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Table S1. Atom features represented in the feature map linked to individual nodes of the graph representation. To obtain the required features

from SMILES strings, we use the Python package RDKit (Landrum, 2013).

Feature name Encoding Possible values Description

atom_type OHE1 C, O, N, H, Cl, P, S, F, I, B, Br, Si Element

n_heavy_neighbors OHE1 0, 1, 2, 3, 4, MoreThanFour Atom neighbors that are not H

formal_charge2 OHE1 -3, -2, -1, 0, 1, 2, 3, Extreme Formal charge of atom

hybridisation_type OHE1 S, SP, SP2, SP3, SP3D, SP3D2, OTHER Atom hybridisation

is_in_a_ring BOOL 0, 1 If atom is within ring structure

is_aromatic2 BOOL 0, 1 If atom is within conjugated structure

atomic_mass FLOAT - Atomic mass in [u], scaled

vdw_radius FLOAT - Van-der-Waals radius, scaled

covalent_radius FLOAT - Covalent radius, scaled

chirality_type OHE1
CHI_UNSPECIFIED, CHI_TETRAHEDRAL_CW,

CHI_TETRAHEDRAL_CCW, CHI_OTHER
Chirality type

n_hydrogens OHE1 0, 1, 2, 3, 4, MoreThanFour Atom neighbors that are H

1 One-hot-encoding 2 Omitted in confined data

Table S2. Bond features represented in the feature map linked to individual edges of the graph representation. To obtain the required features

from SMILES strings, we use the Python package RDKit (Landrum, 2013).

Feature name Encoding Possible values Description

bond_type OHE1 SINGLE, DOUBLE, TRIPLE, AROMATIC Type of bond

bond_is_in_ring BOOL 0, 1 If bond is within ring structure

bond_is_conj BOOL 0, 1 If bond is conjugated

stereo_type OHE1 Z, E, ANY, NONE Stereo type of bond

1 One-hot-encoding
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Table S3: List of molecular descriptors passed to the group contribution component of GC2NN models. To obtain the required

molecular descriptors from SMILES strings, we use the Python package RDKit (Landrum, 2013).

Feature Description Present in model

mass Molar mass all

NumAtoms Number of atoms all

NumBonds Number of bonds all

NumSingleBonds1 Number of single bonds all

NumDoubleBonds1 Number of double bonds all

NumTripleBonds1 Number of triple bonds all

NumAromBonds1 Number of aromatic bonds all

AromC Number of aromatic carbon atoms all

Charge Formal charge all

BertzCT Bertz complexity index all

Ipc Structural information content all

NumHDonors Number of hydrogen donors all

TPSA Topological polar surface area all

NHOHCount Number of -NH and -OH groups all

MolMR Molar refractivity all

VSA_EState3 EState indices for 3rd bin of VSA all

AvgIpc Average information content per atom all

OC-ratio Oxygen-carbon ratio all

C2 Carbon atoms all

O2 Oxygen atoms all

N2 Nitrogen atoms all

Cl2 Chlorine atoms broad

I2 Iodine atoms broad

S2 Sulfur atoms broad

F2 Fluorine atoms broad

P2 Phosphorus atoms broad

Si2 Silicon atoms broad

Br2 Bromine atoms broad

B2 Boron atoms broad

hydroxyl Hydroxyl groups all
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Table S3: (continued)

Feature Description Present in model

ester Ester groups all

carbonyl Carbonyl groups all

carboxyle Carboxyl groups confined, broad

ketone Ketone groups GeckoQ

hydroperoxide Hydroperoxide groups GeckoQ

nitrate Nitrate groups GeckoQ

aldehyde Aldehyde groups GeckoQ

carbonic acid Carbonic acid groups GeckoQ

peroxide Peroxide groups GeckoQ

carbonylperoxynitrate Carbonylperoxynitrate groups GeckoQ

ether Ether groups GeckoQ

nitro Nitro groups broad, GeckoQ

nitroester Nitroester groups GeckoQ

amine Amine groups broad

amide Amide groups broad

sulfide Sulfide groups broad

nitrile Nitrile groups broad

1 Normalized as fraction of all bonds in compound 2 Normalized as fraction of all atoms in compound
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Table S4. GC2NN hyperparameter description and tested ranges.

Hyperparameter Description Tested range

num_conv_layers Number of graph conv. layers [2, 8]

num_conv_nodes Number of nodes in each conv. layer [8, 128]

num_hidden_layers Number of additional fully-connected hidden layers [0, 2]

hidden_layer_nodes Number of nodes in each additional fully-connected layer [8, 128]

num_merging_layers Number of merging layers [0, 2]

merging_layer_nodes Number of nodes in each merging layer [8, 128]

learning_rate Learning rate during training [1 × 10−4, 1 × 10−2]

lr_decay Learning rate decay in each training epoch [0.97, 1.0]

weight_decay L2 regularization to avoid large weights 0 or [1 × 10−5, 1 × 10−2]

acivations Activation of each conv. layer ’ReLU’, ’LeakyReLU’, ’Tanh’ or ’Sigmoid’

layer_types Types of conv. layers ’GCN’1 or ’GAT’2

heads Number of attention heads in conv. layer3 [1, 8]

pass_edge_attr If edge (bond) attributes are passed to a layer3 0 or 1

batch_size Number of molecules in each training batch [4, 32]

1 Graph convolution layers (Zhang et al., 2019) 2 Graph attention layers (Veličković et al., 2017) 3 Only applicable to GAT layers

Table S5. Selected hyperparameters for fdGC2NN models.

Hyperparameter fdGC2NN-confined fdGC2NN-broad fdGC2NN-GeckoQ

num_conv_layers 5 5 5

num_conv_nodes [32, 64, 32, 32, 32] [256, 128, 32, 256, 64] [64, 32, 128, 32, 16]

num_hidden_layers 1 1 1

hidden_layer_nodes 32 32 32

learning_rate 1.94 × 10−3 9 × 10−4 4 × 10−3

lr_decay 0.986 0.989 0.988

weight_decay 0 0 0

acivations
[’Tanh’, ’LeakyReLU’, ’ReLU’,

’Tanh’, ’Tanh’]

[’Tanh’, ’ReLU’, ’ReLU’,

’LeakyReLU’, ’LeakyReLU’]

[’Tanh’, ’Tanh’, ’ReLU’,

’ReLU’, ’Tanh’]

layer_types [GAT, GAT, GCN, GAT, GCN] [GCN, GAT, GCN, GAT, GAT] [GAT, GCN, GCN, GCN, GAT]

heads [4, 7, 0, 1, 0] [0, 3, 0, 6, 5] [5, 0, 0, 0, 3]

pass_edge_attr [0, 1, 0, 1, 0] [0, 0, 0, 0, 1] [0, 0, 0, 0, 1]

batch_norm_layers [1, 0, 0, 0, 0] [0, 1, 0, 1, 0] [1, 0, 1, 0, 0]

batch_size 32 16 64
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Table S6. Selected hyperparameters for adGC2NN models.

Hyperparameter adGC2NN

num_conv_layers 5

num_conv_nodes [32, 16, 64, 16, 32]

num_hidden_layers 2

hidden_layer_nodes 32, 32

num_merging_layers 1

merging_layer_nodes 8

learning_rate 6.25 × 10−4

lr_decay 0.985

weight_decay 0

acivations [’LeakyReLU’, ’LeakyReLU’, ’ReLU’, ’ReLU’, ’LeakyReLU’]

layer_types [GCN, GAT, GCN, GCN, GAT]

heads [0, 6, 0, 0, 6]

pass_edge_attr [0, 1, 0, 0, 1]

batch_norm_layers [0, 0, 0, 0, 0]

batch_size 4
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atom_type: 'C'
is_aromatic: FALSE
formal_charge: 0

...
mol. mass: 105.16
n_C: 5
n_O: 2
n_N: 1
n_carboxyle: 0
n_hydroxyl: 2

...

bond_type: SINGLE
bond_in_ring: FALSE
conjugated: FALSE

...

SMILES: 'CN(CCO)CCO'
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Figure S1. Schematic overview of molecular representation and model functionality of the fixed-depth GC2NN (fdGC2NN) model proposed

in this work. Left: for the group contribution component, Simplified Molecular Input Line Entry System (SMILES) strings are used to derive

holistic information on the molecule, such as its molar mass and the presence of atoms and functional groups (Tab. S3). Right: for the

model’s graph convolution component, SMILES strings are transformed into graph representations, encoded as adjacency matrices, node

features, and edge features. This molecular representation is transformed using graph attention, graph convolution and batch normalization

layers that normalize node or edge features across a batch, potentially stabilizing and accelerating the training. A fully-connected merging

layer processes information from both model components and maps them to the single-node output layer, the pvap prediction. Note that the

displayed architecture represents model hyperparameters that were found optimal for a specific data set and model (fdGC2NN-GeckoQ); the

hyperparameters and thus architectures of other models presented in this study may deviate slightly in the type and order of layers in the

graph convolution component (Tab. S5).
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Figure S2. Occurrences of molecular substructures and vapor pressure measurements in the confined training plus validation (n = 1215;

A, B) and test data set (n = 134; C, D), suitable for EVAPORATION (Compernolle et al., 2011). Panels A, and C show all substructures

which are present in more than 1% of molecules in the respective data set. Panels B and D display histograms of experimental vapor

pressure measurements in each data set. The distributions of molecular substructures and experimental vapor pressures are dissimilar, as 474

compounds present in the EVAPORATION training data are excluded from the test set.
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Figure S3. Mean confined test set prediction errors of four volatility bins as a function of experimental saturation concentration (C0). Vertical

dashed lines indicate interval borders of volatility bins. The number of compounds in each bin in the test set is ELVOC: 0, LVOC: 4, SVOC:

8, IVOC: 52, VOC: 70.
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Figure S4. Mean confined test set prediction errors as a function of binned molecular masses. Vertical dashed lines indicate interval borders

of mass bins. Bin intervals are selected so that each bin contains roughly 20 compounds from the test data set (22, 22, 21, 24, 22, 23).

O C
0.0

0.1

0.2

0.3

C
um

ul
at

iv
e 

Im
po

rta
nc

e 
Sc

or
e

hy
dro

xy
l

ca
rbo

ny
l

es
ter

no
n-a

rom
ati

c C
=C

ca
bo

xy
l

0

1000

2000

3000

4000

0

50

100

150

200

O
cc

ur
re

nc
es

0.0

0.1

0.2

0.3

0.4

Figure S5. Cumulative importance scores and occurrences of atoms and functional groups in the confined test set (organic compounds with a

limited set of functional groups), calculated in the second layer (graph attention layer) in the graph component of the trained T+V adGC2NN-

confined. Specifically, self-loop importances of the nodes attributed to various elements or functional groups are averaged to determine their

relative importance among all neighboring nodes they are convoluted with.
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Figure S6. Ensemble standard deviation as a function of ensemble mean absolute error for the confined test set (organic compounds with

a limited set of functional groups). Ensemble predictions originate from the confined adGC2NN 5-fold cross validation models which are

trained on different subsets of the training data. All compounds with an ensemble standard deviation larger than 0.3 or an ensemble mean

absolute error larger than 1.0 are plotted as molecular structures. The compounds on the top of the figure are associated with large model

uncertainty, while compounds in the bottom right have large errors despite small model uncertainty, a potential indicator for experimental

uncertainty.

11



ad
GC

2 NN

fdG
C
2 NN

OHE-C
NN

EPI-s
uit

e

M
AE

 o
f l

og
10

(p
va

p 
/ [

Pa
])

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure S7. Violin plots representing broad test set error distribution of various models. Medians are shown as white markers, interquartile

ranges as vertical wide black lines and 1.5 × interquartile ranges as narrow black lines.
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Figure S8. Mean broad test set prediction errors of five volatility bins as a function of experimental saturation concentration (C0). Vertical

dashed lines indicate interval borders of volatility bins. The number of compounds in each bin in the test set is ELVOC: 10, LVOC: 53,

SVOC: 135, IVOC: 217, VOC: 202. An additional fdGC2NN model is trained and tested on a subset of 3116 compounds (ntrain = 2805, ntest

= 311) with log10(pvap / [Pa]) > 0.
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Figure S9. Mean broad test set prediction errors as a function of binned molecular masses. Vertical dashed lines indicate interval borders of

mass bins. Bin intervals are selected so that each bin contains roughly 90 compounds from the test data set (88, 87, 88, 89, 88, 87, 89). An

additional fdGC2NN model is trained and tested on a subset of 3116 compounds (ntrain = 2805, ntest = 311) with log10(pvap / [Pa]) > 0.
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Figure S10. Ensemble standard deviation as a function of ensemble mean absolute error for the broad test set. Ensemble predictions originate

from the broad adGC2NN 5-fold cross validation models which are trained on different subsets of the training data. All compounds with

an ensemble standard deviation larger than 1.0 or an ensemble mean absolute error larger than 4.0 are plotted as molecular structures. The

compounds on the top of the figure are associated with large model uncertainty, while compounds in the bottom right have large errors despite

small model uncertainty, a potential indicator for experimental uncertainty.
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Figure S11. Cumulative importance scores and occurrences of atoms and functional groups in the broad test set (including inorganic com-

pounds), calculated in the second layer (graph attention layer) in the graph component of the trained T+V adGC2NN-broad. Specifically,

self-loop importances of the nodes attributed to various elements or functional groups are averaged to determine their relative importance

among all neighboring nodes they are convoluted with.
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Figure S12. Molecular corridor plots following Shiraiwa et al. (2014). Application of the adGC2NN-broad model to a data set of atmospher-

ically relevant compounds (Shiraiwa et al., 2014). Blue and red boundary lines correspond to the volatility of n-alkanes and sugar alcohols

(as determined by EVAPORATION), respectively.
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Figure S13. Mean absolute error (MAE) for independent test sets (confined: n = 137; broad: n = 625; GeckoQ: n = 3,163), as a function of

training data set size of graph-only GCNN models trained on subsets of the three data sets. The experiment is performed by sampling subsets

of various size from each of the respective data sets and training GCNN models on these. Hyperparameter tuning is performed for each

subset. Shown are the average test set log unit MAE of five cross-validation models in each subset. Error bars represent standard deviations

among the cross-validation folds.
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