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Table S1. Atom features represented in the feature map linked to individual nodes of the graph representation. To obtain the required features

from SMILES strings, we use the Python

package RDKit (Landrum, 2013).

Feature name Encoding  Possible values Description

atom_type OHE! C,O,N,H,Cl,PS, F1B,Br, Si Element

n_heavy_neighbors OHE!' 0,1, 2, 3, 4, MoreThanFour Atom neighbors that are not H

formal_chalrge2 OHE! -3,-2,-1,0, 1, 2, 3, Extreme Formal charge of atom

hybridisation_type OHE! S, SP, SP2, SP3, SP3D, SP3D2, OTHER Atom hybridisation

is_in_a_ring BOOL 0,1 If atom is within ring structure

is_aromatic? BOOL 0,1 If atom is within conjugated structure

atomic_mass FLOAT - Atomic mass in [u], scaled

vdw_radius FLOAT - Van-der-Waals radius, scaled

covalent_radius FLOAT - Covalent radius, scaled

chirality_type OHE! CHI_UNSPECIFIED, CHI_TETRAHEDRAL_CW, Chirality type
CHI_TETRAHEDRAL_CCW, CHI_OTHER

n_hydrogens OHE! 0, 1, 2, 3, 4, MoreThanFour Atom neighbors that are H

1 One-hot-encoding 2 Omitted in confined data

Table S2. Bond features represented in the feature map linked to individual edges of the graph representation. To obtain the required features

from SMILES strings, we use the Python

package RDKit (Landrum, 2013).

Feature name Encoding  Possible values Description

bond_type OHE* SINGLE, DOUBLE, TRIPLE, AROMATIC  Type of bond

bond_is_in_ring BOOL 0,1 If bond is within ring structure
bond_is_conj BOOL 0,1 If bond is conjugated
stereo_type OHE! Z,E, ANY, NONE Stereo type of bond

1 One-hot-encoding



Table S3: List of molecular descriptors passed to the group contribution component of GC?NN models. To obtain the required

molecular descriptors from SMILES strings, we use the Python package RDKit (Landrum, 2013).

Feature Description Present in model
mass Molar mass all
NumAtoms Number of atoms all
NumBonds Number of bonds all
NumSingleBonds! Number of single bonds all
NumDoubleBonds! Number of double bonds all
NumTripleBonds* Number of triple bonds all
NumAromBonds' Number of aromatic bonds all
AromC Number of aromatic carbon atoms all
Charge Formal charge all
BertzCT Bertz complexity index all
Ipc Structural information content all
NumHDonors Number of hydrogen donors all
TPSA Topological polar surface area all
NHOHCount Number of -NH and -OH groups all
MoIlMR Molar refractivity all
VSA_EState3 EState indices for 3rd bin of VSA all
Avglpc Average information content per atom  all
OC-ratio Oxygen-carbon ratio all

C? Carbon atoms all
0? Oxygen atoms all
N2 Nitrogen atoms all
CI? Chlorine atoms broad
I? Iodine atoms broad
S? Sulfur atoms broad
F? Fluorine atoms broad
p? Phosphorus atoms broad
Si2 Silicon atoms broad
Br? Bromine atoms broad
B2 Boron atoms broad
hydroxyl Hydroxyl groups all




Table S3: (continued)

Feature Description Present in model
ester Ester groups all

carbonyl Carbonyl groups all

carboxyle Carboxyl groups confined, broad
ketone Ketone groups GeckoQ
hydroperoxide Hydroperoxide groups GeckoQ

nitrate Nitrate groups GeckoQ
aldehyde Aldehyde groups GeckoQ
carbonic acid Carbonic acid groups GeckoQ
peroxide Peroxide groups GeckoQ
carbonylperoxynitrate ~ Carbonylperoxynitrate groups GeckoQ

ether Ether groups GeckoQ

nitro Nitro groups broad, GeckoQ
nitroester Nitroester groups GeckoQ

amine Amine groups broad

amide Amide groups broad

sulfide Sulfide groups broad

nitrile Nitrile groups broad

1 Normalized as fraction of all bonds in compound 2 Normalized as fraction of all atoms in compound



Table S4. GC2NN hyperparameter description and tested ranges.

Hyperparameter

Description

Tested range

num_conv_layers
num_conv_nodes
num_hidden_layers
hidden_layer_nodes
num_merging_layers
merging_layer_nodes
learning_rate
Ir_decay
weight_decay
acivations
layer_types

heads

pass_edge_attr

batch_size

Number of graph conv. layers

Number of nodes in each conv. layer
Number of additional fully-connected hidden layers

Number of nodes in each additional fully-connected layer

Number of merging layers

Number of nodes in each merging layer

Learning rate during training

Learning rate decay in each training epoch

L2 regularization to avoid large weights

Activation of each conv. layer

Types of conv. layers

Number of attention heads in conv. layer®
If edge (bond) attributes are passed to a layer®

Number of molecules in each training batch

[2, 8]
[8, 128]
[0, 2]
[8, 128]
[0, 2]
[8, 128]

[1x107%1x 1072

[0.97, 1.0]
Oor[l x107° 1 x 1072

’ReLU’, "LeakyReLU’, *Tanh’ or ’Sigmoid’
"GCN’! or "GAT?

[1,8]
Oorl
[4, 32]

1 Graph convolution layers (Zhang et al., 2019) 2 Graph attention layers (Velickovic et al., 2017) 3 Only applicable to GAT layers

Table S5. Selected hyperparameters for fdAGC2NN models.

Hyperparameter

fdGC?NN-confined

fdGC2NN-broad

fdGC?NN-GeckoQ

num_conv_layers
num_conv_nodes
num_hidden_layers
hidden_layer_nodes
learning_rate
Ir_decay
weight_decay

acivations

layer_types

heads
pass_edge_attr
batch_norm_layers

batch_size

5

[32, 64,32, 32, 32]

1

32

1.94 x 107°

0.986

0

["Tanh’, ’LeakyReLU’, 'ReLU’,
’Tanh’, Tanh’]

[GAT, GAT, GCN, GAT, GCN]
[4,7,0,1,0]

[0,1,0,1,0]

[1,0,0,0,0]

32

5

[256, 128, 32, 256, 64]

1

32

9x 107"

0.989

0

['Tanh’, ’ReLU’, 'ReLU’,
"LeakyReLU’, ’LeakyReLU’]
[GCN, GAT, GCN, GAT, GAT]
[0, 3,0, 6, 5]

[0,0,0,0,1]

[0, 1,0, 1,0]

16

5
[64, 32, 128, 32, 16]
1

32
4x1073

0.988

0

[’Tanh’, *Tanh’, "ReLU’,
"ReLU’, "Tanh’]

[GAT, GCN, GCN, GCN, GAT]
[5,0,0,0,3]

[0,0,0,0,1]

[1,0,1,0,0]

64




Table S6. Selected hyperparameters for adGC2NN models.

Hyperparameter adGC?NN
num_conv_layers 5
num_conv_nodes [32, 16, 64, 16, 32]
num_hidden_layers 2

hidden_layer_nodes 32,32
num_merging layers 1

merging_layer_nodes 8

learning_rate 6.25 x 1074

Ir_decay 0.985

weight_decay 0

acivations ['LeakyReLU’, ’LeakyReL.U’, "ReL.U’, 'ReLU’, ’LeakyReLU’]
layer_types [GCN, GAT, GCN, GCN, GAT]

heads [0, 6,0,0, 6]

pass_edge_attr [0,1,0,0,1]

batch_norm_layers [0,0,0,0,0]

batch_size 4
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Figure S1. Schematic overview of molecular representation and model functionality of the fixed-depth GC*NN (fdGCZNN) model proposed
in this work. Left: for the group contribution component, Simplified Molecular Input Line Entry System (SMILES) strings are used to derive
holistic information on the molecule, such as its molar mass and the presence of atoms and functional groups (Tab. S3). Right: for the
model’s graph convolution component, SMILES strings are transformed into graph representations, encoded as adjacency matrices, node
features, and edge features. This molecular representation is transformed using graph attention, graph convolution and batch normalization
layers that normalize node or edge features across a batch, potentially stabilizing and accelerating the training. A fully-connected merging
layer processes information from both model components and maps them to the single-node output layer, the py,, prediction. Note that the
displayed architecture represents model hyperparameters that were found optimal for a specific data set and model (FdAGC?NN-GeckoQ); the
hyperparameters and thus architectures of other models presented in this study may deviate slightly in the type and order of layers in the

graph convolution component (Tab. S5).
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Figure S2. Occurrences of molecular substructures and vapor pressure measurements in the confined training plus validation (n = 1215;
A, B) and test data set (n = 134; C, D), suitable for EVAPORATION (Compernolle et al., 2011). Panels A, and C show all substructures
which are present in more than 1% of molecules in the respective data set. Panels B and D display histograms of experimental vapor
pressure measurements in each data set. The distributions of molecular substructures and experimental vapor pressures are dissimilar, as 474

compounds present in the EVAPORATION training data are excluded from the test set.
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Figure S3. Mean confined test set prediction errors of four volatility bins as a function of experimental saturation concentration (Cp). Vertical
dashed lines indicate interval borders of volatility bins. The number of compounds in each bin in the test set is ELVOC: 0, LVOC: 4, SVOC:
8, IVOC: 52, VOC: 70.
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Figure S4. Mean confined test set prediction errors as a function of binned molecular masses. Vertical dashed lines indicate interval borders

of mass bins. Bin intervals are selected so that each bin contains roughly 20 compounds from the test data set (22, 22, 21, 24, 22, 23).
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Figure S5. Cumulative importance scores and occurrences of atoms and functional groups in the confined test set (organic compounds with a
limited set of functional groups), calculated in the second layer (graph attention layer) in the graph component of the trained T+V adGC>NN-
confined. Specifically, self-loop importances of the nodes attributed to various elements or functional groups are averaged to determine their

relative importance among all neighboring nodes they are convoluted with.
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Figure S6. Ensemble standard deviation as a function of ensemble mean absolute error for the confined test set (organic compounds with
a limited set of functional groups). Ensemble predictions originate from the confined adGC?NN 5-fold cross validation models which are
trained on different subsets of the training data. All compounds with an ensemble standard deviation larger than 0.3 or an ensemble mean
absolute error larger than 1.0 are plotted as molecular structures. The compounds on the top of the figure are associated with large model
uncertainty, while compounds in the bottom right have large errors despite small model uncertainty, a potential indicator for experimental

uncertainty.
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Figure S7. Violin plots representing broad test set error distribution of various models. Medians are shown as white markers, interquartile

ranges as vertical wide black lines and 1.5 X interquartile ranges as narrow black lines.
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Figure S8. Mean broad test set prediction errors of five volatility bins as a function of experimental saturation concentration (Co). Vertical
dashed lines indicate interval borders of volatility bins. The number of compounds in each bin in the test set is ELVOC: 10, LVOC: 53,
SVOC: 135, IVOC: 217, VOC: 202. An additional fdGC?NN model is trained and tested on a subset of 3116 compounds (Nygin = 2805, Nest
=311) with log10(pvap / [Pa]) > 0.
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Figure S9. Mean broad test set prediction errors as a function of binned molecular masses. Vertical dashed lines indicate interval borders of
mass bins. Bin intervals are selected so that each bin contains roughly 90 compounds from the test data set (88, 87, 88, 89, 88, 87, 89). An
additional fdGC*NN model is trained and tested on a subset of 3116 compounds (Nain = 2805, Niest = 311) with log1o(pvap / [Pa]) > 0.
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Figure S10. Ensemble standard deviation as a function of ensemble mean absolute error for the broad test set. Ensemble predictions originate
from the broad adGC2NN 5-fold cross validation models which are trained on different subsets of the training data. All compounds with
an ensemble standard deviation larger than 1.0 or an ensemble mean absolute error larger than 4.0 are plotted as molecular structures. The
compounds on the top of the figure are associated with large model uncertainty, while compounds in the bottom right have large errors despite

small model uncertainty, a potential indicator for experimental uncertainty.
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Figure S11. Cumulative importance scores and occurrences of atoms and functional groups in the broad test set (including inorganic com-
pounds), calculated in the second layer (graph attention layer) in the graph component of the trained T+V adGC2NN-broad. Specifically,
self-loop importances of the nodes attributed to various elements or functional groups are averaged to determine their relative importance

among all neighboring nodes they are convoluted with.
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Figure S12. Molecular corridor plots following Shiraiwa et al. (2014). Application of the adGC?NN-broad model to a data set of atmospher-
ically relevant compounds (Shiraiwa et al., 2014). Blue and red boundary lines correspond to the volatility of n-alkanes and sugar alcohols

(as determined by EVAPORATION), respectively.
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Figure S13. Mean absolute error (MAE) for independent test sets (confined: n = 137; broad: n = 625; GeckoQ: n = 3,163), as a function of
training data set size of graph-only GCNN models trained on subsets of the three data sets. The experiment is performed by sampling subsets
of various size from each of the respective data sets and training GCNN models on these. Hyperparameter tuning is performed for each
subset. Shown are the average test set log unit MAE of five cross-validation models in each subset. Error bars represent standard deviations

among the cross-validation folds.
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