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Abstract. Subtropical forests play a crucial role in the global
carbon cycle, yet their carbon sink capacity is significantly
constrained by phosphorus availability. Models that omit
phosphorus dynamics risk overestimating carbon sinks, po-
tentially undermining the scientific basis for carbon neutral-
ity strategies. In this study, we developed TECO-CNP Sv1.0,
a coupled carbon-nitrogen-phosphorus model based on the
Terrestrial ECOsystem (TECO) model, which explicitly cap-
tures key biogeochemical interactions and nutrient-regulated
carbon cycling. The model simulates how plant growth and
carbon partitioning respond to both external soil nutrient
availability and internal physiological constraints, enabling
plant acclimation to varying nutrient conditions. Using ob-
servations from a phosphorus-limited subtropical forest in
East China, we first evaluated the model’s performance in
estimating state variables with empirically calibrated param-
eters. Compared to the C-only and coupled C-N configura-
tions, the CNP model more accurately reproduced the ob-
served pools of plant and soil C, N, and P. To systemat-
ically optimize model parameters and reduce uncertainties
in predictions, we further incorporated a built-in data as-
similation framework for parameter optimization. The CNP
model with optimized parameters significantly improved car-
bon flux estimates, reducing root mean square errors and en-
hancing concordance correlation coefficients for gross pri-
mary productivity, ecosystem respiration, and net ecosystem
exchange. By explicitly incorporating phosphorus dynamics
and data assimilation, this study provides a more accurate
and robust framework for predicting carbon sequestration in
phosphorus-limited subtropical forests.

1 Introduction

Accurately representing phosphorus (P) cycling in land sur-
face models (LSMs) is crucial for projecting terrestrial car-
bon sink dynamics under climate change (Wieder et al.,
2015). As an essential element, P availability regulates plant
growth and ecosystem productivity (Walton et al., 2023; Vi-
tousek et al., 2010). For instance, nutrient addition experi-
ments in an old-growth Amazon rainforest demonstrated that
net primary productivity increased exclusively with P addi-
tion (Cunha et al., 2022). Likewise, in subtropical mature
forests, soil P availability was found to exert dominant con-
trol over plant functional traits at both species and commu-
nity levels (Cui et al., 2022). Recent global syntheses have
revealed a more widespread distribution of terrestrial P limi-
tation than previously recognized (Hou et al., 2020; Du et al.,
2020; Xia and Wan, 2008; Elser et al., 2007). More concern-
ing is that P limitation is expected to intensify (Wang et al.,
2023a; Luo et al., 2022) due to factors such as N deposition-
induced N : P stoichiometric imbalance (Peng et al., 2019;
Lu and Tian, 2017; Du et al., 2016; Peñuelas et al., 2013)
and reduced P availability under elevated CO2 concentration
(Wang et al., 2023b). Consequently, incorporating P limita-
tion into LSMs has become a pressing challenge for improv-
ing carbon cycle projections (Fisher and Koven, 2020; Achat
et al., 2016; Reed et al., 2015).

To address this challenge, several modeling groups have
incorporated a prognostic P cycle into their existing frame-
works over the past decade, including CASACNP (Carnegie-
Ames-Stanford Approach; Wang et al., 2010), JSBACH
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(Jena Scheme for Biosphere-Atmosphere Coupling in Ham-
burg; Goll et al., 2012), CLM-CNP (Community Land
Model; Yang et al., 2014), among others. These pioneer-
ing efforts in coupled carbon-nitrogen-phosphorus (C-N-P)
modeling have laid a solid foundation for increasing in-
corporation of P cycling in LSMs (e.g., Goll et al., 2017;
Nakhavali et al., 2022) and demographic vegetation models
(Knox et al., 2024), shedding light on how P limitation con-
strains ecosystem productivity under elevated atmospheric
CO2 (Wang et al., 2024b; Fleischer et al., 2019; Medlyn et
al., 2016). However, current C-N-P models often yield “right
answers for wrong reasons” (Jiang et al., 2024a), largely due
to two key limitations: (1) calibration and validation data
are predominantly derived from a narrow range of ecosys-
tems, with most coupled C-N-P models relying on in-situ
data from tropical regions, particularly Hawaii and the Ama-
zon (e.g., Nakhavali et al., 2022; Yang et al., 2014; Goll et al.,
2012, 2017; Zhu et al., 2016b), and (2) oversimplified repre-
sentations of P cycling processes (Achat et al., 2016; Reed
et al., 2015), such as the absence of physiological mech-
anisms governing vegetation P uptake (Jiang et al., 2019).
Addressing these gaps requires advancing the coupled C-
N-P model with improved mechanistic process-based repre-
sentations and broader ecosystem applicability (Jiang et al.,
2024a).

Subtropical forest ecosystems are recognized as important
carbon sinks in the global carbon cycle (Pan et al., 2024;
Keenan and Williams, 2018; Yu et al., 2014). In particular,
East Asian monsoon subtropical forests exhibit high carbon
sink capacity, with an average net ecosystem productivity of
about 400 g C m−2 yr−1 (Yu et al., 2014). These ecosystems
are likely subject to substantial phosphorus limitation, as ev-
idenced by a meta-analysis of nutrient addition experiments
showing that forest productivity exhibits the strongest stan-
dardized response to P addition in the subtropical regions
(25–40 latitude; Hou et al., 2021). Moreover, intensive ni-
trogen deposition may further exacerbate P limitation (Zhu
et al., 2016a; Yu et al., 2014). Accurately projecting the fu-
ture carbon sink capacity of subtropical forests is crucial for
assessing their role in climate change mitigation (Friedling-
stein et al., 2023; Requena Suarez et al., 2019; Grassi et al.,
2017). However, substantial uncertainties remain in current
model projections of subtropical carbon dynamics (Wei and
Xia, 2024), highlighting the urgent need for improved carbon
cycle predictions through better representation of coupled C-
N-P interactions in these regions.

In this study, we develop TECO-CNP Sv1.0, an advanced
version of the Terrestrial ECOsystem (TECO) model (Weng
and Luo, 2008, 2011), incorporating detailed mechanistic
representations of coupled C-N-P cycling processes, such
as dynamic plant growth response to soil available nutri-
ent through modified growth rates and allocation patterns,
and the combined physical and physiological controls on
phosphorus uptake. Additionally, we integrated a data as-
similation module based on a Bayesian probabilistic inver-

sion approach (Xu et al., 2006; Ma et al., 2017; Shi et al.,
2016, 2018; Zhou et al., 2021), providing an efficient frame-
work for model reparameterization and broader applications.
Based on comprehensive observations from a P-limited sub-
tropical evergreen broadleaf forest in eastern China, we fur-
ther test two key hypotheses: (1) the CNP model can repro-
duce ecosystem state variables through traditional spin-up
and manual parameter tuning, and (2) the built-in data as-
similation system can substantially improve carbon flux pre-
dictions.

2 Materials and Methods

2.1 TECO developments

The TECO-CNP model has evolved from its precursor, the
Terrestrial Ecosystem model (TECO, Weng and Luo, 2008).
The TECO model is a process-based ecosystem model en-
compassing eight organic carbon pools and a plant non-
structural carbohydrate (NSC) pool (Weng and Luo, 2008).
The representation of the NSC pool in TECO is advantageous
for capturing the seasonal decoupling of growth and nutrient
acquisition within plants (Zavišić and Polle, 2018; Jones et
al., 2020) and for managing carbon that is not utilized for
plant growth under nutrient-limited conditions (Nakhavali
et al., 2022; Haverd et al., 2018). The TECO model has
been part of model intercomparison ensembles (Zaehle et al.,
2014; De Kauwe et al., 2014) and has been applied across
diverse ecosystem types, such as grassland (Weng and Luo,
2008; Zhou et al., 2021), temperate coniferous forests (Luo
et al., 2003; Weng and Luo, 2011; Jiang et al., 2017) and
deciduous broadleaf forests (Jiang et al., 2017) and northern
peatland (Ma et al., 2017, 2022; Huang et al., 2017).

Simplified N and P cycling were incorporated in the TECO
successively (Shi et al., 2016; Du et al., 2018, 2021), where
the structure of the carbon processes was expressed as a
matrix form (Luo et al., 2003; Xu et al., 2006; Weng and
Luo, 2011). Thus, the photosynthesis was simulated aided
by an external model; for instance, Shi et al. (2016) utilized
MAESTRA to generate the gross primary productivity. The
processes related to the N and P cycle were only represented
in a parsimonious way in the matrix versions. For exam-
ple, the nutrient uptake process was simplified at a constant
rate, and the interactions of carbon, nitrogen, and phosphorus
were treated implicitly (Shi et al., 2016; Du et al., 2021).

In this study, we developed TECO-CNP, a coupled C-N-
P model based on the full version of TECO, which fun-
damentally differs from previous matrix-based approaches.
This new model explicitly represents the mechanistic pro-
cesses of nutrient cycling (Sect. 2.2), with a focus on the
regulation of carbon cycling by nutrients. Specifically, the
model incorporates four key nutrient-carbon interactions: (1)
growth rate limitations controlled by internal plant nutri-
ent concentrations and nutrient supply-demand relationships;
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(2) allocation patterns dependent on nitrogen and phospho-
rus availability; (3) decomposition processes constrained by
microbially-mediated nutrient availability; and (4) carbon
costs associated with nutrient uptake and fixation. These
process-based implementations, which aim to provide a more
realistic representation of terrestrial biogeochemical cycles,
are described in detail in the following sections.

2.2 Model description

We introduce a comprehensive biogeochemical N and P cy-
cle into the full TECO, named TECO-CNP Sv1.0. Key pro-
cesses of N and P cycling and their interactions with the car-
bon cycle have been represented using reliable mechanistic
assumptions based on our experimental measurements or val-
idated by state-of-the-art LSMs. In the following sections, we
first document an overview of the carbon cycle and highlight
the effects of nutrient limitation on the carbon cycle in Sect.
2.2.1. We then describe the shared and specific N and P cy-
cling processes in Sect. 2.2.2 and 2.2.3, respectively.

2.2.1 Nutrient-limited carbon cycle

The carbon cycle in the new model builds upon the TECO
model, incorporating processes such as photosynthesis, plant
growth controlled by allocation and phenology, autotrophic
and heterotrophic respiration, litter production, and carbon
transfer (Fig. 1). See Luo et al. (2003) and Weng and Luo
(2008) for detailed descriptions. These processes regulate
the dynamics of plant, litter, and soil pools (Fig. 2). Nutri-
ents directly or indirectly constrain them. For instance, plant
growth rates and carbon allocation strategies are directly in-
fluenced by internal nutrient availability within pools and the
availability of soil-accessible nitrogen and phosphorus. Ad-
ditionally, resource limitations adhere to Liebig’s law of the
minimum, where the nutrient-constrained process is hindered
only by the most limiting resources (Rastetter, 2011).

The canopy-level photosynthesis is simulated using a two-
leaf model, which consists of a radiation sub-model and a
coupled sub-model of stomata, photosynthesis, and transpi-
ration for both sunlight and shaded leaves (Wang and Le-
uning, 1998). Leaf photosynthesis is estimated by the equa-
tions derived from the Farquhar model (Farquhar et al., 1980)
and a stomatal conductance model (Ball et al., 1987; Le-
uning, 1995). The photosynthesis of a single leaf is then
scaled up to the canopy level (Wang and Leuning, 1998).
We hypothesize that plant photosynthesis is downregulated
as photosynthetic surface area decreases when nutrient limits
plant growth. Plant growth is adjusted based on the nutrient
limitation factor calculated at each time step, meaning that
plants tend to reduce growth under low nutrient conditions to
avoid nutrient deficiency within the organism (Veneklaas et
al., 2012). Accordingly, the nutrient-constrained growth rate
(GPa) is dependent on the potential growth rate (GPp) and
nutrient limitation scalar for plant growth (LGP) as the fol-

lowing equation:

GPa,i = GPp,i ·LGP, (1)

where subscript i indicates leaf (i = 1), wood (i = 2), root
(i = 3) or reproduction (i = 4) (Table 1). The difference be-
tween actual and potential plant growth is referred to as ex-
cess carbon, which implicitly represents the carbon lost from
the NSC pool through various pathways to cope with nutrient
limitations.

The nutrient limitation scalar for plant growth incorporates
both the nutrient status of plant tissues and soil nutrient sup-
ply (Fig. 1b), which can be expressed as:

LGP = Lin,leaf ·Lsp, (2)

where Lin,leaf and Lsp represent the nutrient limitation fac-
tors derived from leaf nutrient concentration (Eqs. 3–5) and
the nutrient demand-supply process (Eqs. 6–8), respectively.
Shifts in leaf nutrient concentrations act as a potential lim-
iting factor for plant growth, implying the mechanism by
which changes in leaf nutrient concentration can impact pho-
tosynthesis (Ellsworth et al., 2022; Sterner and Elser, 2002).
Description of limitation factors that account for plant tis-
sue’s nutrient concentration can be given by:

Lin,i =min
(
Lin,N,i,Lin,P,i

)
, (3)

Lin,N,i =
RN,i

RN,i + kCN
, (4)

Lin,P,i =
RP,i

RP,i + kCP
, (5)

where RN and RP represent the C : N ratios and C : P ra-
tios, respectively. kCN and kCP are empirical parameters. A
study by Cui et al. (2022) reveals that the Tiantong site is
identified as a P-limited ecosystem, as indicated by the leaf
N : P thresholds from Koerselman and Mueleman (1996).
Thus, we adopted the values of kCP (0.0006 g P g C−1) in
Wang et al. (2010) to achieve N limitation when N : P< 16
(g N g P−1), and otherwise, plant growth is limited by P. kCN
(0.01 g N g C−1) is given based on the results of Linder and
Rook (1984).

The nutrient demand-supply limitation factor is calculated
as a function of plant nutrient uptake and demand. When nu-
trient demand is not satisfied, the value of the limitation fac-
tor falls below one, thereby impacting plant growth. This as-
sumption aligns with field findings that reveal an increase in
plant productivity following nutrient addition (Cunha et al.,
2022; Liang et al., 2021). Description of nutrient demand-
supply limitation factor (Lsp) can be given by:

Lsp =min
(
Lsp,N,Lsp,P

)
, (6)

Lsp,N =
1

1+ exp(−12 · Fup,N
Fdm,N

+ 6)
, (7)

Lsp,P =
1

1+ exp(−12 · Fup,P
Fdm,P

+ 6)
, (8)
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Figure 1. The schematic diagram of the biogeochemical processes of the carbon, nitrogen, and phosphorus cycles and associated interactions
in TECO-CNP. Representation of carbon cycling processes controlled by nitrogen and phosphorus in TECO-CNP. Solid lines indicate carbon
cycling processes (labelled 1–7) comprise (1) photosynthesis, (2) carbon allocation, (3) plant growth, (4) autotrophic respiration, (5) litter
production, (6) carbon transfer, and (7) heterotrophic respiration. These processes are controlled directly by nitrogen and phosphorus (black
control characters) or indirectly (colorless control characters). Dashed lines indicate the common processes that control the dynamics of soil-
available nitrogen and phosphorus, simplified as plant uptake, mineralization, immobilization, biogeochemical mineralization, and external
input and loss. Irregular pink shapes represent competition for soil available nitrogen and phosphorus between plants and microorganisms.
Min., mineralization; BMin., biochemical mineralization; Imm., Immobilization.

Table 1. Variables for carbon cycling processes in TECO-CNP.

Variables Description Unit

GPp Potential plant growth rate without nutrient limitation g C m−2 h−1

GPa Nutrient-limited plant growth rate g C m−2 h−1

Da,x Actual decomposition rate of litter pool m or soil pool j , accounting for nutrient limitation, x =m, j g C m−2 h−1

Dx Potential decomposition rate of litter pool m or soil pool j , controlled by soil temperature and
moisture, x =m, j

g C m−2 h−1

NPPi Net primary productivity allocated to plant pool i g C m−2 h−1

Fnew,C,i Newly input carbon from NSC pool for plant growth g C m−2 h−1

bC,i Allocation fraction of carbon to plant pool i unitless
ri,j Fraction of carbon from plant pool i to litter pools j unitless
BMroot Plant root biomass g biomass m−2

Broot
∗ Root biomass density g biomass m−3

fnsc Plant labile carbon limiting factor unitless
fW Soil moisture limiting factor unitless
fT Soil temperature limiting factor unitless
W Soil water availability index unitless
κ Light availability factor unitless

∗ i indicates leaf (i = 1), wood (i = 2), root (i = 3) or reproduction (i = 4), j indicates metabolic litter (j = 5) or structure litter (j = 6), and m indicates fast SOM (m= 7), slow
SOM (m= 8) and passive SOM (m= 9).

Geosci. Model Dev., 18, 7545–7573, 2025 https://doi.org/10.5194/gmd-18-7545-2025
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Figure 2. Model structure of TECO-CNP. The model represents the nine organic carbon, nitrogen, and phosphorus stocks within the plant
(denoted as Q1–4), litter (Q5–7), and soil (Q7–9). Fluxes among these organic pools are depicted by black arrows. Specific N and P fluxes are
indicated by dark red arrows, with associated processes labeled accordingly. Min denotes mineralization, and Imm denotes immobilization.
The circled numbers (1–7) correspond to the carbon cycling processes in Fig. 1.

where Fup,N and Fup,P represent plant nutrient uptake for N
and P, respectively, which is determined by both supply and
demand (Eq. 23). Fdm,N and Fdm,P represent the plant re-
quired N and P to sustain a given NPP (Eq. 24). We imple-
mented a logistic function to represent the phosphorus limi-
tation factor, which provides a more mechanistically sound
representation of nutrient limitation compared to the sim-
ple linear ratio. This formulation ensures a smooth transi-
tion between phosphorus-limited and phosphorus-sufficient
conditions, with values bounded between zero and one. The
coefficients were carefully selected to maintain appropriate
sensitivity in the transition zone while avoiding unrealistic
sharp thresholds. This sigmoidal response more accurately
reflects the gradual physiological adjustments of plants to
varying nutrient availability. It is consistent with a theoret-
ical understanding of the effects of nutrient limitation on
plant growth. The method of determining whether plants
are nutrient-limited based on the supply-demand method is
widely employed in many models, for example, CASACNP
(Wang et al., 2010), CLM-CNP (Yang et al., 2014), and OR-
CHIDEE (revision 4520; Goll et al., 2017).

The carbohydrates available for plant growth will be redis-
tributed among the plant pools based on their actual growth
rates. A prescribed proportion of those allocated to reproduc-
tive processes (Sitch et al., 2003; Smith et al., 2001), such
as flower formation, fruit development, and seed production,
is stored in the reproductive pool. Vegetation growth is as-
sumed to take priority over reproduction (Zust et al., 2015;
Tang et al., 2021). Thus, the plant’s reproductive allocation
is zero when the leaf area index (LAI) is below the mini-
mum threshold. When LAI exceeds the minimum threshold,
12 % of the available carbon is allocated to the reproduc-
tion pool. The remaining carbon is subsequently distributed
among leaf, wood, and root pools based on a resource limi-
tation allocation scheme.

The dynamic allocation for leaf, wood, and root is regu-
lated by light availability, soil water supply, canopy pheno-
logical status (Luo et al., 1995; Denison and Loomis, 1989;
Arora and Boer, 2005), and plant’s internal nutrient status
(Fig. 1b). This allocation strategy permits a reduction in pho-
tosynthetic surface area and enhanced root growth under nu-
trient limitation, exemplifying a structural adjustment in line
with the observations (Keith et al., 1997; Thomas et al., 2015;
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Yan et al., 2016). The allocation fractions for leaf, wood, and
root are given by:

bC,leaf =
εL ·Lin,leaf

1+ω(2− κ −W)
, (9)

bC,wood =
εw ·Lin,wood+ω(1− κ)

1+ω(2− κ −W)
, (10)

bC,root =
(1− εL ·Lin,leaf− εw ·Lin,wood)+ω(1− κ)

1+ω(2− κ −W)
= 1− bC, leaf− bC,wood, (11)

where bC, leaf, bC,wood and bC, root represent the carbon frac-
tions available for growth allocated to leaf, wood, and root,
respectively. W is the root zone soil water availability stress
factor (Arora and Boer, 2005). The soil water availability is
weighted by the existing fraction of roots in each soil layer
(Weng and Luo, 2008; Arora and Boer, 2005). κ represents
the availability of light (Arora and Boer, 2005). Parameters
εw, εL, and ω are calibrated based on the broadleaf evergreen
PFT parameters given in Arora and Boer (2005). Lin,wood
and Lin, leaf represent the limitation factor determined by the
nutrient status of tissues (Eqs. 3–5), designed to capture the
reduction of carbon allocated to leaf and wood as an adap-
tation to nutrient limitation (Binkley et al., 1995; Yan et al.,
2016) and the negative correlation between fine root biomass
and soil fertility (Fortier et al., 2019).

Canopy phenology is represented by annual variation in
LAI. The beginning of a growing season is determined by
growing degree days. Leaf senescence is triggered by low
air temperatures and soil moisture (Arora and Boer, 2005),
resulting in a reduction of LAI. The litter production rates of
wood and roots are prescribed. The phenological parameters
are adjusted according to the vegetation characteristics in the
studied evergreen forest (Table S1 in the Supplement).

Carbon transfer between litter pools and soil organic pools
through microbial decomposition (Luo and Reynold, 1999;
Weng and Luo, 2008). The decomposition of litter and soil
organic matter (SOM) is diminished when the amount of
available inorganic N and P restricts nutrient immobilization
during decomposition:

Da,j =Dj ·Lde, (12)
Da,m =Dm ·Lde, (13)

where j indicates metabolic litter (j = 5) or structure litter
(j = 6), andm indicates fast SOM (m= 7), slow SOM (m=
8) and passive SOM (m= 9). Da is the nutrient-constrained
decomposition rate, and D is the default decomposition rate
controlled by the soil temperature and moisture (Weng and
Luo, 2008). Lde is the limiting factor of decomposition, and
the calculation involves dividing the un-limited net mineral-
ization rate by the size of the inorganic nutrient pool, which
can be addressed in the following equations:

Lde,N =max

(
0, 1+

F ′N,net

Nmin

)
, (14)

Lde,P =max

(
0, 1+

F ′P,net

Plab

)
, (15)

Lde =min
(
Lde,N,Lde,P

)
, (16)

where F ′N,net and F ′P,net represent the net mineralization rate
for nitrogen and phosphorus, respectively, assuming no nu-
trient limitation on mineralization (Wang et al., 2010).

2.2.2 Shared processes in the N and P cycle

The shared processes of N and P cycling include plant up-
take, resorption, allocation, transfer from plant to the soil
through litterfall, and transfer between organic litter and soil
pools via biological mineralization and N, P biological im-
mobilization (Fig. 2). Underlying these processes, TECO-
CNP incorporates two key N-P interaction mechanisms: P
uptake regulated by a nutrient balance scalar and a cost-
benefit approach-based regulation of phosphatase produc-
tion. To avoid duplication, the shared processes were de-
scribed collectively.

The organic N (QN) and P pools (QP) are coupled with
carbon pools through flexible stoichiometry within plant, lit-
ter, and soil pools. Inorganic nutrient components consist of
one inorganic soil N pool (Nmin) and four inorganic soil P
pools, including labile P (Plab), sorbed P (PS), secondary
P (PSS), and occluded P (PO). Labile P represents readily
bioavailable inorganic phosphate for biotic uptake and soil
leaching. Sorbed P is weakly bound to soil surfaces in dy-
namic equilibrium with labile P. Through petrochemical pro-
cesses, sorbed P transforms into secondary mineral P, which
eventually becomes occluded P with minimal bioavailability.
The key variables of N and P cycling are listed in Tables 2
and 3, respectively. Key parameter values were derived from
site-specific field observations of plant functional traits and
biogeochemical properties, as well as from validated studies
chosen based on careful consideration of the ecosystem char-
acteristics of the study site (Tables S1–S3 in the Supplement
and Table 4).

The initial size of the organic nutrient pool is determined
by the size of the carbon pool and the carbon-to-nutrient ra-
tio. The dynamics of organic nitrogen and phosphorus trans-
fer from donor to recipient pools within plants, litter, and soil
are coupled with carbon cycling through flexible stoichiom-
etry. The dynamics of plant nutrient pools can be expressed
as:

d
dt
Qχ,i (t)= Fnew,χ,i −QC,i · τi ·R

−1
χ,i, (17)

Fnew,χ,i = Fnew,C,i ·R
−1
χ,i + (QC,i ·R

−1
χ,i,0−QC,i ·R

−1
χ,i) (18)

where subscript χ =N, P, Fnew,χ,i represents the newly input
nutrients from non-structural nutrient pool to sustain plant
growth (Table 2), Fnew,C,i is determined by the newly input
carbon from the NSC pool to plant pool i and stoichiomet-
ric ratios (Eq. 25). Rχ,i,0 and Rχ,i denote the initial and up-
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Table 2. Common variables for N and P cycle modeling.

Variable Description Unit

Fup,χ Amount of nutrient uptake by plant roots g m−2 h−1

Fres,χ Amount of nutrient resorption before tissue litterfall g m−2 h−1

Fdm,χ Nutrient demand for plant growth g m−2 h−1

Fsp,χ Soil nutrient supply g m−2 h−1

ucroot,χ Root uptake capacity g m−2 h−1

Fnew,χ,i Nutrient input for plant pool i g m−2 h−1

Fχ,min,x Mineralization fluxes of litter or soil pools, x =m, j g m−2 h−1

Fχ,imm,x Immobilization fluxes of litter or soil pools, x =m, j g m−2 h−1

Fχ,min,total Total mineralization flux g m−2 h−1

Fχ,imm,total Total immobilization flux g m−2 h−1

Fχ,net Net mineralization flux g m−2 h−1

Fχ,in Nutrient input to ecosystem g m−2 h−1

Fχ,loss Nutrient loss from ecosystem g m−2 h−1

Fχ,leach Nutrient loss through leaching g m−2 h−1

Fχ,fert Nutrient fertilization rate g m−2 h−1

Fχ,dep Nutrient atmospheric deposition rate g m−2 h−1

FP2L,ij Nutrient flux from plant pool i to litter pool j g m−2 h−1

Rχ,i Carbon : nutrient ratio of plant pool i g g C−1

ck Unit conversion factor for root uptake capacity unitless
Vrunoff Volume of drainage water mm s−1

Dsoil Soil depth cm
Tsoil Soil temperature °C
fχ,leach Scalar for nutrient leaching unitless
2 Volumetric soil water content m3 m−3

Lin,i Tissue nutrient concertation stress factor of plant pool i unitless
Lsp Nutrient uptake stress factor unitless
Lde Nutrient limitation factor for decomposition unitless
LGP Nutrient limitation scalar for plant growth unitless
fχ,ratio Nutrient concentration stress scalar affecting nutrient uptake unitless

* χ indicates N or P. Subscripts i, m, and j refer to the values in Table 1.

dated C : N (or C : P) ratios of plant pool i. QC,i and τi rep-
resent the carbon pool size and turnover rate of plant pool i.
The dynamically constrained nutrient redistribution process
in plants (Eq. 18) follows the principles of stoichiometric
homeostasis theory (Sterner and Elser, 2002) and helps avoid
excessive flexibility in stoichiometry during model simula-
tions (Meyerholt and Zaehle, 2015; Goll et al., 2017).

Nutrients newly acquired from root uptake (Fup,χ ) and tis-
sue resorption (Fres,x) enter the labile nutrient pool, which
buffers the nutrient dynamics and mitigates imbalances be-
tween supply and demand (Weng et al., 2017). Thus, the dy-
namics of plant labile nutrient pools are modeled as:

d
dt

NSχ (t)= Fup,χ +Fres,χ −
∑
i

Fnew,χ,i . (19)

Since the reproduction pool is designed as a long-term pool
supporting a series of reproductive events, from flower bud
formation to fruiting, no resorption is prescribed in this
pool. The relocation of nutrients from senesced plant tissues
(Fres,χ ) is modeled as:

Fres,χ =
∑
i

αχ ×QC,i · τi ·R
−1
χ,i (i 6= reproduction), (20)

where αχ is the resorption rate and the second term repre-
sents the loss of carbon from plant pool i (Table 4). We as-
sume that the different plant organs have the same and fixed
resorption rate to simplify this process. Additionally, we pre-
scribe a higher resorption rate for P at 0.4 compared to N at
0.2, considering the higher phosphorus use efficiency in the
P-limit habitat (Xu et al., 2020).

Litter nutrient dynamics is given by:

d
dt
Qχ,j (t)= FP2L,ij −QC,j · τj ·R

−1
χ,j , (21)

where FP2L,ij represent the nutrient flux from plant pool i to
metabolic litter (j = 5) and structure litter (j = 6):
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Table 3. Specific variables in N and P cycle modeling.

Variables Description Unit

N cycling specific

FN,fix N fixation rate g N m−2 h−1

Cfix Carbon cost for biological N fixation g C g N−1

FN,gas N loss in gaseous form g N m−2 h−1

P cycling specific

K Permeability of the soil to P m2 h−1

αroot Represents the fraction of the reduction in P concentration surrounding the roots relative to the initial
concentration

unitless

Plab Soil labile P g P m−2

P ′lab Root surface soil labile P g P m−2

1Plab P concentrations in the soil solution at the root surface compared to the labile P in the surrounding soil
outside the root’s diffusive zone

g P m−2

PS Sorbed P g P m−2

PSS Secondary P g P m−2

PO Occluded P g P m−2

FPbiomin P biochemical mineralization rate g P m−2 h−1

FPdiff Diffusion of P from the surroundings to the root surface g P m−2 h−1

Fwea P weathering rate g P m−2 h−1

FP2L,ij =



(
1−αχ

)
QC,i ·R

−1
χ,i · τi · ri,j ,

i = 1, 2, 3

QC,i ·R
−1
χ,i · τi · ri,j ,

i = 4

, (22)

where ri,j represents the fraction of plant carbon to different
litter pools.

The TECO-CNP model exclusively considers the active
uptake of inorganic P through specialized transporters on the
root surface (Schachtman et al., 1998), as inorganic P is the
form most readily absorbed by plants (Bieleski, 1973). Plants
possess specific transporters and mechanisms dedicated to
transmembrane transport, ensuring they can acquire P even
from soil solutions with low P concentrations, where the P
concentration can be as low as one-thousandth of the intra-
cellular concentration (Schachtman et al., 1998). Therefore,
we assume that plants absorb only inorganic P from the soil.
Similarly, we also only consider the plant uptake of inor-
ganic N. Soil labile nutrients taken up by plants are generally
contingent upon both nutrient demand for growth (Wang et
al., 2010) and root uptake capacity (Grant et al., 1999, 2001;
Goll et al., 2017) that are related to root morphology and soil

nutrient concentrations. The nutrient demand-supply scheme
has been widely employed in most coupled C-nutrient mod-
els (Achat et al., 2016). We assume plants will not consume
nutrients beyond their luxury consumption demand for as-
similating nutrients (Van Wijk and Williams, 2003; Chapin,
1980). Therefore, the Fup,x is determined by either the nutri-
ent demand (Fdm,χ ) or the nutrients supplied by soil (Fsp,χ ),
whichever is lower:

Fup,χ =

{
Fdm, χ

(
Fdm,χ < UCroot,χ

)
Fsp,χ

(
Fdm,χ > UCroot,χ

) . (23)

The Fdm,χ is determined by the invested carbon for newly
formatted tissues (NPPi) and C : nutrient ratios. The actual
demand is considered as the difference between the demand
for growth and resorption capacity:

Fdm,χ =
∑

i

Fnew,C,i

Rχ,i
−Fres,χ , (24)

Fnew,C,i = NPPa · b
′

C,i, (25)

where NPPa represents the net primary productivity derived
from actual plant growth (Eq. 1), b′C, i denotes the bC,i (Eqs.
9–11) specifically influenced by the leaf phenology (Weng
and Luo, 2008).

Geosci. Model Dev., 18, 7545–7573, 2025 https://doi.org/10.5194/gmd-18-7545-2025



F. Wan et al.: TECO-CNP Sv1.0 7553

Table 4. Parameters for nitrogen and phosphorus cycling in TECO-CNP.

Short name Value Description Referencea

N cycling

kCN 0.01 Empirical parameter for nitrogen concentration limitation (g N g C−1) Ref 1

αN 0.20 Fraction of N relocated before littering (Unitless) Ref 2

FN,dep 3.60 N deposition (g N m−2 yr−1) Ref 4

vfix 1.67× 10−3 Maximum N fixation ratio (g N g C−1 m−2 h−1) Ref 5

vmax,N 5.40 Maximal root uptake capacity for N (µmol g C−1 h−1) Ref 6

kNm1 2.00× 10−3 Parameter to match the observed rate of increase in overall N uptake at high mineral N
concentration (µmol L−1)

Ref 6

kNm2 98.00 For Michaelis-Menten constants, mineral N concentration at which uptake equals νmax/2
(µmol L−1)

Ref 6

P cycling

vmax,P 1.39 Maximal root uptake capacity for P (µmol g C−1 h−1) Ref 6

kPm1 0.01 Parameter to match the observed rate of increase in overall P uptake at high labile P
concentration (µmol L−1)

Ref 6

kPm2 3.00 For Michaelis-Menten constants, labile P concentration at which uptake equals νmax/2
(µmol L−1)

Ref 7

Smax 133.00 Maximum amount of sorbed P (g P m−2) Ref 8

Ks 64.00 An empirical parameter for describing the equilibrium between labile P and sorbed P
(g P m−2)

Ref 8

νm 2.05× 10−5 Rate constant of conversion from sorbed P to secondary P (g P m−2 h−1) Ref 1

νdis 2.40× 10−6 Rate constant of conversion from secondary P to sorbed P (g P m−2 h−1) Calibrated

λup 25.00 N cost of plant root P uptake (g N g P−1) Ref 1

λptase 15.00 N cost of phosphatase production (g N g P−1) Ref 1

κm 150.00 Michaelis-Menten constant for biochemical P mineralization (g N g P−1) Ref 1

νmax 0.02 Maximal specific rate of biochemical P mineralization (g P m−2 h−1) Ref 1

kcp 0.0006 Empirical parameter for phosphorus concentration limitation (g P g C−1) Ref 1

αP 0.40 Fraction of P relocated before littering (Unitless) Ref 2

Fwea 0.05 P weathering rate (g P m−2 yr−1) Ref 1

FP,dep 0.06 Atmospheric P deposition rate (g P m−2 yr−1) Ref 4

rd 3.10× 105 Root specific density (g biomass m−3) Ref 9

rr 2.90× 10−4 Fine root radius (mm) Ref 6

f1 1.58 Empirical parameters for calculation of the tortuosity factor (Unitless) Ref 10

f2 −0.17 Empirical parameters for calculation of the tortuosity factor (Unitless) Ref 10

K0 3.20× 10−6 Diffusion coefficient of phosphate in free water at 25 °C (m2 h−1) Ref 11b

21 0.12 relative water content (m3 m−3) Ref 6

αP 0.40 Fraction of P relocated before littering (Unitless) Ref 2

a For reference codes, see Table S4. b Ref 11 – Mollier et al. (2008).
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The nutrients supplied to plants from the soil depend not
only on the amount of P in the soil but also on soil conditions
and the root uptake capacity. We implemented the function of
Fsp,χ as described by Goll et al. (2017), and it is calculated
by the function of root biomass (BMroot), and root uptake ca-
pacity (ucroot,χ ), soil temperature scalar (fT) and the nutrient
balance scalar (fχ,ratio) as follows:

Fsp,χ = BMroot · ucroot,χ · fT · fχ,ratio. (26)

The linear index scalar fχ,ratio regulates the balance between
C, N, and P by constraining nutrient uptake rates based on
prescribed maximum ratios (Eqs. 27–28), thereby preventing
resource overconsumption (Goll et al., 2017). Experiments
have shown that N addition enhances the uptake of both N
and P, suggesting a benefit for P uptake when more N is avail-
able (Zhu et al., 2021). Thus, we assume that the dependence
of P uptake on the plant P : N ratio is modeled as a function of
the P : N ratio of both the plant and its leaves, thereby captur-
ing the essential N-P interaction through stoichiometric reg-
ulation. This regulatory mechanism helps prevent excessive
P uptake, which would constitute luxury consumption for the
plant (Schachtman et al., 1998). Similarly, if nitrogen uptake
exceeds the plant’s requirements, it also constitutes luxury
consumption. Therefore, to avoid luxury absorption and nu-
trient accumulation, the uptake of N (or P) by roots needs to
be regulated based on the N : C (or P : N) ratios within plant
tissues (Goll et al., 2017). The maximum uptake occurs when
the leaf N : C (or P : N) ratio is equal to the minimum leaf
N : C (or P : N) ratio, which is calculated using a minimum
function:

fP,ratio =min
(

max
( pnplant− pnleaf,max

pnleaf,min− pnleaf,max
,0.0

)
,1.0

)
, (27)

fN,ratio =min
(

max
(

ncplant− ncleaf,max

ncleaf,min− ncleaf,max
,0.0

)
,1.0

)
, (28)

where pnleaf,max and pnleaf,min are prescribed maximum and
minimum values of leaf P : N ratios, ncleaf,max and ncleaf,min
are prescribed maximum and minimum values of leaf N : C
ratios.

The root nutrient-uptake capacity function (ucroot,χ ) incor-
porates both linear and Michaelis-Menten components to ac-
curately represent the uptake process, considering the low-
affinity and high-affinity transporter systems operating in
parallel for a given solute concentration (Goll et al., 2017).
Notably, the root uptake capacity for soil labile P (uroot,P)
considers the replenishment of P from soil around the roots
to root surfaces (Goll et al., 2017) rather than the total labile
P in soil volume (Schachtman et al., 1998; Johnson et al.,
2003). Hence, the calculation of root uptake capacity for N
and P can be expressed as follows:

uroot,P = vmax,P ·P
′

lab

(
kPm1

ck
+

1
Plab+ ckkPm2

)
, (29)

uroot,N = vmax,N ·Nmin

(
kNm1

ck
+

1
Nmin+ ckkNm2

)
, (30)

where vmax,χ is the maximum uptake capacity (Table 4).
Nmin and Plab is the soil mineral N pool and labile P pool.
P ′lab represents the dissolved labile P concentration at the
root surface and depends on the diffusion of soil labile P
from the soil surrounding the roots to the root surface (Ta-
ble 3; Eq. 54). ck is a unit conversion factor using the soil-
type specific parameter for soil moisture content at satura-
tion as an approximation of pore space following Smith et
al. (2014). kχm1 was chosen to match the observed rate of
increase in overall P uptake at high dissolved labile P con-
centration (low-affinity transporter), and kxm2 is a parameter
for Michaelis-Menten constants, dissolved phosphorus con-
centration at which uptake equals νmax

2 .
Mineralization and immobilization processes occur con-

currently. Nutrient mineralization fluxes are estimated from
the decomposition of litter and soil organic matter, assuming
that C, N, and P mineralize at similar rates (Wang et al., 2010;
Yang et al., 2014). The mineralization rate is determined by
multiplying the litter and soil C pool turnover fluxes by the
nutrient-to-carbon ratio. This can be mathematically repre-
sented by the following equations:

Fχ,min,j =QC (t)τj ξ (t)R
−1
χ,j , (31)

Fχ,min,m =QC (t)τmξ (t)R
−1
χ,m, (32)

where QC (t)τξ (t) estimates the carbon decomposition rate
under environmental stress for litter or soil pool. The total
mineralization (Fχ,min,total) is estimated as the sum of min-
eralization rate for each pool, which can be expressed as fol-
lows:

Fχ,min,total =
∑
j

Fχ,min,j +
∑
m

Fχ,min,m. (33)

Nutrients are immobilized during the decomposition process
of litter and SOM, ultimately entering the SOM pools. Con-
sequently, only three SOM pools can be the receiving pools.
The dependency of immobilization rates on the ratios of the
receiving pools, under the assumption of approximately con-
stant stoichiometry ratios of SOM pools (Tian et al., 2010;
McGroddy et al., 2004), is described as:

Fχ,imm,m =
∑
jm

fL2S,jmξ (t)τjXj (t)R
−1
χ,m

+

∑
mm

fS2S,mmξ (t)τmXm (t)R
−1
χ,m, (34)

whereR−1
χ,m represent the N : C ratio (χ =N) or the P : C ratio

(χ =P) of the existing SOM. The total amount of immobi-
lization is then calculated as follows:

Fχ,imm,total =
∑
m

Fχ,imm,m. (35)

Therefore, the net nutrient mineralization is calculated by the
difference of total mineralization and total immobilization:

Fχ,net = Fχ,min,total−Fχ,imm,total. (36)
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When net mineralization is negative, the decomposition
rate is limited by nutrient availability, LNP. Since the N : C
ratio of the soil pool is higher than that of the litter pool,
microbes extract inorganic nitrogen from the soil mineral N
pool, leading to negative net mineralization and a LNP. value
less than one. A similar approach has been applied in the
CASA-CNP model (Wang et al., 2007).

Plants and microorganisms utilize dissolved inorganic N
and P from the soil to fulfill their growth requirements (Vi-
tousek et al., 2010). We assume microbial processes modu-
late nutrient availability for plants (Jiang et al., 2024b; Pel-
litier and Jackson, 2023; Jonasson et al., 1999), i.e., the nu-
trient limitation on plant growth will be alleviated if the net
mineralization is positive. Furthermore, the competition be-
tween plants and microorganisms for nutrients can be sim-
plified by emphasizing the sequence of immobilization and
plant uptake (Achat et al., 2016). In the TECO-CNP model,
immobilization takes precedence in nutrient access through
the decomposition of litter and soil organic matter. A sim-
ilar method was used in many models, e.g., models of the
CENTURY family (e.g., Parton et al., 1988, 1998); O-CN
(Zaehle and Friend 2010); ORCHIDEE (revision 4520; Goll
et al., 2017). This also aligns with recent findings regard-
ing the competition between plants and microbes under ele-
vated CO2 (Ben Keane et al., 2023). Specifically, in the acidic
grassland, aboveground productivity and P uptake declined
by 11 % and 20 %, respectively, while P immobilization into
microbial biomass increased by 36 %.

2.2.3 Distinct processes in N and P cycle

The dynamic of soil inorganic N (Nmin) is described as:

dt
d
Nmin = Ffix+FN,fert+FN,dep−FN,leach−FN,gas, (37)

where Ffix, FN,fert and FN,dep represent the biological N2-
fixation, atmospheric N deposition, and biological N fixation
(Tables 2, 3). FN,leach and FN,gas represent the N leaching
and gaseous N loss.

Biological nitrogen fixation, a dominant source of new
nitrogen in terrestrial ecosystems (Chapin et al., 2011; Vi-
tousek et al., 2013), is performed by N2-fixing symbionts in
plant roots (i.e., symbiotic N2-fixation; Vitousek et al., 2002;
Augusto et al., 2013). This process enhances nitrogen avail-
ability when carbon is sufficient for additional nutrient ac-
quisition (Fisher et al., 2010), which is given by:

Ffix = vfix · fnsc ·NSC · fN, (38)

where vfix = 0.00167 (g N g C−1 m−2 h−1) is the maximum
N fixation rate. vfix is chosen based on estimates ranging
from 58 Tg N yr−1 (Vitousek et al., 2013) to 100 Tg N yr−1

(Wiltshire et al., 2021) for a global NPP of 60 Pg C yr−1. The
term fnsc ·NSC represents the limitation of NSC on nitro-
gen fixation, implicitly capturing the carbon constraint on
this process (Chou et al., 2018; Taylor and Menge, 2021). To

prevent unrealistic nitrogen fixation, a scaling function (fN)
is applied, as nitrogen fixation is an energy-intensive process
(Gutschick, 1981; Goll et al., 2017). The fN is calculated as:

fN =

{
Nmax−Nmin

Nmax
Nmax <Nmin

0 otherwise
. (39)

The carbon cost for biological N fixation is calculated by a
function of soil temperature (Tsoil) with the observed carbon
cost range (Fisher et al., 2010):

Cfix =−6.25 ·
(

exp
(
− 3.62+ 0.27 · Tsoil

·

(
1− 0.5

(
Tsoil

25.15

)))
− 2

)
. (40)

Nitrogen loss occurs in two pathways: gaseous loss
(FNgas), and leaching (FN,leach). Losses from denitrification
and volatilization are not distinguished separately. Both are
proportional to the availability of soil mineral N (Nmin). The
expression of N leaching is:

FN, leach = fN, leach
Vrunoff

Dsoil
Nmin, (41)

where fN, loss = 0.001 and fN, leach = 0.5, Vrunoff is the soil
surface runoff and Dsoil is the soil depth. Moreover, the
gaseous loss is dependent on the soil temperature and soil
mineral N. The equation is:

Fgas = fN, losse
(Tsoil−25)

10 Nmin. (42)

The specific processes of the P cycle include biochemical
mineralization, weathering, the dynamics of different inor-
ganic soil P components, and the diffusion pathways of soil
labile P. In addition to biological mineralization, organic P
can be mineralized through direct cleavage by extracellu-
lar enzymes produced by plant roots and other organisms
(McGill and Cole, 1981). This process decouples the P cycle
from the C and N cycles, serving as an adaptive mechanism
that can be enhanced under P-limited conditions (Lambers
et al., 2006). This decoupling allows for phosphorus acqui-
sition from organic matter without releasing carbon dioxide.
We consider this process an N-consuming one, aiming to rep-
resent the chemical characteristic that phosphatases are N-
rich enzymes and their production in plants can be N-limited
(Treseder and Vitousek, 2001; Wassen et al., 2013). The bio-
chemical mineralization of P can be expressed by:

FPbiomin,m =
υmax

(
λup− λptase

)
λup− λptase+ κm

∑
m

KmQP,m, (43)

where υmax is maximal specific rate of biochemical P miner-
alization. λup is N cost of plant root P uptake. λptase is the N
cost of phosphatase production, κm is the Michaelis-Menten
constant for biochemical P mineralization. Km and QP,m
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represent turnover rate and phosphorus pool size of slow
(m= 8) and passive pools (m= 9). Phosphatase production
is activated when λup > λptase, reflecting N regulation of P
acquisition strategy by plants, similar to the cost-benefit ap-
proach established in existing coupled carbon-nutrient mod-
els (Wang et al., 2007; Houlton et al., 2008). This mod-
eling approach aligns with findings that nitrogen addition
significantly increases phosphatase activity (Schleuss et al.,
2020; Marklein and Houlton, 2012), potentially through en-
hanced phosphorus limitation and elevated plant nitrogen
status, which favor investment in the phosphatase enzyme.
While direct field quantification of biochemical mineraliza-
tion rates is not yet possible, this mechanistic representation
becomes particularly important for predicting ecosystem re-
sponses to elevated CO2 and enhanced N deposition, where
enhanced biochemical mineralization of soil organic P may
facilitate additional plant growth (Jiang et al., 2024a).

The soil P loss from soil organic P pools can be simulated
by the following equations:

FP,out,m (t)=QC,m · τm ·R
−1
χ,m+FPbiomin,m. (44)

The term FPbiomin,m equals 0 whenm= 7 as organic P losses
through biochemical mineralization only occur in two soil
pools with slow turnover rates (slow and passive pools; Wang
et al., 2010).

The external phosphorus input (FP,in) is modeled as:

FP,in = Fwea+FP,fert+FP,dep, (45)

where Fwea, FP,fert, and FP,dep represent phosphorus input
rates from weathering, fertilization, and deposition. Based on
the soil texture at the Tiantong site (Song and Wang, 1995),
the weathering rate is set to 0.005 (g P m−2 yr−1) (Wang et
al., 2010). The deposition rate of phosphorus has been set to
0.06 (g P m−2 yr−1) (Zhu et al., 2016a).

Labile phosphorus (Plab) can be directly utilized by plants
or microorganisms and adsorbed onto soil particles, organic
matter, and other minerals as adsorbed phosphorus (PS) (Vi-
tousek et al., 2010). The assumption is made that the rapid
equilibration of Plab with PS occurs within a timestep of less
than one hour (Olander and Vitousek, 2005). For the 1 h time
step used in our study, we therefore assume that Plab and
PS are in a state of equilibrium. The equilibrium assump-
tion is applied extensively (e.g., Wang et al., 2007; Yang et
al., 2014). The relationship between them is described by a
Langmuir isotherm (Barrow, 2008):

PS =
SmaxPlab

Ks +Plab
, (46)

where Smax is the maximum amount of sorbed P in the soil,
andKs is the empirical constant representing the tendency of
soil labile P to be sorbed. Smax and Ks is set as 133 and 64
(Wang et al., 2010), respectively, according to the soil sorp-
tion capacity and substrate age (Olander and Vitousek, 2005)

at the Tiantong site. The differential form of Eq. (46) is:

dPS

dt
=

SmaxPlab

(Ks +Plab)2
dPlab

dt
. (47)

Assuming equilibrium between Plab and PS, we can model
the simultaneous changes in Plab and PS as follows:

d(PS+Plab)

dt
= FP,net+FP,in+FP,biomin−Fup,P

−FP,leach− νmPS, (48)
FP,net = FP,min,total−FP,imm,total, (49)

where FP,net is the net mineralization of litter and soil phos-
phorus pool, FP,biomin is the P flux from biochemical min-
eralization, UP represents the plant uptake of P, FP,leach rep-
resents the loss of labile P from leaching (Eq. 53), and νm
is the rate constant for the transformation of sorbed P to sec-
ondary P. Based on Eqs. (48) and (49), the dynamics of labile
phosphorus can be expressed as follows:

dPlab

dt
=
(
FP,net+FP,in+FPbiomin−Fup,P−FP,loss

− νmPS
) 1

1+ SmaxPlab
(Ks+Plab)

2

, (50)

The use of solution P would be theoretically more appro-
priate, as previous studies have shown that models operat-
ing at very fine temporal resolutions (hourly or finer) may
require distinction between labile and solution phosphorus
pools (Reed et al., 2015; Yang et al., 2013). However, im-
plementing this simulation approach is currently not feasible
due to limited data availability. Some synthesis studies (Yang
et al., 2013; Hou et al., 2018) have indicated that most exper-
imental measurements report total labile P, without separat-
ing it into distinct fractions. Additionally, previous studies
have demonstrated strong correlations between these frac-
tions. For example, strip- and NaHCO3-extracted inorganic P
are positively correlated and exhibit similar temporal patterns
during experimental periods (Hou et al., 2019). Due to these
reasons, we adopted labile P as our primary plant-available
phosphorus pool in our model.

Secondary mineral phosphorus (PSS) can be dissolved and
enter the labile P pool or encapsulated by iron oxides to form
closed-P (PO; Walker and Syers, 1976; Vitousek et al., 2010).
The dynamics of PSS and PO can be modeled as:

dPSS

dt
= νmPS− νdisPSS− νoPSS, (51)

dPO

dt
= νoPSS− νrePO, (52)

where νdis and νo is the rate constant for the conversion of
secondary P to labile and sorbed P, and occluded P, respec-
tively. νre is the rate constant for occluded P re-entering the
cycle as bioavailable phosphorus, indicating that occluded
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phosphorus can transition back into available forms (Huang
et al., 2014; Schubert et al., 2020). In this study, we assume
that the formation of occluded P pool and loss of occluded
P can be considered negligible within the short timescale of
simulations (Weihrauch and Opp, 2018). P leaching from the
soil inorganic labile pool is proportional to the availability of
soil labile P. Description of P leaching below:

FP,leach = fP,leach
Vrunoff

Dsoil
Plab, (53)

where Vrunoff is the value of runoff, Dsoil is the soil depth.
fP,leach is an empirical parameter for P leaching, representing
the fraction of soil mineral P for leaching.

Notably, due to the low mobility of phosphorus in the soil
(Vitousek et al., 2010), the actual P concentration that roots
can absorb depends on the diffusion of P from the surround-
ing soil to the root surface (P ′lab). This finding is consistent
with the experimental evidence that roots primarily acquire
most inorganic phosphorus through diffusion along concen-
tration gradients (Laliberté et al., 2015). Thus, the root up-
take capacity for soil labile P (uroot,P) considers the replen-
ishment of P from soil around the roots to root surfaces
(Schachtman et al., 1998) rather than the total labile P in soil
volume (Johnson et al., 2003). Thus, the root surface P con-
centration is calculated by the following equation:

P ′lab = aroot ·
Plab

2
, (54)

where 2 is the volumetric soil water content and aroot repre-
senting the fraction of the reduction in P concentration sur-
rounding the roots relative to the initial concentration. aroot
is updated after plant uptake as:

daroot

dt
=

FPdiff−Fup,P

Plab
, (55)

where FPdiff is the diffusion of P from the surroundings to
the root surface, which is the function of the permeability of
the soil to P (K) and the difference in the P concentrations
between the soil solution at the root surface and the labile
P in the surrounding soil volume outside the diffusive zone
around the root (1Plab)

FPdiff =−K ·1Plab. (56)

1Plab can be described as:

1Plab = (aroot− 1)
Plab

2
. (57)

The K has been calculated analogously to the diffusion co-
efficient of phosphorus in soils following Barraclough and
Tinker (1981), which accounts for the increased path length
in soil using a tortuosity factor (ft), and it is a broken-line
function of the volumetric soil water content (2). The K and
ft can be calculated based on the following equations:

K =K0c22tf
1
rdiff

, (58)

ft =

{
f12+ f2 for 2≥21
2(f12+f2)

21
otherwise

, (59)

where21 is soil water content at which the two functions in-
tersect according to Barraclough and Tinker (1981), f1 and
f2 are empirical parameters (Barraclough and Tinker, 1981),
D0 is diffusion coefficient in free water, c2 is a unit conver-
sion factor, rdiff is diffusion path, which can be calculated
from the function of root length density (RLD, Bonan et al.,
2014):

rdiff =min
(

0.1, (πRLD)0.5
)
. (60)

We assume that the diffusion path can be approximated as
half the average distance between roots. We limit the diffu-
sion path length to 0.1 m because the influence of active P
uptake by roots on soil P concentrations is negligible beyond
a distance of 10 cm (Li et al., 1991). RLD is given by:

RLD=
B∗root

rdπr2
r
, (61)

where rd is the root-specific density and πr2
r is the cross-

sectional area calculated from the fine root radius, rr, and
B∗root is the root biomass density per unit soil volume.

2.3 Model validation

2.3.1 Study site

The tension between high carbon sink capacity and nutrient
limitations in subtropical forests warrants detailed investiga-
tion to understand the role of nutrients in carbon cycling pro-
cesses in these regions. To this end, we selected a mature sub-
tropical evergreen broadleaf forest in eastern China, located
at the Zhejiang Tiantong Forest Ecosystem National Obser-
vation and Research Station (Tiantong, 29°48′ N, 121°47′ E,
Fig. 3) for the newly developed model. The Tiantong forest
has been preserved free from human disturbance since the
mid-twentieth century. The average annual temperature in
Tiantong is 17 °C, and the annual precipitation is 1600 mm
(Cui et al., 2022). The soil type is mainly mountainous
yellow-red soil, with the parent material primarily composed
of Mesozoic sedimentary rocks, acidic igneous rocks, and
residual weathering products of granite (Song and Wang,
1995).

Research conducted at this site revealed the dominant role
of soil phosphorus in driving variations in plant functional
traits (Cui et al., 2022), indicating phosphorus deficiency
in this mature forest. Consequently, this phosphorus-limited
mature subtropical forest, with abundant field observations,
can contribute to the development of carbon-nutrient cou-
pling models and further explore phosphorus-limited carbon
cycling processes within the ecosystem through the integra-
tion of modeling and experiments.
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Figure 3. Schematic diagram of the observation system at Tiantong subtropical evergreen forest (29°5′ N, 121°5′ E). The system comprises:
(1) a forest dynamic plot for monitoring ecosystem state variables, including stoichiometric ratios, plant traits, and C, N, P pools and fluxes.
These measurements were conducted in a 5 ha subplot of the whole plot. The asterisk (*) indicates manually measured periodic fluxes. And
(2) an eddy covariance (EC) flux tower providing half-hourly NEE measurements, from which GPP and ER were derived. These observations
were used for parameterizing and evaluating the TECO-CNP model. Detailed measurement protocols are described in the Methods section,
and specific variable applications are listed in Tables S1–S3. The 3D visualization of the study site was created in Blender (v4.2.1) using
topographic data sourced from OpenTopography (https://opentopography.org, last access: 15 March 2025).

2.3.2 Data collection and site parameterization

The data used for model calibration and validation were pri-
marily derived from our field measurements and literature fo-
cusing on the same site (Fig. 3). The forcing data for TECO
are collected at 1 h intervals from field-based meteorologi-
cal observations at the study site, include precipitation (mm),
relative humidity ( %), air and soil temperatures (°C), va-
por pressure deficit (Pa), wind speed (m s−1), and photosyn-
thetically active radiation (µmol m−2 s−1). Forcing data from
2001 was used for model spin-up.

Site-specific parameters that can be empirically measured
are derived from field observations at the study site, including
both our measurements and values reported in previous stud-
ies. Plant traits, including specific leaf area (SLA, cm2 g−1),
leaf area index (LAI, m2 m−2), plant height (H , m), maxi-
mum rate of carboxylation (Vcmax, µmol m−2 s−1), maximum
rate of electron transport (Jmax, µmol m−2 s−1) and leaf P
concentration (Leaf P, g m−2), were measured at the species
level in the forest dynamic plot, and scale up to community-
level traits using the community-weight mean method (for
detailed sampling methods, refer to Cui et al., 2022). Plant
stoichiometry ratios were derived from area-based C, N, and
P concentrations from both our measurements and previous
studies at Tiantong (Zhou, 2020). N and P resorption effi-
ciencies were determined based on dominant species (i.e.,
Schima superba, Lithocarpus glaber) at the Tiantong site (Xu

et al., 2020). The observed data used for model parameteri-
zation are presented in Tables S1–S3.

Parameters not readily accessible through field measure-
ments are estimated using standard procedures that have been
extensively validated in other modeling studies, with appro-
priate selection based on the characteristics of Tiantong. For
example, Tiantong forest soils are classified as Ultisols (Song
and Wang, 1995), which directly informed our selection of
phosphorus weathering rates and inorganic P dynamics pa-
rameters (e.g., Ks and Smax, Table 4). Similarly, the subtrop-
ical evergreen broadleaf forest vegetation type guided our
parameterization of phosphorus mineralization (Wang et al.,
2010) and allocation processes (Arora and Boer, 2005). Ex-
ternal inputs of N and P, including deposition and weather-
ing, were assumed to occur at constant rates. Deposition rates
for N and P were prescribed based on the observed range
(Zhu et al., 2016a). Specific parameterization settings are de-
scribed in Table 4, along with the accompanying process de-
scriptions.

The observed pool sizes and fluxes primarily serve as a ba-
sis for model evaluation and as references for model initial-
ization. Soil inorganic pools of mineral N and labile P were
determined from 0–10 cm soil samples collected in 2023
from a nearby forest stand of similar age (∼ 200 years) dom-
inated by the same species (Schima superba and Castanopsis
fargesii) as the Tiantong forest dynamic plot. Labile P is the
soil inorganic phosphorus fraction that can be extracted by
resin and NaHCO3. Sampling employed a five-point design
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with three replicates per point. Additionally, secondary P and
occluded P refer to the measured moderately labile inorganic
phosphorus (extracted by NaOH) and moderately stable in-
organic phosphorus (extracted by HCl), respectively, at the
Tiantong site (Wang, 2022).

Soil C, N, and P were measured using systematic sampling
across 185 grid points (each 20× 20 m) within the permanent
Tiantong forest dynamic plot (Fig. 3). At each grid point, soil
samples were collected at three depth intervals (0–20, 20–40,
40–60 cm) in 2017 using a 5 cm diameter auger, with three
replicates per depth. Additionally, observed plant pools and
fluxes, including fluxes from plant to litter and soil respira-
tion, used for model evaluation and their sources are listed
in Tables S1–S3. Quality-controlled hourly eddy covariance
measurements of gross primary productivity (GPP), ecosys-
tem respiration (ER), and net ecosystem exchange (NEE)
were obtained from the on-site flux tower for the year 2021.

All model configurations used identical site-specific pa-
rameter sets obtained according to the methods described
above. Although a previous study has highlighted the ne-
cessity for model-specific reparameterization (Wang et al.,
2022), we adopted a consistent parameterization approach
across all configurations. This follows common practice in
land surface model development studies, where uniform pa-
rameterization is essential for isolating the effects of different
nutrient coupling schemes.

2.3.3 Data assimilation

We specifically optimized carbon-related parameters for the
CNP configuration only, utilizing GPP, ER, and NEE data
from 2021 at the study site, to evaluate the effectiveness
of the CNP structure coupled with a data assimilation algo-
rithm. Based on the initial carbon pool sizes from the spin-
up process, a preliminary sensitivity analysis was first con-
ducted to support the selection of target parameters for data
assimilation. We focused on parameters that determine car-
bon input and retention (Table 6), including SLA, Vcmax, and
temperature sensitivity (Q10), which showed high sensitiv-
ity in the analysis (Table S6). Additionally, our parameter
selection strategy included all carbon pool turnover parame-
ters (T1–T9), as these govern carbon residence times and are
crucial for matching observed pool dynamics, regardless of
their sensitivity indices. The prior range of parameters was
prescribed according to the situ measurement or assumed as
the range of the distribution to be [θ0/3, 3θ0], where θ0 is
the default value. Using the Bayesian probabilistic inversion
approach, we estimated the posterior distribution of model
parameters based on prior knowledge of the parameters.

Bayesian probabilistic inversion approach is based on
Bayes’ theorem:

p(θ |Z)∝
p(Z|θ)×p(θ)

p(Z)
, (62)

where p(θ |Z) is the posterior distribution of the parameters
θ given the observations Z. Here, we assume that the prior
knowledge of parameter distribution p(θ) is uniformly dis-
tributed. p(Z|θ) is the likelihood function for a parameter
set calculated with the assumption that each parameter is in-
dependent from all other parameters and has a normal distri-
bution with a zero mean:

p(Z|θ)∝ exp

{
−

∑
t∈Zi

[Zi (t)−X(t)]2

2σ 2(t)

}
, (63)

where Zi (t) is the observations of carbon fluxes at time t,
X(t) is the simulated corresponding variable, and σ(t) is the
standard deviation of the observation set.

Posterior probability distributions of the parameters were
obtained using a Metropolis-Hastings (M-H) algorithm
within the Markov Chain Monte Carlo (MCMC) framework.
The posterior parameter distribution represents our updated
knowledge about parameter values after incorporating obser-
vational data through Bayesian inference, quantifying both
the most likely parameter estimates and their associated un-
certainties. The detailed description of the M-H algorithm
can be found in Xu et al. (2006). In brief, the M-H algorithm
consists of iterations that alternate between a proposing step
and a moving step. In the proposing step, a new parameter set
θnew is proposed based on the previously accepted parameter
set θold and a proposal distribution (r × (θmax− θmin)/D):

θnew
= θold

+ r × (θmax− θmin)/D, (64)

where θmax and θmin corresponding to the upper and lower
values of prescribed ranges, r is a random variable between
−0.5 and 0.5, andD is used to control the proposed step size
and was set to 5 (Xu et al., 2006). The new set of parameter
values would be accepted when p(θnew

|Z)

p(θold|Z)
is equal or greater

than a uniform random number from 0 to 1 (Xu et al., 2006).
We get 10 000 accepted samples from the MCMC chain.

The first 5000 accepted samples were discarded, consider-
ing the burn-in period. We randomly selected 1000 parameter
sets from the accepted space to run the simulations in 2021.
The mean and maximum likelihood estimations are calcu-
lated to compare the parameters.

2.3.4 Model performance evaluation

The state variables estimations from three nutrient coupling
configurations of TECO-CNP: (1) carbon-only (C-only),
(2) carbon-nitrogen coupled (CN), and (3) carbon-nitrogen-
phosphorus coupled (CNP) are evaluated against observa-
tions. Model initialization involved a spin-up process using
2001 meteorological forcing data until a quasi-equilibrium
state was reached, defined as inter-annual variations of less
than 0.05 g C m−2 yr−1 in the slowest pools. Following ini-
tialization, we conducted transient simulations from 2002 to
2021 using the tuned parameter set. To evaluate model per-
formance, we compared pool sizes from different nutrient
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coupling configurations (C-only, CN, and CNP) in 2021 with
observed data (Tables S1–S3), assuming that our mature for-
est study site was at a quasi-steady state, where interannual
changes in major pool sizes were negligible. The configu-
ration that produced pool sizes closest to observations was
selected to determine the initial state for subsequent simu-
lations. Model performance was further evaluated by com-
paring simulated carbon fluxes in 2021 against observational
data using both manually tuned and optimized parameters.
The model evaluation metrics for carbon fluxes included the
Root Mean Square Error (RMSE) and concordance correla-
tion coefficient (CC), which quantify the absolute errors and
the agreement between simulated and observed values. All
statistical analyses and data visualizations were implemented
in R (version 4.3.1).

3 Results & Discussion

3.1 Evaluate the carbon-nutrient configurations

3.1.1 Carbon cycle

The CNP configuration accurately reproduced carbon pool
sizes across ecosystem components. In contrast, the C-only
and CN configurations tended to overestimate these pools
(Figs. 4, 5a). In this P-limited site, the introduction of phos-
phorus limitations in CNP configurations progressively re-
duced carbon pool sizes compared to the C-only and CN
configurations (Fig. 4a). This reduction reflects a fundamen-
tal assumption in carbon-nutrient coupled models that nu-
trient availability constrains carbon sequestration (Wieder et
al., 2015; Sun et al., 2017) through various physiological
processes (Jiang et al., 2019). At the ecosystem level (Fig.
4b), the C-only and CN configurations substantially overesti-
mated total carbon stocks by 73.7 % and 57.5 %, respectively.
In contrast, the CNP configuration produced estimates that
were much closer to the observed values, with only a slight
overestimate of 1.9 %. The partitioning between plant and
soil pools (Fig. 4b) showed that this overestimation occurred
in both compartments, with the CNP configuration providing
the closest match to observations.

A more detailed examination of individual carbon pools
(Fig. 5a) revealed that the overestimation was mainly con-
tributed by wood and soil pools for C-only and CN con-
figurations, which represent the major carbon stocks in
the ecosystem. For plant components, wood carbon stocks
were substantially overestimated by approximately 122.2 %
and 89.6 % in the C-only and CN configurations, respec-
tively. In contrast, the CNP configuration showed remark-
able agreement with observations, with only a 5 % devia-
tion. Leaf carbon pools showed similar patterns of overes-
timation (C-only: 82.7 %, CN: 59.1 %, CNP: 3.6 %). This
improvement in leaf carbon estimation by CNP was further
confirmed by better LAI prediction: the CNP configuration

Figure 4. Comparison of carbon pools among different nutrient
coupling configurations. (a) Trajectories of ecosystem carbon pools
during model spin-up for carbon-only (C-only), coupled carbon-
nitrogen (CN), and coupled carbon-nitrogen-phosphorus (CNP)
simulations. The ecosystem carbon pool comprises nine pools
within the components of plant, litter, and soil organic matter. (b)
Comparison of simulated and observed (OBS) carbon pools in plant
biomass and soil organic matter. Plant carbon pools comprise leaf,
wood, and root carbon (excluding reproductive organs due to data
unavailability), and soil carbon pools include fast, slow, and pas-
sive soil organic carbon components. The error bar for observation
represents the standard deviation of the sum of plant and soil pools.

(3.94 m2 m−2) showed only 5 % deviation from observations
(3.75± 0.15 m2 m−2), while C-only and CN configurations
overestimated by 85 % and 61 %, respectively.

The observed reduction in LAI represents a decrease in
photosynthetic capacity achieved through nutrient limita-
tion of plant growth, which reduces the photosynthetic leaf
area rather than directly affecting leaf-level photosynthetic
physiological parameters. The relationships between leaf ni-
trogen and phosphorus concentrations and photosynthetic
traits (e.g., Vcmax, Jmax) are well established (Walker et al.,
2014; Ellsworth et al., 2022) and have been incorporated
into some land surface models (e.g., JULES-CNP). However,
these large-scale emergent relationships significantly overes-
timated photosynthetic parameters at our study site (Table
S5). At the same time, our site-specific dataset was insuffi-
cient to derive robust empirical relationships between nutri-
ent concentrations and photosynthetic capacity. Future stud-
ies with more comprehensive site-level measurements could
enhance this aspect of the model to represent nutrient-carbon
interactions better.

Additionally, the CNP configuration better captured ob-
served carbon fluxes compared to the C-only and CN config-
urations (Table 5). Although the total plant carbon litterfall
rate was moderately overestimated by 22.7 %, this still re-
flects improved simulation of aboveground carbon dynamics
and could be further refined by incorporating reproductive
pool measurements in future studies.

In contrast, root carbon pools showed an overestimation
across all configurations, with CNP exhibiting the lowest bias
(34.2 %) and falling within one standard deviation of the ob-
served values (Table S1), while the C-only and CN config-
urations showed larger deviations (68.8 % and 65.1 %, re-
spectively). The relatively higher root carbon estimation in
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Figure 5. Comparison of simulated and observed ecosystem pools across different nutrient coupling configurations (C-only, CN, and CNP).
(a) Carbon pools in vegetation components (leaf, wood, root) and soil, with values for leaf and root scaled by 101. (b) Nitrogen pools in
vegetation components, soil (scaled by 10−2), and mineral nitrogen (Nmin). (c) Phosphorus pools in vegetation components, soil organic P
(scaled by 10−2), labile P (Plab), and sorbed P (PS). Error bars on observed data (OBS) indicate standard deviations. Numbers in parentheses
indicate scaling factors applied to improve visualization. For example, the soil P value marked with 10−2 indicates that this value has been
scaled down, and the actual value is 1.58/10−2

= 158 g P m−2. Shaded areas indicate inorganic nutrient pools.

Table 5. Observed and simulated carbon, nitrogen, and phosphorus fluxes with C-only, CN, and CNP configurations. The plant litterfall rate
is the sum of the litterfall of leaves, woody, and reproductive parts.

C, N and P fluxes C-only CN CNP Observation Unit

C transfer from leaf to litter 0.43 0.38 0.25 0.26± 0.06 kg C m−2 yr−1

C transfer from plant to litter 0.98 0.86 0.54 0.44± 0.04 kg C m−2 yr−1

N transfer from plant to litter – 11.36 7.44 6.74± 0.68 g N m−2 yr−1

P transfer from plant to litter – – 0.24 0.79± 0.24 g P m−2 yr−1

Soil respiration 1.72 1.59 1.13 0.99± 0.07 kg C m−2 yr−1

Net N mineralization – 18 12.3 13.14± 0.73 g N m−2 yr−1

Net P mineralization – – 0.54 0.67± 0.14∗ g P m−2 yr−1

∗ Jiang et al. (2024b).

CNP may be attributed to its dynamic allocation strategy,
which preferentially allocates carbon to roots under nutrient-
limited conditions. While our model successfully reproduced
the enhanced belowground carbon allocation under nutri-
ent limitation, consistent with experimental evidence (Wu et
al., 2025; Gill and Finzi, 2016), the overestimated root car-
bon suggests additional constraints are needed. Indeed, the
nutrient-dependent allocation scheme remains a significant
source of uncertainty in terrestrial biosphere models (Zaehle
et al., 2014; Jiang et al., 2024a). Although dynamic alloca-
tion schemes have been demonstrated to be significantly in-
fluenced by nutrient availability (Xia et al., 2023), explicit
nutrient controls on allocation remain underrepresented in
many ecosystem models (De Kauwe et al., 2014; but see
Knox et al., 2024). Our model presents a practical approach
for representing the nutrient regulation of carbon allocation
processes. These results highlight the necessity of improved

observational constraints on root turnover and carbon alloca-
tion patterns for more accurate process-based simulations.

For soil carbon pools, while C-only and CN configurations
showed significant overestimations of 59.1 % and 52.1 %, re-
spectively, the CNP configuration demonstrated the closest
agreement with observations, with a slight overestimation of
1.06 %. Despite the considerable observational uncertainty
in soil carbon stocks (Table S1), the substantial overestima-
tion by C-only and CN configurations was clearly beyond
the reasonable range. This distinct improvement in soil car-
bon estimation by CNP configuration suggests that proper
representation of nutrient limitations is crucial for realistic
soil carbon predictions (Cui et al., 2024; Wei et al., 2022;
Achat et al., 2016). In conclusion, the CNP model consis-
tently shows better alignment with observed carbon pools,
particularly in reducing the systematic overestimation seen
in the C-only and CN models.
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3.1.2 N cycle

For nitrogen cycling properties, the CNP configuration ex-
hibited superior performance in simulating nutrient pools
compared to CN configurations (Fig. 5b). Regarding plant ni-
trogen pools, the CN configuration demonstrated substantial
overestimations for leaf (59.2 %), woody tissue (89.9 %), and
root N (55.9 %). In contrast, the CNP configuration showed
markedly improved accuracy, with only slight overestima-
tions of 3.3 %, 5.0 % for leaf and wood N, and 28.8 % for
root N. The patterns of plant organic N across model con-
figuration simulations were consistent with the carbon sim-
ulation results in both CN and CNP configurations, reflect-
ing the constraints of plant tissue stoichiometry on coupled
C-nutrient dynamics (Knox et al., 2024; Wang et al., 2010).
For soil N pools, the CNP simulation (16.74 g N m−2) fell
within the range of observed values (18.6± 5.5 g N m−2),
whereas the CN configuration substantially overestimated
soil N (28.75 g N m−2). The slight underestimation of soil N
in CNP relative to observations may be attributed to the flex-
ible soil C : N ratios, as these ratios can vary within specific
ranges due to complex microbial processes and dynamics of
organic matter decomposition (Tian et al., 2010, 2021). The
introduction of P cycling into the model resulted in reduced
carbon allocation to both plant and soil pools, which con-
sequently led to proportional reductions in organic N pools
compared to the CN configuration, ultimately capturing the
observed N pools more accurately.

For soil mineral N content, the CN configuration underes-
timated soil mineral N content by 33.3 % despite simulating
higher net N mineralization rates (Table 5). This discrepancy
likely reflects the absence of phosphorus constraints in the
CN model. While the CN model simulated higher net N min-
eralization than the CNP model (Table 5), this enhanced ni-
trogen input was offset by excessive plant N uptake. This is
consistent with the substantial overestimation of plant car-
bon pools in the CN configuration (Fig. 5a) and the corre-
spondingly lower soil mineral N reserves (Fig. 5b). In con-
trast, the CNP configuration showed a moderate overestima-
tion (15.9 %) of soil mineral N content, demonstrating better
agreement with observations compared to CN. The elevated
soil mineral N levels in CNP could be attributed to the higher
plant N litterfall rates (10.4 % above observed rates, Table 5),
which compensated for the underestimated net N mineraliza-
tion rates.

The incorporation of P cycling constraints in the CNP con-
figuration substantially improved the simulation of N pools
and fluxes compared to the CN configuration, demonstrat-
ing the importance of considering N-P interactions in ecosys-
tem modeling. This improvement reflects the fundamental in-
terconnectedness of nitrogen and phosphorus cycles, where
phosphorus availability directly regulates plant nitrogen de-
mand and uptake efficiency, while nitrogen status influences
phosphorus acquisition strategies (Elser et al., 2007; Peñue-
las et al., 2013). In our model, these interactions are primar-

ily captured through the tight coupling between soil nutrient
availability, plant stoichiometry, and plant growth processes,
which prevents unrealistic carbon and nitrogen accumulation
when phosphorus becomes limiting. Notably, our model has
limitations in capturing the full complexity of N-P interac-
tions, reflecting broader challenges in coupled CNP model-
ing (Achat et al., 2016). For example, the absence of linkages
between nitrogen fixation processes and phosphatase enzyme
activity (Batterman et al., 2018), as well as the simplified rep-
resentation of plant-microbe competition for nutrients and
the lack of explicit mycorrhizal associations, suggest areas
for future model refinement (Wu et al., 2025; Braghiere et
al., 2021; Zhu et al., 2019).

3.1.3 P cycle

The CNP model showed good overall performance in sim-
ulating phosphorus pools across ecosystem compartments
(Fig. 5c). For plant components, the model accurately repro-
duced organic P pools, with slight overestimations of 5.0 %,
2.8 %, and 10.0 % for leaf, wood, and root compartments,
respectively. For the soil P, the CNP simulated a lower value
(1.58 g P m−2) than observed, but within its range (1.8± 0.6).
Those organic P pools have the same pattern as organic N
pools for CNP simulations, as C-N-P is coupled through sto-
ichiometry.

The simulated inorganic P content (0.8 g P m−2) fell
within the observed range (0.48–1.6 g P m−2). Additionally,
the simulated net P mineralization rate (0.54 g P m−2 yr−1)
was comparable to observations from tropical forests
(0.67± 0.14 g P m−2 yr−1; Jiang et al., 2024b). The model
successfully reproduced the observed levels of various P
pools overall; however, it significantly underestimated plant
P litterfall rates by 69 % (Table 5). This discrepancy sug-
gests potential limitations in the model’s representation of
nutrient-related processes, such as plant nutrient resorption
mechanisms. Nutrient resorption is a crucial physiological
process through which plants adapt to varying N and P
availability in ecosystems. In our model, we implemented a
fixed resorption coefficient (Table 4), which may oversim-
plify the dynamic nature of nutrient resorption. Addition-
ally, our model does not account for the reciprocal effects of
nitrogen and phosphorus availability on nutrient resorption
dynamics, where N availability influences P resorption effi-
ciency and vice versa (See et al., 2015; Li et al., 2019). This
simplified representation likely contributes to the contrast-
ing patterns observed in plant nutrient litterfall rates, which
overestimate N litterfall while underestimating P litterfall.
Plants typically adjust their nutrient resorption efficiency in
response to both internal nutrient status and external resource
availability (Mao et al., 2015; Reed et al., 2012; Aerts and
Chapin, 2000; Aerts, 1996). The fixed resorption coefficients
in the current model structure may not capture these adaptive
responses, potentially leading to unrealistic nutrient cycling
patterns, especially under varying environmental conditions.

Geosci. Model Dev., 18, 7545–7573, 2025 https://doi.org/10.5194/gmd-18-7545-2025



F. Wan et al.: TECO-CNP Sv1.0 7563

The CNP configuration successfully captured the steady-
state P distributions across ecosystem pools despite some dis-
crepancies in P cycling processes. Further refinements in P
cycling processes, particularly in plant-soil P transfer mech-
anisms and plant internal P recycling, would be valuable for
improving model performance (Jiang et al., 2019, 2024a).
However, these improvements are currently constrained by
limited observational data, as data scarcity remains a signifi-
cant challenge for C-nutrient coupled modeling (Achat et al.,
2016; Reed et al., 2015). Future research should prioritize
comprehensive field measurements of P cycling processes,
including plant P resorption efficiency, soil P transforma-
tion rates, and plant-soil P transfer dynamics. Such empirical
data would not only help validate and improve model per-
formance but also enhance our understanding of terrestrial P
cycling and its interactions with C and N cycles in terrestrial
ecosystems.

3.2 Evaluate the model-data fusion module

To evaluate the efficiency of the integrated data assimilation
module, we compared the carbon fluxes from CNP simula-
tions with default and optimized parameters (Figs. 6 and 7).
The optimization showed varied improvements across differ-
ent carbon flux components. For gross primary productivity
(GPP), both default and optimized simulations captured the
seasonal patterns well, with only a minor improvement in
RMSE from 10.94 to 10.69 and a slightly increased correla-
tion coefficient from 0.53 to 0.57 after optimization (Fig. 6a,
e).

The photosynthetic capacity per unit area and photosyn-
thetic surface area, indicated by Vcmax and SLA respectively,
are key determinants of GPP. Both Vcmax and SLA were
adjusted within their reference ranges during data assimi-
lation (Fig. 8). Although these parameters showed compen-
satory effects in their adjustments, their combined effect still
demonstrated a tendency to enhance GPP (Fig. 6a, e). No-
tably, the systematic underestimation of GPP, particularly
during the growing season, suggests the need for improv-
ing current carbon cycle process representations. These im-
provements should include (1) the soil moisture control on
stomatal conductance specific to evergreen broadleaf forests
(Weng and Luo, 2008) and (2) the calculation of sunlit and
shaded leaf proportions through more accurate clumping in-
dex parameterization in the two-leaf model (Wang et al.,
2024a; Bi et al., 2022; Yan et al., 2017).

Ecosystem respiration (ER) showed more substantial im-
provement with data assimilation, with RMSE decreasing
from 11.03 to 6.72 g C m−2 per week, particularly in reduc-
ing the high-frequency fluctuations present in the default
simulation (Fig. 6b). This improvement in ER led to a no-
table improvement in NEE, where the RMSE decreased from
14.21 to 8.83 g C m−2 per week, and the correlation coeffi-
cient improved dramatically from −0.03 to 0.51. The sig-
nificantly improved representation of carbon exchange dy-

Table 6. Target parameters, their ranges, mean values and maximum
likelihood estimation (MLE) of the posterior distribution. Q10 rep-
resents temperature sensitivity; SLA, specific leaf area; and Vcmax,
maximum carboxylation rate. T1–T9 indicate turnover times for in-
dividual pools.

Parameters Lower Upper Mean MLE

Q10 1.00 3.00 1.29 1.26
SLA 89.04 184.26 147.23 166.68
Vcmax 23.29 29.11 24.52 24.42

Carbon turnover rate

T1 0.25 8.76 5.19 6.11
T2 25.00 750.00 373.13 260.58
T3 0.24 1.80 1.03 0.79
T4 0.10 5.00 2.19 0.76
T5 0.10 0.50 0.27 0.21
T6 0.50 20.00 7.75 1.69
T7 0.05 1.00 0.53 0.43
T8 2.00 200.00 26.41 9.75
T9 400.00 2000.00 1197.29 1090.48

namics with parameter optimization is further confirmed by
the diurnal patterns across months (Fig. 7), with reduced
RMSE in most months (7 out of 12). However, certain limita-
tions persist, notably the underestimated NEE during midday
hours in the growing season, primarily attributed to underes-
timated GPP, which requires further investigation.

The enhancement in ER and NEE primarily resulted from
the efficiently constrained key parameters (Table 6, Fig. 8)
based on the validated state variables (Fig. 5). While the de-
fault parameters achieved reasonable state variables, the re-
sponse of state variables to new meteorological forcing con-
ditions required adjustment (Ma et al., 2021). For instance,
the Q10 and soil carbon residence time (T6–T8) are well-
constrained in our case. The temperature sensitivity param-
eter represents microbial responses to soil temperature, and
carbon residence times serve as a proxy for microbial ac-
cessibility to carbon substrates, rather than just soil carbon
properties, both of which are related to heterotrophic res-
piration. Through the optimization of these parameters, the
CNP model effectively reduced the high-frequency fluctua-
tions present in the default simulation and better captured the
observed temporal dynamics.

Data assimilation substantially improved CNP model per-
formance in carbon flux simulation, highlighting the poten-
tial for applying our developed model to other flux sites with-
out tedious manual calibration procedures. Given that param-
eter optimization can potentially compensate for structural
deficiencies in models (e.g., the equifinality issue; Luo et
al., 2016, 2009; Sierra et al., 2015), it’s understandable that
models with different nutrient coupling schemes can gener-
ate similar performance with optimized parameters (Fig. S1,
Text S1 in the Supplement). However, while parameter op-
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Figure 6. Comparison of weekly observed and simulated carbon fluxes using default parameters and optimized parameters for the Tiantong
site in 2021. (a–c) Time series of observed (black dots) and simulated values with default parameters (blue line) and optimized parameters
(red line), where the optimized results are derived from 1000 parameter sets randomly selected from 10 000 accepted parameter sets during the
data assimilation process (shaded areas represent standard deviation). (d–f) Scatter plots of simulated versus observed values corresponding
to the time series above, where the dashed line represents the 1 : 1 line. CC, correlation coefficient; RMSE, root mean square error.

timization can help the C-only model fit historical data, it
may result in unrealistic parameter values (Fig. S2) and es-
sentially “bakes in” current nutrient conditions without rep-
resenting the underlying processes, thereby compromising its
predictive capacity for future scenarios.

4 Conclusions

In this study, we developed and evaluated a process-based
CNP-coupled model for subtropical evergreen broadleaf for-
est. The CNP configuration demonstrated superior perfor-
mance compared to C-only and CN models across most
biogeochemical pools and fluxes, effectively addressing the
overestimation issues prevalent in models with simplified
biogeochemical processes. The incorporation of phospho-
rus cycling mechanisms proved crucial for capturing ecosys-
tem dynamics in these phosphorus-limited systems, provid-
ing an essential foundation for predicting subtropical ever-
green broadleaf forest responses to climate change. Beyond
mechanistic improvements, site-scale models like TECO-
CNP can fully leverage rich, localized datasets, including
forest inventory records, experimental manipulations, and

eddy covariance measurements, to constrain model param-
eters and processes. This integration is crucial because unob-
served or weakly observed processes cannot be reliably con-
strained through data assimilation alone (Luo et al., 2011).
TECO-CNP is designed to facilitate the fusion of such multi-
process information, thereby enabling more mechanistic and
robust representations of ecosystem C-N-P dynamics. Fur-
thermore, we implemented and evaluated a model-data fu-
sion framework using the MCMC algorithm, which signif-
icantly improved the simulation of carbon fluxes. The op-
timization of key parameters, including those that control
photosynthetic capacity, temperature sensitivity, and carbon
turnover rate, effectively reduced simulation uncertainties
and enhanced model performance. The success of the data
assimilation approach not only demonstrates its effectiveness
in current model optimization but also provides a promising
path for future model improvement and applications across
diverse ecosystems. More importantly, integrating data as-
similation frameworks with site-level biogeochemical mod-
els facilitates a synergistic loop between experimental find-
ings and model development, enhancing our understanding
of the nutrient cycle processes and our ability to make reli-
able predictions. This integrated approach provides a robust
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Figure 7. Diurnal patterns of hourly net ecosystem exchange (NEE)
across different months simulated by the CNP model configuration
before (default) and after data assimilation (MCMC) compared with
observations. Black lines represent observational data with shaded
areas indicating ±1 standard deviation (SD). Colored lines indi-
cate model simulations with shaded areas showing their respective
±1 SD. Root mean square errors (RMSE) between model outputs
and observations are colored in blue for simulations with default
parameters and in red for simulations with accepted parameters.

framework for improving ecosystem models and advancing
our understanding of nutrient cycling in response to environ-
mental changes.

Code availability. The model code is available at
https://doi.org/10.5281/zenodo.15032706 (Wan et al., 2025a).

Data availability. The model outputs related to the re-
sults in this paper are provided in a Zenodo repository
(https://doi.org/10.5281/zenodo.15033861, Wan et al., 2025b).
The visualization scripts and associated data for generat-

Figure 8. Posterior distributions of model parameters derived from
Bayesian calibration. Grey shaded areas represent parameter poste-
rior distributions, with red and blue vertical lines indicating poste-
rior means and default values, respectively. The parameters (listed
in Table 6) includeQ10, SLA, Vcmax, and carbon residence time pa-
rameters (T1–T9). The corresponding numerical values are shown in
matching colors.

ing all figures are provided in a separate Zenodo repository
(https://doi.org/10.5281/zenodo.15032690, Wan et al., 2025c).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-7545-2025-supplement.
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