, leaving
those that are more precisely measured in the literature un-
perturbed, like the water-specific absorption and scattering
coefficients.

A further complication is that the probability density that
we want to sample depends on Z∗, the latent variable. This
means that, each time we want to perform an iteration of the
Metropolis–Hasting algorithm, we would need to find the
MAP estimate of Z, increasing the computational time. To
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Algorithm 2 Metropolis–Hasting algorithm (Chib and Greenberg, 1995; Andrieu and Thoms, 2008). It consists of defining a
Markov process. It is useful to sample from a target distribution π(x) without knowing the normalization constant.
Define: Proposal transition probability q(x,y).
Input: Length Lchain.
Initialize: x0.

1. a = array of length Lchain.
2. a[0] = x0.
3. For i = 0 to i = Lm− 1 do

1. Sample a proposed new point y ∼ q(a[i],y).
2. Compute α(a[i],y) as stated in Eq. (21).
3. Sample a random number from a uniform distribution between 0 and 1.

If the output is smaller than α(a[i],y) a[i+ 1] = y else a[i+ 1] = a[i].
4. Discard the first samples (reaching the asymptotical behavior) and the correlated ones.

mitigate this problem, we use an estimate Ẑ, consisting of a
few iterations towards the MAP estimate.

Our model for the negative log likelihood is the loss func-
tion LH described in Sect. 4.3, which gives us the expression
for the likelihood:

p(HOBS
|3,Ẑ,X)∝ e−

1
2LH (HOBS,Ẑ,X,3). (22)

The density function, π(x), that we want to sample from
is the posterior probability for the parameters. By using a
uniform prior, q(3i,3j )=N (3i,αq1), where αq is a hy-
perparameter equal to the standard deviation of the distance
between steps. We compute the acceptance probability as

α(3i,3j )=

min
[
e
−

1
2

(
LH (HOBS,Ẑ,X,3j )−LH (HOBS,Ẑ,X,3i )

)
,1
]
. (23)

Regarding the perturbed parameters, we consider the liter-
ature values 30 as close estimates of the optimal ones. For
this reason, we perturbed them as 3∗ = δT33

0, where δ3 is
a vector of small perturbations from unity, referred to as per-
turbation factors.

The values of the λ-dependent vector of dimension five,
representing the phytoplankton-specific absorption coeffi-
cients aphy, were perturbed as a∗phy = δaphya

0
phy, with δaphy

being a learnable scalar and a0
phy the literature values. This

formulation was chosen to maintain the shape of the func-
tion aphy(λ) unperturbed.

For the carbon-specific scattering and backscattering co-
efficients bphy(λ) and bb,phy(λ), we first linearly interpo-
lated them with the literature values and perturbed the tan-
gent and the intercept of the linear interpolations, bphy(λ)

∗
=

δbphy,intb
0
phy,int+ δbphy,Tb

0
phy,Tλ.

The perturbations of the parameters dCDOM, br,NAP,
SCDOM, 2min

chla, 20
chla, β, σ , Qa , and Qb consisted of per-

parameter scalar multiplications. All the other parameters
were left unperturbed.

In this way, we perturbed 24 parameters, 9 of them by mul-
tiplying them by a scalar δi , where i is equal to each of the

perturbed parameters; the 5 components of aphy by multiply-
ing them by the same scalar δaphy ; and, finally, bphy(λ) and
bb,phy(λ) by linearly interpolating them and perturbing the
tangent and the intercept of each of them, totaling 14 pertur-
bation factors.

In this manner, the perturbations δ3 were initialized with
ones, and alternate minimization (AM) was then used, al-
ternating between finding the MAP estimate of Z∗ and the
MLE of the parameters. Finally, we used the Metropolis–
Hasting algorithm to estimate the posterior, as described in
Algorithm 3.

4.4 Data-Informed Inversion Method (DIIM): a
variational Bayes approach

As the dimension of the posterior increases, MCMC methods
become increasingly more challenging, and even pointwise
estimates, like those obtained with alternate minimization,
could not converge due to the nonconvexity of our models.
As an alternative approach, we present a framework based on
the stochastic gradient variational Bayes (SGVB) estimator
(Kingma and Welling, 2022).

The SGVB-based framework considers a random la-
tent variable z ∈ Z sampled from an unknown distribution
p3∗(z) and a random variable y ∈ Y sampled from a dis-
tribution p3∗(y|z) conditional on the latent variable z. For
example, y could be measurements from a known physical
process, conditional on unknown hidden physical processes.

The aim is to efficiently approximate the maximum
marginal likelihood estimate of the parameters 3:

3∗ = argmax3(p3(y)). (24)

To this end, the posterior probability distribution p3(z|y)
is estimated as a parameterized function qφ(z|y). It can be
shown that finding 3∗ and φ∗ such that

3∗,φ∗ =argmax3,φLELBO,

LELBO =−DKL(qφ(z|y)||p3(z))

+Eqφ(z|y)[log(p3(y|z))] (25)
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Algorithm 3 Metropolis–Hasting algorithm with alternate minimization. Here we expand the Metropolis–Hasting algorithm
in combination with the alternate minimization to sample from the posterior probability of the parameter space.
Define: Transition probability q(3i,3j )=N (3i,αq1).
Input: Lchain (length of MCMC chains), Nsteps (number of AM steps), Nz_steps (steps towards the min of z∗).
Initialize: 30 as the literature values.

1. Alternate minimization to estimate the MLE of the parameters.
1. For i = 0 to i =Nsteps

– Find an estimate of all the latent variables Ẑ∗ ≈ argminz̃Lz(y,x, z̃;30)
by performing Nz_steps iterations towards the minimum of the loss function.

– Perform one step towards the minimization of LH(y,x, Ẑ∗;30) and set 30 to the new value.
2. Define an empty array 3 of length Lchain.
3. 3[0] = 30.
4. For i = 0 to i = Lchain− 1

1. Sample a proposed new point 3j ∼N (3[i],αq1).
2. Find an estimate of all the latent variables Ẑ∗ ≈ argminz̃Lz(y,x, z̃;3j ) by performing

a finite number of iterations towards the minimum of the loss function.
2. Compute α(3i ,3j ) as stated in Eq. (23) using the estimate Ẑ∗ instead of the true minimum Z∗.
3. Sample a random number from a uniform distribution between 0 and 1. If the output is smaller

than α(3i ,3j ), make 3[i+ 1] = 3j else 3[i+ 1] = 3[i].
5. Discard the first samples (reaching the asymptotical behavior) and the correlated ones.

is approximately equal to finding the maximum likelihood
estimate. Here DKL(·||·) is the Kullback–Leibler divergence
(DKL), an asymmetric, positively defined measure of the
proximity between two probability distributions (Shlens,
2014); p3(z) is the prior distribution of the latent variable
z; and Eqφ(z|y)[·] stands for the expected value over the prob-
ability distribution qφ(z|y).

This is because LELBO, where ELBO stands for “evidence
lower bound”, is a lower bound of the data log-likelihood
logp3(y) (see Appendix C).

Kingma and Welling (2022) presented the SGVB estima-
tor for the expected value (in the case where theDKL can not
be computed analytically, it can also be estimated) as

L̂ELBO ≈−DKL(qφ(z|y)||p3(z))

+
1
L

L∑
l=1

log(p3(y|zl)), zl ∼ qφ(z|y,x). (26)

If the SGVB is used with a neural network as the ap-
proximate probability distributions qφ(z|y), then the neural
network architecture and minimization scheme are known
as variational auto-encoders (Kingma and Welling, 2022),
where the model qφ(z|y) is usually called the “encoder” and
p3(y|z) the “decoder”.

Sohn et al. (2015) generalized this framework for what
they called conditional variational auto-encoders (CVAEs),
where the likelihood and posterior probabilities are allowed
to be conditional distributions on a third set of random vari-
ables x ∈ X , y ∼ p3(y|z,x) and z∼ qφ(z|y,x). This is the
final configuration we used, but instead of training a gen-
erative model, as CVAEs are usually used to, we used it
to solve the inversion problem while simultaneously finding

approximate values for the parameters 3∗, as explained in
Sect. 4.4.1.

4.4.1 Variational Bayes approach to solve the inversion
problem with the SGVB estimator

CVAEs are commonly used to train a generative model
p3(y|z,x) from a probability distribution p(z|x) that is easy
to sample, in order to generate samples that effectively ap-
proximate the target probability distribution (Doersch, 2021).
They have been used to solve inverse problems, like image
recovery (Zhong et al., 2020, 2021; Zhao et al., 2023) and
unfolding in high-energy physics (Shmakov et al., 2023),
among other applications. In contrast to previous applica-
tions of VAEs and CVAEs to inverse methods, in this work,
instead of first training a CVAE with latent variables that lack
a physical interpretation, we directly used the SGVB estima-
tor for the inverse method. Here, p3(y|z,x) is the likelihood
described in Eq. (14), where 3 represents the parameters of
the forward function that we aim to optimize, and the latent
variable z is the vector that we want to retrieve.

To do so, we used a neural network qφ(z|y,x) (dia-
gram shown in Fig. 3) as an approximation of the posterior
p(z|y,x).
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Our model for the likelihood is

−
1
L

L∑
l=1

log(p3(y|zl))=

1
2L

L∑
l=0

(
yd −RMODEL

rs (ez̃
d

,xd;3)
)T

×6−1
ε

(
yd −RMODEL

rs (ez̃
d

,xd;3)
)

+(Hd(ez̃
d

,X;3)−HOBS,d)T

×6−1
H (Ĥd(ez̃

d

,X;3)−HOBS,d), (27)

where 6−1
ε is the equivalent to the covariance matrix intro-

duced in Sect. 4.2, 6−1
H is chosen in order to have the equiv-

alent to LH from Eq. (20), and L is the number of samples
used per iteration to approximate the expected value. We per-
formed experiments with L= 1, L= 10, and L= 100. The
performance when using higher values for L was not signifi-
cantly better; thus we decided to use L= 10.

We used a neural network composed of two parts, one hav-
ing the mean µqz as output and the other having the covari-
ance matrix6qz of a Gaussian probability distribution as out-
put. Since the prior for z is a multivariate Gaussian, the DKL
divergence in Eq. (26) is

DKL(qφ(z|y)||p3(z))=

1
2

[
|6z|

|6qz |
+Tr

(
6−1
qz
6z
)

+ (µqz −µz)
T6−1

qz
(µqz −µz)− dimz

]
, (28)

where |6z| stands for the determinant of the scaled covari-
ance matrix used for the prior introduced in Sect. 4.2, Tr(A)
stands for the trace of a matrix A, and dimz = 3 represents
the dimension of z.

Finally, we added `2 regularization for the parameters 3,
since it improved the convergence of the neural network.
With all the components in place, the inversion task to-
gether with the inference on the parameters is equivalent to
approximating the posterior with a parameterized function
qφ(z|x,y) and finding the parameters {φ,3}∗ that minimize
the loss function:

LNN =DKL(qφ(z|y)||p3(z))

−
1
L

L∑
l=1

log(p3(y|zl))−α3||3− 1||2, (29)

where α3(3− 1)2 is the regularization term, with α3 being
a hyperparameter tuned as explained in the next section, to-
gether with all the other hyperparameters of the method.

4.5 Architecture and training of the neural network

As illustrated in Fig. 3, the neural network (NN) is composed
of three sections. The first part has two hidden layers, whose

function is to reduce the dimensionality of the input layer
by projecting it into the space of the in situ observations. To
achieve this, this part was trained separately from the rest of
the NN, with in situ observations corresponding to the train-
ing data. This preprocessing was done to facilitate the con-
vergence of the final output to physically plausible values.
The second and third parts are the predicted mean of the la-
tent variable µqz and the square root of the covariance matrix
6qz = LTqzLqz . In addition, experiments showed that a resid-
ual layer at the end of the second part of the NN (adding the
first component of the output of the first part) improved the
generalization error.

To decide on the best hyperparameters of the neural net-
work, we used the Ray Tune library (Liaw et al., 2018), a
Python library designed for parameter tuning, together with
the Bayesian optimization hyperband algorithm (Falkner
et al., 2018) to search in the hyperparameter space. These
include the number of hidden layers, the size of the hidden
layers, the learning rate, the different moments for the Adam
algorithm used to train the neural network, and the size of the
mini-batches.

In the same manner as with the MCMC algorithm, we used
the same 90 % of the data for training, from which we ran-
domly selected 5 % of them as validation for each iteration
of the hyperparameter search.

Moreover, we explored different activation functions and
found that the CELU activation function yielded the best re-
sults. The CELU function is similar to the rectified linear
unit (ReLU) function, where, instead of being the identity
for positive inputs and truncating to 0 for negative inputs,
it truncates to −1 for negative values and makes a smooth
transition between the identity part and the truncation part
(Barron, 2017):

CELU(x)=max(0,x)+min
(
0,αcex/αc − 1

)
. (30)

Here αc is a hyperparameter that is also tuned with Ray Tune.
A diagram of the neural network qφ(z|y,x) is presented in

Fig. 3, which is part of the framework described in Fig. 2. To
train the neural network, first the measurements and OASIM
data (X,Y ) are passed to it, returning an estimate for the
mean and the covariance matrix of the latent variable Z.
From these estimates, a random sample is computed, Ẑ =
µz+6zεz, εz ∼N (0,I), and subsequently used as an esti-
mate in the forward model RMODEL

rs (ez̃
d
,xd;3) and with the

observation function H(Ẑ,X;3).

5 Results

The results are divided into four parts: the first part fo-
cuses on the Bayesian retrieval of the optically active con-
stituents at the surface of the sea and the uncertainty estima-
tion, the second part discusses the parameter optimization,
the third part compares the Bayesian outputs with the varia-
tional Bayes approach, and the last part presents a compari-

https://doi.org/10.5194/gmd-18-7575-2025 Geosci. Model Dev., 18, 7575–7602, 2025



7586 C. E. Soto López et al.: Data-Informed Inversion Model (DIIM)

Figure 2. Diagram of the variational Bayes framework, adapted for the inversion problem, where the estimated Ẑ is retrieved using a param-
eterized probabilistic function qφ(z|y,x), which for our case is a feed-forward neural network (diagram in Fig. 3), and whose parameters φ
are learned simultaneously to the parameters 3, which are the parameters from the forward model.

Figure 3. Diagram of the neural network (Soto, 2025) used as the parameterized probabilistic function qφ(z|x,y). It is composed of three
sections: the first two hidden layers reduce the dimensionality of the input layer by projecting it into the space of the in situ observations. The
output of the second layer is the input of the layers that learn the mean value of the latent variable µqz and those that learn the components of
the square root of the covariance matrix 6qz = LTqzLqz . The dimension of the hidden layers and the number of hidden layers are tuned using
Ray Tune (Liaw et al., 2018).

son with a state-of-the-art algorithm for satellite sea surface
chlorophyll a estimation.

5.1 Bayesian inversion

We performed the Bayesian inversion from 2005 to 2013. As
shown in Fig. 4, the retrieved sea surface chlorophyll man-
ages to reproduce the interannual variability, including the
spring algal blooms. The reported uncertainty serves as an es-
timate of the average expected discrepancy between retrieved
data and in situ measurements, not only for chlorophyll ob-

servations but also for the downward light attenuation coef-
ficient and particulate backward-scattering coefficient obser-
vations. We tested the performance of the inversion with a
random sample consisting of 10 % of the days with observa-
tions. The root mean square error between the observations
and the inverted data was computed (see Table D1), as well as
the Spearman rank correlation coefficient (ρ; Table D2) and
the relative median absolute deviation (rMAD; Table D3).

Figure 7 shows a comparison between the true poste-
rior distribution, sampled using the Metropolis–Hasting al-
gorithm, and the estimated one using the linear approxima-
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Figure 4. Time series for the chlorophyll α (a), non-algal particles (b), and colored dissolved organic matter (c). For all the timelines, the
black points are the in situ observations from the BOUSSOLE buoy, the blue points are the MAP output with uncertainty (blue shadow)
using the optimal parameters from the SGVB-based framework algorithm, and the red points are the output of the SGVB-based framework.

Figure 5. Time series for the downward light attenuation coefficient (kd (λ)), with wavelengths λ= 412.5 (a), λ= 442.5 (b), λ= 490 (c),
λ= 510 (d), and λ= 555 (e). For all the timelines, the black points are the in situ observations from the BOUSSOLE buoy, the blue points
are the MAP output with uncertainty (blue shadow) using the optimal parameters from the SGVB-based framework algorithm, and the red
points are the observation operator computed using the output of the SGVB-based framework.
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Figure 6. Time series for particulate backward-scattering coefficient for the wavelengths λ= 442.5 (a), λ= 490 (b), and λ= 555 (c). For all
the timelines, the black points are the in situ observations from the BOUSSOLE buoy, the blue points are the MAP output with uncertainty
(blue shadow) using the optimal parameters from the SGVB-based framework algorithm, and the red points are the observation operator
computed using the output of the SGVB-based framework.

tion for the inversion of the remote sensing reflectance of
18 February 2005. The true posterior means and standard de-
viations are closely approximated by the linearization, even if
the forward function is highly nonlinear. This result is closely
related to the choice of the prior α1= 1.31, computed as ex-
plained in Sect. C, since it is a strongly informative prior. We
can study the effect of the prior by computing the inverse of
the Fisher information matrix, since the Cramér–Rao bound
states that the variance in the MLE is always higher than or
equal to this quantity:

Var[ψ̂] ≥
1

I(ψ)
, (31)

where ψ̂ is an unbiased estimator of a random parameter ψ ,
and I (ψ) is the Fisher information matrix, defined as

I(ψ)=−E
[
d2L(X;ψ)
dψ2

]
, (32)

where L(X;ψ) is the likelihood of a random variableX with
parameters ψ (Cramér, 1999). For our case, the Fisher infor-
mation matrix is equal to

I(3)=KT6−1
ε K, (33)

which is equal to the inverse of Eq. (19) without the ef-
fect of the prior. To quantify the effect of the prior, we
divided the average Frobenius norm of the inverse of the

Fisher information matrix ||1/I(3)||2,2 by the retrieved co-
variance matrix ||6z̃d ||2,2, obtaining the value of 42.9, which
means that the prior reduces the uncertainty of the MLE by
a factor of 42. On the other hand, this highly informative
prior is a reasonable prior, since it states that most of the
chlorophyll concentration should be within values lower than
exp(µz+ 2σz̃)= exp(2.6)= 13.46 mgm−3 and higher than
exp(µz− 2σz̃)= exp(−2.6)= 0.07 mgm−3.

5.2 Optimization of the forward model parameters

As described in Sect. 4.3.1, we tuned 24 parameters, multi-
plying them by 14 perturbation factors, to minimize the dis-
tance between the retrieved quantities and observation data.
We are interested in the optimized parameter values and the
uncertainties. If any of our final parameterizations are to be
used in future work, it is important to note that we find op-
timal parameters that are representative of data from differ-
ent seasons. For this reason, we present a sensitivity analysis
where we can appreciate the annual variability in the sensitiv-
ity. Parameters with high variability may need special consid-
erations for models that use different parameterizations for
different seasons.

Following Carmichael et al. (1997), the sensitivity of the
remote sensing reflectances, downward light attenuation co-
efficient, and backward-scattering coefficient can be com-
puted by calculating the partial derivative with respect to the
different parameters (∂RRS/∂δi , ∂kd/∂δi , ∂bb,p/∂δi), named
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Figure 7. Comparison between the true posterior distribution (see Eq. 16) and the approximate posterior by following the algorithm in
Algorithm 1 for the log-posterior distribution of (a) chlorophyll α, (b) non-algal particles, and (c) colored dissolved organic matter for the
first day of the training data (18 February 2005). The true posterior (in blue) was sampled using the Metropolis–Hasting algorithm (see
Algorithm 2), while the normal approximation (dashed line) was derived by linearization of the forward model around the MAP estimate.

the local sensitivity coefficients, and normalized with re-
spect to the sensitivity coefficient (RRS/δi , kd/δi , bb,p/δi)
to the obtained adimensional quantities. The results can be
observed in Fig. 8.

We noticed that RRS and bb,p share a strong variability
in the sensitivity with respect to the backward-scattering
coefficient of phytoplankton, bb,phy; the backscattering-
to-scattering ratio of NAP, br,NAP; and the parameters
2min

chla,2
0
chla,β, and σ , which form part of the chla : C ratio

relation described in Eq. (3). This agrees with the seasonal
variability in the abundance of the different phytoplankton
functional types (Lazzari et al., 2012) and the variability in
concentrations of pollution (Bodin et al., 2004). With this
observation, we expect that using only one set of parame-
ters for the full year would result in suboptimal predictions.
Nevertheless, we proceed to find the optimal parameters that
describe the full historical dataset.

To do so, we performed an MCMC algorithm as described
in Sect. 4.3.1. An example of the distribution obtained for
each parameter can be observed in Fig. 9. The original val-
ues and the mean and standard deviation for the λ-dependent
parameters can be seen in Fig. 10. Finally, the original values
and the statistics obtained using the MCMC algorithm for the
λ-independent parameters can be seen in Table 4.

For completeness, we also computed the covariance ma-
trix between the perturbation factors δi , which can be seen in
Table 5.

The main result of the new parameterization is a decrease
in the root mean square error (RMSE) between the test data
of sea surface chlorophyll observations and inverted values.
A key aspect to note is that the MLE computed using the
training data can present overfitting; for this reason, we had
to use early stopping during the alternate minimization step,
and then we proceeded to use the mean value of the estimated
posterior estimated with the MCMC samples. Since we ob-

served a decrease in the RMSE (see Table D1) for the test
data, we can say that the posterior mean is good for general-
ization.

5.3 Comparison between Bayesian retrievals and the
variational Bayes approach

As described in Sect. 4.4, we used the SGVB estimator to
find an optimal parameterization. The results can be appre-
ciated in Table 4 and Fig. 10. Taking into account the un-
certainty in the MCMC results and using the 95 % confi-
dence interval, 22 of the 24 parameters perturbed with the
SGVB estimator agree with the MCMC estimation, in the
sense that the SGVB output is within the uncertainty range
of the MCMC estimate. The two parameters with a high dis-
crepancy between the two frameworks are Qa , on average
the most sensitive parameter concerning remote sensing re-
flectance, and br,NAP, one of the most sensitive parameters
concerning particulate backward scattering.

To assess the performance of each set of parameters, we
evaluated the MAP estimates of the optical constituents z
given each set of parameters (MAP estimate obtained with
the MCMC algorithm and the MLE obtained with the SGVB
estimator) for the test dataset. Recall that this dataset was not
used for any parameter tuning before, so these results serve
as a confirmation of the robustness of the methods.

The main indicator is the sea surface chlorophyll obser-
vations, as they are the least noisy and scattered observation
data. Based on the root mean square error (RMSE) and rel-
ative median absolute deviation (rMAD) between the mea-
surements and retrieved estimates (Tables D1 and D3), both
parameter sets improved the inversion results. However, the
parameter set optimized using the SGVB estimator yielded
the best performance.
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Table 4. Original values and final values obtained using the SGVB estimator, as well as the mean, standard deviation, and Kolmogorov–
Smirnov test coefficient for the sampling with the Metropolis–Hasting algorithm for the λ-independent parameters.

Original SGVB MCMC result KS test for KS p value
value result normality for normality

dCDOM [m2 (mgCDOM)−1] 0.0150 0.0156 0.0101± 0.0028 0.0536 7.259× 10−1

SCDOM [nm] 0.0170 0.0111 0.0099± 0.0005 0.0553 6.907× 10−1

Qa 5.3300 4.4960 5.3861± 0.2899 0.0495 8.087× 10−1

Qb 0.4500 0.4283 0.4441± 0.0463 0.0742 3.250× 10−1

2min
chla [mgchla (mgC)−1] 0.0050 0.0049 0.0048± 0.0006 0.0708 3.810× 10−1

20
chla [mgchla (mgC)−1] 0.0300 0.0251 0.0296± 0.0027 0.0637 5.135× 10−1

β [mmolm−2 s−1] 500.0000 589.2924 558.5273± 33.5500 0.1090 4.129× 10−2

σ [mmolm−2 s−1] 20.0000 20.3714 18.8886± 2.2417 0.0732 3.420× 10−1

br,NAP 0.0050 0.0024 0.0041± 0.0008 0.0545 7.077× 10−1

Table 5. Correlation matrix between the perturbation factors δi , computed using the samples from the Metropolis–Hasting algorithm.

δi , i = aPH bphy,T bphy,Int bb,phy,T bb,phy,Int dCDOM SCDOM Qa Qb 2min
chla 20

chla β σ

aPH 1.00
bphy,T −0.04 1.00
bphy,Int 0.17 0.12 1.00
bb,phy,T 0.05 −0.01 −0.01 1.00
bb,phy,Int 0.06 −0.08 −0.07 0.09 1.00
dCDOM 0.47 −0.05 0.02 −0.04 0.03 1.00
SCDOM 0.19 0.09 0.08 −0.04 −0.05 0.61 1.00
Qa −0.52 0.10 −0.04 −0.02 −0.03 −0.05 0.38 1.00
Qb 0.28 −0.10 −0.08 −0.01 0.08 0.06 −0.16 −0.28 1.00
2min

chla 0.02 −0.02 0.07 −0.11 0.13 0.11 −0.04 0.01 0.19 1.00
20

chla −0.07 −0.25 0.08 0.10 −0.07 0.05 0.08 0.11 −0.00 −0.01 1.00
β −0.44 −0.23 −0.23 0.28 0.16 −0.30 −0.32 0.34 −0.18 0.02 0.12 1.00
σ −0.02 0.07 0.23 −0.16 −0.05 0.02 0.20 0.19 −0.13 −0.19 −0.02 −0.07 1.00
br,NAP 0.24 −0.13 −0.00 −0.19 −0.04 0.42 0.41 −0.01 0.11 0.08 0.28 −0.44 0.15

The observations of the downward light attenuation coef-
ficient and the particulate backward-scattering coefficient are
much more scattered and noisy than those of chlorophyll, yet
the SGVB parameters optimized all the model output match-
ing observations, while the MCMC favored better outputs
only for the kd values. We speculate that this is due to over-
fitting, as the measurements of particulate backward scatter-
ing are highly scattered. Moreover, as particulate backward
scattering is sensitive to br,NAP, the estimated value from the
MCMC could be affected by the noise. In the case of NN
training, we used mini-batch minimization, which may have
helped us to find a parameter value that is better for general-
ization.

The SGVB estimator also provides an efficient way of
computing estimates of the optical constituents z, which,
by construction, are also consistent with the forward model,
with optimal RMSE between measurements and estimates.
Since they are computed with a neural network, the com-
putational time outperforms the standard implicit inversion
methods, required in cases where the expression of the RTE
is too complicated to invert it analytically. For comparison,

the estimated optical constituents ẑ using the SGVB estima-
tor are shown in Figs. 4–6, and the statistics for the observa-
tion operator using these estimates are shown in Tables D1,
D2, and D3.

We observe that the standard Bayesian estimate and that
using the SGVB estimator are close to each other (Fig. 4),
since the SGVB estimator outputs are within the uncertainty
range of the Bayesian estimate. Differences between both
could be due to model errors, since the SGVB estimator
requires approximating the posterior with a parameterized
probability distribution, in our case, a neural network, or
differences between the training algorithms. The variational
Bayes method also estimates the covariance matrix between
the latent variables Z; nevertheless, since the uncertainty was
underestimated, we only plotted the mean values.

5.4 Comparison with satellite products

To assess the validity of the results with respect to state-
of-the-art algorithms, we compared the capability of the
DIIM system in a wider region of the northwestern Mediter-
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Figure 8. Sensitivity of (a) Rrs, (b) kd , and (c) bb,p with respect to the perturbation factors δi evaluated at δi = 1. The box plots represent
the quartiles of the sensitivity for each day.

Figure 9. Result of the Metropolis–Hasting algorithm for the pa-
rameter 2min

chla [mgchla (mgC)−1], using the transition probability
shown in Eq. (23), with initial conditions close to the value obtained
after performing alternate minimization. (a) Evolution of the param-
eter after each iteration of the algorithm and (b) final probability
density estimated as a Gaussian distribution.

ranean Sea, characterized by highly dynamic regimes of
vertical mixing during the spring period and stratification
during summer. The comparison is carried out using addi-
tional in situ data (not used in the calibration of DIIM),
based on high-performance liquid chromatography (HPLC;,
Di Biagio et al., 2025), and a standard ocean color re-
trieval approach used by the Copernicus Marine Service,

MedOC4.2020 (Colella et al., 2025). The latter approach is
based on a calibrated nonlinear regression of the maximum
Rrs in the wavelengths at 443, 490, and 510 nm, normalized
over Rrs at 555 nm:

chlorophyllsatellite = 10(a0+a1X+a2X
2
+a3X

3
+a4X

4),

X = log10

(
max(Rrs,443,Rrs,490,Rrs,510)

Rrs,555

)
,

a0 = 0.327,a1 =−2.994,a2 = 2.722,
a3 =−1.226,a4 =−0.568. (34)

To do so, we computed the surface downward direct and
scattered irradiance as described in Lazzari et al. (2021) for
the days and places where in situ measurements were taken
(see Fig. 11a). We chose a square of 4°× 4° close to the
BOUSSOLE buoy for the samples and selected those with a
bathymetry lower than 200 m and performed at less than 10 m
deep. For the remote sensing reflectance (CMEMS, 2023),
we used an average of 5 d, with a ∼ 5 km window around
the points. Finally, we used the SGVB estimator to invert the
remote sensing reflectance and estimate the chlorophyll con-
centration. The outputs can be observed in Fig. 11.

Results are consistent between in situ data and inversion
models, suggesting that the present approach is applicable
over spatially heterogeneous conditions.

6 Discussion

In the last few years, there has been an increasing num-
ber of applications of neural networks in Earth sciences,
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Figure 10. Original values (dashed line), final values using the SGVB-based framework (blue), and the mean and standard deviation (gray)
for the λ-dependent parameter (a) absorption coefficient of phytoplankton aphy(λ), (b) scattering coefficient of phytoplankton bphy(λ), and
(c) backward-scattering coefficient of phytoplankton bb,phy(λ).

Figure 11. (a) Region in red and locations with in situ measurements (x) for the comparison between (b) the inverted values of chlorophyll a
using the SGVB estimator and (c) a standard ocean color retrieval approach used with the Copernicus Marine Service (Colella et al., 2025).

including forecasts of the El Niño–Southern Oscillation
(ENSO) using historical simulations and convolutional neu-
ral networks (Ham et al., 2019), fusion of satellite data
(Chapman and Charantonis, 2017; Denvil-Sommer et al.,
2019; Bocquet et al., 2020), classification of regions in the
ocean (Richardson et al., 2003; Saraceno et al., 2006), de-
termination of drivers of net primary productivity using
self-organizing maps (Lachkar and Gruber, 2012), recon-
struction of oceanographic variables (Martinez et al., 2020;
Pietropolli et al., 2022), classification of the anomalies in
water-leaving radiance (Mustapha et al., 2014), data recon-
struction (Manucharyan et al., 2021; George et al., 2021),
inversion of oceanographic variables (Brajard et al., 2006;

Irrgang et al., 2019; Dessailly, 2012), pattern recognition
(Maze et al., 2017; Jones et al., 2019; Boehme and Rosso,
2021; Desbruyères et al., 2021), forecasts imposing physical
constraints (De Bézenac et al., 2019; Erichson et al., 2019),
and increasing the resolution of modeling (Barthélémy et al.,
2022), among others.

Our work makes use of a neural network to approximate
the posterior probability distribution of optical constituents
in the sea by employing the SGVB estimator. As described
in Sect. 4.4.1, we maximize the ELBO loss function, which
simultaneously optimizes the forward model by finding the
MLE of the parameters, deriving in situ biogeochemical
parameters for reflectance observations, linking the neural
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network procedure to an interpretable model. As stated by
Kingma and Welling (2022), this approach is especially use-
ful to infer intractable posteriors and to find the MLE of the
forward model parameters, a situation commonly encoun-
tered in data assimilation problems, where the number of
parameters to optimize makes the problem intractable. This
work serves as a test bed, comparing the more traditional
Bayesian inference approach with the results obtained with
the SGVB estimator, and presenting a pointwise observation
operator for the active optical constituents chlorophyll, NAP,
and CDOM.

Our results with the SGVB estimator underestimated the
uncertainty in the optical constituents, a computation that is
of crucial importance for multiple applications, like objective
comparison of simulations against observations and efficient
assimilation of data with methods like Kalman filters, among
others (Brankart et al., 2012). A further analysis is needed to
assess the effect of each term of the loss function on the NN
covariance matrix, as well as to determine whether the inclu-
sion of a regularization term affects the uncertainty estima-
tion. At the moment, the requirement of reliable uncertainty
estimations leads us to use only the pointwise estimate of the
neural network. Furthermore, we explored the Bayesian ap-
proach, approximating the final posterior distribution of the
optical constituents, p3(z|y,x), with a Gaussian probabil-
ity distribution. This method returns estimates with reliable
uncertainty estimations that can be used in real operational
systems.

In particular, in addition to the optical constituents, we
aimed to find the optimal model with respect to all the in
situ observations for the entire period. This ambitious goal
made the final results suboptimal for some individual mea-
surements. For example, Salama and Verhoef (2015) used a
similar forward model to estimate the downward light atten-
uation coefficient at a wavelength of 490 nm, kd(490), at dif-
ferent depths, obtaining an rMAD of 11.84 %, while our re-
sults using the MCMC parameters presented an rMAD value
of 21 %. We noticed that by optimizing only one in situ mea-
surement, we could find a set of parameters that made that
measurement more precise. Nevertheless, we decided to use
the parameters presented to balance the global accuracy. For
example, in terms of the rMAD of the remote sensing re-
flectance at a wavelength of 490 nm, Rrs(490), we obtained
an rMAD value of 1.8 %, outperforming previous works.

Our approach also differs from that of other work on
Bayesian estimation of optical constituents (Gordon and
Boynton, 1997; Boynton and Gordon, 2000; Michalopoulou
et al., 2009; Erickson et al., 2023), since we employ a three-
stream model, derived from the radiative transfer model
(Dutkiewicz et al., 2015), and use it to derive the in situ
observations for all available wavelengths. This feature al-
lows scientists to understand the automatic learning process
in terms of meaningful physical parameters.

The approach can be extended in different directions, par-
ticularly through the addition of more optical constituents,

which will be facilitated once information from the new
satellite missions Hyperspectral Precursor of the Application
Mission (PRISMA), with 12 nm spectral resolution ranging
from 400 to 2500 nm, and the Plankton, Aerosol, Cloud,
Ocean Ecosystem (PACE), with 5 nm resolution ranging
from 350 to 890 nm, is used as input to the system, or through
the addition of the forward model terms that take into ac-
count the interaction with the sea floor, which is crucial for
the analysis of shallow waters.

7 Conclusions

By utilizing the Bayes theorem and linearizing the for-
ward function, we achieved the inversion of the optical con-
stituents, with an estimate of the uncertainty. The latter
is fundamental for the assimilation of remote sensing re-
flectance.

By using an MCMC algorithm, we computed a set of pa-
rameters that optimized the forward model and showed that
the method was robust by obtaining coherent values with the
SGVB estimator. Moreover, the variational Bayes framework
can be used as an alternative to find pointwise estimates of
optimal parameters and also as an efficient way of comput-
ing pointwise estimates of the optical constituents.

Regarding the computational advantages of the SGVB es-
timator, as long as the uncertainty is not required, it is the
best option to estimate the optical constituents in operational
systems, since, after training, the evaluation of the neural net-
work is much faster than the iterative minimization (an effect
known as amortization). Nevertheless, the posterior probabil-
ity learned by the neural network underestimates the uncer-
tainty in the result, which makes the MAP algorithm prefer-
able when the uncertainty is a requirement. Since the com-
putational time for the MAP estimate depends on the initial
conditions, we proposed using the SGVB estimates as ini-
tial conditions for the MAP algorithm, which, based on ex-
periments with our current implementation, we found to be
capable of reducing the number of steps by more than 50 %.

For future work, it would be important to apply and verify
the accuracy of the approach with more optical constituents
and to test remote sensing reflectance assimilation in a bio-
geochemical model.

Appendix A

In this section, we expand the solution of Eq. (1) subject to
the boundary conditions in Eq. (6), under the homogeneity
assumption. First, for simplicity, we re-write Eq. (1) as
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dEdir(h,λ)

dh
=− cd(λ)Edir(h,λ),

dEdif(h,λ)

dh
=−Cs(λ)Edif(h,λ)+Bu(λ)Eu(h,λ)

+Fd(λ)Edir(h,λ),

dEu(h,λ)

dh
=−Bs(λ)Edif(h,λ)+Cu(λ)Eu(h,λ)

−Bd(λ)Edir(h,λ)

subject to

Edir(0,λ)=EOASIM
dir (0,λ),

Edif(0,λ)=EOASIM
dif (0,λ),Eu(∞,λ)= 0, (A1)

where

cd(λ)=
a(λ)+ b(λ)

cosθ
,

Cs(λ)=
a(λ)+ rsbb(λ)

vs
,

Bu(λ)=
rubb(λ)

vu
,

Fd(λ)=
b(λ)− rdbb(λ)

cosθ
,

Bs(λ)=
rsbb(λ)

vs
,

Cu(λ)=
a(λ)+ rubb(λ)

vu
,

Bd(λ)=
rdbb(λ)

cosθ
. (A2)

Equation (A1) is a linear system of ordinary differential
equations, which can be solved by first solving the equation
for Edir(h,λ), followed by solving the system of equations
for Edif(h,λ) and Eu(h,λ), taking the solution of Edir(h,λ)

as the inhomogeneous part of the system of equations. The
final expression is

Edir(h,λ)= E
OASIM
dir (0,λ)e−hcd ,

Edif(h,λ)= c
+e−k

+h
+ xdifEdir(h,λ),

Eu(h,λ)= c
+r+e−k

+h
+ yuEdir(h,λ), (A3)

where

c+ = EOASIM
dif (0,λ)− xEOASIM

dir (0,λ),

k+ =D−Cu,

r+ =
Bs

D
,

D =
1
2

(
Cs +Cu+

√
(Cs +Cu)

2
− 4BsBu

)
,

x =
(−(Cu+ cd)Fd −BuBd)

(cd −Cs)(cd +Cu)+BsBu
,

y =
(−BsFd + (−Cs + cd)Bd)

(cd −Cs)(cd +Cu)+BsBu
. (A4)

In the case when the expression (cd −Cs)(cd +Cu)+

BsBu = 0, then the expression for c+ has to be changed to
c+ = EOASIM

dif (0,λ).

Appendix B: Tuning of the hyperparameter α

As seen in Sect. 4, the final covariance matrix for the re-
trieved Z̃∗ depends on the hyperparameter α by the equation
6z = α1. We selected the value of α to fulfill two criteria: the
retrieved Z̃∗ should be robust to α, meaning small changes in
α should not change the retrieved quantity, and the estimated
uncertainty has to be close to the discrepancy between the
retrieved data and in situ observations.

To this end, we defined the error in the forward model
εRrs(α) as the root mean square difference between the satel-
lite remote sensing reflectance and that predicted by the
model. The aim is to make this quantity robust to α.

We also defined the error between the predicted uncer-
tainty and the actual discrepancy between the model and
data εδchla(α), where the predicted uncertainty is estimated
as the mean value of the standard deviation of the predicted
chlaMODEL, and the discrepancy between the model and data
is estimated as the root mean square difference between
chlaOBS and chlaMODEL.

We computed εRrs(α) and εδchla(α) for different values of
α until the curve εRrs(α) flattens. With the errors computed,
we rescaled the error functions εRrs(α) and εδchla(α) between
0 and 1 in order to minimize both functions simultaneously
by minimizing the following loss function:

Lα = εRrs(α)+ εδchla(α), (B1)

where the line over the errors stands for the rescaling. Fig-
ure B1 shows the final value of α selected as a function of
εRrs(α), εδchla(α), and Lα .
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Figure B1. Illustration of how the hyperparameter α was chosen. Using a higher α decreases the root mean square difference between
the remote sensing reflectance observed by the satellite and that obtained with the model (a) but increases the error between the predicted
uncertainty and the actual discrepancy between the model and data (b). The value chosen was the one that minimized the Lα loss function (c).

Appendix C

This section shows that LELBO is a lower bound of the data
log likelihood. First, we write the expression for the log like-
lihood by marginalizing over all possible values of the latent
variable z:

log(p3(y))= log

∫
Z

p3(y|z)p(z)dz

 . (C1)

Next we introduce the parameterized probability distribution
qφ(z|y):

= log

∫
Z

p3(y|z)
qφ(z|y)

qφ(z|y)
p(z)dz

 . (C2)

Finally, we use Jensen’s inequality to find a lower bound for
the log likelihood:

≥

∫
Z

log
(
p3(y|z)p(z)

qφ(z|y)

)
qφ(z|y)dz

=

∫
Z

log
(

p(z)

qφ(z|y)

)
qφ(z|y)

+

∫
Z

log(p3(y|z))qφ(z|y)dz

=−DKL(qφ(z|y)||p(z))

+Eqφ(z|y)[log(p3(y|z))]
=LELBO. (C3)

The inequality is equal for the case qφ(z|y)= p(z|y),
the true posterior distribution, in which case LELBO =

log(p3(y)). In other words, maximizing LELBO equals max-
imizing the marginal log likelihood.

Appendix D

In this section, we include the root mean square error
(RMSE), Pearson correlation coefficients (ρ), and relative
median absolute deviation (rMAD) for all the measurements
and observations, using the MAP estimates with unperturbed
parameters, MAP estimate with parameters from the MCMC
algorithm, MAP estimate with parameters from the SGVB
estimator, and outputs from the SGVB estimator. All the
quantities are computed using only the test data, which com-
prise 10 % of the data and were not used in the MCMC al-
gorithm or in the training of the neural network. Finally, we
include tables with the symbols used throughout this work.
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Table D1. Root mean square error between satellite and in situ observations and the modeled data using the maximum a posterior (MAP)
estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the SGVB-based frame-
work, and data modeled purely with the SGVB-based framework. Note that a log transform was performed before the computations.

Root mean square error, RMSE(OBS,MOD)=
√

MEAN
(
(OBS−MOD)2

)
MAP with unperturbed parameters MAP with MCMC parameters MAP with SGVB parameters SGVB output

RRS,412.5 0.039998 0.040920 0.042113 0.128636
RRS,442.5 0.019901 0.022441 0.019984 0.117474
RRS,490 0.033773 0.023230 0.029305 0.071944
RRS,510 0.033258 0.038340 0.039021 0.059382
RRS,555 0.019328 0.031546 0.033822 0.091312
kd,412.5 0.395717 0.419141 0.378790 0.429363
kd,442.5 0.327759 0.322888 0.303636 0.365043
kd,490 0.324604 0.300414 0.299151 0.339610
kd,510 0.221749 0.210633 0.213028 0.214196
kd,555 0.135205 0.130366 0.133158 0.137648
bb,p,442.5 0.457789 0.334198 0.512618 0.787984
bb,p,490 0.446384 0.506215 0.405386 0.549156
bb,p,555 0.439231 0.521719 0.423929 0.550503
chla 0.603652 0.587130 0.502672 0.447947

Total 3.49835 3.48918 3.33661 4.29020

Table D2. Pearson correlation coefficient r between satellite and in situ observations and the modeled data using the maximum a posteriori
(MAP) estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the SGVB
framework, and data modeled purely with the SGVB framework.

Spearman rank-order correlation coefficient ρ

MAP with unperturbed parameters MAP with MCMC parameters MAP with SGVB parameters SGVB output

RRS,412.5 0.99304 0.98841 0.99041 0.98306
RRS,442.5 0.99851 0.99747 0.99801 0.99192
RRS,490 0.99715 0.99622 0.99479 0.98670
RRS,510 0.99201 0.99105 0.97962 0.94380
RRS,555 0.99378 0.99142 0.97987 0.92020
kd,412.5 0.80801 0.81693 0.81097 0.81300
kd,442.5 0.88324 0.88525 0.88408 0.87611
kd,490 0.84371 0.85139 0.85001 0.84049
kd,510 0.85792 0.86398 0.86020 0.85466
kd,555 0.71051 0.69352 0.68246 0.68541
bb,p,442.5 0.65502 0.67547 0.68759 0.68896
bb,p,490 0.52632 0.57810 0.61910 0.61431
bb,p,555 0.65197 0.67520 0.68754 0.68674
chla 0.85199 0.86955 0.87259 0.87400

Total 11.76319 11.87396 11.89723 11.75935
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Table D3. Relative median absolute deviation (rMAD) between satellite and in situ observations and the modeled data using the maximum
a posteriori (MAP) estimate with unperturbed parameters, optimized parameters with the MCMC algorithm, optimized parameters with the
SGVB framework, and data modeled purely with the SGVB framework.

rMAD=MEAN(|OBS−MOD|/OBS)

MAP with unperturbed parameters MAP with MCMC parameters MAP with SGVB parameters SGVB output

RRS,412.5 0.029481 0.031956 0.032869 0.122038
RRS,442.5 0.014825 0.016953 0.014725 0.110805
RRS,490 0.028941 0.018827 0.024378 0.066319
RRS,510 0.029412 0.034112 0.031342 0.046536
RRS,555 0.015851 0.025844 0.022127 0.071504
kd,412.5 0.267226 0.284409 0.262888 0.270284
kd,442.5 0.226699 0.224069 0.219680 0.245279
kd,490 0.222441 0.212747 0.214475 0.228192
kd,510 0.168964 0.167468 0.169385 0.159414
kd,555 0.101646 0.100650 0.101680 0.101663
bb,p,442.5 0.316195 0.256815 0.350178 0.509545
bb,p,490 0.376320 0.556826 0.311682 0.317715
bb,p,555 0.384337 0.568183 0.365311 0.379714
chla 0.725247 0.694534 0.488889 0.305717

Total 2.90758 3.19339 2.60961 2.93472

Table D4. Table of symbols used for the radiative transfer model.

Symbol Meaning

Edir Vertical direct irradiance
Edif Vertically scattered downward irradiance
Eu Vertically scattered upward irradiance
θ Sun zenith angle
h Depth at which a measurement is assumed to be taken
λ Wavelength at which a measurement is assumed to be taken
a(λ) Total absorption coefficient
b(λ) Total scattering coefficient
bb(λ) Total backward-scattering coefficient
w Water
phy Phytoplankton
chla Chlorophyll α
CDOM Colored dissolved organic matter
NAP Non-algal particles
aw(λ) Water-specific absorption coefficient
aphy(λ) Chlorophyll-specific absorption coefficient of phytoplankton
aCDOM(λ) Mass-specific absorption coefficient of CDOM
aNAP(λ) Mass-specific absorption coefficient of NAP
bw(λ) Water-specific scattering coefficient
bphy(λ) Carbon-specific scattering coefficient of phytoplankton
bNAP(λ) Mass-specific scattering coefficient of NAP
bb,w(λ) Water-specific backward-scattering coefficient
bb,phy(λ) Carbon-specific backward-scattering coefficient of phytoplankton
bb,NAP(λ) Mass-specific backward-scattering coefficient of NAP
PAR Photosynthetic available radiation
EOASIM

dir (0,λ) Direct downward irradiance on the surface of the ocean from OASIM
EOASIM

dif (0,λ) Downward-scattered irradiance on the surface of the ocean from OASIM
Eu(∞,λ) Upward-scattered irradiance on the floor of the ocean
Rrs Remote sensing reflectance
bb,p Particulate backward-scattering coefficient
kd Downward light attenuation coefficient
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Table D5. Table of symbols and notation used for the Bayes formalism.

Symbol Meaning

y Vector, discretization of a continuous function in discrete values of λ
yλ Component of a vector with magnitude y(λ)
z∗ Optimal value of a retrieved quantity z, solution of a minimization problem
ẑ Estimation of the optimal value of a quantity z
argminzL(z) Quantity z that minimizes the loss function L
argmaxzp(y|z) Quantity z that maximizes the likelihood p(y|z)
yd Remote sensing reflectance data from day d
xd OASIM data from day d
zd Optical constituents from day d
3 Set of parameters from the forward model
Y Set of many days with remote sensing reflectance data, which represents the training set when it is used for

training and the test set when it is used for testing
X Set of many days with OASIM data, which represents the training set when it is used for training and the test

set when it is used for testing
Z Set of many days with retrieved optical constituents, which represents the training set when it is used for

training and the test set when it is used for testing
p3(y|z,x) Probability distribution of the variable y conditional on z and x as a function of 3
N (µ,6) Gaussian probability distribution with mean µ and covariance matrix 6
HOBS In situ observations
HMODEL Model of the in situ observations
H Observation operator, equal to HOBS when there were observations and 0 otherwise
Id Presence–absence nine-dimensional indicator function
LH Loss function used to minimize the distance between in situ observations and predicted observations
Lz Loss function used to maximize the posterior probability p3(z̃d |yd ,xd ) for every day d
z̃ Optical constituents with the change in variable z̃= log(z)
6ε Covariance matrix of the remote sensing reflectance
ε Noise of the remote sensing reflectance
δ3 Perturbations on the parameters
∇z̃d Gradient over every component of z̃d

6z Covariance of the prior term associated with the optical constituents 6z = α1, where 1 is the identity matrix

Table D6. Table of symbols and notations used for the variational Bayes formalism.

Symbol Meaning

z Latent variable sampled from an unknown distribution p3∗(z)
y Random variable sampled from a known conditional distribution p3∗(y|z)
p3(y) Data likelihood of the parameter 3
p3(z|y) Posterior probability of the latent variable z
qφ(z|y) Estimate of the posterior probability of the latent variable z
LELBO ELBO loss function, where ELBO stands for “evidence lower bound”
DKL(qφ(z|y)||p3(z)) Kullback–Leibler divergence between the two probability distributions qφ(z|y) and p3(z)
Eqφ(z|y)[log(p3(y|z))] Expected value of log(p3(y|z)) with respect to the probability distribution qφ(z|y)

Code and data availability. The version used to produce the results
and the input data and scripts used to run the model and produce
the plots for all the simulations presented in this paper are archived
on Zenodo under https://doi.org/10.5281/zenodo.14609747 (Soto,
2025).

We used the MedBGCins dataset for in situ data based on high-
performance liquid chromatography. The dataset is available at

Zenodo under https://doi.org/10.5281/zenodo.15489967 (Di Biagio
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