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Abstract. The vapor pressures (pvap) of organic molecules
play a crucial role in the partitioning of secondary or-
ganic aerosol (SOA). Given the vast diversity of atmospheric
organic compounds, experimentally determining pvap of
each compound is unfeasible. Machine Learning (ML) al-
gorithms allow the prediction of physicochemical proper-
ties based on complex representations of molecular struc-
ture, but their performance crucially depends on the avail-
ability of sufficient training data. We propose a novel ap-
proach to predict pvap using group contribution-assisted
graph convolutional neural networks (GC2NN). The models
use molecular descriptors like molar mass alongside molec-
ular graphs containing atom and bond features as represen-
tations of molecular structure. The model’s group contribu-
tion component is a shallow fully-connected neural network
which processes numerical molecular descriptors and com-
plements the model’s graph component. Molecular graphs
allow the ML model to better infer molecular connectiv-
ity compared to methods using other, non-structural em-
beddings. We achieve best results with an adaptive-depth
GC2NN, where the number of evaluated graph layers de-
pends on molecular size. We present two vapor pressure esti-
mation models that achieve strong agreement between pre-
dicted and experimentally-determined pvap. The first is a
general model with broad scope that is suitable for both or-
ganic and inorganic molecules and achieves a mean abso-
lute error (MAE) of 0.69 log-units (R2

= 0.86). The second
model is specialized on organic compounds with functional
groups often encountered in atmospheric SOA, achieving an

even stronger correlation with the test data (MAE= 0.37
log-units, R2

= 0.94). The adaptive-depth GC2NN models
clearly outperform existing methods, including parameteri-
zations and group-contribution methods, demonstrating that
graph-based ML techniques are powerful tools for the es-
timation of physicochemical properties, even when experi-
mental data are scarce.

1 Introduction

Secondary organic aerosols (SOA) account for a substantial
mass fraction (20 %–90 %) of tropospheric aerosols (Jimenez
et al., 2009). They affect the atmosphere’s radiative budget
and serve as nuclei in cloud droplet and ice crystal formation
(Kanakidou et al., 2005; Shrivastava et al., 2017). Further-
more, SOA play a major role in the context of air quality
and have been linked to adverse health effects (Pöschl and
Shiraiwa, 2015). Understanding SOA formation and evolu-
tion is complicated by the large number and variety of in-
volved organic species and associated reactions and proper-
ties, making SOA a source of large uncertainties in climate
and air quality modelling (Intergovernmental Panel on Cli-
mate Change, 2023).

The saturation vapor pressure (pvap) of a compound
determines its partitioning equilibrium between the con-
densed and gas phase. In the following, we will clas-
sify compounds into volatility ranges based on their sat-
uration mass concentrations over the pure liquid (C0)
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as proposed by Donahue et al. (2009). The classes
are extremely low-volatility organic compounds (ELVOC,
C0 < 3×10−6 µg m−3), low-volatility organic compounds
(LVOC, 3× 10−6 < C0 < 3× 10−4 µg m−3), semi-volatile
organic compounds (SVOC, 3× 10−4 < C0 < 300 µg m−3),
intermediate-volatility organic compounds (IVOC, 300<
C0 < 3× 106 µg m−3) and volatile organic compounds
(IVOC, C0 > 3× 106 µg m−3). In the atmosphere, satura-
tion vapor pressure governs new particle formation and gas-
particle partitioning, such that SOA mass yield is largely de-
termined by pvap (Pankow, 1987; Kulmala and Kerminen,
2008). However, due to the large number of atmospherically-
relevant compounds, exhaustive experimental determination
of pvap is not feasible (Goldstein and Galbally, 2007; Bilde
et al., 2015).

Various quantitative structure-activity relationship
(QSAR) methods for the approximation of thermodynamic
properties like pvap or reactivity have been developed to
address this limitation: empirical structure-property relation-
ship models often map a sum formula to a thermodynamic
property of interest, using algebraic equations with parame-
ters that are fitted to experimental data (Donahue et al., 2011;
Li et al., 2016). Group contribution models such as SIMPOL
(Pankow and Asher, 2008) and EVAPORATION (Comper-
nolle et al., 2011) can be classified as semi-empirical (Gani,
2019) as they incorporate existing theoretical knowledge
about the relationships of structural features and chemical
behavior into mathematical equations. This often includes
the consideration the occurrences, positions, or interactions
of functional groups, while also determining fit parameters
using experimental data (Nannoolal et al., 2004; Moller
et al., 2008). The consideration of specific functional groups
limits group contribution models to certain compound
classes, possibly leading to significant errors when applied
to molecules outside their applicable range (Tahami et al.,
2019). Quantum-mechanical calculation (QM) models based
on density functional theory are a common non-empirical
approach to property determination (Geerlings et al., 2003),
and can be combined with empirical approaches (Ratcliff
et al., 2017). Such quantum-mechanical calculations have
been used for the generation of large data sets (Wang et al.,
2017; Tabor et al., 2019; Besel et al., 2023), facilitating
the development of machine learning (ML)-based QSAR
models (Lumiaro et al., 2021; Krüger et al., 2022). When
categorising ML-based QSAR models, we can distinguish
the actual algorithm and the molecular representation that
encodes molecular structures into suitable model input,
which together majorly determine a ML model’s perfor-
mance in deriving properties from molecular structures
(Lumiaro et al., 2021). Combinations successfully applied
in previous studies include one-hot encoded Simplified
Molecular Input Line Entry System (SMILES) strings
with convolutional neural networks (OHE-CNN; Krüger
et al., 2022), specific molecular descriptors with decision
trees (Armeli et al., 2023) or topological fingerprints with

Gaussian process regression (Besel et al., 2024). Galeazzo
and Shiraiwa (2022) developed a method to predict glass
transition temperature and melting points of small molecules
using Extreme Gradient Boosting (XGBoost) and a neural
network, respectively, in combination with derived molecular
embeddings as molecular fingerprints. The transformation
of molecular structures into such machine-readable molec-
ular representations requires the ML models to learn the
representation principles along with the physicochemical
principles that determine the target property, to the detriment
of limiting their application to the prediction of properties
with extensive amounts of data (von Lilienfeld and Burke,
2020). This limitation can be mitigated using foundation
models, pre-trained networks that are fine-tuned on relatively
small data sets for a specific property (Burns et al., 2025).
Data curation techniques can improve model accuracy, e.g.,
through identification and deletion of data points associated
with large experimental uncertainty (Gadaleta et al., 2018;
Ulrich et al., 2021). Within atmospheric chemistry, only
few ML-based QSAR models have been trained exclusively
on experimental measurements, as they generally require a
large quantity of training data for sufficient model general-
ization, and a careful and computationally expensive error
estimation when only limited amounts of data are available
(Galeazzo and Shiraiwa, 2022; Armeli et al., 2023). The
overall moderate to poor accuracy of existing QSAR models
for pvap prediction exemplifies the need for more accurate,
publicly available models (Longnecker et al., 2025).

Graph neural networks (GNNs) are a class of algorithms
within the domain of geometric deep learning which have
emerged as a powerful addition to machine learning meth-
ods in computational chemistry and material sciences in the
last decade (von Lilienfeld and Burke, 2020; Reiser et al.,
2022). GNNs can be interpreted as an extension of convolu-
tional neural networks beyond fixed dimension grids of data
to include irregularly shaped structures (Kipf and Welling,
2017; Bronstein et al., 2017), such as graph-based represen-
tations of molecules (Duvenaud et al., 2015; Atz et al., 2021).
Molecular graph representations and algorithms that operate
on such graphs omit an additional representation learning
step and can directly infer intramolecular spatial relations
along with properties assigned to graph elements. Further-
more, in contrast to sum formula-based methods, structure-
based methods can distinguish structural isomers, which may
differ significantly in their properties (Isaacman-VanWertz
and Aumont, 2021). Lumiaro et al. (2021) compared a va-
riety of molecular fingerprints in combination with Kernel
Ridge Regression, finding graph-based representations to be
advantageous compared to canonical descriptive chemical
features based methods. For the prediction of absorption,
distribution, metabolism, excretion and toxicity (ADMET)
properties, Xiong et al. (2021) employed a multi-task graph
attention framework addressing classification and regression
tasks.
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In this work, we propose group contribution-assisted graph
convolutional neural network (GC2NN) models that are si-
multaneously trained on lists of molecular descriptors as well
as graph representations of molecules, in which atom fea-
tures are mapped to nodes, and bond features mapped to
edges of a graph structure. We test model performance on
data sets from experimental measurements and QM calcu-
lations (Besel et al., 2023), and compare our models with
established methods for the determination of pvap: one ML
approach, where convolutional neural networks are trained
on one-hot encoded SMILES representations (Krüger et al.,
2022), two parameterizations, where pvap are derived only
from the compounds’ elemental composition (Donahue et al.,
2011; Li et al., 2016), and SIMPOL (Pankow and Asher,
2008), EVAPORATION (Compernolle et al., 2011), and EPI-
Suite (EPI, 2024), which are commonly used semi-empirical
group-contribution methods.

2 Methods

2.1 Vapor pressure data

We assembled a data set of SMILES representations of
6042 compounds with experimental saturation vapor pres-
sure (pvap) measurements at 298 K by crawling data from
pubchem (Kim et al., 2016). In addition, we retrieved the
data set published in Naef and Acree (2021), comprised
of 2070 compounds. After removal of species present in
both data sets, and species that contain elements that occur
in fewer than 30 compounds, a total of 6178 unique com-
pounds with experimental pvap measurements are obtained
and referred to as broad data. An overview of molecular
substructures in the broad data set is displayed in Fig. 1a.
It encompasses various compound types, such as aromat-
ics, alcohols, carboxylic acids, esters, amines, amides, car-
bonyls, sulfides and nitriles. As the broad data set also con-
tains ∼ 5 % inorganic compounds, we refer to compounds in
this data set more generally as extremely low-volatility com-
pounds (ELVOC), low-volatility compounds (LVOC), semi-
volatile compounds (SVOC), intermediate-volatility com-
pounds (IVOC) and volatile compounds (VOC), thus keep-
ing the same acronyms and vapor pressures bins as Don-
ahue et al. (2009) established for organic compounds. Exper-
imental pvap measurements range from 10−10 to 107 Pa. The
distribution of saturation concentrations and the number of
ELVOC, LVOC, SVOC, IVOC and VOC are summarized in
Fig. 1e. For a comparison with established methods for pvap
prediction, and to test the method on a data set of compounds
that are relevant for the atmosphere, we extract all com-
pounds that lie within the scope of these methods (Pankow
and Asher, 2008; Compernolle et al., 2011; Donahue et al.,
2011; Li et al., 2016), confining the data set to molecules only
consisting of C, H, and O atoms and belonging to the fol-
lowing compound classes: alkanes, (non-aromatic) alkenes,

aldehydes, ketones, ethers, esters, peroxides, nitrates, peroxy
acyl nitrates, alcohols, acids, hydroperoxides and peracids.
This subset of the broad data, referred to as confined data,
contains a total of 1349 compounds with much smaller vari-
ety of compound classes, including carboxyl, hydroxyl, ester
and carbonyl functional groups (Fig. 1b). While the overall
pvap range is very similar, the confined data set exhibits a
smaller fraction of ELVOC, LVOC and SVOC than the broad
data set (Fig. 1c, d, e, f). This skew towards higher vapor
pressures in the confined data can be attributed to smaller
molecules that contain fewer heavy atoms, as indicated by its
lower average molecular mass of 154.8 g mol−1, compared
to 205.8 g mol−1 in the broad data set. Both data sets are
available for download, as specified in the data availability
statement.

In addition to the experimental data, we train and evalu-
ate GC2NN models based on the quantum-mechanical (QM)
data set GeckoQ (Besel et al., 2023). This data set contains
a total of 31 637 compounds with calculated pvap. Com-
pounds in this data are carbon backbones derived from de-
cane, toluene and α-pinene with various functional groups
(including C, O, H). These structures were generated by
the GECKO-A mechanism generator following Isaacman-
VanWertz and Aumont (2021). GECKO-A simulates the at-
mospheric oxidation of hydrocarbons (Aumont et al., 2005),
ensuring the atmospheric relevance of the compounds in this
data set. Besel et al. conducted a conformer search using the
COSMOconf program, calculated individual conformer pvap
values with COSMOtherm, and determined a single pvap ac-
counting for the population of conformers according to the
Boltzmann distribution (Wang et al., 2017; Kurtén et al.,
2018; Hyttinen et al., 2022).

From each data set, we sample test sets (10 % of com-
pounds) that are fully withheld from model training and used
to evaluate the trained GC2NN models. The remaining com-
pounds in each data set (90 %) are used for training of the
GC2NN models, applying 5-fold cross-validation with 80 %
of data in the training and 20 % in the validation set. The re-
sulting data set sizes are the following: broad training: 4449,
broad validation: 1112, broad test: 617, confined training:
972, confined validation: 243, confined test: 134, GeckoQ
training: 22 778, GeckoQ validation: 5695, and GeckoQ test:
3164. pvap measurements in Pa are logarithmized and scaled
to a [0, 1]-interval using min-max scaling.

Of the 1349 molecules in the confined data set, 474 are
also contained in the EVAPORATION training data (Com-
pernolle et al., 2011). We ensure that no EVAPORATION
training data are present in the test set that is used for com-
parison between the methods. Note that this only applies to
EVAPORATION due to data availability and practicability;
any other pre-trained or fitted method is likely to contain
some fraction of the test set used in this study in their train-
ing data, including Donahue et al. (2011), Li et al. (2016),
SIMPOL, and EPI-Suite.
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Figure 1. Overview of the two experimental data sets used in this study: broad data set (n= 6178; a, c, e) and confined subset (n= 1349;
b, d, f). Panels (a) and (b) show all substructures which are present in more than 1 % of molecules in the respective data set (not shown: a:
nitrate, sulfo, peroxide, organosulfate, peroxy acyl nitrate; b: peroxide). Panels (c) and (d) display histograms of experimental vapor pressure
measurements in each data set, whereas Panels (e) and (f) show the same data as saturation mass concentrations (C0). The volatility classes
are adopted from Donahue et al. (2009).

2.2 Molecular representation

For the graph convolution component of the GC2NN, we
transform SMILES representations of molecular structures
into graph-representations where atom features are mapped
to node features, and bond features to edge features (Ta-
bles S1 and S2 in the Supplement). The final graph struc-
ture is comprised of three tensors. Each node and bond in the
graph is associated with a vector of atom features and bond
features, respectively. An adjacency matrix indicates the con-
nectivity of atoms in the molecule. Graph convolution lay-
ers receive the adjacency matrix indicating which nodes (i.e.,

atoms) are connected, as well as the node feature matrix as
inputs, graph attention layers additionally receive edge fea-
tures. While the adjacency matrix remains unmodified to al-
low deduction of the connectivity for the following layers,
each graph layer alters the feature matrix or matrices by ag-
gregating features from neighboring nodes or edges, using
the adjacency matrix to guide the aggregation.

For the model’s group contribution component, a list of
molecular descriptors (including molar mass, number of
atoms for each element, and the number of common func-
tional groups) are derived directly from the SMILES repre-
sentation of the molecule. The descriptors are specific to each
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data set and are summarized in Table S3. All descriptors and
features are one-hot encoded or normalized to a [0, 1] inter-
val.

2.3 Model architecture and training

We test and compare two group contribution-assisted graph
convolutional neural networks (GC2NN) models in this
work: a fixed-depth GC2NN (fdGC2NN) model with a fixed
number of graph layers, and an adaptive-depth GC2NN
(adGC2NN) model where the number of graph layers is dy-
namically adapted based on a compound’s size. Schematic
overviews of the adGC2NN and fdGC2NN models are shown
in Figs. 2 and S1, respectively. All GC2NN models encom-
pass two components with separate inputs that are derived
from the SMILES-encoded molecular structure. The graph
convolution component is comprised of multiple graph con-
volution layers and graph attention layers. Graph convolu-
tion layers apply convolution operations on each node, de-
riving information from the current node’s properties, as
well as its neighbors (Kipf and Welling, 2017; Zhang et al.,
2019). Graph attention layers utilize attention mechanisms,
enabling them to weigh convoluted nodes and features by
their importance (Veličković et al., 2017; Withnall et al.,
2020; Tang et al., 2020). This capability allows the assess-
ment of feature importances by evaluating attention weights
(Sanchez-Lengeling et al., 2020). Furthermore, graph at-
tention layers enable the model to also derive information
from edge attributes (Battaglia et al., 2018). Each graph at-
tention or convolution layer increases the nodes’ receptive
fields, i.e. the distance between two nodes (and hence atoms)
that still affect each other. To account for variable molecule
sizes, we use the maximum distance between two atoms of a
compound (maxdist) to determine the number of processing
graph layers in the adGC2NN, with a maximum of five layers
for molecules with maxdist> 4. In the fdGC2NN, all com-
pounds are indiscriminately passed through five graph layers.
The models’ group contribution component is comprised of
fully connected hidden layers that process additional molecu-
lar descriptors in parallel. Graph layer-specific merging lay-
ers map the information obtained from both model compo-
nents to the output layer and a vapor pressure prediction.
We use the Python packages RDKit and PyTorch (and Py-
Torch_Geometric) to generate the graph representations of
molecular species from SMILES and train GC2NN models
(Landrum, 2013; Paszke et al., 2019).

The Python package Optuna (Akiba et al., 2019) is used to
efficiently optimize hyperparameters of each GC2NN model,
using 5-fold cross-validation to mitigate variability due to
the small data sets. We select mean absolute error (MAE)
as loss function for model training, as well as model eval-
uation and comparison with established methods, due to its
robustness over methods that give more weight to outliers
such as root mean squared error (RMSE). This is particu-
larly important given that the training data consist of experi-

mental measurements that may possess high uncertainty and
could be subject to systematic biases originating from differ-
ent experimental setups. Measurements in the ELVOC range
are particularly susceptible to higher experimental uncertain-
ties, which would receive disproportionate weighting under
RMSE-based training and consequently degrade model per-
formance on other ranges. MAE allows for a reliable and
interpretable evaluation of model accuracy without being
overly influenced by extreme values. Hyperparameters are
optimized by minimizing average validation loss across all
cross-validation folds, but we reject models if the MAE stan-
dard deviation is larger than 0.08, to ensure robust model
architectures. All models are trained to a maximum of 400
training epochs, unless validation loss does not decrease for
20 consecutive epochs. If so, model parameters are reset to
the state of the epoch where the last validation loss decrease
occurred, and training is terminated to avoid over-fitting. Af-
ter the selection of suitable hyperparameters, a single model
is trained by merging training and validation data to a sin-
gle training data set, referred to as T+V model. To account
for the additional training data, we locally optimize the num-
ber of training epochs around the number determined during
hyperparameter tuning. A summary of the relevant hyper-
parameters including descriptions and tested ranges is dis-
played in Table S4. Hyperparameter optimization and model
training are conducted on the Raven high-performance com-
puting (HPC) system of Max Planck Computing and Data
Facility (MPCDF), which provides GPU-accelerated com-
pute nodes, each with four Nvidia A100-SXM4 GPUs and
160 GB HBM2. Each model is trained on a single Nvidia
A100-SXM4 GPU using up to 24 GB of memory and Py-
Torch version 2.4.0 with CUDA version 12.1 support.

3 Results and discussion

We train and evaluate group contribution-assisted graph con-
volutional neural network (GC2NN) models on two sets of
experimental vapor pressure (pvap) data and the GeckoQ data
set where pvap was derived from quantum-mechanical calcu-
lations (Besel et al., 2023). We distinguish between models
trained on experimental data sets with different scopes: the
GC2NN-confined are trained on a confined data set that only
contains compounds relevant in the atmosphere within the
scope of the methods used for benchmarking, i.e. only con-
taining C, H, and O, and excluding aromatics and some ad-
ditional functional groups (Fig. 1b, d, f). GC2NN-broad are
trained on the full experimental data set (Fig. 1a, c, e).

3.1 GC2NN-confined

Figure 3a shows that the adGC2NN model exhibits excel-
lent agreement with the experimental measurements in the
independent test set, except from a small number of out-
liers (MAE= 0.37 log-units). Average training time of the
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Figure 2. Schematic overview of molecular representation and model functionality in the adaptive-depth GC2NN models. Right: for the
group contribution component, Simplified Molecular Input Line Entry System (SMILES) strings are used to derive holistic information on
the molecule, such as its molar mass and the presence of atoms and functional groups (Table S3). Left: for the model’s graph convolution
component, SMILES strings are transformed into graph representations, encoded as adjacency matrices, node features, and edge features.
This molecular representation is transformed using graph attention and graph convolution layers. The maximum distance (maxdist) between
two nodes in the input graph determines the number of utilized graph layers, matching the nodes’ receptive fields with the respective
compound’s size. After passing all graph layers applicable to a compound, the convoluted and flattened node and edge feature matrices are
concatenated with the processed data from the group contribution component. Fully-connected merging layers process these vectors and map
them to the single-node output layer, the pvap prediction.

five adGC2NN cross-validation models is 55 min on a Nvidia
A100, and the average test set mean absolute error (MAE)
is 0.40 log-units with a standard deviation of 2.04× 10−2.
The T+V fdGC2NN performs worse with an MAE of 0.47
log-units. Average training time of the five fdGC2NN cross-
validation models is 22 min on a Nvidia A100, and the av-
erage test set mean absolute error (MAE) is 0.46 log-units
with a standard deviation of 3.0× 10−2. The selected hyper-
parameters for all fdGC2NN models are summarized in Ta-
ble S5. The adGC2NN model is more robust regarding the
choice of hyperparameters, which permits the use of a single

model architecture for all data sets. All adGC2NN models
possess two hidden layers with each 32 nodes in the group
contribution component and a single merging layer with
eight nodes for each graph convolution layer. The graph com-
ponent of the adGC2NN models is comprised of a total of five
layers with 32, 16, 64, 16 and 32 nodes, using “LeakyReLU”,
“LeakyReLU”, “ReLU”, “ReLU” and “LeakyReLU” activa-
tion functions, respectively. Among these, the second and
fifth layers are graph attention layers with six attention heads
each, processing additional edge information. Training is
conducted with a learning rate of 6.25× 10−4, a learning rate
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decay of 0.985 per training epoch, no weight decay and a
batch size of four (Fig. 2, Table S6). The adGC2NN signifi-
cantly outperforms the Krüger et al. (2022) one hot-encoding
convolutional neural network approach (OHE-CNN; MAE=
0.79 log-units; average MAE= 0.93 log-units for five cross-
validation folds), the Donahue et al. (2011) (MAE=1.61
log-units) and Li et al. (2016) (MAE=1.05 log-units) pa-
rameterizations, as well as EPI-Suite (MAE= 0.43 log-
units), SIMPOL (MAE= 0.61 log-units) and EVAPORA-
TION (MAE= 0.54 log-units) group contribution methods
(Fig. 3). Note that the exclusion of a large fraction of
molecules (>30 %) from the test set biases the populations of
chemical species in the training and test set for the GC2NN
and OHE-CNN models (Fig. S2). This may be disadvanta-
geous for the GC2NN models, however, separate calculations
with unbiased test set sampling show that the choice of the
test set does not have a strong effect on the test set error of
the GC2NN models.

Figure 4 shows the distributions of the individual errors
for chemical species in the test set for all methods. The
fdGC2NN-confined, SIMPOL and EVAPORATION meth-
ods exhibit near-identical error distributions where the ma-
jority of predictions are very accurate (MAE< 0.5 log-units),
and few predictions fall within the range of 0.5 to 1.5 log-
units. Only the adGC2NN model has a larger density of very
accurate predictions with only few compounds exceeding an
MAE of 1.0. EPI-Suite shows an hour-glass shaped profile
with a large fraction of very accurate predictions, as well as
a large fraction of outliers. This is likely due to the pres-
ence of EPI-Suite training data in our test set. Methods for
which this is likely the case are marked with an asterisk in
Fig. 4. All methods generally perform better at higher pvap
(Fig. S3). This behavior correlates with a similar, but weaker
bias with regards to molar mass (Fig. S4). The parameteriza-
tion methods (Li et al., 2016; Donahue et al., 2011), which
are solely based on elemental composition without consid-
ering functional group and molecular structure, exhibit the
highest percentage of significant outliers.

For a general feature attribution analysis, we investigate
attention scores of the second layer (graph attention) of the
trained model’s graph component. The attention weights,
which are trained parameters of the model, are applied to
each chemical compound and graph node (i.e., atom) to com-
pute attention scores. They represent the calculated impor-
tances, quantifying the contribution of each node to the pvap
prediction relative to its neighboring nodes for a specific
compound. For functional groups, importances of all associ-
ated atoms are averaged. With regards to single atoms, oxy-
gen (0.36) scores a slightly larger attention score than carbon
(0.32) in the confined test set (Fig. S5). Among functional
groups, hydroxyl groups achieve the highest score.

To investigate the effect of experimental error in the low
volatility range, we train fdGC2NN models on a subset of
the confined data with log10(pvap/[Pa])> 0, encompassing
only VOC and IVOC, resulting in 1057 compounds. The av-

erage test set MAE of the cross-validation folds of this high-
volatility fdGC2NN model is 0.32 log-units. This suggests
that not only does experimental uncertainty of ELVOC and
LVOC lead to model uncertainty in this low-volatility range,
but it impedes the accuracy of fdGC2NN models in general.
To assess model uncertainty, we analyze ensemble predic-
tions from the 5-fold cross-validation models on both con-
fined and broad test data sets with regards to their prediction
errors and standard deviations (Fig. S6). While the ensem-
ble mean error represents model bias, the ensemble standard
deviation can serve as an indicator for overall model uncer-
tainty.

We use the trained adGC2NN-confined model to review
the concept of molecular corridors, following Shiraiwa et al.
(2014), where the chemical evolution of molecules constitut-
ing SOA is contextualized through their vapor pressure, mo-
lar mass, and oxygen-to-carbon (O : C) ratio. The tight in-
verse correlation between volatility and molar mass mostly
holds for the confined test set (Fig. 5a) as well as a data set
of atmospherically-relevant compounds from Shiraiwa et al.
(2014) (Fig. 5b). For the confined test set, the adGC2NN pre-
dictions even tend to fall more strictly into these molecu-
lar corridors than the experimental measurements, a poten-
tial indicator for experimental uncertainties. When applied
to the data from Shiraiwa et al. (2014), we observe a few
compounds that appear to deviate from the molecular cor-
ridors by exceeding the upper boundary line corresponding
to n-alkanes (O : C= 0). This deviation is either due to a
mismatch between the adGC2NN and the EVAPORATION
model that was used to determine the boundary lines es-
tablished in Shiraiwa et al. (2014), or could be due to a
systematic error of the adGC2NN as a result of the spar-
sity of ELVOC data in the training set (Fig. S2b). Further-
more, the difficulties of accurately determining vapor pres-
sures of ELVOC experimentally (Huisman et al., 2013; Bilde
et al., 2015) may contribute to this error. In atmospheric con-
text, the accurate determination of ELVOC vapor pressure
is not critical with regards to SOA formation, as such com-
pounds condense anyway. Note however, that the accurate
determination of ELVOC may be relevant in the context of
nucleation, as recent experimental studies found ultra-low-
volatility organic compounds (ULVOC) to nucleate, but not
LVOC or ELVOC (Kirkby et al., 2023). Attempts have thus
been undertaken previously to increase the representation of
ELVOC molecules in training data sets for vapor pressure es-
timation models (Besel et al., 2024).

3.2 GC2NN-broad

Compared to the confined data set, the broad data set encom-
passes a much larger range of molecular complexity, going
far beyond molecules relevant for atmospheric SOA. Thus,
despite a much larger training set size, the adGC2NN-broad
model achieves a lower test set accuracy than the adGC2NN-
confined model, with an MAE of 0.69 log-units for the T+V
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Figure 3. Correlation scatter plots of model-predicted and experimentally-measured vapor pressures for the confined data set. Displayed
are data from the independent test set only. The adGC2NN-confined (a) and fdGC2NN-confined (b) models are compared with established
methods: (c) shows the results using a convolutional neural network approach on one-hot encoded SMILES strings following Krüger et al.
(2022). (d) Li et al. (2016) and (e) Donahue et al. (2011) are empirical parameterizations, whereas (f) EPI-Suite (EPI, 2024), (g) Pankow and
Asher (2008) and (h) Compernolle et al. (2011) are group contribution methods. All molecules present in the EVAPORATION training data
have been excluded from the test data set. Mean absolute error (MAE) values are in log10(pvap/[Pa]). The dashed lines (±1.5 log-units from
the 1 : 1 line) are used to indicate significant outliers.
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Figure 4. Violin plots representing confined test set error distribu-
tion of models shown in Fig. 3. Medians are displayed as white
markers, interquartile ranges as vertical wide black lines and 1.5×
interquartile ranges as vertical narrow black lines. Outliers with an
MAE> 3 log-units are not shown. Methods marked with an asterisk
likely used a fraction of our test data in their training.

model (Fig. 6). Average training time of the cross-validation
models is 4.4 hours on a Nvidia A100 GPU, and the aver-
age test set mean absolute error (MAE) is 0.71 log-units with
a standard deviation of 3.02× 10−2. The T+V fdGC2NN
model performs worse with an MAE of 0.77 log-units. Cross-
validation fdGC2NN models have an average test set MAE
of 0.78 with a standard deviation of 2.36× 10−2 and an av-
erage training time of 2.4 h. Both GC2NN models outper-
form the OHE-CNN approach from Krüger et al. (2022)
(MAE= 0.99 log-units; average MAE= 0.96 log-units for
five cross-validation folds), but have a similar test set error
than EPI-Suite (EPI, 2024) (MAE= 0.69 log-units). Error
distributions for the broad test set are displayed in Fig. S7.
Note that EPI-Suite was trained on larger data sets that are
not publicly available. As discussed above, the MAE that
EPI-Suite achieves in our test set is likely biased through
overlap of training and test data and thus not fully represen-
tative for unknown molecules.

We also train a fdGC2NN model on a subset of the broad
data with log10(pvap/[Pa])> 0 to investigate the effect of ex-
perimental uncertainty in the low-volatility range. Due to the
large fraction of low-volatile compounds in the broad data,
the high-volatility subset only contains roughly 50 % of the
original compounds (n= 3116). The cross-validation mod-
els achieve an average MAE of 0.37 log-units, greatly reduc-
ing the error by nearly 50 % and outperforming EPI-Suite
(Figs. S8, S9). An uncertainty analysis based on ensemble
predictions for the broad test data of the 5-fold cross valida-
tion adGC2NN-broad models is shown in Fig. S10. Calcu-
lated attention scores for single atoms and functional groups
are summarized in Fig. S11. Notably, we observe a good
agreement between the attention score orders of functional
groups between adGC2NN-confined and adGC2NN-broad,
with hydroxyl groups having the highest scores, followed by
carbonyl groups, ester groups and finally non-aromatic C=C

double bonds. The importance of hydroxyl groups may be
attributed to their ability to form hydrogen bonds that re-
duce the compound’s vapor pressure. Note that feature im-
portances assigned by trained models are not exclusively
governed by chemical principles, but also the prevalence and
distribution of substructures in the training data. Rarity and
commonness of certain substructures may both decrease as-
sociated feature importances, as high importances are at-
tributed to relevant features that enable the model to distin-
guish compounds of the training population. To differentiate
between chemistry-governed and prevalence-governed im-
portances, feature attribution analyses could be supported by
generative sensitivity studies, where the effect of substruc-
tures on pvap predictions is statistically tested through sys-
tematic substitution of substructures in template compounds.
A molecular corridor plot following Shiraiwa et al. (2014) for
the adGC2NN-broad model is displayed in Fig. S12, exhibit-
ing a much stronger overestimation of ELVOC vapor pres-
sures than the confined model (Fig. 5). Thus, it appears that
the higher diversity of molecular features in the broad data
set exacerbates the problem of sparse data in the ELVOC
range.

3.3 GC2NN-GeckoQ

In addition to the experimental data sets, we train GC2NN
models on the GeckoQ data from Besel et al. (2023), which
were derived from quantum-mechanical calculations. For
the T+V adGC2NN model, the average test set mean ab-
solute error (MAE) is 0.66 log-units (Fig. 7). The five
adGC2NN cross-validation models achieve an MAE of 0.67
log-units, average training time is 13.77 h on a Nvidia
A100. Again, the adGC2NN model achieves a better result
than the fdGC2NN model (MSE= 0.71 log-units; average
MAE= 0.74 log-units for five cross-validation folds with an
average training time of 3.4 h on a Nvidia A100), as well
as the model adapted from Krüger et al. (2022) for pvap
prediction (MAE= 0.77 log-units; average MAE= 0.77 log-
units for five cross-validation folds). It also outperforms the
Gaussian Process Regression model presented in Besel et al.
(2023) which achieved a test set MAE of 0.82 log-units.

3.4 Learning curves

Figure 8 shows learning curves for the adGC2NN and
fdGC2NN models for each of the three data sets (broad,
confined, GeckoQ). Learning curves are obtained by train-
ing on data subsets of specific sizes, while consistently using
the hyperparameter sets optimized for the full data sets (Ta-
bles S5, S6). Gradients and convergence rates of the learn-
ing curves significantly differ between the models and data
sets. In general, the fdGC2NN models exhibit steeper learn-
ing curves than the adGC2NN models, demonstrating the su-
periority of the adG2NN model architecture across various
data set sizes and data sets. Note that only one adGC2NN ar-
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Figure 5. Molecular corridor plots following Shiraiwa et al. (2014). Left: comparison between adGC2NN-confined predictions and ex-
perimental measurements in the confined test set. Right: application of the adGC2NN-confined to a data set of atmospherically relevant
compounds (Shiraiwa et al., 2014). Blue and red boundary lines correspond to the volatility of n-alkanes and sugar alcohols (as determined
by EVAPORATION), respectively.

Figure 6. Correlation scatter plots of model-predicted and
experimentally-measured vapor pressures for the broad data
set. Displayed are data from the independent test set only.
(a) adGC2NN-broad model, (b) fdGC2NN-broad model, (c) OHE-
CNN method presented in Krüger et al. (2022), and (d) EPI-
Suite (EPI, 2024). Mean absolute error (MAE) values are in
log10(pvap/[Pa]). The dashed lines (±1.5 log-units from the 1 : 1
line) are used to indicate significant outliers.

chitecture and hyper parameter set is consistently used across
the study, while fdGC2NN models are optimized individu-
ally for each of the three data sets. We observe that signif-
icantly more data are needed to achieve the same accuracy
if the data contain a large variety of compound classes, as

the broad and GeckoQ data models show consistently higher
MAE than the confined data models for data sets of simi-
lar size. In the broad and GeckoQ data, the high diversity
of molecular features and, potentially, their complex interac-
tions require much more data for accurate predictions. None
of the learning curves appear to fully level-off for large data
set sizes, which means that the models can be expected to
improve significantly with additional training data.

In addition to the adGC2NN and fdGC2NN models, we
tested graph-only models without the additional input layer
to obtain holistic molecular information (group-contribution
component). These pure GCNN models are associated with
significantly larger errors for nearly all data sets and sizes
(Fig. S13), despite data set size-specific hyperparameter tun-
ing. This can be attributed to graph convolutions which, in
principle, are merely a succession of local operations on sub-
graphs. In other words, a pure graph convolutional neural
network performs local operations on the input graph that are
independent and unaware of operations and interpretations
that occur in distant areas of the molecular graph. Deducting
and learning holistic molecular information only from local
convolutions on the graph structure is difficult, especially for
the larger molecules. As each additional convolution layer in-
creases the distance allowed for two nodes (and hence atoms)
to influence each other, setting the number of graph convolu-
tion layers to the largest distance between two nodes in the
data set would enable the model to derive information from
each molecule as a whole. However, intramolecular interac-
tions are usually not long ranged. Furthermore, this is detri-
mental for most model training because it would result in
very deep neural networks which would likely over-fit on
most data sets. Therefore, since the graph neural network
training might not effectively capture whole-molecule prop-
erties, the lack of information on general molecular proper-
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Figure 7. Correlation scatter plots of model-predicted and
experimentally-measured vapor pressures for the GeckoQ data
set. Displayed are data from the independent test set only.
(a) adGC2NN-GeckoQ model (b) fdGC2NN-GeckoQ model, and
(c) OHE-CNN method presented in Krüger et al. (2022). Mean ab-
solute error (MAE) values are in log10(pvap/[Pa]). The dashed lines
(±1.5 log-units from the 1 : 1 line) are used to indicate significant
outliers.

ties, like molar mass, inhibits the graph-only models to gen-
eralize between molecules of different size. We observe that
the addition of molar mass as an input is crucial for the per-
formance of GC2NN, while additional descriptors like ele-
ment and functional group counts lead to further, but minor
improvements.

Figure 8. Mean absolute error (MAE) for independent test sets
(confined: n= 134; broad: n= 617; GeckoQ: n= 3163), as a func-
tion of training data set size of adGC2NN and fdGC2NN models
trained on subsets of the three data sets. The experiment is per-
formed by sampling subsets of various size from each of the re-
spective data sets and training adGC2NN and fdGC2NN models on
these. Shown are the average test set log unit MAE of five cross-
validation models in each subset. Error bars represent standard de-
viations across the cross-validation folds.

4 Summary and conclusions

Our findings suggest that group contribution-assisted graph
convolutional neural networks (GC2NN) and graph repre-
sentations of molecules are a promising approach for quan-
titative structure-activity relationship (QSAR) models. De-
spite the challenging scarcity of experimental data available
for atmospherically relevant compounds, the GC2NN models
surpass established methods, including parameterizations,
group contribution methods, and machine learning (ML) ap-
proaches. Graph representations are a natural and unambigu-
ous representation of molecular structures, encoding addi-
tional information related to individual atoms (graph nodes)
or bonds (graph edges), and making spatial relations between
molecular substructures directly interpretable by ML mod-
els suitable for graph processing. With that, graph represen-
tations are advantageous over molecular representations in
which spatial information are lost or not easily retrievable,
such as one-hot encoded (OHE) SMILES strings, which we
used previously in conjunction with convolutional neural net-
works (CNN) for the determination of quinone redox poten-
tials Krüger et al. (2022). In this study, OHE-CNN models
performed worse than GC2NN models for every tested data
set. Note, however, that we only performed a very basic tun-
ing of the hyperparameters from the original study and cor-
relation of the OHE-CNN model may improve with more ex-
tensive optimization.

We find that models that combine graph convolution with
the direct interpretation of molecular properties like mo-
lar mass, element, and functional group occurrences outper-
form models that only process one of the two. The accuracy
of graph-only GCNN models, without the additional input
layer, falls behind pure group contribution models that pro-
cess information on functional groups under consideration of
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known principles governing their effect on molecular prop-
erties. The provision of holistic information on the molecu-
lar structure, especially molar mass, is crucial for the perfor-
mance of GC2NN models, as graph convolutions only pro-
cess structural information locally. The difficulty in the appli-
cation of graph convolutional neural networks is their depen-
dence on the size of the input graphs. Therefore, specialized
fdGC2NN models for narrow vapor pressure ranges achieved
excellent results, given sufficient training data, in this study.
Our adaptive-depth approach, however, enables the GC2NN
to make use of the full training data, while matching the in-
dividual nodes’ receptive fields with the compound size dy-
namically.

In general, the application of machine learning with few
data is challenging, and learning curves suggest that addi-
tional data would significantly improve model accuracy for
all compound ranges. We hypothesize that ML QSAR mod-
els may furthermore improve through prediction of multiple
related molecular properties at a time. For instance, vapor
pressure-predicting models may benefit from the simultane-
ous prediction of melting points or glass transition temper-
ature, as the addition of such properties in the training data
possibly makes physical principles more accessible by the
model. Additional molecular parameters that are known to
affect vapor pressure, such as polarity and representations of
secondary intermolecular bonding, might also increase pre-
diction performances with a similar architecture in the fu-
ture. However, this may pose further restrictions on the train-
ing data available while highlighting how the application of
machine learning methods in atmospheric chemistry is cur-
rently limited by the scarcity of comprehensive experimen-
tal data sets involving atmospheric compounds. The prob-
lem of data scarcity is very evident for compounds in the
ELVOC range, which are comparably rare and underrepre-
sented in our data set. This may be due to greater difficulties
in the experimental determination of saturation vapor pres-
sures of ELVOCs. To accurately extend QSAR models to
the ELVOC range, possible strategies may include the uti-
lization of quantum mechanical-derived data instead of ex-
perimental data, or potentially the application of more ad-
vanced machine learning models that include heuristic rules
or physics-informed modules (Bilde et al., 2015), transfer
learning to enable extrapolation outside of the training do-
main (Lansford et al., 2023) or pre-trained models that can
be fine-tuned using small data sets (Burns et al., 2025). Our
adaptive-depth model, however, achieved overall good re-
sults given relatively few training data, making the archi-
tecture a promising candidate for QSAR models addressing
other molecular properties with relevance for atmospheric
chemistry and physics, such as Henry’s law solubility coef-
ficients or reaction rate coefficients. Furthermore, the mul-
tiple component approach to QSAR modelling permits the
utilization of far more advanced group contribution compo-
nents alongside the graph convolution component. While the
shallow neural networks in our study can indiscriminately

be applied to various molecular descriptors and data sets,
the utilization of advanced group contribution methods like
SIMPOL or EVAPORATION alongside the graph convolu-
tion component, or the utilization of additional molecular de-
scriptors may significantly increase model accuracy. In a sim-
ilar fashion, QSAR models can likely be improved through
integration of physics-informed models or hybrid quantum-
mechanical/machine learning models (Zhang et al., 2018).

By using data sets of differing molecular complexity, a
broad data set using most web-crawled data and a data set
confined for atmospherically-relevant compounds, we find
that the more specialized model can achieve a higher test set
accuracy. In turn, while the models training on the broad data
set have the largest error of all GC2NN models in this study,
they are applicable to a large population of compounds with
a diverse elemental composition and variety of functional
groups, encompassing both organic and inorganic species.
It is therefore recommended to train QSAR models that are
specific to certain molecule scopes and applications. We also
find that model accuracy significantly differs between models
that are trained on subsets of the pvap range, and that mod-
els that are trained on smaller ranges can outperform more
general models despite training data scarcity. In practice, an
ensemble approach with multiple models, e.g., specifically
for the low and high volatility range may be a viable ap-
proach for ML methods, similarly to the ensemble utilization
of the Modified Grain, Antoine and Mackay methods (EPI,
2024; Li et al., 2016). Further improvements may be achiev-
able through data curation techniques, as common outliers
between various methods indicate data points with large ex-
perimental uncertainty.

The data sets (broad and confined) as well as the associ-
ated trained models are published along with this study. The
compiled experimental vapor pressure data can be used for
future benchmarking or training of vapor pressure estimation
methods. Furthermore, our trained adGC2NN models can be
downloaded as easy-to-use executables, enabling researchers
in various fields to obtain accurate vapor pressure predictions
for their research, e.g., in the fields of SOA modeling or cli-
mate simulations. To run the models, no knowledge on ma-
chine learning or programming is required.

Code and data availability. The data and source code,
as well as a model executable, are openly available at
https://doi.org/10.17617/3.GIKHJL (Krüger and Berkemeier,
2025).
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