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Abstract. Forecast verification plays a crucial role in the de-
velopment cycle of operational numerical weather predic-
tion models. At the same time, verification remains a chal-
lenge as the traditionally used non-spatial forecast quality
metrics exhibit certain drawbacks, with new spatial metrics
being developed to address these problems. Some of these
new metrics are based on smoothing, with one example be-
ing the widely used Fraction Skill Score (FSS) and its many
derivatives. However, while the FSS has been used by many
researchers in limited area domains, there are no examples
of it being used in a global domain yet. The issue is due to
the increased computational complexity of smoothing in a
global domain, with its inherent spherical geometry and non-
equidistant and/or irregular grids. At the same time, there
clearly exists a need for spatial metrics that could be used in
the global domain as the operational global models continue
to be developed and improved, along with the new machine-
learning-based models. Here, we present two new method-
ologies for smoothing in a global domain that are potentially
fast enough to make the smoothing of high-resolution global
fields feasible. Both approaches also consider the variability
of grid point area sizes and can handle missing data appro-
priately. This, in turn, makes the calculation of smoothing-
based metrics, such as FSS and its derivatives, in a global
domain possible, which we demonstrate by evaluating the
performance of operational high-resolution global precipita-
tion forecasts provided by the European Centre for Medium-
Range Weather Forecasts.

1 Introduction

Forecast verification plays a crucial role in the development
cycle of operational numerical weather prediction models. At
the same time, verification remains a challenge as the tradi-

tionally used non-spatial forecast quality metrics, such as the
Root-Mean-Square-Error metric (RMSE, Wilks, 2019), that
only compare the values of the observed and forecasted fields
at collocated locations, exhibit certain drawbacks. One ex-
ample is the so-called “double penalty” issue, which penal-
izes forecasts for both false alarms and missed events. An-
other is the difficulty distinguishing between near misses and
substantial spatial displacements (Brown et al., 2012; Skok,
2022).

This is why different spatial verification measures have
been developed over the years. These try to address the prob-
lems of the non-spatial metrics by comparing not only the
values at collocated locations but also taking into account
values at other locations. Depending on how they work,
they can be classified into five categories (Gilleland et al.,
2009; Dorninger et al., 2018): scale separation/decomposi-
tion metrics (e.g., Casati et al., 2004; Mittermaier, 2006;
Casati, 2010; Buschow and Friederichs, 2021; Casati et al.,
2023), feature-based approaches (e.g., Ebert and McBride,
2000; Davis et al., 2006a, b; Wernli et al., 2008; Davis et al.,
2009; Wernli et al., 2009), field deformation techniques (e.g.,
Keil and Craig, 2007, 2009; Marzban et al., 2009) and dis-
tance metrics (e.g., Baddeley, 1992; Gilleland, 2017) and
the neighborhood methods (e.g., Roberts and Lean, 2008;
Roberts, 2008; Skok, 2022).

To our knowledge, examples of high-resolution global
fields analyzed by spatial metrics that adequately account
for Earth’s spherical geometry are almost non-existent in the
published literature (except for Skok and Lledd, 2025 and
possibly Mittermaier et al., 2016). We have identified two
likely reasons for this gap: existing methods are designed
for planar geometry, and adapting them to the non-planar
geometry of a global domain is challenging, and the com-
putational complexity in spherical geometry significantly in-
creases, rendering the use with contemporary state-of-the-art
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global high-resolution models prohibitively expensive (Skok
and Lledd, 2025). At the same time, there clearly exists a
need for spatial metrics that could be used in the global do-
main as the operational global models continue to be devel-
oped and improved along with the new machine-learning-
based models (e.g., Weyn et al., 2020; Bi et al., 2023; Lam
et al., 2023; Lang et al., 2024) that also show increasing po-
tential for global forecasting (Skok and Lledo, 2025).

The Fraction Skill Score (FSS, Roberts and Lean, 2008;
Roberts, 2008) is a widely used neighborhood-based verifi-
cation metric. It works by first applying a threshold, thereby
converting the original fields to binary fields, and then calcu-
lating the fractions that represent the ratio between the num-
ber of non-zero and all points located inside a neighborhood
of prescribed shape and size, which are then used to calcu-
late the score’s value. We note that calculating the fraction
values from a binary field is mathematically equivalent to
smoothing the binary field using a constant value smooth-
ing kernel of the same shape and size as the neighborhood.
FSS is a popular metric with many derivatives, as different
researchers have tried to extend its functionality by develop-
ing new scores based on the same fundamental principles,
for example, to extend the original FSS to be able to analyze
ensemble/probabilistic forecasts (e.g., Zacharov and Reza-
cova, 2009; Schwartz et al., 2010; Duc et al., 2013; Boual-
legue et al., 2013; Dey et al., 2014, 2016; Ma et al., 2018;
Gainford et al., 2024; Necker et al., 2024), to verify non-
scalar variables (e.g., wind, Skok and Hladnik, 2018), to
also take into account timing errors (e.g., Duc et al., 2013;
Ma et al., 2018; Mittermaier, 2025), to provide an estimate of
forecast displacement (e.g., Skok and Roberts, 2018; Skok,
2022), to provide localized information on forecast quality
(Woodhams et al., 2018; Gainford et al., 2024; Mittermaier,
2025), or to develop other similar smoothing-based metrics
with somewhat different requirements and properties (e.g.,
ones that do not necessarily require thresholding, for exam-
ple, Skok, 2022).

Conceptually, employing the FSS or one of its derivatives
in spherical geometry poses no inherent issues; however,
challenges emerge due to the increased computational com-
plexity of smoothing (fraction calculation), which is com-
putationally the most expensive part of the score’s calcula-
tion. Namely, for a regular and equidistant grid, the smooth-
ing can be done very efficiently using either the summed-
fields approach (Faggian et al., 2015) with time complexity
O (n) or by using the Fast-Fourier-Transform-based convo-
lution (Smith, 1999) with time complexity O (nlog(n)), with
n being the number of points in a field. The problem is that
these approaches cannot be used on a sphere because the grid
is inherently non-equidistant and/or irregular. Using the so-
called explicit summation for smoothing (where at each lo-
cation, the distance to all other grid points is calculated to de-
termine which fall inside the smoothing kernel) is still pos-
sible, but becomes prohibitively expensive for global high-
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resolution-model fields consisting of millions of points due
to its time complexity of O (n?).

An additional complication in spherical geometry is the
variability of grid point area sizes. Namely, in a global do-
main, the area size represented by each grid point is usually
not the same for all grid points. If the smoothing is done in a
way that does not account for this, the spatial integral of the
field could change considerably as a result of the smoothing.
For example, smoothing a precipitation field could cause the
total volume of precipitation in the domain to increase or de-
crease. To alleviate this issue, the smoothing method needs
to be area-size-informed.

This paper aims to develop novel computationally effi-
cient methodologies for smoothing fields on a sphere. Such
methodologies are required for the smoothing-based verifi-
cation metrics, such as FSS and its many derivatives, to be
used to evaluate the forecast performance of state-of-the-art
operational global high-resolution models. The smoothing
methodologies must also be area-size-informed and prefer-
ably able to handle missing data values appropriately.

2 Area-size-informed smoothing

The area-size-informed smoothed value at grid point i can be
calculated as

Y. fiaj
ek (R)

> oaj’

JeKi(R)

fi(R) = ey

where f; is the field value at point j, a; the area size rep-
resentative for point j, and K;(R) the subset of all points
around point i, for which the great circle distance (along the
spherically curved surface of the planet) to point i is less than
R. In other words, the smoothed value represents the area-
size-weighted average value of points inside a spherical-cap-
shaped smoothing kernel centered on the selected point. The
radius of the smoothing kernel can also be called a smoothing
radius.

Figure 1 showcases an example of area-size-informed
smoothing in the case of an irregular grid in two dimensions.
Since the grid is irregular, the area sizes of points, denoted by
the corresponding Voronoi cells, differ. In this case, the sub-
set of points inside the smoothing kernel, denoted as K;(R)
in Eq. (1), is shown by the gray color, while the rest of the
points are white.

Figure 2 shows some examples of smoothed fields of fore-
casted 6-hourly accumulations of precipitation produced by
the high-resolution deterministic Integrated Forecasting Sys-
tem (IFS, ECMWEF, 2023a, b) of the European Centre for
Medium-Range Weather Forecasts (ECMWF). The IFS is
considered one of the best-performing operational medium-
range global deterministic models and is frequently used as
a benchmark to which other models are compared against
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Figure 1. A visualization showcasing the area-size-informed
smoothing methodology in two-dimensions. The small circles de-
note the grid points, while the polygons represent the correspond-
ing Voronoi cells (defined as the region that is closest to the corre-
sponding grid point). The large circle represents the smoothing ker-
nel around the point denoted by a + sign, while the Voronoi cells of
points inside the kernel are colored in gray.

(e.g., Bi et al., 2023; Lam et al., 2023; Lang et al., 2024),
which makes it especially suitable to be used as an example.

The IFS uses an octahedral reduced Gaussian grid 01280
(Malardel et al., 2016), which consists of around 6.5 million
grid points. The points are arranged in fixed-latitude circu-
lar bands, with the band closest to the equator consisting of
5136 equidistant points spread around the Earth. In the pole-
ward direction, each next band has four points fewer than the
previous one, with the last band, located close to the poles,
consisting of only 20 points. This setup makes the grid irreg-
ular, with area size of the points also varying substantially
with latitude, from 61 km? at the equator, to 93 km? at 75°,
where it is the largest, to 18 km? close to the poles, where
it is the smallest (Skok and Lledé, 2025). The IFS precipita-
tion data was provided to us by the ECMWF in the form of
netCDF files that contained the lat-lon locations of the points,
the precipitation accumulation values, and the area size data
of all the points. All the numeric data was provided in float32
numeric format.

The smoothing methodology represented by Eq. (1) does
not have any limitations or requirements about the grid being
regular — the only assumption is that the points are located
on a sphere (in our case, we also assumed that the sphere ra-
dius was equal to the Earth’s radius). It is worth noting that
the smoothing methodology does not require the connectiv-
ity information. The only data required for calculating the
smoothed values are the original field values, the locations
of all the points on the sphere, and their area size informa-
tion. In the case of IFS fields, the area size data was already
provided by the ECMWEF, but if it was not available, it could
be obtained by performing the Voronoi tessellation on the
sphere, for example.

Our computational setup consisted of a computer with an
AMD Ryzen Threadripper PRO 5975WX processor with 32
physical cores. The Debian 12 Linux operating system was
installed on the computer. The code was written in C++-, and
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the gcc compiler version 12.2 was used to compile the code
with the OpenMP programming interface used for shared-
memory multi-thread computing. Hyper-threading was en-
abled. Even though the IFS data was provided in float32 for-
mat, we consistently used double (float64) precision in the
C++ code, except in one special case (for more information,
please refer to the “Code and data availability” section).

Due to the spherical periodicity of the global domain, the
smoothing kernel with R > 20000 km will cover the whole
surface of the Earth (i.e., in this case, K;(R) is guaranteed
to contain all the grid points), resulting in the smoothed
value being the same everywhere - the so-called asymp-
totic smoothing value, which we denote as fzfsy. The asymp-
totic value can be calculated easily with time complexity
O(n) as fyy=2>_fjaj/ aj, where both sums go over
all the points, and ) a; represents the surface area of the
whole Earth. Thus, as the smoothing kernel becomes larger,
the field will become less variable, with the smoothed val-
ues being ever closer to the asymptotic value. For example,
Fig. 2i shows an example with the smoothing kernel radius
10000 km, which covers about half the Earth’s surface, with
the variability of the smoothed value being very low.

To calculate the smoothed value via Eq. (1), the two sums
over the points inside the smoothing kernel must be per-
formed. The so-called linear search approach is the most
straightforward way to identify these points. In this case, a
test is performed for each point in the domain by calculat-
ing its distance from the point at the center of the smoothing
kernel and comparing it to the size of the smoothing kernel
radius, thereby identifying the ones that satisfy this criterion.

Under the assumption that the Earth is spherical, the
Great Circle Distance (GCD) between the two points can
be calculated using the latitude/longitude coordinates of both
points by utilizing the Haversine formula (Markou and Kas-
somenos, 2010). However, using this approach, which re-
quires the evaluation of multiple trigonometric expressions,
turns out to be computationally slow.

Alternatively, the grid points can be projected from the
model’s native two-dimensional spherical coordinate system
into a three-dimensional Euclidean space, where all the grid
points are located on the surface of a sphere. In this new co-
ordinate system, the Euclidean distance between two points
on the Earth’s surface is the so-called tunnel distance (TD),
representing a straight line between the two points that goes
through the sphere’s interior. The GCD can be easily con-
verted to the TD or vice versa, using the relation

GCD )
2rg

or its inverse, where rg is the Earth’s radius. Since a larger
GCD will always correspond to a larger TD and vice versa,
searching for the points inside a specified search radius de-

fined by TD in the three-dimensional space will yield the
same results as using the corresponding value of GCD, uti-

TD = 2rgsin <
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Figure 2. Visualization of smoothed fields of forecasts of 6-hourly precipitation accumulations in the period 00:00-06:00 UTC for 11 October
2022 by the IFS model (the forecast was initialized at 00:00 UTC on the same day). (a) the original non-smoothed field, (b—i) the smoothed
fields using a smoothing kernel radius (R) ranging from 20 to 10000 km. The green circle indicates the size of the smoothing kernel.

lizing the Haversine formula in the model’s native two-
dimensional spherical coordinate system.

Thus, for a specific GCD value, the corresponding value of
TD can be obtained via Eq. (2), and used as a search radius
in the three-dimensional Euclidean space. The square of the
distance between the two points in a three-dimensional Eu-
clidean space is defined as d*, Jj)=(xi —xj)2+(y,- —yj)2+
(zi—zj )2, and its calculation does not require the costly eval-
uation of trigonometric functions. Moreover, the square of
the distance can be directly compared with the precalculated
square of the TD-defined search radius, thus avoiding the
costly square root operation. This is why searching for the
points inside the search radius in the three-dimensional Eu-
clidean space is markedly faster than the Haversine-formula-
based approach (in our case, testing showed it was approxi-
mately 50 times faster).

Nevertheless, even with the projection into the three-
dimensional Euclidean space, the smoothing via the linear
search approach is slow. Namely, if the number of grid points
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in the field is n, and at each point, the distance to all the other
points needs to be calculated, the time complexity is O (n?).
This makes the linear-search-based approach prohibitively
expensive for use with current state-of-the-art operational
high-resolution models, which typically use grids with mil-
lions of points.

For example, smoothing a precipitation field from the IFS
model using a 1000 km smoothing kernel radius (Fig. 2g)
takes about 11h on our computer when utilizing a single
thread. The approach can be relatively effectively paral-
lelized using multiple threads to parallelize the loop over all
the points. Thus, using ten threads instead of just one reduced
the computation time from 11 h to about 1.2 h. However, even
with the parallelization, the approach is still too slow for op-
erational use in a typical verification setting, as the model’s
performance is usually evaluated over a large set of cases rep-
resented by a sequence of fields from a longer time period or
a wide array of weather situations. Thus, a clear need exists
for smoothing approaches that are considerably faster.

https://doi.org/10.5194/gmd-18-7417-2025
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3 K-d-tree-based smoothing

This approach requires the points first to be projected to the
three-dimensional Euclidean space in the same manner as de-
scribed for the linear-search-based approach. Same as before,
the search radius in terms of TD can be calculated from the
GCD-defined smoothing kernel radius using Eq. (2) and then
used for the search in the three-dimensional Euclidean space.

Identification of points that lie inside the search radius
can be sped up considerably by the use of a k-d tree (short
for a k-dimensional tree, Bentley, 1975; Friedman et al.,
1977; Bentley, 1979). A k-d tree is a multidimensional bi-
nary search tree constructed for each input field by iteratively
bisecting the search space into two sub-regions, each con-
taining about half of the nonzero points of the parent region
(Skok, 2023).

The so-called balanced k-d tree is constructed by first per-
forming a partial sort of all the points according to the value
of the first coordinate and then selecting the point in the mid-
dle for the first node (also called the root node), which splits
the tree into two branches, each containing about half the re-
maining points. For each branch, the process is repeated by
partially sorting the points by the second coordinate and se-
lecting the middle point as the node again, which splits the
remaining points into two sub-branches. The process is then
repeated for the third coordinate, then again for the first coor-
dinate (in case the space is three-dimensional), and so on un-
til all the points have been assigned to the k-d tree as nodes.

The time complexity of a balanced tree construction is
O(nlog(n)) (Friedman et al., 1977; Brown, 2015). For ex-
ample, constructing a balanced k-d tree for about 6.5 million
points of the IFS model grid took about 2.5s. Note that if
multiple fields that use the same grid need to be smoothed,
the tree can be constructed only once and kept in memory or
saved to a disk to be reused later. Once it is needed again,
it can be simply loaded from the disk, which is an operation
with time complexity O (n).

Once the tree is constructed, the identification of points
that lie inside a prescribed search radius can be performed
by traversing the tree starting from the root node and moving
outwards by evaluating a query at each split and backtracking
to check the neighboring branches if necessary. The search
can be done in O (log(n) + k) expected time, where k is the
typical number of points in the search region (Bentley, 1979),
as opposed to O (n) for the linear-search-based approach.

For all but the smallest smoothing kernels k > log(n), thus
the time complexity can be approximated as O (k). Since
producing the smoothed field requires the search to be per-
formed for all points, the expected time complexity of the
smoothing using the k-d-tree-based approach is O(nk) as
opposed to O (n?) for the linear-search-based approach. This
means that, for small smoothing kernels, the k-d-tree-based
approach will be much faster, but for large kernels, when k
becomes comparable to n, the benefit will vanish.
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Fortunately, the calculation speed can be improved further
by embedding the so-called Bounding Box (BB) information
on each tree node. The BB information consists of the maxi-
mum and minimum values of the coordinates of all the points
on all sub-branches of a node. This information defines the
extent of a multidimensional rectangular bounding box that
is guaranteed to contain all the points in a specific branch.
Adding BB information to the tree is trivial and very cheap
since a single iterative loop over all the tree nodes is required
to determine and add this data - the time complexity of this
is O (n), and thus the cost is almost negligible.

Once the BB data is available, it can be utilized to skip
the branches that are guaranteed to fall completely outside
the sphere defined by the search radius. This can be done
by first determining which corner of the BB is the closest
to the center of the search radius sphere. Next, if the dis-
tance of this corner to the center of the search radius sphere is
larger than the search radius, then all the points in the node’s
sub-branches are guaranteed to be located outside the sphere,
meaning this branch can be ignored entirely, thus reducing
the computational load.

The BB information can also be used to identify the
branches that are guaranteed to be fully inside the search
radius sphere. This can be done by first determining which
corner of the BB is the furthest away from the center of the
search sphere. Next, if the distance of this corner to the center
of the search sphere is smaller than the search radius, all the
points in the node’s sub-branches are guaranteed to be inside
the sphere. This means that all the points in this branch can
simply be added to the list of points known to be inside the
search sphere without the need to do any more checks and
distance evaluations, thus reducing the computational load.

However, although the above-mentioned BB-information-
based improvements do make the search markedly faster, the
time complexity of the smoothing approach remains O (nk),
as in the end, the sums in Eq. (1) still need to be performed
over all the points inside the search radius sphere.

Crucially, the speed of the k-d-tree-based smoothing can
be further improved by realizing that, besides the BB infor-
mation, additional data relevant to the smoothing can be em-
bedded into the tree. Namely, one can precalculate the partial
sums of f;a; and a; terms (from Eq. 1) of all the points in the
node’s sub-branches and add this data to each node. Similarly
to adding BB information to the tree, adding the partial sums
data is very cheap as it requires a single iterative loop over
all the tree nodes (the time complexity is again only O (n)).

For branches that are fully located inside the search sphere
(as mentioned above, this can be determined using the BB
data), the partial sum information of a node can be used to
account for all points in the whole branch without the need
to dive deeper into it. Such branches, which happen to be
located near the middle of the search sphere, far away from
its border, can contain a large number of points. Thus, the
reduction of computational cost can be potentially large, as
one node can provide the sum information for many points.

Geosci. Model Dev., 18, 7417-7433, 2025
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This is not true for branches with points near the border
region of the search sphere, as there the algorithm needs to
dive very deep into the tree to accurately determine which
points lie inside or outside of the search region. Thus, the
main part of the remaining computation cost can be attributed
to the evaluation of points located near the search sphere’s
border region. Since the number of points in the border re-
gions is roughly proportional to v/k, the time complexity of
the smoothing reduces to approximately O (n+/k), which is
a huge improvement over O(nk). If the spatial density of
points is roughly constant, ~/k is approximately proportional
to R, with R being the smoothing kernel radius, and the time
complexity is approximately O (nR).

For example, as already mentioned, the linear-search-
based smoothing of the IFS precipitation field shown in
Fig. 2a, for a 1000 km smoothing kernel radius, takes about
11h using a single thread, with the calculation time being
similar also for other kernel sizes. In comparison, the k-d-
tree-based approach takes only eight minutes using a sin-
gle thread and about one minute if ten threads are used in
parallel. As expected, the smoothing calculation is faster
if a smaller smoothing kernel is used. For example, using
R = 100 km, the calculation takes 34 s using a single thread,
which reduces to 4.5 s if ten threads are used in parallel. On
the other hand, for very large smoothing kernels, the k-d-
tree-based approach is still markedly faster than the linear-
search-based approach, but the difference is not as large as
for the smaller kernels. For example, for a kernel with R =
10000 km, the k-d-tree-based calculation took about 70 min
using a single thread and about 12 min if ten threads were
used in parallel.

In the end, we would like to note that we are not the first to
use the k-d trees with FSS-based verification. Namely, Mit-
termaier (2025) already used k-d-trees for calculating FSS-
based metrics. However, in their study, they focused on a lim-
ited area domain over the Maritime continent while seem-
ingly assuming a planar geometry without properly taking
into account the spherical geometry of the Earth. Contrary to
our work, they also did not seem to actively focus on trying to
come up with ways to make the smoothing calculation sub-
stantially faster and only used relatively small smoothing ker-
nels with radii below 100 km, while at the same time relying
on precalculated lookup tables of points inside the smoothing
kernel, to make the smoothing calculation somewhat faster.
This means the time complexity of their approach was lim-
ited to O (nk), which is unfortunately too slow for use with
global high-resolution fields; moreover, for larger neighbor-
hoods, the precalculated lookup tables would be very large
and require too much memory in order to be used effectively.

4 Overlap-detection-based smoothing

While the k-d-tree-based smoothing is markedly faster than
the linear-search-based approach and makes the smoothing
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Figure 3. Same as Fig. 1, but also showing the smoothing kernel
for a second point located right of the original point (the points are
marked with + signs and 1 and 2). The Voronoi cells of points lo-
cated inside both kernels are shown with a light shade of gray. The
darker shades of gray indicate the points inside only one kernel.

of high-resolution fields potentially feasible, it is still rela-
tively slow for very large smoothing kernels, which can be
problematic if many fields need to be smoothed. Thus, it
makes sense to try to come up with a different approach that
would be even faster.

The alternative approach is based on identifying and then
using the information on the overlap of the smoothing ker-
nels centered at nearby points to increase the speed of the
smoothing calculation. Figure 3 is similar to Fig. 1 but also
shows the smoothing kernel for a second point located to the
right of the original point. The Voronoi cells with points in-
side the two kernels are colored with different shades of gray,
according to the point being located inside both kernels or
only one.

Let us assume that for the first point, the values of two
sums from Eq. (1) (i.e., ) fja; and ) a;) are known. The
equivalent sums for the second point can be obtained by sub-
tracting the fyay or ay terms corresponding to the points that
are located in the smoothing kernel of the first point but not
the second (indicated by the dark gray shading on the left side
in Fig. 3), and adding the terms corresponding to the points
that are located in the kernel of the second point but not the
first (indicated by the dark gray shading on the right side in
Fig. 3). This can then be repeated for the next neighboring
point, and so on.

This means that the total sums (over all the points in-
side the smoothing kernel) must be calculated only for the
first point (which can be randomly chosen). For all the next
points, the values of the sums can be obtained with the help
of the nearby points for which the values of the sums are al-
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ready known by subtracting and adding the appropriate terms
with respect to the overlap of the two smoothing kernels. If
the two points are neighbors, the number of terms that need to
be subtracted and added can be approximated by the number
of points that comprise the border of the smoothing kernel
area, which is approximately proportional to v/k.

Evaluating the overlap of the smoothing kernels of nearby
points and determining which terms need to be subtracted or
added can be done using the linear-search-based approach.
That is, for a pair of nearby points, denoted by A (for which
the values of the full sums are already known) and B, the
distances from these points to all other points need to be cal-
culated. Next, if a distance from some point P to A is smaller
than the smoothing kernel radius, and at the same time, the P
to B distance is larger than the smoothing kernel radius, then
the terms concerning point P need to be subtracted from the
values of sums for A (or added if vice versa is true) to obtain
the sums for B.

For the smoothing to be performed, the only information
needed at each point is which previously calculated point is
used as a reference, and the list of points that need to be
added and subtracted.

Determining the reference points can be performed in a
simple manner. First, randomly select the initial point from
the list of all points — this point does not have a reference
point since it is the first one. Secondly, select its nearest
neighbor as the second point and set the first point as its refer-
ence. Third, from the list of all remaining unassigned points,
identify the nearest neighbor of the second point and use it as
a third point. Fourth, from the list of all the points that have
already been assigned (in this case, these are only the first
and second points), identify the nearest neighbor and use it
as a reference for the third point. Then, repeat steps three and
four until all the points have been assigned.

Alternatively, the fourth step could be to always use the
point assigned in the previous step as a reference. However,
this has some downsides. Namely, the procedure is iterative,
with each addition and subtraction incurring a small numeri-
cal rounding error. In a field consisting of millions of points,
the numerical error could potentially accumulate (especially
if a large smoothing kernel is used, as in such cases, the data
from hundreds of points might need to be subtracted or added
at each step). By allowing other than the point assigned in the
previous step to be used as a reference, the accumulated nu-
merical error is significantly reduced. There is also a second
benefit, namely that the nearest-neighbor search can iden-
tify the reference point that is closer and thereby has better
overlap of the smoothing kernel than the previously assigned
point.

Figure 4a shows the number of iterative steps needed to
reach a certain point in the IFS model grid (which consists
of about 6.5 million points). As can be observed, the median
value is about 19000 steps, meaning that the number of the
required steps is in the tens of thousands, not millions, and
thus the numerical error remains limited.
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Multiple factors can affect the size of the numerical error.
For example, the total number of grid points in the field, the
size of the smoothing radius, and which point is selected as
the initial starting point. The numerical error will also de-
pend on the nature of the field that is smoothed, for example,
whether the original field is less or more variable (like precip-
itation, which can have large areas with zero values as well
as many smaller regions with very large gradients and val-
ues). At the same time, even though the error size depends
on many factors, the size of the numerical error in a par-
ticular setup can be determined relatively easily by compar-
ing the smoothed values obtained via the overlap-detection-
based approach to the smoothed values obtained via the kd-
tree-based approach, which is as accurate as the linear-search
approach and has negligible numerical error. Thus, we rec-
ommend that the user first check the magnitude of the nu-
merical error for a few representative fields to make sure it is
acceptably small so as not to affect the results of the analysis.

For example, Fig. 4b shows the analysis of numerical er-
ror for the IFS precipitation field shown in Fig. 2. The graph
shows the cumulative distribution of the absolute numerical
error (the difference between the smoothed values computed
via the overlap-detection and kd-tree-based approaches) for
eight different sizes of smoothing radii ranging from 10 to
15000 km. The graph legend also shows the size of the max-
imal absolute numerical error for a particular smoothing ra-
dius. As expected, the error sizes depend on the smoothing
radius, but overall the errors tend to be relatively small, typi-
cally smaller than 10~* mm (6h)~!, with the maximum error
always smaller than 0.01 mm (6 h)~!. Note that this is still
substantially less than the typical resolution of the raingauge
measurements, which tends to be 0.1 mm or more.

Moreover, although we did not use them here, additional
mitigation measures could be implemented to reduce the nu-
merical error further. For example, one could require the ex-
plicit calculation of the full sums (over all the points inside
the smoothing kernel) each time the number of iterative steps
increases by a certain threshold (e.g., every 10000 steps).

Generating the smoothing data that describes the terms
that need to be added or subtracted at each point is relatively
slow, but luckily, it only needs to be done once for a par-
ticular smoothing kernel size, as it can be saved to disk and
then simply loaded into memory whenever needed. For ex-
ample, generating the smoothing data for the IFS grid for 16
different smoothing kernel sizes (R ranging from 10km to
20000 km) took about 23 h when utilizing ten threads.

The smoothing data can take up a lot of space, espe-
cially for large smoothing kernels. For example, the data for
smoothing a field defined on the IFS grid takes up about
1.2GB at R =100km, 12 GB at R = 1000 km, and 70 GB at
R = 10000 km (Fig. 5). At R > 10000 km, when the kernel
becomes larger than half the Earth’s surface area, the amount
of data starts to decrease as the length of the border of the
smoothing kernel becomes smaller with increasing R due to
the spherical geometry of the global domain.
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Figure 4. (a) A histogram, showing the number of iterative steps needed to reach a specific point for the IFS model grid when using the
overlap-detection-based approach. The grid consists of about 6.5 million points. (b) The analysis of numerical error for the overlap-detection-
based approach in the case of IFS precipitation field shown in Fig. 2. The graph shows the cumulative distribution of the absolute numerical
error (the difference between the smoothed values computed via the overlap-detection and kd-tree-based approaches) for eight different sizes
of smoothing radii ranging from 10 to 15000 km. The values in the parentheses in the legend show the size of the maximal absolute numerical

error, expressed in mm (6 h)~!, fora particular smoothing radius.
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Figure 5. Size of the smoothing data (green) and computation time
(blue) for the smoothing of a field defined on the IFS grid with
respect to smoothing kernel radius R using the overlap-detection-
based approach. The computation time reflects the time needed on
a computer with an AMD Ryzen Threadripper PRO 5975WX pro-
cessor when utilizing a single thread.

Since smoothing a field using an overlap-detection-based
approach requires a simple loop that goes through all the
smoothing data while adding or subtracting the appropriate
terms, the time complexity of the smoothing calculation is
proportional to the size of the smoothing data. Using a sin-
gle thread, smoothing a field defined on the IFS grid takes
about 0.3s at R =100km, 3s at R = 1000km, and 45 s at
R =10000km (Fig. 5). The 15-fold increase in calculation
time when R increases from 1000 to 10000 km is larger than
one would expect, especially as the increase in the size of the
smoothing data is only 6-fold. The larger-than-expected in-
crease in computation time is likely related to performance
degradation linked to large blocks of memory, which need to
be reserved for the smoothing data in case of large smooth-
ing kernels. Likely, the data is split over many RAM mod-
ules, which can, in turn, slow down the speed of the CPU
accessing the data.
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Nevertheless, for efficient calculation, it is best to keep
the smoothing data in the memory, where it can be accessed
quickly instead of reading it from the disk every time. Thus, it
makes sense to load the data from the disk into the memory
as part of preprocessing and then use it to smooth multiple
fields in a row. The large size of the smoothing data presents
a potential problem as it requires the computer to have a large
memory, at least in the case of large smoothing kernels that
cover a substantial portion of the Earth’s surface.

The smoothing calculation can also be parallelized using a
shared-memory setup. Namely, the calculation of the sums of
the terms that need to be added or subtracted at each point,
which represents the computationally most demanding part
of the calculation, can be precalculated independently for
each point and can thus be calculated in a parallel manner.
For example, by using ten threads instead of one, the compu-
tation time for R = 1000 km reduced from 3 to 0.6 s, while
for R = 10000 km, it reduced from 45 to 12s. Although the
decrease is not tenfold as one would hope (most likely due
to the same memory access speed limitations mentioned ear-
lier), the decrease is nevertheless substantial.

5 Limited-area domains and missing data

While the focus of this research was the development of
methodologies for smoothing of global fields, the approaches
presented here can also be used to smooth fields defined on
limited-area domains.

Some efficient methods for smoothing fields defined
on limited-area domains already exist. For example,
the already mentioned summed-fields and Fast-Fourier-
Transform-convolution-based approaches (see the Introduc-
tion section for details). However, the use of these two ap-
proaches is limited to regular grids, which are assumed to
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be defined in a rectangularly shaped domain on a plane, and
they also assume equal area sizes for the grid points.

The approaches presented here do not have these limita-
tions and can thus be used with irregular grids defined in
non-rectangularly shaped domains, while the smoothed val-
ues also reflect the potential differences in area size of dif-
ferent grid points. Moreover, the approaches also correctly
handle the spherical curvature of the planet’s surface, which
can be important in the case of very large domains and for en-
suring the consistent size and shape of the smoothing kernel
everywhere in the domain.

The smoothing calculation for a limited-area domain is
done the same way as for the global domain and is again
based on Eq. (1). As before, all that is needed is a list of
grid points with values, corresponding latitude and longitude
coordinates, and the associated area size data. In the case
of a limited-area domain, the points will come only from
a specific geographic sub-region, as opposed to the whole
Earth, like in the case of a global domain. Any of the two
approaches, the k-d-tree-based and the overlap-detection-
based, can be used to calculate the smoothed values.

Figure 6 shows an example of smoothing in a limited-
area domain defined over Europe that encompasses the re-
gion 20° W—40° E, 30-70° N. The precipitation data is taken
from the IFS forecast shown in Fig. 2, but with points outside
the domain removed. Out of 6599 680 points of the full octa-
hedral reduced Gaussian grid used by the IFS, only 217421
points inside the domain were selected and used to calcu-
late the smoothed values. Figure 6a, b show the original and
smoothed precipitation using a 200 km smoothing radius.

One noticeable feature is that the values near the domain
borders do not decrease towards zero, which would happen,
for example, if the smoothing method assumed the values
outside the domain were zero. Moreover, although in terms
of the latitude/longitude grid, the domain might be consid-
ered rectangular, it is not actually rectangular if the spherical
shape of the Earth is taken into account, as the northern do-
main border is much shorter than the southern one.

The methodology presented here can also appropriately
handle missing data (i.e., points for which the value is not
defined). Frequently, a smoothing method must make some
kind of assumption regarding missing data values. For ex-
ample, the aforementioned summed-fields and Fast-Fourier-
Transform-convolution-based approaches must assume some
values (e.g., zero is frequently used for precipitation) for the
missing data for the calculation of the smoothed values to
be successfully performed. This is problematic since it can
artificially increase or decrease the values of points close to
the regions with missing data (depending on which value is
assumed for the missing data points).

With the methodology presented here, the missing data
points can be handled appropriately by excluding them from
the two sums in Eq. (1). In practice, the same result can be
achieved most easily by temporarily setting the area size of
these points to zero before proceeding with calculating the
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smoothed values (this will result in the missing data points
not having any influence on the smoothed values).

Figure 6¢ shows an example of smoothing in the pres-
ence of missing data, where a region in the center of the do-
main (0-20°E, 40-50° N) was assigned a missing data flag.
It can be observed that the values near the missing data re-
gion do not decrease towards zero, which would happen if
the smoothing method assumed the missing data had a zero
value.

In the case of smoothing-based verification, where a pair
of fields is compared against each other, and these fields con-
tain some missing data points (which are not necessarily at
the same locations in both fields), it is best to synchronize the
missing data (i.e., if a certain point has a missing data flag in
one field, then the same point in the other field is assigned
a missing data flag as well) before smoothing is applied to
maintain consistency.

6 Verification demonstration

While the main goal of this work was the development of
novel smoothing methodologies that are fast enough to be
used with the output fields of state-of-the-art operational
high-resolution global models, we also wanted to include a
limited demonstration of how the developed methodologies
could be utilized for smoothing-based global verification.
Our goal was not to do a proper verification but to show-
case how the presented smoothing methodology can be used
in practice. We chose to focus on the FSS metric since it is
one of the most popular spatial verification methods, but the
methodology could easily be used with any other smoothing-
based verification metric.

Thus, we present one example of FSS-based verification of
the IFS precipitation forecasts, where the 1, 3, 5, and 9 d fore-
casts of 6-hourly precipitation accumulated between 00:00-
06:00 UTC on 9 March 2022 are compared against the anal-
ysis (the precipitation produced in the first 6 h by the same
model initialized on the same day at 00:00 UTC). We note
that comparing the forecast against an analysis produced by
the same model is problematic in many aspects, but since our
goal was not to do a proper verification but to showcase how
the presented smoothing methodology can be used in prac-
tice, we felt the setup was nevertheless acceptable.

Figure 7 showcases the forecast against the analysis fields.
As expected, the 1d forecast (Fig. 7a) exhibits a relatively
good overlap with the analysis, although some differences
can nevertheless be observed, especially in the Tropics. At
longer lead times, the overlap decreases, and the displace-
ments increase as the forecasts become increasingly differ-
ent from the analysis. For example, large displacements are
evident in the 9d forecast (Fig. 7d), especially in the mid-
latitudes, where large-scale features like cyclones with their
fronts and associated precipitation can be substantially dis-
placed.
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(a) no smoothing (b) smoothing using R =200 km (c) smoothing with missing values
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Figure 6. Smoothing in a limited-area domain centered over Europe. The precipitation data is taken from the IFS forecast shown in Fig. 2.
(a) the original non-smoothed precipitation field, (b) the smoothed field using a 200 km smoothing kernel radius with the size of the kernel

shown with a green circle in the top left corner, (¢) the smoothed field using a 200 km kernel radius in the presence of a missing data region
in the middle of the domain (indicated in gray).
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Figure 7. The visualization of 1, 3, 5, and 9 d IFS model forecasts (red) of 6-hourly precipitation accumulated between 00:00-06:00 UTC on
9 March 2022 compared against the analysis (blue).
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To evaluate the forecast performance, we use the original
FSS formulation (Roberts and Lean, 2008), which we mod-
ify to account for different area sizes represented by the grid
points

2
>aj(xj—v))
Yajxi+3a;y;

where x; and y; are the values of the smoothed thresholded
binary fields at grid point j, and the sums go over all the
points. The a; is the representative area size for grid point j.
It makes sense that the metric would take into account dif-
ferent area sizes since, for example, one would expect a grid
point that represents a certain area size to have a smaller in-
fluence on the metric’s value compared to some other grid
point that represents twice the area size. If the area size is
the same for all points (i.e., a; =a), the FSS expression
in Eq. (3) becomes identical to the original formulation in
Roberts and Lean (2008). The FSS values can span between
0 and 1, with a larger value indicating a better forecast.

The FSS formulation in Roberts and Lean (2008) nomi-
nally uses a square-shaped smoothing kernel/neighborhood
but also mentions the possibility of using other shapes, for
example, circular or Gaussian. The use of a square-shaped
kernel was likely preferable since it is the easiest to calcu-
late in rectangularly-shaped limited-area domains defined on
regular grids in planar geometry. However, using a square-
shaped kernel also has a drawback, namely, as the kernel is
not symmetric, it stretches further in some directions than
others (i.e., along the square’s diagonal), making the metric
sensitive to the kernel’s orientation (Skok, 2016). Here we
use a sphere-cap-shaped kernel, which is symmetrical and
correctly takes into account the spherical geometry of the
Earth.

Similar to the asymptotic value for the standard FSS (when
the neighborhood, aka the smoothing kernel, is large enough
to cover the whole limited area domain), one can define an
asymptotic value for the global domain. As already men-
tioned in Sect. 2, once the smoothing kernel is large enough
to cover the whole Earth, the smoothed values will be the
same everywhere. In this case, the FSS asymptotic value, de-
noted here as FSSagy, will be 1 — (Xasy — Yasy)?/ (Xay + Yaey)»
with x5y and y,sy being the asymptotic smoothing values for
each field, respectively. Since, in this case, the x and y are bi-
nary fields produced via thresholding, the x5y and y,sy repre-
sent the global frequencies of events in the two fields (i.e., the
portion of the Earth’s surface where the original fields have
values larger or equal than the threshold). If the frequency in
both fields is the same (i.€., Xasy = Yasy), FSSasy will be equal
to one and smaller than one otherwise.

The FSS value depends on the smoothing kernel size and
the threshold. In our case, we used three thresholds roughly
corresponding to low-, medium-, and high-intensity precip-
itation: 0.1, 1, and 10 mm (6 h)_l. We applied the same
thresholds to the whole field. We recognize that using the

FSS=1-— 3)
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same threshold for different geographical regions that can
have very diverse climatologies is likely not optimal. Poten-
tially, different climatologically defined thresholds could be
used for different regions, but as our main goal was showcas-
ing how to utilize the smoothing methodology, we left this
avenue of exploration for the future.

The results of the FSS-based analysis for the IFS model
global precipitation forecasts for the cases shown in Fig. 7
are visualized in Fig. 8a—c. The results for the three different
thresholds and smoothing radii between 20 and 2000 km are
shown.

As expected, the FSS values always increase with the
smoothing radius. This is expected behavior as using a larger
smoothing radius increasingly relaxes the requirement of
precipitation events being forecasted at the correct locations.
The results are successfully stratified according to the fore-
cast lead time, with the 1d forecast consistently performing
the best (with the largest FSS value) and the 9 d forecast con-
sistently performing the worst (with the smallest FSS value).

The overall FSS values also decrease with increasing
threshold. Namely, at the lowest threshold (0.1 mm (6 h)~1,
Fig. 8a), the areas with precipitation tend to be large as they
include regions with low-, medium— and high-intensity pre-
cipitation. Since the majority of global precipitation falls in
the Intertropical Convergence Zone (ITCZ), the results for
the global domain are dominated by the tropics. As the lo-
cation of the ITCZ changes little on a day-to-day basis, the
large regions defined using the lowest threshold exhibit a
good overlap, resulting in a relatively high overall FSS value
(i.e., mostly larger than 0.7), even at longer lead times. In
the mid- and high-latitudes, where large-scale features like
cyclones and their fronts can be significantly displaced at
longer lead times, the overlap is worse, but since the trop-
ics dominate the results, the global FSS value is nevertheless
high.

On the other hand, regions with more intense precipita-
tion tend to be smaller and exhibit a larger displacement
error. Consequently, their locations in the forecasts overlap
less often with their actual locations in the analysis, even in
the ICTZ, and the resulting FSS values are lower. For ex-
ample, the FSS values for the 9d forecast when using the
10 mm (6 h)~! threshold can be as low as 0.1 (Fig. 8c). Also,
the differences in the FSS values between the 1 and 9 d fore-
casts are largest at the highest threshold.

Besides the FSS-based approach described above, we also
want a similarly defined smoothing-based metric where the
original non-thresholded fields could be used to calculate
the metric’s value without thresholding. Namely, using the
thresholding has some benefits as well as downsides. For ex-
ample, one benefit of thresholding is that, when an appropri-
ately high value for the threshold is used, the metric can fo-
cus on analysing only the heavy-intensity precipitation while
disregarding the light-intensity precipitation. Another bene-
fit is that the resulting fractions can be interpreted in terms of
probability (of exceeding the threshold).
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Figure 8. The FSS- and CSSS-based verification of the IFS model precipitation forecasts shown in Fig. 7. (a—c) The FSS-based verification
of global precipitation, (d-f) the CSSS-based verification of global precipitation, and (g-i) the FSS-based verification of the precipitation
over the Maritime Continent. The FSS- and CSSS-based verification is done based on Eqgs. (3)—(4).

On the other hand, thresholding always removes some in-
formation from the field, which can make interpreting the
results more challenging (Skok, 2023). For example, it does
not matter by how much a certain value exceeds the threshold
— the value might exceed the threshold value by just a small
amount or a hundredfold — the effect on the score’s value will
be the same. This issue can be somewhat alleviated by per-
forming the analysis using multiple thresholds, but this can
also make it harder to interpret the results. For example, it
can be challenging to determine a general estimate of fore-
cast quality for the field as a whole, reflecting precipitation of
all intensities. The use of thresholding also makes the results
sensitive to the selection of the values used for the thresholds,
which means a sensitivity analysis needs to be performed
to determine whether a small change in the thresholds will
result in a substantial change in the metric’s value. Using
a metric that does not rely on thresholding avoids some of
these issues.
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We denote the new metric as Continuous Smoothing Skill
Score (CSSS) and define it as:

Y ajlx; —yil”
Yajlx;lP+3ajly;|r’

where x; and y; are the smoothed values obtained from the
original continuous (non-thresholded) fields. Similar to the
FSS, the CSSS values can span between 0 and 1, with a
larger value indicating a better forecast. Its asymptotic value
can be expressed as CSSS, asy = 1—[Xasy — Yasy|” /(| Xasy [P +
[Yasy|?), with x5y and yasy being the asymptotic smoothing
values for the original non-thresholded fields. If the asymp-
totic smoothing values of both fields are the same (i.e., Xasy =
Yasy)> CSSS, 45y Will be equal to one and smaller than one
otherwise.

The p is a user-chosen parameter that influences the
score’s behavior; more specifically, it defines how much in-
fluence over the score’s value is exhibited by different magni-

CSSS, =1— )
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tudes of precipitation intensity. Namely, in the case of p =2
(when the CSSS expression is analog to the FSS expression
in Eq. (3), but instead of binary fields obtained via thresh-
olding, the original non-thresholded fields are used as input),
due to the second power, areas with more intense precipita-
tion will tend to exhibit a disproportionally large influence on
the score’s value compared to the areas with less intense pre-
cipitation. In the case of p = 1, this influence will be more
proportional, while in the case of p = 0.5, the influence will
again be disproportional, with lower-intensity precipitation
exhibiting a comparatively larger influence.

Figure 8d—f shows an example of CSSS-based verification
using p = 0.5, 1, and 2. Same as with FSS, the CSSS values
always increase with the smoothing radius, regardless of the
p value. The CSSS results are also successfully stratified ac-
cording to the forecast lead time, with the 1 and 9 d forecasts
consistently performing the best or worst, respectively. The
results for p =2 (Fig. 8d, which is most similar to FSS in
terms of how it is defined since an operator using the second
power is used for both) are most similar to the FSS results
for threshold 1 mm (6 h)~!. In this case, there is a significant
difference in the CSSS values for different lead times at a
smaller smoothing radius, but this difference vanishes at a
larger radius when the 1 and 9d forecast have very similar
CSSS values.

Interestingly, for p =1 and 0.5 (Fig. 8e-f), the differ-
ence between the results for lead times tends to be somewhat
smaller (compared to p = 2), but it persists at all smoothing
radii, indicating that 1d forecast outperforms the 9d fore-
casts even if a very large smoothing radius is used.

To further examine the effect of the p parameter on the re-
sults, we calculated some relevant quantities using the anal-
ysis field, shown in Table 1.

The table shows the portions of the surface area, precipita-
tion volume, and the ) aj|x;|” sums from the denominator
of Eq. (4) for different latitudinally-defined regions, namely
the Tropics (30°S-30°N), the Midlatitudes (30-60°S and
30-60° N), and the Polar regions (60-90°S and 60-90° N).
The ) aj|x;|? for a particular region can be used as a kind
of rough indicator of how much influence on the CSSS values
is exhibited by the region. It depends on the area size of the
region and the amount and intensity of precipitation found in
it, as well as on the value of the p parameter.

For example, the Tropics cover about 50 % of the Earth’s
surface and contain about 56 % of the total precipitation vol-
ume in the analysis field, but nevertheless contribute about
62 % to the sum for p =2. On the other hand, the Polar re-
gions cover about 13 % of the Earth’s surface and contain
about 6 % of the total precipitation volume but contribute less
than 2 % to the sum for p = 2. This highlights how the Trop-
ics have a disproportionately large influence on the resulting
values at the expense of other regions, especially the Polar
regions, which exhibit almost no influence on the result.

The situation is different for p = 0.5, where the Tropics
contribute about 50 % to the sum, with the Polar regions con-
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tributing about 10 %, meaning that they can have a noticeable
influence on the result. This highlights how the p parameter
can be used to adjust the comparative influence of drier and
wetter regions.

Finally, although global forecast quality information can
be useful, the information for specific geographic sub-
regions (such as a continent, a country, or a latitude belt) or
types of surfaces (like land or sea) is often of greater inter-
est, even in cases when a global model is used. In this case,
smoothing can be performed for the whole global field, as be-
fore, but only a subset of smoothed values can then be used
to determine the forecast quality for a specific sub-region.
Smoothing the whole global field first avoids the so-called
border-effect issues that can arise while using a smoothing-
based metric in a limited area domain. For example, in some
cases, the FSS value can markedly decrease or increase in a
limited area domain depending on how the domain border is
handled (e.g., Skok and Roberts, 2016)

Figure 8g—i shows FSS computed over the Maritime Con-
tinent. Smoothing is still performed globally, but the FSS
score is computed via Eq. (3) by using only the grid points
that fall between latitudes 15° S and 15° N and longitudes 90
and 150°E.

The FSS score is quite high for the low and medium
thresholds (Figs. 8g—h). This happens since the precipita-
tion over the Maritime Continent mostly occurs in the ITCZ,
which does not move much on a daily basis. Thus, the loca-
tion of the medium-, and especially low-intensity precipita-
tion envelopes that surround the convective cores contain-
ing high-intensity precipitation and cover a large area do
not move much. This makes the forecast quality of lower-
intensity precipitation almost independent of forecast lead
time (e.g., the 1d forecast is almost as good as the 9 d fore-
cast). The situation is different for high-intensity precipita-
tion, as the model can frequently struggle to correctly fore-
cast the positions and intensity of precipitation in the convec-
tive cores, especially at longer lead times. Consequently, the
FSS score is lower and more variable in this case (Fig. 8i).

7 Discussion and Conclusions

We present two new methodologies for smoothing fields on
a sphere that can be used for smoothing-based verification
in a global domain. One is based on k-d trees and one on
overlap detection. The k-d-tree-based approach requires less
memory, has negligible numerical error, and can be done in
a single step without any additional preprocessing, but it is
slower, especially for large smoothing kernels.

The overlap-identification-based approach requires a pre-
processing step that generates the smoothing data, which
must be calculated only once for a specific smoothing ker-
nel size. Once available, this data can be used to calculate
the smoothed values much faster than the k-d-tree-based ap-
proach. The large size of the smoothing data presents a po-
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Table 1. The portions of the Earth’s surface area, total precipitation volume, and the Y a;|x;|? sums from the denominator of Eq. (4) for
different latitudinally-defined regions: the Tropics (30° S—30° N), the Midlatitues (30-60° S and 30-60° N), and the Polar regions (60-90° S
and 60-90° N). The values were calculated for the original (non-smoothed) analysis field of the IFS forecast shown in Fig. 7.

Region Surface  Precipitation dajlxjl?

area volume p=2 p=1 p=05
Tropics 50.0 % 564% 623% 564% 51.8%
Midlatitudes 36.6 % 374% 359% 374% 377 %
Polar regions  13.4% 6.2 % 1.8 % 6.2 % 10.5 %

tential problem as it requires the computer to have a large
memory (this is only problematic if a very large smoothing
kernel is used). Since the procedure is iterative, the approach
can also incur a degree of numerical error, but luckily, the
size of the numerical error in a particular setup can be de-
termined relatively easily by comparing the smoothed values
obtained via the overlap-detection-based approach to those
obtained via the kd-tree-based approach. Moreover, simple
mitigation strategies exist that can be implemented to reduce
the error size further.

Alternatively, similarly to how it is done for the overlap-
identification-based approach, the smoothing data for the k-
d-tree-based approach, which would list all the nodes that
need to be summed to get the smoothed value at a specific
location for a particular size of the smoothing kernel, could
be precalculated and saved to a disk. This data could then be
simply loaded into memory when needed and used to quickly
calculate the smoothed values, similarly to how it is done for
the overlap-identification-based approach. However, testing
showed that the size of this data is a few times larger than for
the overlap-identification-based approach, meaning that the
calculation of the smoothed values would be correspondingly
slower.

Both methodologies can be used when the grid is not reg-
ular, thus avoiding the need for prior interpolation into a reg-
ular grid, which can introduce additional smoothing (Konca-
Kedzierska et al., 2023). They also take into account the
spherical geometry of Earth, which is important to ensure
a consistent size and shape of the smoothing kernel every-
where on the planet.

The methodologies are also area-size-informed, meaning
that they take into account the potentially different area sizes
of the grid points. This is important since in some grids (e.g.,
a regular latitude/longitude grid), the difference between the
area sizes of points at different locations on the planet can be
very large. Not accounting for this could result in negative
effects, for example, the spatial integral of the field could
change considerably due to the smoothing.

While the focus was on the development of methodolo-
gies for smoothing of global fields, both approaches can also
be used in limited-area domains. Moreover, they are both
able to deal with missing data appropriately. This is impor-
tant since dealing with missing values can be problematic for
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some smoothing methods, as they are often forced to make
some kind of assumptions regarding the value of missing
data, which can cause the values near the missing data re-
gion to increase or decrease artificially.

Overall, while each approach has its strengths and weak-
nesses, both are potentially fast enough to make the smooth-
ing of high-resolution global fields feasible, which was the
primary goal set at the beginning. The time complexity of
both approaches can be approximated by O (nvk) with k
being the typical number of points in the smoothing kernel,
which is limited by 7 in the worst case.

Based on the methodologies presented here, we prepared
and published an easy-to-use Python software package for ef-
ficient calculation of the smoothing (please refer to the Code
and data availability statement for details on how to obtain
the package).

In addition to the novel smoothing methodologies, we also
included a verification demonstration where we presented an
area-size-aware variant of the FSS, which takes into account
the varying area sizes that are representative of different grid
points. For example, one would expect a grid point with a
larger area size to exhibit a larger influence on the metric’s
value compared to one with a smaller area size. We also de-
fined a smoothing-based metric, the CSSS, where the original
non-thresholded fields can be used to calculate the metric’s
value without thresholding. The CSSS has a user-selectable
exponential parameter that affects how the precipitation mag-
nitude influences the value of the metric, which can be used
to adjust the comparative influence of drier and wetter re-
gions. We also demonstrate how the smoothing-based scores
can be used to provide localized forecast quality informa-
tion for a global forecast by first smoothing the fields glob-
ally, thereby avoiding the border-effect issues that can arise
for limited area domains, and then using a regionally-defined
subset of points to calculate the metric’s values representa-
tive of a specific sub-region. Alternatively, one could also ob-
tain even more localized information of forecast quality, for
example, by calculating the Localized Fraction Skill Score
(LFSS, Woodhams et al., 2018). In this case, the fraction val-
ues in the global domain can be calculated efficiently using
the new smoothing methodology, in the same way as before,
but then, the fraction values can be used to calculate the LFSS
instead of the “regular” FSS.
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Code and data availability. We prepared and published an easy-to-
use Python software package for efficient calculation of the smooth-
ing on the sphere. The underlying code is written in C++, and a
Python ctypes-based wrapper is provided for easy use within the
Python environment. The package contains all the source code as
well as some examples and sample fields that are used to demon-
strate its usage. The current version of the package is available
at https://github.com/skokg/Smoothing_on_Sphere (last access: 13
October 2025) under the MIT license. A snapshot of the version
of the package that was used to calculate the results presented in
this paper, which additionally includes all the sample fields that
were used as input data, is archived on Zenodo repository under
https://doi.org/10.5281/zenodo.15100264 (Skok, 2025). The C++
code uses float64 with the exception of the code for k-d tree con-
struction and nearest neighbor search, which uses float32 to increase
computational speed.
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