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Abstract. Large density jumps in numerical simulations of
solid Earth dynamics can cause numerical “drunken sailor”
oscillations. An implicit method has previously been shown
to be very effective in stabilising the density jump that oc-
curs at a free surface against such instabilities (Kaus et al.,
2010; Duretz et al., 2011). Here the use of this to prevent
oscillations of compositional layers deeper in the mantle is
examined. If the stabilisation algorithm uses the total density
field including the steady increase of density with depth due
to adiabatic compression and jumps due to phase transitions,
then a severe artificial reduction in convective vigour oc-
curs because the algorithm assumes that density is advected
with the flow but these density gradients are not. This artifi-
cial vigour reduction increases with Rayleigh number but de-
creases with decreasing grid spacing. Thus, it is essential to
use only composition-related density gradients in the stabil-
isation algorithm, and a simple method for isolating these is
presented. Once this is done, the stabilisation method works
effectively for internal compositional layers as well as a free
surface.

1 Introduction

Density jumps due to treatment of a free surface by the
“sticky air” method (e.g. Crameri et al., 2012), in which the
surface is represented as an abrupt interface between rock
and low-density, low-viscosity “air”, can induce numerical
“drunken sailor” instabilities, in which the free surface os-
cillates up and down on successive time steps, overshoot-
ing its equilibrium position. To cure this problem, an im-
plicit free-surface stabilisation algorithm was introduced, ini-
tially for the finite-element discretisation (Kaus et al., 2010;

Andrés-Martínez et al., 2015) and then for the staggered-
grid finite-difference (equivalent to finite-volume) discreti-
sation (Duretz et al., 2011). The basis of this scheme is that
when calculating the flow field, the change in buoyancy due
to advection of density during a time step is treated implic-
itly; while this is applied throughout the domain, by far the
largest correction comes from advection of the free surface.
It is very effective in stabilising the free surface, allowing a
normal (e.g. Courant condition limited) time step to be used
(Kaus et al., 2010; Duretz et al., 2011). A subsequent rig-
orous stability analysis led to an alternative approach using
an explicit scheme based on nonstandard finite differences
(Rose et al., 2017). Fully implicit time stepping in the en-
tire domain is another alternative (Popov and Sobolev, 2008;
Kramer et al., 2012).

In global mantle convection simulations, compositional
density jumps can also arise inside in the mantle, typically
due to a primordial layer of dense material above the core–
mantle boundary (CMB) (e.g. Gurnis, 1986; Tackley, 1998;
Davaille, 1999; Deschamps et al., 2011) or a layer of dense
subducted basaltic crust above the CMB (e.g. Christensen
and Hoffmann, 1994; Ogawa, 2000; Nakagawa and Tack-
ley, 2015), and although the associated density difference is
much smaller than that at a free surface, it can sometimes
be enough to also induce numerical “drunken sailor” oscil-
lations. Thus, it is tempting to apply the implicit density-
jump stabilisation (DJS) algorithm throughout the domain.
However, a key assumption of the algorithm is that den-
sity is advected with the flow, but this is not the case for
the steady density increase with depth (pressure) due to
adiabatic compression or density jumps due to solid–solid
phase transitions, the most important of which cause the 410
and 660 km seismic discontinuities. According to the most
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commonly used Earth model PREM (Preliminary Reference
Earth Model) (Dziewonski and Anderson, 1981), the density
jump at 660 km is about 10 %, while the density increase due
to combined compression and phase transitions from the sur-
face to the CMB is about 65 %. If the DJS algorithm is ap-
plied to these density gradients, then a substantial artificial
reduction in convective vigour results, as shown later. Thus,
it is important to apply the DJS algorithm only to density gra-
dients or jumps due to compositional gradients and not den-
sity gradients/jumps due to adiabatic compression or phase
transitions.

In this paper, a test code written in the Julia programming
language (Bezanson et al., 2017) is used first to again demon-
strate the effectiveness of the DJS algorithm for stabilising a
free surface, to additionally show its effectiveness in prevent-
ing oscillations of a dense layer above the CMB, and then to
quantify the artificial reduction in convective vigour when
applying it to total density in a setup that includes adiabatic
compression and/or a phase transition. A way of separating
composition-related density gradients from the total density
gradient for arbitrary density functions is then presented.

2 Mathematical background

2.1 Momentum equation with density-jump
stabilisation

Here the basics of the algorithm are reviewed, following
Duretz et al. (2011). The equation of motion (force balance)
for highly viscous flow in Earth’s mantle and crust is the
Stokes equations, which neglect inertial terms in the Navier–
Stokes equations.

−∇p+∇ · τ =−ρg, (1)

where p is pressure, ρ is density, g is gravity and τ is the
deviatoric stress tensor, given by

τij = η

(
∂vi

∂xj
+
∂vj

∂xi
− δij

2
n
∇ · v

)
, (2)

where η is the dynamic viscosity and n is the number of spa-
tial dimensions (2 or 3). For incompressible flow, the last
term is zero.

During a time step, advection of composition in the vicin-
ity of a density gradient/jump can substantially change the
density on the right-hand side of Eq. (1), approximately as

ρnew = ρ−1t (v · ∇ρ), (3)

where 1t is the time step. These density changes can be
treated implicitly by substituting ρnew for ρ in Eq. (1) and
moving the velocity term to the left-hand side:

−∇p+∇ · τ − θ1t (v · ∇ρ)g =−ρg, (4)

where θ is a factor between 0 (explicit) and 1 (implicit). The
finite-difference stencil for velocity components is modified
accordingly, based on ∇ρ calculated at the beginning of the
time step. In practice, in the vicinity of a near-horizontal
layer interface, it is vertical motions that change the density,
so a simplified version considering only vertical (z) velocities
and assuming that g is vertical has almost the same stabilisa-
tion effect:

−∇p+∇ · τ − θ1t

(
vz
∂ρ

∂z

)
ĝz=−ρĝz. (5)

2.2 Continuity equation

The full continuity (conservation of mass) equation can be
written in Eulerian form as

∇ · (ρv)=−
∂ρ

∂t
(6)

or Lagrangian form as

ρ∇ · v =−
Dρ
Dt
. (7)

These equations are commonly approximated bearing in
mind that thermally induced density differences are of or-
der 1 %, which is much smaller than density differences due
to adiabatic compression + phase transitions over the depth
of the mantle (∼ 65 %) or due to compositional differences
such as a free surface (discussed above) or iron diapirs (e.g.
Samuel and Tackley, 2008; Lin et al., 2011) (∼ 100 %). Fur-
thermore, for whole-mantle studies, dynamic (i.e. related to
the flow) pressure is much smaller than hydrostatic pressure,
so its effect on density is typically ignored. Thus, Eq. (7) is
often approximated as

∇ · v = 0. (8)

This is valid when density is advected with the flow but in-
valid when there are significant non-advected density varia-
tions such as those due to pressure or phase transitions. In this
study it is necessary to model flow with both large pressure-
related density variations and large composition-related den-
sity variations, so a modified form of Eq. (7) is consid-
ered, decomposing the Lagrangian density time derivative
into components related to temperature (T ), pressure (P ) and
composition (C):

ρ∇ · v =−
Dρ
Dt
=−

(
Dρ
Dt

)
T

−

(
Dρ
Dt

)
P

−

(
Dρ
Dt

)
C

. (9)

T -induced variations are assumed to be negligible, consis-
tent with the Boussinesq or compressible anelastic approx-
imations (additionally, T changes slowly in the Lagrangian
frame). The compositional component is zero in the La-
grangian frame, and, ignoring dynamic pressure as in the
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Boussinesq or anelastic approximation, the pressure compo-
nent is due only to vertical motion as

ρ∇ · v =−

(
Dρ
Dt

)
P
=−vz

∂ρ

∂z
. (10)

This can be satisfied using a z-dependent density that in-
creases due only to hydrostatic compression:

∇ · (ρzv)= 0, (11)

where ρz is a depth-dependent reference density that depends
only on hydrostatic compression, not composition. It would
be possible to implement a more accurate version of the con-
tinuity equation that includes temperature and dynamic pres-
sure effects (e.g. Gassmöller et al., 2020), but the current
level of approximation suffices for the tests presented and is
consistent with the commonly used anelastic approximation
(King et al., 2010).

2.3 Energy equation

For the tests performed, here a simple form of energy con-
servation is assumed:

ρCp
∂T

∂t
= k∇2T − ρCpv · ∇T , (12)

where T is temperature, t is time, Cp is specific heat capacity
and k is thermal conductivity. Normally, when taking com-
pressibility into account, terms for adiabatic heating/cooling
and viscous dissipation would appear in this equation. This
version corresponds to the limit of zero Grüneisen param-
eter (γ = ∂ lnT/∂ lnρ) or, in nondimensional terms, having
a zero dissipation number but finite compressibility number
(Tackley, 1996). The concept is to make the test program as
simple as possible to demonstrate what is discussed in this
paper.

2.4 Test program

The associated test program CConv2dDJS.jl posted on Zen-
odo (Tackley and ETH Zurich, 2025) is written in the Julia
programming language (Bezanson et al., 2017) and solves a
nondimensional version of the equations above in two dimen-
sions, x (horizontal) and z (vertical). The continuity equation
is identical to Eq. (11) above, with ρz being 1.0 at the surface
and increasing linearly to a specified value at the CMB. The
two components of the momentum equation are

−
∂p

∂x
+
∂τxx

∂x
+
∂τxz

∂z
= 0

−
∂p

∂z
+
∂τzz

∂z
+
∂τzx

∂x
− vz1t

∂ρ

∂z
BairRa

=−Ra(T −BairCair−BDLCDL) ,

(13)

where Ra is the Rayleigh number; Cair and CDL are the frac-
tion (0–1) of air and dense layer, respectively; and Bair and

BDL are the compositional buoyancy ratios for air and dense
layer, respectively (BX =1ρX/(ρα1T ), where α is ther-
mal expansivity and 1T is the temperature drop across the
layer). θ in Eq. (5) is assumed to be 1.0. For air, the buoy-
ancy parameter is negative (air being less dense than rock)
and has a value Bair =−1/(α1T )≈−1/(2.10−5

×2500)=
−20, whereas BDL is positive and has a much smaller magni-
tude. The mechanical boundary conditions are impermeable
and free slip (zero shear stress) on all boundaries.

The nondimensional energy equation is

ρtot
∂T

∂t
=∇

2T − v · ∇T . (14)

Thermal boundary conditions are insulating side boundaries
and isothermal top and bottom boundaries (T = 0 and 1, re-
spectively). The equivalent equation for composition lacks
the diffusion term.

Density is the sum of pressure-related, composition-
related and phase transition-related components:

ρtot = ρz+1ρC+1ρPT, (15)

where ρz is 1.0 at the surface and increases linearly to a
specified value at the CMB. The compositional component
is given by

1ρC = Cair1ρair+CDL1ρDL =−Cair−CDLBDL/Bair, (16)

(noting that 1ρair =−1 nondimensional and 1ρDL =

1ρairBDL/Bair =−BDL/Bair) where 1ρPT is zero above the
phase transition depth and the specified density increase be-
low the phase transition depth, corresponding to a sharp
phase transition with zero Clapeyron slope.

The continuity equation uses ρz as explained above, while
the energy equation uses ρtot. The DJS algorithm can either
correctly use1ρC or incorrectly use ρtot in order to illustrate
the bad artefacts that result.

The equations are discretised using a standard staggered-
grid finite-volume discretisation (e.g. Harlow and Welch
1965; Patankar, 1980), as used by many codes in the geo-
dynamical modelling community (e.g. Ogawa et al., 1991;
Tackley, 1993, 2008; Trompert and Hansen, 1996; Gerya and
Yuen, 2007; Kameyama et al., 2008; Kaus et al., 2016). The
velocity–pressure solution is solved with a direct solver util-
ising the built-in “\” operator. Advection of temperature and
composition is performed using an upwind donor-cell tech-
nique, which is very diffusive but suffices for the tests here.
Temperature diffusion is calculated using explicit finite dif-
ferences.

3 Results

3.1 Surface or dense layer stabilisation

First, it is verified that the implementation of the DJS algo-
rithm in the attached program eliminates “drunken sailor” os-
cillations. Figure 1 shows the effectiveness of the algorithm
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Figure 1. Stabilisation of a sticky-air layer with viscosity contrast 0.001 and thickness 0.1 on a 32× 32 grid with Ra= 105. Oscillations
occur when density-jump stabilisation is switched off (a) but not when it is switched on (b).

for preventing oscillations of a free surface with a sticky air
layer. Detailed tests are not performed here because they have
been already been reported elsewhere (Duretz et al., 2011).
Figure 2 shows the effectiveness of the algorithm for stabilis-
ing a dense layer above the CMB. In both cases, oscillations
occur with the algorithm switched off, but a smooth evolu-
tion is obtained with the algorithm switched on. When oscil-
lations occur, the compositional interface (free surface or top
of layer) becomes smeared out due to the numerical diffu-
sion inherent in the upwind donor cell advection algorithm.
In contrast, when the interface barely moves, there is negligi-
ble numerical diffusion, so the interface remains fairly sharp.

3.2 Convection with depth-dependent density

Steady-state convection solutions are calculated for various
density increases with depth (ρcmb/ρsurf), various Rayleigh
numbers from 104 to 3×105 and two grid resolutions (32×32
and 64× 64). The calculations are run until the top and bot-
tom Nusselt numbers are identical and the rms velocity has
stopped changing, which typically requires 1000 s of time
steps. These tests do not have any compositional density vari-
ations, so the DJS algorithm is not needed; their purpose is
to demonstrate the problems that occur when it is applied to
non-compositional density variations.

The influence of compressibility is tested first, varying the
density increase with depth (ρcmb/ρsurf) from factor 1.0 to
2.0, bearing in mind that on Earth this ratio is about 1.65
(including compressibility and phase transitions). Correct so-
lutions (using only non-existent composition-dependent den-
sity gradients in the DJS algorithm) are compared to those us-
ing the full density field (Fig. 3 left column). Solutions indi-
cate that the correct Nusselt number (top left) and Vrms (mid-
dle left) change slightly with ρcmb/ρsurf, slightly increasing
and decreasing, respectively. Resolution makes little differ-
ence to the correct values. With DJS using the full density
field, however, the Nusselt number and Vrms decrease sub-
stantially as ρcmb/ρsurf is increased. Ratios are plotted in the
lower left. In the worst case (ρcmb/ρsurf = 2.0, 32×32 grid),
the Nusselt number is decreased by 35 % and Vrms by about

65 %. This magnitude of reduction depends on grid resolu-
tion: with a 64× 64 grid, the effect is about half as much as
with a 32×32 grid. This is because the effect is proportional
to the time step, which is about a factor of 2 smaller with the
64× 64 grid.

Increasing Rayleigh number (Fig. 3 centre column) results
in an increased Nusselt number and Vrms, as expected, but the
increase is lower when DJS is applied to the full density field.
The resolution is 64×64 cells. The ratio (stabilised / correct)
(Fig. 3 bottom centre) indicates that the problem gets worse
with increasing Rayleigh number. The values used here are
still far below Earth’s effective Rayleigh number of around
107–108 (Schubert et al., 2001), at which the flow reduction
would be much worse. This is because with higher Ra the
buoyant upwellings and downwellings become narrower, but
the fake advected density correction still occurs everywhere.
Higher Rayleigh number solutions are not plotted here be-
cause a steady state cannot be obtained when DJS is applied
to the full density field: there are oscillating boundary-layer
instabilities.

3.3 Convection with a phase transition

In the final set of experiments (Fig. 3 right column), a phase
transition with zero Clapeyron slope is inserted at mid-depth,
and its density jump is varied from 0 to 0.5, bearing in mind
that the relevant jump for Earth is about 0.1. The resolution
is 32× 32 cells. The correct solution does not change, as the
phase change density perturbation is applied in a Boussinesq-
like manner, affecting the buoyancy term but nothing else.
Solutions indicate that incorrectly applying DJS to the phase
change density-jump results in a reduction in convective
vigour of a slightly lower magnitude than that obtained with
a gradual density increase but still large enough that the ef-
fect should be avoided.
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Figure 2. Stabilisation of a dense layer with BDL = 3 and thickness 0.3 at Ra= 106 and grid resolution 32× 32 by the DJS algorithm.
Algorithm switched off (a, c, e) or on (b, d, f).

3.4 Correct functioning of DJS with all density
contributions

Figure 4 shows a convection result with all density variations
switched on. The air layer and deep dense layer interfaces are
stable with no oscillations, and convection is not inhibited.
Two-layered convection is established due to the thick dense
layer. The middle row contrasts the total density field (middle
left) with the compositional-only density perturbation used in
the DJS algorithm (middle right).

4 Isolating the composition-dependent density gradient

The results above demonstrate the importance of using only
the composition-related density gradient, not the full density
gradient, in the DJS algorithm. For a simple convection pro-
gram like the one used here, the composition-related density

gradient is straightforward to isolate. However, if the code
has been written in such a manner that compositional, pres-
sure, phase and temperature effects are combined in a single
density (T ,p,C) function, such as the StagYY code (Tack-
ley, 2008), then this is more difficult. A practical solution is
to perform twice as many density evaluations for each grid
cell, as detailed below.

The composition-related density gradient may be calcu-
lated by subtracting the density gradient for a fixed composi-
tion from the total density gradient:(
∂ρ

∂z

)
C

=

(
∂ρ

∂z

)
total
−

(
∂ρ

∂z

)
fixedC

. (17)

Using finite differences, the total density gradient is approx-
imated as
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Figure 3. Influence of using DJS on full density for experiments with (a, d, g) varying density increase with depth, (b, e, h) varying Rayleigh
number and (c, f, i) a phase transition with different density jumps.

(
∂ρ

∂z

)
total
≈

1
1z

(
ρ(Tu,Cu,zu)− ρ(Tl,Cl,zl)

)
, (18)

where “u” denotes the upper cell, “l” denotes the lower cell
and 1z is the grid spacing. As the upper and lower cells
can have different compositions, when calculating the den-
sity gradient for fixed composition, it is best to calculate it
for both compositions and average:(
∂ρ

∂z

)
fixedC

≈
1

21z

(
ρ(Tu,Cu,zu)− ρ

(
T ′u,Cu,zl

)
+ ρ

(
T ′l ,Cl,zu

)
− ρ(Tl,Cl,zl)

)
.

(19)

Subtracting Eq. (19) from Eq. (18) leads to

(
∂ρ

∂z

)
C

≈
1

21z

(
ρ(Tu,Cu,zu)+ ρ

(
T ′u,Cu,zl

)
− ρ

(
T ′l ,Cl,zu

)
− ρ(Tl,Cl,zl)

)
.

(20)

This expression has been found to work well in recent tests
of the StagYY convection code (Tackley, 2008).

In these expressions, primes on temperatures denote that
they are extrapolated adiabatically to the required locations;
i.e. T ′u is Tu extrapolated adiabatically to zl. This is because,
while the focus of Eq. (20) is on composition, it also works
on temperature; i.e. it subtracts the density gradient at fixed
temperature, leaving the density gradient that is due to a tem-
perature gradient. This is appropriate, as density differences
due to temperature differences are advected with the flow, but
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Figure 4. A test with all density variations included (sticky air, dense layer, compressibility and a phase transition). On a 64× 64 grid with
Ra= 106, air thickness 0.1, dense layer thickness 0.3, ρcmb/ρsurf = 2 and 1ρphase = 0.1.

generally they are much smaller than the composition-based
density gradients that are of concern here.

If one wishes to include horizontal density gradients in the
DJS algorithm as in Eq. (4), the procedure is the same as that
above (Eqs. 17–20) for each horizontal direction.

5 Conclusions

The density-jump stabilisation algorithm of Duretz et
al. (2011) is an effective method of preventing numerical os-
cillations of internal compositional layers as well as of a free
surface. However, it is essential that the density gradient used
in the algorithm is that for compositional density variations
only, otherwise severe artefacts result. If the density gradi-
ent used incorrectly includes the steady density increase with
depth due to adiabatic compression and/or density jumps

due to phase transitions, a severe reduction in convective
vigour results. This reduction increases with Rayleigh num-
ber but decreases with increasing numerical resolution. Iso-
lating the compositional component of the density gradient
can be straightforwardly done using the approach presented
in this paper.

Code availability. The exact version of the Julia code
used to produce the results and figures in this paper
is archived on Zenodo under the MIT licence under
https://doi.org/10.5281/zenodo.15115816 (Tackley and ETH
Zurich, 2025). No input data or additional scripts are required. The
Julia script used to produce the graphs in Fig. 3 is also archived
there.
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